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Abstract
This paper defines two decreasing measures for terms of the simply typed λ-calculus, called the
W-measure and the T m-measure. A decreasing measure is a function that maps each typable λ-term
to an element of a well-founded ordering, in such a way that contracting any β-redex decreases
the value of the function, entailing strong normalization. Both measures are defined constructively,
relying on an auxiliary calculus, a non-erasing variant of the λ-calculus. In this system, dubbed the
λm-calculus, each β-step creates a “wrapper” containing a copy of the argument that cannot be
erased and cannot interact with the context in any other way. Both measures rely crucially on the
observation, known to Turing and Prawitz, that contracting a redex cannot create redexes of higher
degree, where the degree of a redex is defined as the height of the type of its λ-abstraction. The
W-measure maps each λ-term to a natural number, and it is obtained by evaluating the term in the
λm-calculus and counting the number of remaining wrappers. The T m-measure maps each λ-term
to a structure of nested multisets, where the nesting depth is proportional to the maximum redex
degree.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Lambda calculus

Keywords and phrases Lambda Calculus, Rewriting, Termination, Strong Normalization, Simple
Types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.11

Funding This work was partially supported by project grants PICT-2021-I-A-00090, PICT-2021-I-
INVI-00602, PIP 11220200100368CO, PICT 2019-1272, PUNQ 2218/22, and PUNQ 2219/22.

Acknowledgements To Giulio Manzonetto for fruitful discussions that led to the development of
this work. To Eduardo Bonelli and the anonymous reviewers for feedback on earlier versions of
this paper. The second author would like to thank his advisors Alejandro Díaz-Caro and Pablo E.
Martínez López.

1 Introduction

In this paper we revisit a fundamental question, that of strong normalization of the simply
typed λ-calculus (STLC). We begin by recalling that a reduction relation is weakly normalizing
(WN) if every term can be reduced to normal form in a finite number of steps, whereas it is
strongly normalizing (SN) if there are no infinite reduction sequences (a1 → a2 → a3 → . . .).
Let us review three proof techniques for proving strong normalization of the STLC.

One of the better known ways to prove that the STLC is SN is through arguments
based on reducibility models. The idea is to interpret each type A as a set [[A]] of
strongly normalizing terms, and to prove that each term M of type A is an element of [[A]].
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11:2 Two Decreasing Measures for Simply Typed λ-Terms

Many variants of these ideas can be found in the literature, including Girard’s reducibility
candidates [17] and Tait’s saturated sets [30]. These techniques provide relatively succint
proofs and they generalize well to extensions of the STLC, e.g. to dependent type theory [6]
or classical calculi [13]. On the other hand, the abstract nature of reducibility arguments
does not provide a “tangible” insight on why a β-reduction step brings a term closer to
normal form. More specifically, reducibility arguments do not construct explicit decreasing
measures. By decreasing measure we mean a function “#” mapping each λ-term to a
well-founded ordering (X, >) such that M →β N implies #(M) > #(N).

Another way to prove strong normalization is based on redex degrees. A redex in the
STLC is an applied abstraction, i.e. a term of the form (λx. M) N . The degree of a redex
is defined as the height of the type of its abstraction. A crucial observation, that can be
attributed to an unpublished note of Turing (as reported by Gandy [15]; see also [4]), is that
contracting a redex cannot create a redex of higher or equal degree. Recall that a redex S is
created by the contraction of a redex R if S has no ancestor before R. Indeed, as shown by
Lévy [22], in the λ-calculus, redexes can be created in exactly one of the three ways below:

1 (λx. x) (λy. M) N →β (λy. M) N

2 (λx. λy. M) N P →β (λy. M [x := N ]) P

3 (λx. . . . x M . . .) (λy. N) →β . . . (λy. N) M [x := λy. N ] . . .

where we underline the λ of the contracted redex on the left, and the λ of the created redex
on the right. In each of these cases, it can be seen that the degree of the created redex is
strictly lower than the degree of the contracted redex. For instance, in creation case 1, the
type of the contracted redex is of the form (A → B) → (A → B), while the type of the
created redex is A→ B, so the height strictly decreases.

With this fact in mind, for each term M one can define what we call Turing’s measure,
i.e. the multiset T (M) of the degrees of all the redexes of M . One may hope that any
reduction step M →β N decreases the measure, i.e. T (M) ≻ T (N), where “≻” is the
usual well-founded multiset ordering induced by the ordering (N, >) of its elements [12].
Unfortunately, this is not the case: even though contracting a redex can only create redexes of
strictly lower degree, it can still make an arbitrary number of copies of redexes of arbitrarily
large degrees.

In his notes, Turing observed that one can follow a reduction strategy that always selects
the rightmost redex of highest degree. This strategy ensures that the contracted redex does
not copy redexes of higher or equal degree, which makes the T (−) measure strictly decrease,
thus proving that the λ-calculus is WN. An even simpler measure that also decreases, if one
follows this strategy, is T ′(M) = (D, n), where D is the maximum degree of the redexes in M

and n is the number of redexes of degree D in M . Similar ideas were exploited by Prawitz [28]
and Gentzen (as reported by von Plato [27]) to normalize proofs in natural deduction. After
WN has been established, an indirect proof of SN can be obtained by translating each typable
λ-term M to a typable term M ′ of the λI-calculus; see for instance [29, Section 3.5].

In summary, redex degrees can be used to define concrete measures such as T (M) and
T ′(M), that are computable in linear time and decrease when following a particular reduction
strategy. As already mentioned, these measures do not necessarily decrease when contracting
arbitrary β-redexes.

A third way to prove SN relies on an interpretation that maps terms to increasing
functionals. This approach was pioneered by Gandy [16] and refined by de Vrijer [10].
Each type A is mapped to a partially ordered set [[A]]. Specifically, base types are mapped
to (N,≤), and [[A → B]] is defined as the set of strictly increasing functions [[A]] → [[B]],
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partially ordered by the point-wise order. Each term M of type A is interpreted as an element
[M ] ∈ [[A]]. Moreover, an element f ∈ [[A]] can be projected to a natural number f⋆ ∈ N in
such a way that M →β N implies [M ]⋆ > [N ]⋆. This indeed provides a decreasing measure.
One of the downsides of this measure is that computing [M ]⋆ is essentially as difficult as
evaluating M , because [M ] is defined as a higher-order functional with a similar structure as
the λ-term M itself.

In this work we propose two decreasing measures for the STLC, that we dub the
W-measure and the T m-measure, and we prove that they are decreasing. An ideal decreasing
measure should fulfill multiple (partly subjective) requirements: 1. the measure should be
easy to calculate, in terms of computational complexity; 2. its codomain (a well-founded
ordering) should be simple, in terms of its ordinal type; 3. it should give us insight on
why β-reduction terminates; 4. it should be easy to prove that the measure is decreasing.
A measure that excels simultaneously at all these requirements is elusive, and perhaps
unattainable. The proposed measures have different strengths and weaknesses.

Contributions and structure of this document. The W-measure and the T m-measure are
defined by means of on an auxiliary calculus that we dub the λm-calculus. The remainder of
the paper is structured as follows.

In Section 2 we define the λm-calculus. It is an extension of the STLC with terms1

of the form t{s}, called wrappers. A wrapper t{s} should be understood as essentially the
term t in which s is a memorized term, that is, leftover garbage that can be reduced but
cannot interact with the context in any way. The type of t{s} is the same as the type of t,
disregarding the type of s.

