
MUL-Tree Pruning for Consistency and
Compatibility
Christopher Hampson #

Department of Informatics, King’s College London, UK

Daniel J. Harvey #

Graduate School of Informatics, Kyoto University, Japan

Costas S. Iliopoulos #

Department of Informatics, King’s College London, UK

Jesper Jansson #

Graduate School of Informatics, Kyoto University, Japan

Zara Lim #

Department of Informatics, King’s College London, UK

Wing-Kin Sung #

Department of Chemical Pathology, The Chinese University of Hong Kong, China
Hong Kong Genome Institute, Hong Kong Science Park, Shatin, China
Laboratory of Computational Genomics, Li Ka Shing Institute of Health Sciences,
The Chinese University of Hong Kong, China

Abstract
A multi-labelled tree (or MUL-tree) is a rooted tree leaf-labelled by a set of labels, where each label
may appear more than once in the tree. We consider the MUL-tree Set Pruning for Consistency
problem (MULSETPC), which takes as input a set of MUL-trees and asks whether there exists a
perfect pruning of each MUL-tree that results in a consistent set of single-labelled trees. MULSETPC
was proven to be NP-complete by Gascon et al. when the MUL-trees are binary, each leaf label is used
at most three times, and the number of MUL-trees is unbounded. To determine the computational
complexity of the problem when the number of MUL-trees is constant was left as an open problem.

Here, we resolve this question by proving a much stronger result, namely that MULSETPC is
NP-complete even when there are only two MUL-trees, every leaf label is used at most twice, and
every MUL-tree is either binary or has constant height. Furthermore, we introduce an extension of
MULSETPC that we call MULSETPComp, which replaces the notion of consistency with compatibility,
and prove that MULSETPComp is NP-complete even when there are only two MUL-trees, every
leaf label is used at most thrice, and every MUL-tree has constant height. Finally, we present a
polynomial-time algorithm for instances of MULSETPC with a constant number of binary MUL-trees,
in the special case where every leaf label occurs exactly once in at least one MUL-tree.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases multi-labelled tree, phylogenetic tree, consistent, compatible, pruning,
algorithm, NP-complete

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.14

Funding Daniel J. Harvey: Partially funded by JSPS KAKENHI grant 22H03550.
Jesper Jansson: Partially funded by JSPS KAKENHI grant 22H03550.

1 Introduction

In evolutionary biology, leaf-labelled (phylogenetic) trees are commonly employed to describe
the evolution of species using leaf labels to represent different species [11]. Comparisons of
these structures are used particularly in phylogenetic inferences – similarities may indicate

© Christopher Hampson, Daniel J. Harvey, Costas S. Iliopoulos, Jesper Jansson, Zara Lim, and
Wing-Kin Sung;
licensed under Creative Commons License CC-BY 4.0

34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipták; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christopher.hampson@kcl.ac.uk
https://orcid.org/0000-0002-6111-9465
mailto:Daniel.Harvey87@gmail.com
mailto:costas.iliopoulos@kcl.ac.uk
https://orcid.org/0000-0003-3909-0077
mailto:jj@i.kyoto-u.ac.jp
https://orcid.org/0000-0001-6859-8932
mailto:zara.lim@kcl.ac.uk
https://orcid.org/0000-0001-6528-6060
mailto:kwksung@cuhk.edu.hk
https://orcid.org/0000-0001-7806-7086
https://doi.org/10.4230/LIPIcs.CPM.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 MUL-Tree Pruning for Consistency and Compatibility

evolutionary patterns, whereas differences may highlight genetic mutations. The measure of
similarity between phylogenetic trees has been defined by multiple alternate metrics, such
as the Robinson-Foulds distance [29], subtree pruning and regraft (SPR) distances [5, 34],
and maximum agreement subtrees [2, 7, 12]. Other problems related to phylogenetic trees
include constructing supertrees [1, 3, 4, 33] or consensus trees [6, 11, 21] which can determine
relations or interactions between smaller phylogenetic trees.

Phylogenetic trees are classically described as single-labelled trees, where no label appears
on the leaves of the tree more than once. Typically, construction or comparison algorithms
of such phylogenetic trees make use of this property to reduce computational costs. Multi-
labelled trees (or MUL-trees) are a generalisation of single-labelled trees in which multiple
leaves may be labelled by the same label. MUL-trees can be useful to depict genome
duplication, lineage sorting, or lateral gene transfer [23]. Other applications include the
construction of phylogenetic networks by folding operations [17, 18, 19], biogeography
[13, 24, 25], the study of host-parasite cospeciation [26], and gene evolution studies [23, 27, 30].

MUL-trees have been far less investigated than their single-labelled counterparts and
many computational problems become NP-hard when extended to MUL-trees. For example,
the majority rule consensus tree for a set of k single-labelled trees with n leaf labels each
can be computed in O(nk) time [21], but is NP-hard to compute for MUL-trees [8]. Other
approaches convert MUL-trees into single-labelled trees which can be input to existing
algorithms [20, 30]. A few polynomial-time algorithms do exist for MUL-trees – Cui et al.[8]
presented a O(n2k + nk2)-time algorithm for building a majority rule consensus MUL-tree
in which each leaf label occurs at most twice, based on a reduction to the Perfect Phylogeny
Haplotyping problem [10]. Furthermore, the maximum agreement subtree (MAST) distance
between two MUL-trees can be computed in quadratic time, though it also becomes NP-
complete when generalised to more than two MUL-trees [13, 22].

This paper investigates MUL-trees by considering the MUL-tree Set Pruning for Consist-
ency problem (MULSETPC), which takes as input a set of MUL-trees, and outputs whether
or not there exists a pruning of the MUL-trees which gives a consistent set of single-labelled
trees (see Section 2 for formal definitions). Gascon et al. showed that, in general, MULSETPC
is NP-complete via a polynomial reduction from 3-SAT [15, 16]. However, their reduction
from an instance of 3-SAT with m variables and z clauses gives an instance of MULSETPC
containing m+ z + 1 MUL-trees; moreover these MUL-trees may have labels occurring three
times. Here we prove that MULSETPC is still NP-complete, even when restricted to instances
involving only two MUL-trees, or in which every leaf label appears at most twice within a
MUL-tree. This totally resolves the open question of Gascon et al. [15, 16] regarding the
parameterised complexity of MULSETPC when the parameter is the number of input trees.
Also, we identify tractable fragments of MULSETPC which can be solved in polynomial time,
in short, instances in which each label appears exactly once in at least one MUL-tree.

We also present a generalisation of MULSETPC called MULSETPComp, which asks for a
compatible set of trees instead of a consistent set of trees. Tree compatibility is a generalisation
of tree consistency where we allow the supertree displaying the set to instead display a
refinement of each tree rather than the tree itself–again, a more rigorous definition is given
later. Tree compatibility is relevant when determining the existence of a supertree for a
given set of phylogenetic trees [1, 31]. This is because experimental data often contains
uncertainty, which can be expressed by non-binary nodes in the tree; this necessitates
the use of compatibility. Compatibility is also relevant to other questions such as the
incomplete directed perfect phylogeny problem [28]. Our interest in tree compatibility was
partially motivated by recent improvements in compatibility testing [9]. Here, we prove
that MULSETPComp is NP-complete, even when restricted to instances involving only two
MUL-trees, or in which every leaf label appears at most thrice within a MUL-tree.



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:3

The rest of the paper is organized as follows. In Section 2, we introduce the preliminary
notation and definitions. In Section 3 we present the improved NP-completeness proof
for MULSETPC by reduction from the Boolean 3-SAT problem. In Section 4 we give
a NP-completeness proof for MULSETPComp by reduction from the Exact 3-cover with
Multiplicity 3 problem. Section 5 contains our polynomial time results for tractable instances
of MULSETPC. Finally, in Section 6 we present our conclusions and a few open problems.

2 Preliminaries

We shall use the following standard definitions on trees.

▶ Definition 1 (Basic tree definitions). All trees we consider are rooted and unordered. If
x, y are nodes in a tree T , then y is an ancestor of x (and x a descendant of y) if y lies on
the unique path from x to the root of T . We denote this by x ≤ y. Additionally, if y ≠ x

then y is a proper ancestor of x, which we denote by x < y. If x < y and y is adjacent to x
then y is the parent of x and x a child of y. If x and x′ are both children of y then x and x′

are siblings. The lowest common ancestor of nodes x and y, denoted lcaT (x, y), is the node
z such that x ≤ z, y ≤ z, and no proper descendant of z also satisfies these properties. The
empty tree, denoted by T∅, is the unique tree which contains no nodes.

We use the following definition of leaf-labelled trees, which takes the definitions of
Gascon et. al. [15] and generalises them to the case where the tree may not be binary.

▶ Definition 2 (Leaf-labelled trees). A leaf-labelled tree (T,X ) is a (rooted, unordered) tree
T where no node has exactly one child and where each leaf has been assigned a label from a
set of labels X . (We will sometimes refer to T as a leaf-labelled tree on X , and omit X if it
is clear from context.) A leaf-labelled tree is a single-labelled tree if every label in X is used
at most once. Alternatively, a multi-labelled tree or MUL-tree is a leaf-labelled tree where
we allow each label in X to label multiple leaves. We say a MUL-tree has multiplicity k if
each leaf label appears at most k times. Let L(T ) ⊆ X denote the set of leaf labels appearing
in T and let D(T ) ⊆ L(T ) denote the set of leaf labels appearing only once in T .