The β-reduction rule is modified so that contracting a redex (λx. t) s, besides substituting
the free occurrences of x by s in t, produces a wrapper that contains a copy of the argument s.
The reduction rule is (λx. t){u1} . . . {un} s →m t[x := s]{s}{u1} . . . {un}. Note that
we allow the presence of an arbitrary number of memorized terms mediating between the
abstraction and the application. This is to avoid memorized terms blocking redexes. For
example, if I = λx. x:

(λx. x(xy))I →m (I(Iy)){I}→m (Iy){Iy}{I}→m (Iy){y{y}}{I}→m y{y}{y{y}}{I}

Then we study some syntactic properties of λm. In particular, we define a relation t ▷ s of
forgetful reduction, meaning that s is obtained from t by erasing one memorized subterm.
For example, x {x{y}}{y{z}} ▷ x {y{z}}. Forgetful reduction is used as a technical tool
to prove that the measures are decreasing in the following sections.

In Section 3, we propose the W-measure (Def. 12), and we prove that it is decreasing.
To define the W-measure, we resort to an operation Sd(t) that simultaneously contracts
all the redexes of degree d in a term of the λm-calculus, that is, the result of the complete
development of all the redexes of degree d. The degree of a redex (λx. t){u1} . . . {un} s

is defined similarly as for the STLC, as the height of the type of the abstraction. To
calculate the W-measure of a λ-term M , let D be the maximum degree of the redexes in
M , and define W(M) as the number of wrappers in S1(S2(. . . SD(M))). For example, if
M = (λx. x (x y)) (λz. w), it turns out that S1(S2(M)) = w{w{y}}{λz. w} which has three

1 Note that terms of the λm-calculus are ranged over by t, s, . . . (rather than M, N, . . .).

FSCD 2023



11:4 Two Decreasing Measures for Simply Typed λ-Terms

wrappers, so W(M) = 3. The W-measure maps each typable λ-term to a natural number.
The main result of Section 3 is Thm. 15, stating that W is decreasing, i.e. that M →β N

implies W(M) >W(N).

In Section 4 we study reduction by degrees, a restricted notion of reduction in the
λm-calculus, written t

d−→m s, meaning that t reduces to s by contracting a redex of degree d.
This section contains technical commutation, termination, and postponement results.

In Section 5, we propose the T m-measure, and we prove that it is decreasing. To
define the T m-measure, we define two auxiliary measures T m

≤D(t) and Rm
D (t), indexed by a

natural number D ∈ N0, mutually recursively:
T m

≤D(t) is the multiset of pairs (d,Rm
d (t)), for each redex occurrence of degree d ≤ D in t;

Rm
D (t) is the multiset of elements T m

≤D−1(t′), for each reduction sequence t
D−→∗

m t′.
The measure T m

≤D(t) is defined for every D ≥ 0, while Rm
D (t) is defined only for D ≥ 1.

Multisets are ordered according to the usual multiset ordering, and pairs according to the
lexicographic ordering. To calculate the T m-measure of a λ-term M , let D be the maximum
degree of the redexes in M , and define T m

≤ (M) def= T m
≤D(M). The measure T m

≤ (M) yields a
structure of nested multisets of nesting depth at most 2D. The main theorem of Section 3
is Thm. 32, stating that T m is decreasing, i.e. that M →β N implies T m

≤ (M) > T m
≤ (N).

Finally, in Section 6, we conclude.

2 The λm-calculus

As mentioned in the introduction, the λm-calculus is an extension of the STLC in which the
β-reduction rule keeps an extra memorized copy of the argument in a “wrapper” t{s}, in
such a way that contracting a redex like (λx. t) s does not erase s, even if x does not occur
free in t. In this section we define the λm-calculus and we prove some of the properties that
are needed in the following sections to prove that the W-measure and the T m-measure are
decreasing. In particular, we discuss subject reduction (Prop. 3) and confluence (Prop. 4); we
define an operation of simplification (Def. 5) which turns out to calculate the normal form
of a term (Prop. 7); and we define the relation called forgetful reduction (Def. 8), which is
shown to commute with reduction (Prop. 10).

First we fix the notation and nomenclature. Types of the STLC are either base types
(α, β, . . .) or arrow types (A → B). Terms are either variables (xA, yA, . . .), abstrac-
tions (λxA. M), or applications (M N), with the usual typing rules. Terms are defined
up to α-renaming of bound variables. We adopt an à la Church presentation of the STLC,
but we omit most type decorations on variables as long as there is little danger of confusion.
The β-reduction rule is (λx. M) N →β M [x := N ] where M [x := N ] is the capture-avoiding
substitution of the free occurrences of x in M by N .

The λm-calculus: syntax and reduction. The set of λm-terms – or just terms – is given by
t, s, . . . ::= xA | λxA. t | t s | t{s}. The four kinds of terms are respectively called variables,
abstractions, applications, and wrappers. In a wrapper t{s}, the subterm t is called the body
and s is called the memorized term. As in the STLC, we usually omit type annotations and
terms are regarded up to α-renaming. A context is a term C with a single free occurrence of
a distinguished variable □, and C[t] is the variable-capturing substitution of the occurrence
of □ in C by t.
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Typing judgments are of the form Γ ⊢ t : A where Γ is a partial function mapping variables
to types. Derivable typing judgments are defined by the following rules:

Γ, x : A ⊢ xA : A

Γ, x : A ⊢ t : B

Γ ⊢ λxA. t : A → B

Γ ⊢ t : A → B Γ ⊢ s : A

Γ ⊢ t s : B

Γ ⊢ t : A Γ ⊢ s : B

Γ ⊢ t{s} : A

A term t is typable if Γ ⊢ t : A holds for some Γ and some A. Unless otherwise specified,
when we speak of “terms” we mean “typable terms”. It is straightforward to show that a
typable term has a unique type. We write type(t) for the type of t.

A memory, written L, is a list of memorized terms, given by the grammar L ::= □ | L{t}.
If t is a term and L is a memory, we write tL for the term that results from appending all the
memorized terms in L to t, that is, (t)(□{s1} . . . {sn}) = t{s1} . . . {sn}. We write t[x := s]
for the operation of capture-avoiding substitution of the free occurrences of x in t by s. The
λm-calculus is the rewriting system whose objects are typable λm-terms, endowed with the
following notion of reduction, closed by compatibility under arbitrary contexts:

▶ Definition 1 (Reduction in the λm-calculus). (λx. t)L s →m t[x := s]{s}L

Abstractions followed by a memory, i.e. terms of the form (λx. t)L, are called m-abstractions.
Note that all abstractions are also m-abstractions, as L may be empty. A redex is an
expression matching the left-hand side of the →m-reduction rule, which must be an applied
m-abstraction, i.e. a term of the form (λx. t)L s. The height of a type is given by h(α) def= 0
and h(A → B) def= 1 + max(h(A), h(B)). The degree of a m-abstraction (λx. t)L is defined
as the height of its type; note that this number is always strictly positive, since the type
must be of the form A→ B. Moreover, this type is unique, so the operation is well-defined.
The degree of a redex (λx. t)L s is defined as the degree of the m-abstraction (λx. t)L. The
max-degree of a term t is written maxdeg(t) and it is defined as the maximum degree of
the redexes in t, or 0 if t has no redexes. The weight w(t) of a λm-term t is the number of
wrappers in t.

▶ Example 2. Let 0 be a base type and let t := (λx0→0. λy0. y0{x0→0 (x0→0 z0)}) I w0,
where I := λx0. x0. One possible way to reduce t is:

(λx. λy. y{x (x z)}) I w →m (λy. y{I (I z)}){I} w →m w{I (I z)}{w}{I}
→m w{I (z{z})} {w} {I} →m w{z{z}{z{z}}}{w}{I} = s

The degrees of the redexes contracted in each step are 2, 1, 1, and 1, in that order. Note
that maxdeg(t) = 2 and that the weight of the resulting term is w(s) = 6.

Two basic properties of the λm-calculus are subject reduction and confluence. These are
immediate consequences of the fact that the λm-calculus can be understood as an orthogonal
HRS in the sense of Nipkow [26], i.e. a left-linear higher-order rewriting system without
critical pairs.

▶ Proposition 3 (Subject reduction). Let Γ ⊢ t : A and t→m s. Then Γ ⊢ s : A.

▶ Proposition 4 (Confluence). If t1 →∗
m t2 and t1 →∗

m t3, there exists a term t4 such that
t2 →∗

m t4 and t3 →∗
m t4.

Full simplification. Next, we define an operation written S∗(t) and called full simplification.
Let d ≥ 1 be a natural number. The simplification of degree d, written Sd(t), is the

result of simultaneously contracting all the redexes of degree d in t, that is, the result of
the complete development of all redexes of degree d. Formally, for each λm-term t we define
Sd(t), and, for each memory L, we define Sd(L) as follows:

FSCD 2023



11:6 Two Decreasing Measures for Simply Typed λ-Terms

▶ Definition 5 (Simplification).

Sd(x) def= x

Sd(λx. t) def= λx. Sd(t)

Sd(t s) def=
{

Sd(t′)[x := Sd(s)]{Sd(s)}Sd(L) if t = (λx. t′)L and it is of degree d

Sd(t) Sd(s) otherwise
Sd(t{s}) def= Sd(t){Sd(s)}

where if L is a memory, Sd(L) is defined by Sd(□) def= □ and Sd(L{t}) def= Sd(L){Sd(t)}.
Furthermore, if t is a λm-term of max-degree D, we define the full simplification of t as the
term that results from iteratively taking the simplification of degree i from D down to 1.
More precisely, S∗(t) def= S1(. . . SD−1(SD(t))).

▶ Example 6. Consider the λ-term M = (λx0→0. x0→0(x0→0 y0))(λz0. w0). It can be
regarded also as a λm-term, and we have:

S2(M) = ((λz0. w0) ((λz0. w0) y0)){λz0. w0}
S∗(M) = S1(S2(M)) = w0{w0{y0}}{λz0. w0}

Note that M has only one redex, whose abstraction is of type (0 → 0) → 0 and hence
of degree 2, and that S2(M) has two redexes, whose abstractions are of type 0 → 0 and
hence of degree 1. Moreover, consider the λ-term N = (λz0. w0) ((λz0. w0) y0). Then
S∗(N) = S1(N) = w{w{y}}. Note that N has two redexes whose abstraction is of type
0→ 0 and hence of degree 1. As an additional note, in the λ-calculus there is a reduction
step M →β N , and we have that w(S∗(M)) = 3 > 2 = w(S∗(N)). So this example illustrates
that the W-measure (as defined in Def. 12) is decreasing (as we will show in Thm. 15).

As it turns out, full simplification corresponds to reduction to normal form.
More precisely, we have the following result, which entails in particular that the λm-calculus
is weakly normalizing:

▶ Proposition 7. t→∗
m S∗(t), and moreover S∗(t) is a →m-normal form.

Proof. To show that t→∗
m S∗(t), it suffices to prove a lemma stating that t→∗

m Sd(t) for all
d ≥ 1. This implies that t→∗

m SD(t)→∗
m SD−1(SD(t)) . . .→∗

m S1(. . . SD−1(SD(t))) = S∗(t),
where D is the max-degree of t. The lemma itself is straightforward by induction on t.

To show that S∗(t) is a →m-normal form, the key property is that, after performing
a simplification of order d, no redexes of order d remain. The reason is that contracting
a redex of order d can only create redexes of lower degree. More precisely, we prove a
key lemma stating that if d ≥ 1 and maxdeg(t) ≤ d, then maxdeg(Sd(t)) < d. If we
let maxdeg(t) ≤ D, we can iterate this lemma, to obtain that maxdeg(SD(t)) < D, and
maxdeg(SD−1(SD(t))) < D − 1, . . ., and finally maxdeg(S1(. . . SD−1(SD(t)))) < 1. This
means that S∗(t) = S1(. . . SD−1(SD(t))) does not contain redexes, since there are no redexes
of degree 0, so S∗(t) must be a →m-normal form. ◀

Forgetful reduction. To conclude this section, we introduce the relation of forgetful reduction
t ▷+ s, and we prove that it commutes with reduction.

▶ Definition 8. A λm-term t reduces via a forgetful step to s, written t ▷ s, according to
the following axiom, closed by compatibility under arbitrary contexts:

t{s} ▷ t
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We say that t reduces via forgetful reduction to s if and only if t ▷+ s, where ▷+ denotes
the transitive closure of ▷.

▶ Example 9. (λx. x{y{y}}){z{z}} ▷ (λx. x{y{y}}){z} ▷ (λx. x){z} ▷ λx. x.

▶ Proposition 10 (Forgetful reduction commutes with reduction). If t ▷+ s and t →∗
m t′,

there exists a term s′ such that t′ ▷+ s′ and s →∗
m s′. Furthermore, if t ▷+ s and t is a

→m-normal form, then s is also a normal form.

Proof. The result can be reduced to a local commutation result, stating that if t ▷ s and
t→m t′, there exists a term s′ such that t′ ▷+ s′ and s→=

m s′, where →=
m is the reflexive

closure of →m. Local commutation can be proved by case analysis. The interesting cases are
when a shrinking step s ▷ s′ lies inside the argument of a redex, and when a reduction step
r →m r′ is inside erased garbage:

(λx. t)L s

��

▷ (λx. t)L s′

��
t[x := s]{s}L ▷+ t[x := s′]{s′}L

u{r}

��

▷ u

u{r′} ▷+ u

For the last part of the statement, it suffices to show that if t ▷ s in one step and t is a
→m-normal form, then s is also a normal form, which is straightforward by induction on t.

◀

Each step in the STLC has a corresponding step in the λm-calculus, that contracts
the redex in the same position. For instance the step (λx. x y) I →β I y in the STLC
has a corresponding step (λx. x y) I →m (I y){I} in the λm-calculus. In this example,
(I y){I} ▷ I y. The following easy lemma confirms that this is a general fact:

▶ Lemma 11 (Reduce/forget lemma). Let M →β N be a β-step, and let M →m s be the
corresponding step in λm. Then s ▷ N .

3 The W-measure

In this section, we define the W-measure (Def. 12) and we prove that it is decreas-
ing (Thm. 15). Let us try to convey some ideas that led to the definition of the W-
measure. Recall that an abstract rewriting system (A,→) is weakly Church–Rosser (WCR)
if ←→⊆→∗←∗, Church–Rosser (CR) if ←∗→∗⊆→∗←∗, and increasing (Inc) if there exists
a function | · | : A→ N such that a→ b implies |a| < |b|. Let us also recall Klop–Nederpelt’s
lemma [31, Theorem 1.2.3 (iii)], which states that Inc ∧ WCR ∧ WN =⇒ SN ∧ CR.

Let (A,→) be increasing and WCR. Given a reduction a→∗ b, where b is a normal form,
we can find a decreasing measure for the set of objects reachable from a, that is, the set
{c ∈ A | a→∗ c}. In fact, by Klop–Nederpelt’s lemma, we know that for every c ∈ A such
that a →∗ c we have that c →∗ b, which implies that |c| ≤ |b|, and hence we can define
#(c) := |b| − |c|. It is easy to see that #(−) is a decreasing measure, since c→ c′ implies
that |c| < |c′| so #(c) := |b| − |c| > |b| − |c′| = #(c′). Furthermore, the value of #(c) does
not depend on the choice of a, by uniqueness of normal forms.