Note that in a single-labelled tree we sometimes abuse notation and identify the leaf and
the leaf label. We do the same in a MUL-tree only if the context is clear and there is no
possibility of confusion.

If u is a node of T then Tu denotes the subtree rooted at u containing u and all
its descendants, maintaining the same leaf-labelling as T on the remaining leaves. Let
Du := D(Tu).

▶ Definition 3 (Pruning and Perfect Pruning). Given a leaf-labelled tree T , let y denote a
leaf node of T and x the parent of y. We prune the leaf y in the following manner:

Delete the leaf y.
If x still has at least two children, do nothing else.
Alternatively, if x now has only one child and is not the root, suppress the vertex x.
Finally, if x has only one child z and is the root, delete x and make z the new root.

A perfect pruning of T is a single-labelled tree T ′ such that L(T ′) = L(T ), created by (possibly
repeated) prunings of T . That is, for every label that appears more than once in T , we
prune away all but exactly one copy of the label to obtain a single-labelled tree. If T is a
single-labelled tree, then its only perfect pruning is itself.

CPM 2023



14:4 MUL-Tree Pruning for Consistency and Compatibility

Given a leaf-labelled tree T and a set of leaf labels L′ ⊆ L(T ), let T ↾L′ denote the
leaf-labelled tree constructed by pruning from T every leaf labelled by a label from L(T ) −L′.
(That is, only leaves labelled by L′ remain.) Two leaf-labelled trees T1 and T2 are leaf-label
isomorphic if there is an isomorphism between T1 and T2 which preserves the labelling of the
leaves. We say that a leaf-labelled tree T on L displays a single-labelled tree T ′ on L′ ⊆ L if
there exists a perfect pruning T ∗ of T such that T ∗↾L′ is leaf-label isomorphic to T ′.

▶ Definition 4 (Refinement). Given single-labelled trees T and T ∗, we say T ∗ is a refinement
of T if T can be obtained from T ∗ by (possibly repeated) contractions of non-leaf edges, where
we treat a contraction as merging the child node into the parent node. We write T ≤ T ∗.

What follows is the definition of a consistent set, and the very similar definition of a
compatible set.

▶ Definition 5 (Consistent Set). Consider a set of single-labelled trees T1, . . . , Tk with
corresponding label sets L1, . . . , Lk. We say this set is consistent if there exists a single-
labelled tree T on label set L =

⋃k
i=1 Li such that for every i = 1, . . . , k, T displays Ti.

Note in the above definition that if L1 = · · · = Lk then L = L1 and so the set T1, . . . , Tk
is consistent if and only if the trees are pairwise leaf-label isomorphic.

▶ Definition 6 (Compatible Set). Consider a set of single-labelled trees T1, . . . , Tk with
corresponding label sets L1, . . . , Lk. We say this set is compatible if there exists a single-
labelled tree T on label set L =

⋃k
i=1 Li such that for every i = 1, . . . , k, T ↾Li

is a refinement
of Ti.

x y

z

z w

(a) T1.

y w

z

y

(b) T2.

x y z w

(c) T ∗.

Figure 1 Let T1, T2, and T ∗ be the three trees with X = {x, y, z, w} shown above. If we prune
away the non-underlined labels in T1 and T2 then T ∗↾L(Ti) is a refinement of the pruned Ti for
i ∈ {1, 2}, which shows that there exists a perfect pruning of {T1, T2} giving a compatible set of trees.
In contrast, there is no perfect pruning of {T1, T2} giving a consistent set of trees because neither of
the two single-labelled subtrees with leaf labels y, z, and w displayed by T1 is also displayed by T2.
Note, however, that if the label w in T1 is changed to x then {T1, T2} becomes consistent since this
label can be pruned along with one leaf labelled by z to obtain a perfect pruning of T1 which is
displayed by T ∗.

Note that every consistent set of trees is also a compatible set, but the converse does not
hold in general.

The MUL-set pruning for consistency problem can then be defined as follows:

MUL-tree Set Pruning for Consistency (MULSETPC) Problem:
Input: (M,X ) where M is a set of MUL-trees on X .
Output: ∃? a perfect pruning of each tree of M resulting in a consistent set of trees.



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:5

We introduce the following problem, which substitutes compatible for consistent sets:

MUL-tree Set Pruning for Compatibility (MULSETPComp) Problem:
Input: (M,X ) where M is a set of MUL-trees on X .
Output: ∃? a perfect pruning of each tree of M resulting in a compatible set of trees.

See Figure 1 for an example that illustrates the difference between MULSETPC and
MULSETPComp.