The idea behind the W-measure is that the construction of a decreasing measure can be
based on an increasing measure, according to the previous observation. It is not possible
to build an increasing measure directly for the STLC; e.g. the following infinite sequence
of expansions t ← I t ← I (I t) ← . . . would induce an infinite decreasing chain of natural
numbers |t| > |I t| > |I (I t)| > . . ..

FSCD 2023



11:8 Two Decreasing Measures for Simply Typed λ-Terms

One could try to define an increasing measure in a variant of the STLC such as Endrullis
et al.’s clocked λ-calculus [14], in which the β-rule becomes (λx. t) s→ τ(t[x := s]), that is,
contracting a β-redex produces a counter “τ” that keeps track of the number of contracted
redexes. One could then count the number of τ ’s: for example, in the reduction sequence
(λx. x (x y)) I → τ(I (I y))→ ττ(I y)→ τττy the number of counters strictly increases with
each step. Unfortunately, this does not define an increasing measure, due to erasure. For
example, (λx. y) t→ τy erases all the counters in t.

This is the motivation behind the definition of the λm-calculus, which avoids erasure
by always keeping an extra copy of the argument in a wrapper. The λm-calculus is indeed
increasing: in a step t→m s one has that w(t) < w(s), where we recall that w(t) denotes the
weight, i.e. the number of wrappers in t. For example, the step (λx. y) (z{z})→m y{z{z}}
increases the number of wrappers. The decreasing measure W(M) is defined essentially by
reducing M to normal form in the λm-calculus and counting the number of wrappers in the
result:

▶ Definition 12 (The W-measure). For each typable λ-term M , define W(M) def= w(S∗(M)).

As we show below, S∗(M) turns out to be exactly the normal form of M in the λm-calculus.
We insist in writing S∗(M) to emphasize that the definition of theW-measure does not require
to prove that the λm-calculus is weakly normalizing. Indeed, the simplification Sd(t) can be
defined by structural induction on t, and the full simplification S∗(t) = S1(S2(. . . SD(t))) can
be calculated in exactly D iterations. On the other hand, the proof that the W-measure is
decreasing does rely on the fact that S∗(M) is the normal form of M .

In the remainder of this section, we prove that the W-measure is indeed decreasing. The
following lemma states that forgetful reduction decreases weight, and it is straightforward to
prove:

▶ Lemma 13. If t ▷+ s then w(t) > w(s).

The proof that the W-measure decreases relies on the two following properties that relate
full simplification S∗(−) respectively with reduction (→m) and forgetful reduction (▷+):

▶ Lemma 14. 1. If t→m s then S∗(t) = S∗(s). 2. If t ▷+ s then S∗(t) ▷+ S∗(s).

Proof. For the first item, note that by Prop. 7, we know that t→∗
m S∗(t) and that t→m

s→∗
m S∗(s), where moreover S∗(t) and S∗(s) are →m-normal forms. By confluence (Prop. 4),

this means that S∗(t) = S∗(s).
For the second item, note that by Prop. 7, we know that t→∗

m S∗(t). Since we also know
t ▷+ s by hypothesis, and since forgetful reduction commutes with reduction (Prop. 10),
there exists a term u such that s→∗

m u and S∗(t) ▷+ u. By Prop. 7 we know that S∗(t) is in
normal form, so by Prop. 10 u must also be a normal form. On the other hand, by Prop. 7 we
know that s→∗

m S∗(s), where S∗(s) must also be a normal form. In summary, we have that
s→∗

m u and s→∗
m S∗(s), where both u and S∗(s) are normal forms. By confluence (Prop. 4)

u = S∗(s), and from this we obtain that S∗(t) ▷+ u = S∗(s), as required. ◀

▶ Theorem 15. Let M, N be typable λ-terms such that M →β N . Then W(M) >W(N).

Proof. Given the step M →β N , consider the corresponding step M →m s, and note that
s ▷+ N by the reduce/forget lemma (Lem. 11). Since M →m s ▷+ N , by Lem. 14, we have
that S∗(M) = S∗(s) ▷+ S∗(N). Finally, by Lem. 13, W(M) = w(S∗(M)) > w(S∗(N)) =
W(N). ◀
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The following is one example that the W-measure decreases (see Ex. 6 for another
example):

▶ Example 16. Let M = (λx0. y0→0→0 x0 x0) ((λx0→0. x0→0 z0) f0→0), consider the step
M = (λx. y x x)((λx. x z) f)→β (λx. y x x) (f z) = N , and note that W(M) = w(S∗(M)) =
4 > 1 =W(N), since:

S∗(M) = (y (f z){f} (f z){f}){(f z){f}} S∗(N) = (y (f z) (f z)){f z}

4 Reduction by degrees

This section is of purely technical nature. The aim is to develop tools that we use in
the following section to reason about the T m-measure. To do so, we need to introduce
witnesses of steps and reduction sequences, treating the λm-calculus as an abstract rewriting
system in the sense of [31, Def. 8.2.2] or as a transition system in the sense of [24, Def. 1].
Objects are λm-terms, steps are 5-uples R = (C, x, t, L, s) witnessing the reduction step
C[(λx. t)L s]→m C[t[x := s]{s}L] under a context C, and reductions (ρ, σ, . . .) are sequences
of composable steps. Similarly, forgetful steps are triples R = (C, t, s) witnessing the forgetful
reduction C[t{s}] ▷ C[t], and forgetful reductions (also written ρ, σ, . . .) are sequences of
composable forgetful steps. We write ρsrc and ρtgt respectively for the source and target
terms of ρ.

For each d ∈ N0, we define reduction of degree d as follows:

▶ Definition 17. t
d−→m s if and only if t→m s by contracting a redex of degree d.

We write R : t
d−→m s if R is a step witnessing a reduction step of degree d, and ρ : t

d−→∗
m s if

ρ is a reduction witnessing a sequence of reduction steps of degree d.
The following results require to explicitly manipulate steps and reductions.

▶ Proposition 18 (Commutation of reduction by degrees). For any two reductions ρ : t1
d−→∗

m t2

and σ : t1
D−→∗

m t3, there exists a term t4 and one can construct reductions σ/ρ : t2
D−→∗

m t4

and ρ/σ : t3
d−→∗

m t4 such that, furthermore, if d ̸= D, then 1. ρ/σ contains at least as many
steps as ρ; and 2. ρ/σ determines ρ, that is, ρ1/σ = ρ2/σ implies ρ1 = ρ2.

Proof. This is reduced to the fact that the λm-calculus can be understood as an orthogonal
higher-order rewriting system in the sense of Nipkow [26]. Indeed, ρ/σ and σ/ρ can be taken
to be the standard notion of projection based on residuals for orthogonal HRSs. Note that
item 1. holds because the λm-calculus is non-erasing while item 2. is a consequence of the
unique ancestor property, i.e. each redex descends from at most one redex. ◀

▶ Corollary 19 (Termination of reduction by degrees). The relation d−→m is strongly normalizing.

Proof. This is a consequence of the fact that HRSs enjoy the Finite Developments property [31,
Theorem 11.5.11], observing that reduction of degree d does not create redexes of degree d.
Alternatively, it can be easily shown that t

d−→∗
m Sd(t) and Sd(t) is in d−→m-normal form, so

d−→m is WN. Moreover, one can observe that d−→m is uniformly normalizing [19], given that
there is no erasure, which entails that d−→m is SN. ◀

▶ Proposition 20 (Lifting property for lower steps). Let d < D and t
d−→m s

D−→∗
m s′. Then

there exist terms t′, s′′ such that t
D−→∗

m t′ and s′ D−→∗
m s′′ and t′ d−→+

m s′′.
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Proof. Note that t
D−→∗

m SD(t). By Prop. 18, there exists a term u such that s
D−→∗

m u

and SD(t) d−→+
m u. Again by Prop. 18, there exists s′′ such that u

D−→∗
m s′′ and s′ D−→∗

m s′′.
Moreover, SD(t) is in D−→m-normal form. Since SD(t) d−→∗

m u with d < D and reduction does
not create redexes of higher degree, u is also in D−→m-normal form, so u = s′′, and we are
done. ◀

▶ Proposition 21 (Postponement of forgetful reduction). For any two reductions ρ : t ▷∗ t′

and σ : t′ d−→∗
m s′, there exists a term s and reductions ρ↷σ : s ▷∗ s′ and σ↶ρ : t

d−→∗
m s.

Furthermore, σ↶ρ determines σ, that is, σ↶
1 ρ = σ↶

2 ρ implies σ1 = σ2.

Proof. This can be reduced to an analysis of the critical pairs between the rewriting rules
defining ▷−1 and →m. Critical pairs are of the form (λx. t)L1{s}L2 u ▷ (λx. t)L1L2 u→m
t[x := u]{u}L1L2 and can be closed by (λx. t)L1{s}L2 u→m t[x := u]{u}L1{s}L2 ▷ t[x :=
u]{u}L1L2. ◀

The following diagrams depict the statements of the three preceding propositions:

t1

σ D

��

ρ

d // //

Prop. 18

t2

σ/ρ D
����

t3
ρ/σ

d // // t4

t

Prop. 20d

��

D // // t′

d

+��
s

D // // s′ D // // s′′

t

Prop. 21

ρ
▷∗

dσ↶ρ

����

t′

dσ

∗��
s

ρ↷σ
▷∗ s′

5 The T m-measure

In this section, we define the T m-measure (Def. 25) and we prove that it is decreas-
ing (Thm. 32). We start with some preliminary notions.

A partially ordered set (X, >) is well-founded if there are no infinite decreasing chains.
M(X) denotes the set of finite multisets over a set X, which are functions m : X → N0 such
that m(x) > 0 for finitely many values of x ∈ X. We write m + n for the sum of multisets,
and x ∈ m if m(x) > 0. We write [x1, . . . , xn] for the multiset of elements x1, . . . , xn, taking
multiplicities into account. If X is a finite set and f : X → Y is a function, we use the
“multiset builder” notation [f(x) || x ∈ X] to denote the multiset

∑
x∈X [f(x)]. If (X, >)

is a partially ordered set, we define a binary relation ≻1 on multisets by declaring that
m + [x] ≻1 m + n if x > y for every y ∈ n. The multiset order induced by (X, >) is the strict
order relation on multisets defined by declaring that m ≻ n if and only if m (≻1)+ n. We
recall the following widely known theorem by Dershowitz and Manna [12]:

▶ Theorem 22. If (X, >) is well-founded, then (M(X),≻) is well-founded.

As usual, m ⪰ n stands for (m = n ∨ m ≻ n), and m ⪯ n stands for n ⪰ m. We define an
operation k ⊗m by the recursive equations 0⊗m

def= [ ] and (1 + k)⊗m
def= m + k ⊗m. The

relation m :≻: n, called the pointwise multiset order, is defined to hold if m and n can be
written as of the forms m = [x1, . . . , xn] and n = [y1, . . . , yn] in such a way that xi > yi for
all i ∈ 1..n. Observe that if m :≻: n then for all k ∈ N0 we have that m ⪰ k ⊗ n. Another
easy-to-check property is that if m :≻: n and m is non-empty then m ≻ n.

A first frustrated attempt. As mentioned in the introduction, Turing’s measure, given
by T (M) def= [d || R is a redex occurrence of degree d in M ], decreases when contracting the
rightmost redex of highest degree. Our goal is to mend the T -measure in such a way that
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contracting any redex decreases the measure. The difficulty is that a redex of degree d may
copy redexes of a higher or equal degree d′ ≥ d. So one can wonder: whenever a redex R of
degree d makes n copies of a redex S of degree d′ ≥ d, in what sense can the copies of S be
considered “smaller” than S? To address this, we generalize the T -measure to a family of
measures TD(M) def= [(d, Td−1(M)) || R is a redex occurrence of degree d ≤ D in M ] indexed
by a degree D ∈ N0. Note that T0(M) is the empty multiset because there are no redexes of
degree 0.

Let us try to argue that if d ≤ D and M
d−→β N then TD(M) ≻ TD(N). Here M

d−→β N

means that M →β N by contracting a redex of degree d. Suppose that the contraction of the
redex R : M

d−→β N copies a redex S of degree d′, where we assume that d < d′ ≤ D, producing
n copies S1, . . . , Sn. Note that the contribution of S to the multiset is (d′, Td′−1(M)), and
the contribution of each Si is (d′, Td′−1(N)). By induction on D, we could inductively argue
that Td′−1(M) ≻ Td′−1(N), since d′ − 1 < d′ ≤ D. So far the property would seem to hold.

The problem with this proposal is that a redex R of degree d may still make copies of
redexes of degree exactly d, whose contribution does not necessarily decrease2.

A second frustrated attempt. The difficulty is to deal with the situation in which a redex
R of degree d makes n copies of a redex S of the same degree d. A key observation is that
a reduction sequence M

d−→∗
β N must be a development3 of the set of redexes of degree d.

This is because contracting a redex of degree d can only create redexes of degree strictly
less than d, so any redex of degree d that remains after one d−→β-step must be a residual
of a preexisting redex. This motivates our second attempt to define a measure, consisting
of two families of measures T β

≤D(−) and Rβ
D(−), indexed by D ∈ N0 and defined mutually

recursively:

T β
≤D(M) def= [(d,Rβ

d (M)) || R is a β-redex occurrence of degree d ≤ D in M ]

Rβ
D(M) def= [T β

≤D−1(M ′) || ρ : M
D−→∗

β M ′]

Note that there are no redexes of degree 0, so T β
≤D(M) may not depend on Rβ

0 (M). In
fact, Rβ

D(M) is defined only for D ≥ 1. The recursive definition is well-founded because
T β

≤D(M) may depend on Rβ
1 (M), . . . ,Rβ

D(M) which in turn may only depend on T β
≤d(M ′)

for d < D. The multiplicity of T β
≤D−1(M ′) in the multiset Rβ

D(M) is given by the number of
reduction sequences that contract only redexes of degree D, that is, the number of different
paths M

D−→∗
m M ′. One important point is that, for the measure Rβ

D(t) to be well defined,

one needs to argue that the number of paths M
D−→∗

m M ′ is finite. Since M
D−→∗

m M ′ is a
development, this is a consequence of the finite developments (FD) property for orthogonal
HRSs [31, Theorem 11.5.11].4

2 For example, in M = (λx0. y0→0→0 x0 x0) ((λz0. z0) w0) 1−→β y0→0→0 ((λz0. z0) w0) ((λz0. z0) w0) = N
the measure does not decrease, as T1(M) = [(1, []), (1, [])] = T1(N).

3 Recall that a development of a set of redexes X is a reduction sequence M →∗
β N in which each step

contracts a residual of a redex in X. The residuals of a redex S : t →β s after the contraction of a
redex R : t →β t′ are, informally speaking, the “copies” left of S in t′. For formal definitions see [3,
Section 11.2].

4 Note that FD only ensures that developments are finite. To see that the set {ρ | M
D−→∗

m M ′} is finite,
one should resort to König’s lemma, together with the fact that the STLC is finitely branching. For a
constructive proof, one can use a computable decreasing measure, such as in de Vrijer’s proof of FD [9].
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Let us try to argue that if d ≤ D and M
d−→β N then T β

≤D(M) ≻ T β
≤D(N). On the first

hand, if a redex R : M
d−→β N of degree d copies a redex S of exactly the same degree d making

n copies S1, . . . , Sn, the contribution of S to the multiset is (d,Rβ
d (M)), whereas each Si

contributes (d,Rβ
d (N)), and we can argue that Rβ

d (M) ≻ Rβ
d (N), because we can injectively

map each reduction sequence ρ : N
d−→∗

β N ′ to the reduction sequence Rρ : M
d−→β N

d−→∗
β N ′,

where Rρ denotes the composition of R and ρ. Furthermore, there is an empty reduction
sequence M

d−→∗
β M contributing an element T β

≤d−1(M) to Rβ
d (M) but not to Rβ

d (N).

On the other hand, if the contraction of a redex R : M
d−→β N of degree d copies a redex

S of strictly greater degree d′ > d making n copies S1, . . . , Sn, the weight of S is (d′,Rβ
d′(M))

and the weight of each Si is (d′,Rβ
d′(N)), and we would need to show that Rβ

d′(M) ≻ Rβ
d′(N).

One way to do so would be to map each reduction sequence ρ : N
d−→∗

β N ′ to a reduction

sequence σ : M
d−→∗

β M ′ such that T β
≤d′−1(M ′) ≻ T β

≤d′−1(N ′). However, there does not seem
to be a way to rule out the possibility that σ might erase R and that M ′ = N ′, which would
yield T β

≤d′−1(M ′) = T β
≤d′−1(N ′), rather than a strict inequality. The root of the problem

seems again to be erasure.

Definition of the T m-measure. The T m-measure is based on the ideas described above,
but considering reduction in the λm-calculus rather than in the STLC, to ensure that there
is no erasure. Informally, the T m-measure is defined by means of the two following equations.
These equations are exactly as the ones defining T β

≤D(−) and Rβ
D(−) above, with the only

difference that they deal with λm-terms and →m-reduction rather than with pure λ-terms
and →β-reduction:

T m
≤D(t) def= [(d,Rm

d (t)) || R is a m-redex occurrence of degree d ≤ D in t]

Rm
D (t) def= [T m

≤D−1(t′) || ρ : t
D−→∗

m t′]

To be able to reason about these measures inductively, it will be convenient to define an
auxiliary measure T m

d (t0, t) as the multiset of elements of the form (d,Rm
d (t0)) for each

m-redex occurrence of degree exactly d in t. This auxiliary measure takes two arguments
t0 and t, and it is defined by structural recursion on the second argument (t), while the
first argument (t0) is used to keep track of the original term. Note that, with this auxiliary
definition, we can write T m

≤D(t) as a sum, namely T m
≤D(t) = T m

1 (t, t) + . . . + T m
D (t, t).

To define the measure formally, we start by precisely defining its codomain.

▶ Definition 23 (Codomain of the T m-measure). For each d ≥ 0, we define a set Td, and for
d ≥ 1 we define a set Rd, mutually recursively:

Td
def= M({(i, b) | 1 ≤ i ≤ d, b ∈ Ri}) Rd

def= M(Td−1)

The sets Td and Rd are partially ordered by the induced multiset ordering on their
elements. Tuples (i, b) are ordered with the lexicographic order, that is, (i, b) > (i′, b′) if and
only if i > i′ ∨ (i = i′ ∧ b ≻ b′). Note that T0 = {[ ]} and that if d ≤ d′ then Td ⊆ Td′ and
Rd ⊆ Rd′ . Moreover, (Td,≻) and (Rd,≻) are well-founded partial orders by Thm. 22.

Given typable λm-terms t0, t, and d ∈ N0, we define T m
d (t0, t) ∈ Td and T m

≤d(t) ∈ Td,
and if d > 0 we define Rm

d (t) ∈ Rd, by induction on d as follows. Note that T m
d (t0, t) is

defined by a nested induction on t, and it is also defined on memories (T m
d (t0, L)):
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▶ Definition 24 (The measures T m
d (−,−), T m

≤d(−), and Rm
d (−)).

T m
d (t0, x) def= [ ]

T m
d (t0, λx. s) def= T m

d (t0, s)

T m
d (t0, s u) def=


T m

d (t0, s′) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

if s = (λx. s′)L and it is of degree d

T m
d (t0, s) + T m

d (t0, u) otherwise
T m

d (t0, s{u}) def= T m
d (t0, s) + T m

d (t0, u)

T m
d (t0,□) def= [ ]

T m
d (t0, L{t}) def= T m

d (t0, L) + T m
d (t0, t)

T m
≤d(t) def=

∑d
i=1 T m

i (t, t)

Rm
d (t) def= [T m

≤d−1(t′) || ρ : t
d−→∗

m t′]

Moreover, the T m-measure itself is defined for λ-terms as follows:

▶ Definition 25. If M is a typable λ-term, T m(M) def= T m
≤D(M) where D := maxdeg(M).

When we write T m
≤D(M), we implicitly regard M as a λm-term without any memorized

terms.
From a higher-level perspective, the T m

d (t0, t) measure defined above is the multiset of
pairs of the form (d,Rm

d (t0)) for each redex of degree d in t. Similarly, T m
≤D(t) is the multiset

of pairs of the form (d,Rm
d (t)) for each redex of degree d ≤ D in t. In particular, T m

0 (t0, t)
and T m

≤0(t) are empty multisets, because there are no redexes of degree 0. Two easy remarks
are that D ≤ D′ implies T m

≤D(t) ⪯ T m
≤D′(t), and that T m

d (t0, tL) = T m
d (t0, t) + T m

d (t0, L).
▶ Remark 26. As mentioned in the preceding discussion, one important point is that for
Rm

d (−) to be well-defined we need to argue that the set {ρ | ∃t′. ρ : t
d−→∗

m t′} is finite. This
is a consequence of Coro. 19.

▶ Example 27. Let ∆ := λx0→0. x0→0(x0→0z0) and W := λy0. w0 and consider the diagram:

t2 = w{Wz}{W} 1
,,

t0 = ∆ W
2 // t1 = (W (Wz)){W}

1 00

1 ..
t4 = w{w{z}}{W}

t3 = (W (w{z})){W} 1 22

Then T m
≤0(t1) = T m

≤0(t2) = T m
≤0(t3) = T m

≤0(t4) = T m
≤1(t4) = T m

≤2(t4) = [ ], and:

T m
≤2(t0)=[(2,Rm

2 (t0))] Rm
2 (t0)=[T m

≤1(t0), T m
≤1(t1)]

T m
≤2(t1)=T m

≤1(t1)=[(1,Rm
1 (t1)), (1,Rm

1 (t1))] Rm
1 (t1)=[T m

≤0(t1), T m
≤0(t2), T m

≤0(t3), T m
≤0(t4)]

T m
≤2(t2)=T m

≤1(t2)=[(1,Rm
1 (t2))] Rm

1 (t2)=[T m
≤0(t2), T m

≤0(t4)]
T m

≤2(t3)=T m
≤1(t3)=[(1,Rm

1 (t3))] Rm
1 (t3)=[T m

≤0(t3), T m
≤0(t4)]

In particular, T m
≤2(t0) ≻ T m

≤2(t1) ≻ T m
≤2(t2) ≻ T m

≤2(t4) and T m
≤2(t1) ≻ T m

≤2(t3) ≻ T m
≤2(t4).

The T m-measure is decreasing. Lastly, we show the main theorem of this section, stating
that if M →β N then T m(M) ≻ T m(N). This theorem is based on three technical results,
that we call high/increase, low/decrease, and forget/decrease:
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1. High/increase (Prop. 29) establishes – perhaps confusingly – that T m
≤d(−) (non-strictly)

increases if one contracts a redex of higher degree D > d. More precisely, if 0 ≤ d < D

and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′). Note that T m

≤d(t) only looks at redexes of degree
i ≤ d, and contracting a redex of degree D > d cannot erase a redex of any degree i ≤ d,
because the λm-calculus is non-erasing. Contracting a redex of degree D can, at most,
replicate redexes of degree i. This property is needed for a technical reason to prove the
low/decrease property, and it relies crucially on the commutation result of the previous
section (Prop. 18).

2. Low/decrease (Prop. 30) establishes that T m
≤D(−) strictly decreases if one contracts

a redex of lower degree d < D. More precisely, if 1 ≤ d ≤ D and t
d−→m t′ then

T m
≤D(t) ≻ T m

≤D(t′). This is the core of the argument, and the most technically difficult
part to prove. It relies crucially on the lifting property of the previous section (Prop. 20).

3. Forget/decrease (Prop. 31) establishes that forgetful reduction (non-strictly) decreases
the measure. More precisely, if t ▷ t′ then T m

≤d(t) ⪰ T m
≤d(t′). This property is used as

a final step in the main theorem, and it relies crucially on postponement of forgetful
reduction, as studied in the previous section (Prop. 21).

Below we sketch the proofs of these three properties. Let us first mention a straightforward
lemma.

▶ Lemma 28 (Measure of a substitution). 1. T m
d (t0, t) ⪯ T m

d (t0, t[x := s]). 2. If s is not
a m-abstraction of degree d, then T m

d (t0, t[x := s]) = T m
d (t0, t) + k ⊗ T m

d (t0, s) for some
k ∈ N0.

Proof. By induction on t. ◀

▶ Proposition 29 (High/increase). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d < D and t

D−→m t′ then Rm
d (t) ⪯ Rm

d (t′).
2. If 0 ≤ d < D and t0

D−→m t′
0 then T m

d (t0, t) ⪯ T m
d (t′

0, t).
3. If 0 ≤ d < D and t0

D−→m t′
0 and t

D−→m t′ then T m
d (t0, t) ⪯ T m

d (t′
0, t′).

4. If 0 ≤ d < D and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′).

Proof. The four items are proved simultaneously by induction on d, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t. Most cases are straightforward.

One interesting situation occurs in item 3 when t = (λx. s)L u is the redex of degree D

contracted by the step t
D−→m t′. Then we resort to the first part of Lem. 28.

Another interesting part of the proof is item 1. Let 1 ≤ d < D and t
D−→m t′ and let us

show that Rm
d (t) ⪯ Rm

d (t′). Indeed, let X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ :

t′ d−→∗
m s′}, and let R : t

D−→m t′. Using Prop. 18, we can define an injective function
φ : X → Y by φ(ρ) := ρ/R. Note that T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt) holds for every ρ ∈ X

using item 4 of the IH (noting that 1 ≤ d− 1 < D holds because 1 ≤ d < D), resorting to
the IH as many times as the length of the reduction s

D−→∗
m s′

ρ. To conclude the proof, let
Z = Y \ φ(X). Then:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ X] ⪯(⋆) [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] =(⋆⋆) [T m

≤d−1(σtgt) || σ ∈ φ(X)]
⪯ [T m

≤d−1(σtgt) || σ ∈ φ(X)] + [T m
≤d−1(σtgt) || σ ∈ Z] = [T m

≤d−1(σtgt) || σ ∈ Y ] = Rm
d (t′)
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To justify the step marked with (⋆), note that [T m
≤d−1(ρtgt) || ρ ∈ X] =

∑
ρ∈X [T m

≤d−1(ρtgt)] ⪯∑
ρ∈X [T m

≤d−1(φ(ρ)tgt)] = [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] because T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt), as

we have already claimed. To justify the step marked with (⋆⋆), note that φ is injective. ◀

▶ Proposition 30 (Low/decrease). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d ≤ j ≤ D and t

d−→m t′ then Rm
j (t) ≻ Rm

j (t′).
2. If 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0 then T m

j (t0, t) :≻: T m
j (t′

0, t).
3. If 1 ≤ d ≤ D and t0

d−→m t′
0 and t

d−→m t′, then for all m ∈ Td−1 we have T m
d (t0, t) ≻

T m
d (t′

0, t′) + m.
4. If 1 ≤ d < j ≤ D and t0

d−→m t′
0 and t

d−→m t′ then T m
j (t0, t) ⪰ T m

j (t′
0, t′).

5. If 1 ≤ d ≤ D and t
d−→m t′ then T m

≤D(t) ≻ T m
≤D(t′).

Proof. The five items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2–4 proceed by a nested induction on t. We mention some of the interesting parts of
the proof.

For item 1, let 1 ≤ d ≤ j ≤ D and t
d−→m t′ and let us show that Rm

j (t) ≻ Rm
j (t′). Let

X := {ρ | (∃s) ρ : t
j−→∗

m s} and Y := {σ | (∃s′) σ : t′ j−→∗
m s′}, and consider two subcases:

If d = j, let R : t
d−→m t′, define an injective function φ : Y → X by φ(σ) = R σ, let

Z = X \ φ(Y ), and note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(Rσtgt) || σ ∈ Y ] + [T m

≤j−1(ρtgt) || ρ ∈ Z] since φ is injective
= [T m

≤j−1(σtgt) || σ ∈ Y ] + [T m
≤j−1(ρtgt) || ρ ∈ Z] = Rm

j (t′) + [T m
≤j−1(ρtgt) || ρ ∈ Z]

To conclude that Rm
j (t) ≻ Rm

j (t′), note that Z is non-empty because it contains the

empty reduction ϵ : t
d−→∗

m t.
If d < j, we construct a function φ : Y → X as follows. By Prop. 20, for each
reduction σ : t′ j−→∗

m s′ there exist sσ, uσ, and reductions φ(σ) : t
j−→∗

m sσ and s′ j−→∗
m uσ

and sσ
d−→+

m uσ. Note that for every σ ∈ Y we have T m
≤j−1(φ(σ)tgt) = T m

≤j−1(sσ) ≻†

T m
≤j−1(uσ) ⪰‡ T m

≤j−1(s′) = T m
≤j−1(σtgt) where † holds by item 5 of the IH observing that

1 ≤ d ≤ j − 1 < D because d < j ≤ D, and ‡ holds by high/increase (Prop. 29) observing
that 0 ≤ j − 1 < j. To conclude the proof, let Z = X \ φ(Y ), and note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] + [T m

≤j−1(ρtgt) || ρ ∈ Z]

⪰ [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] ≻(⋆) [T m

≤j−1(σtgt) || σ ∈ Y ] = Rm
j (t′)

For the step marked with (⋆), note that [T m
≤j−1(φ(σ)tgt) || σ ∈ Y ] :≻: [T m

≤j−1(σtgt) || σ ∈ Y ]
because T m

≤j−1(φ(σ)tgt) ≻ T m
≤j−1(σtgt) holds by the claim above where, moreover, Y is

non-empty because it contains the empty reduction ϵ : t′ j−→∗
m t′.

Another interesting situation occurs in item 3, when t = (λx. s)L u is the redex of degree d

contracted by the step t
d−→m t′. The step is of the form t = (λx. s)L u

d−→m s[x := u]{u}L = t′.
Note that u is not an abstraction of degree d, because it is the argument of an abstraction of
degree d. So by Lem. 28 there exists k ∈ N0 such that T m

d (t′
0, s[x := u]) = T m

d (t′
0, s) + k ⊗

T m
d (t′

0, u). The crucial observation is that T m
d (t0, u) ⪰ (1 + k)⊗T m

d (t′
0, u), which is because

by item 2 we have that T m
d (t0, u) :≻: T m

d (t′
0, u).
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Finally, for item 5, let 1 ≤ d ≤ D and t
d−→m t′ and let us show that T m

≤D(t) ≻ T m
≤D(t′).

Indeed:

T m
≤D(t) =

D∑
i=1
T m

i (t, t) ⪰ T m
d (t, t) +

D∑
j=d+1

T m
j (t, t)

≻ T m
≤d−1(t′) + T m

d (t′, t′) +
D∑

j=d+1
T m

j (t, t) by item 3, taking m := T m
≤d−1(t′)

⪰ T m
≤d−1(t′) + T m

d (t′, t′) +
D∑

j=d+1
T m

j (t′, t′) = T m
≤D(t′) by item 4. ◀

▶ Proposition 31 (Forget/decrease). Let d ∈ N0. Then the following hold:
1. If t ▷ t′ then Rm

d (t) ⪰ Rm
d (t′).

2. If t0 ▷ t′
0 then T m

d (t0, t) ⪰ T m
d (t′

0, t).
3. If t0 ▷ t′

0 and t ▷ t′ then T m
d (t0, t) ⪰ T m

d (t′
0, t′).

4. If t ▷ t′ then T m
≤d(t) ⪰ T m

≤d(t′).

Proof. The four items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t.

The interesting part is item 1, so let t ▷ t′ and let us show that Rm
d (t) ⪰ Rm

d (t′). Let

X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ : t′ d−→∗
m s′}. Define an injective function

φ : Y → X by φ(σ) := σ↶R, resorting to Prop. 21, where σ↶R : t
d−→∗

m sσ. and sσ ▷∗ s′.
Note that for every σ ∈ Y we have T m

≤d−1(φ(σ)tgt) = T m
≤d−1(sσ) ⪰† T m

≤d−1(s′) = T m
≤d−1(σtgt),

where † holds by item 4 of the IH, observing that d − 1 < d. To conclude the proof, let
Z = X \ φ(Y ), and note that:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ φ(Y )] + [T m
≤d−1(ρtgt) || ρ ∈ Z] ⪰ [T m

≤d−1(ρtgt) || ρ ∈ φ(Y )]

=(⋆) [T m
≤d−1(φ(σ)tgt) || σ ∈ Y ] ⪰(⋆⋆) [T m

≤d−1(σtgt) || σ ∈ Y ] = Rm
d (t′)

For the step marked with (⋆), note that φ is injective. For the step marked with (⋆⋆),
note that [T m

≤d−1(φ(σ)tgt) || σ ∈ Y ] =
∑

σ∈Y [T m
≤d−1(φ(σ)tgt)] ⪰

∑
σ∈Y [T m

≤d−1(σtgt)] =
[T m

≤d−1(σtgt) || σ ∈ Y ] because T m
≤d−1(φ(σ)tgt) ⪰ T m

≤d−1(σtgt), as we have already justified. ◀

Finally, we prove the main theorem in this section:

▶ Theorem 32. Let M, N be typable λ-terms such that M →β N . Then T m(M) > T m(N).

Proof. Let D = maxdeg(M) and D′ = maxdeg(N). Let M →m s be the step corresponding
to M →β N . By Lem. 11 note that s ▷ N . Then:

T m(M) = T m
≤D(M) ≻Prop. 30 T m

≤D(s) ⪰Prop. 31 T m
≤D(N) ⪰ T m

≤D′(N) = T m(N)

The last inequality holds because D ≥ D′ since, as is well-known, contraction of a β-redex in
the simply typed λ-calculus cannot create a redex of higher degree. ◀
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6 Conclusion

We have defined two decreasing measures for the STLC, the W-measure (Def. 12) and the
T m-measure (Def. 25). These measures are decreasing (Thm. 15 and Thm. 32 respectively)
and, to the best of our knowledge, they provide two new proofs of strong normalization for
the STLC. Both measures are defined constructively and by purely syntactic methods, using
the λm-calculus as an auxiliary tool.

The problem of finding a “straightforward” decreasing measure for β-reduction in the
simply typed λ-calculus is posed as Problem #26 in the TLCA list of open problems [5], and
as Problem #19 in the RTA list of open problems [11].

One strength of the W-measure is that its codomain is simple: each term is mapped to a
natural number. One weakness is that the definition of the W-measure relies on reduction
in the λm-calculus, and computing the W-measure is at least as costly as evaluating the
λ-term itself. Measures based on Gandy’s [16, 10] have similar characteristics. One question
is whether the values of the W-measure and measures based on Gandy’s can be related. It is
not immediate to establish a precise correspondence.

On the other hand, one strength of the T m-measure is that it shows how to extend
Turing’s measure T (−) so that it decreases when contracting any redex. The proof is based
on a delicate analysis of how contracting a redex of degree d may create and copy redexes
of degree d′, depending on whether d < d′, or d = d′, or d > d′. We hope that this may
provide novel insights on why the STLC is SN. The codomain of the T m-measure is not
so simple, as the T m-measure maps each term to a structure of nested multisets. Yet, it is
“reasonably simple”: the fact that the partial orders Td and Rd are well-founded only relies
on the ordinary multiset and lexicographic orderings. The T m-measure is costly to compute;
in particular Rm

d (t) is defined as a sum over all reductions ρ : t
d−→∗

m t′, which may produce a
combinatorial explosion. Another weakness is that our proofs make use of relatively heavy
rewriting machinery, as we have to keep explicit track of witnesses (e.g. in Section 4).

Besides the techniques mentioned in the introduction, other proofs of SN of the STLC can
be found in the literature. For example, David [7] gives a purely syntactic proof of SN relying
on the standardization theorem; Loader [23], as well as Joachimski and Matthes [18], give
combinatorial proofs of SN based on inductive predicates characterizing strongly normalizing
terms. As far as we know, the only proofs that explicitly construct decreasing measures are
those based on Gandy’s.

The idea of keeping “leftover garbage” can be traced back to at least the works of
Nederpelt [21] and Klop [20], who studied non-erasing variants of (possibly) erasing rewriting
systems, in order to relate weak and strong normalization. Many variations of these ideas
have been explored in the past, such as in de Groote’s notion of βS reduction [8] or Neergaard
and Sørensen calculus with memory [25]. Instead of using the λm-calculus, it is possible that
other non-erasing systems may be used. For instance, Gandy [16] translates λ-terms to the
terms of λI-calculus to avoid erasing arguments.

The definition of reduction in the λm-calculus, which allows arbitrary memory in between
the abstraction and the application, is inspired by Accattoli and Kesner’s work on calculi
with explicit substitutions “at a distance” [1]. This mechanism can be traced back, again, to
at least the work of Nederpelt [21].

The definition of the λm-calculus as a means to obtain an increasing measure was inspired
by the fact that, in explicit substitution calculi without erasure, labeled reduction (in the
sense of Lévy labels [22]) increases the sum of the sizes of all the labels in the term [2].
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