3 NP-completeness for MULSETPC instances with two MUL-trees
and multiplicity 2

In this section we consider the MULSETPC problem, and show that it is NP-complete even
when considering a heavily restricted set of instances. Specifically, we consider instances with
at most two MUL-trees, where the multiplicity is 2, and where the MUL-trees are binary.
The core of our proof will be a reduction from 3-SAT [14].

3-satisfiability (3-SAT) Problem:
Input: A Boolean set of clauses C = (C1 ∧ C2 ∧ . . . ∧ Cz) on a finite set of literals
{l1, l2, . . . , lm} where each clause is in conjunctive normal and contains 3 literals.
Output: ∃? a satisfying valuation V of C.

Our first goal is to construct, given an instance of 3-SAT, two MUL-trees T1 and T2 which
we will use in our corresponding instance of MULSETPC. Our set of leaf labels X consists of
the following:

{li, l̄i | i = 1, . . . ,m}, the set of literals,

{Fi, Vi | i = 1, . . . ,m}, a pair of “dummy” labels for each variable and

P := {C1
j , C

2
j , C

3
j | j = 1, . . . , z}, a triple of “position” labels representing the three places

of each clause of C.

Define h := P → {li, l̄i | i = 1, . . . ,m} as the function which maps a position label Cxj to the
literal found in that position. For example, if C1 = (l1 ∨ l4 ∨ l̄6) then h(C1

1 ) = l1, h(C2
1 ) = l4

and h(C3
1 ) = l̄6. We treat P as being ordered first by the index of the clause and then by

the position. Let H(li) := {Cxj | h(Cxj ) = li}, and define H(l̄i) similarly.

Our trees T1, T2 will be constructed from four types of subtrees T1,L,j , T2,L,j , T
∗
1,R,i and

T ∗
2,R,i, where i = 1, . . . ,m and j = 1, . . . , z. See Figure 2 for the subtrees T1,L,j , T2,L,j , T1,R,i

and T2,R,i; we now explain how to construct T ∗
1,R,i and T ∗

2,R,i from T1,R,i and T2,R,i.

Let vi denote the leaf labelled Vi in T1,R,i and let ui denote the parent of vi. Let u+
i and

u−
i denote the parents of leaves labelled li and l̄i respectively in T2,R,i. Let v+

i denote the
child of u+

i labelled by Vi, and v−
i denote the child of u−

i labelled by Vi.

CPM 2023



14:6 MUL-Tree Pruning for Consistency and Compatibility

T1,L,j

Cc
j Cb

j

Ca
j

(a) T1,L,j .

T2,L,j

Ca
j Cb

j

Cc
j

(b) T2,L,j .
T1,R,i

li l̄i

Vi

Fi li l̄i

(c) T1,R,i.

T2,R,i

li Vi

Fi Fi

Vi l̄i

(d) T2,R,i.

Figure 2 Subtrees T1,L,j , T2,L,j , T1,R,i, T2,R,i for MULSETPC.

Initialise T ∗
1,R,i as a copy of T1,R,i, then do the following:

If H(li) ∪H(l̄i) = ∅, make no further changes.
Otherwise, subdivide the edge uivi |H(li) ∪H(l̄i)| times, and add to each new node an
adjacent leaf. Label these leaves with H(li) ∪H(l̄i), respecting the ordering such that
the first label is closest to ui.

Initialise T ∗
2,R,i as a copy of T2,R,i, and then:

If H(li) ̸= ∅, then subdivide u+
i v

+
i |H(li)| times and add an leaf adjacent to each new

node. Label these leaves with H(li), respecting the ordering so that the first label is
closest to u+

i .
If H(l̄i) ̸= ∅, repeat the previous step, substituting H(l̄i) for H(li) and u−

i v
−
i for u+

i v
+
i .

Construct T1,L by taking a complete binary tree on z leaves (recall z is the number of
clauses), suppressing any nodes with exactly one child, and then identifying the root of each
T1,L,j (ordered by j) with exactly one of the leaves (ordered left-to-right). Construct T2,L in
the same fashion, substituting T2,L,j for T1,L,j . Construct T1,R by taking a complete binary
tree on m leaves, suppressing any nodes with exactly one child, and then identifying the root
of each T ∗

1,R,i (ordered by i) with exactly one of the leaves (ordered left-to-right). Again,
construct T2,R in the same fashion, substituting T ∗

2,R,i for T ∗
1,R,i. Finally, construct T1 by

taking a root node r(T1) and adding an edge to the roots of T1,L and T1,R; construct T2 in
the obvious equivalent fashion.

Given an instance C of 3-SAT, we create our instance of MULSETPC, ({T1, T2},X ). Note
that T1 and T2 have multiplicity 2; each leaf label Cxj ∈ P appears once in T1,L,j and T2,L,j
and once in T ∗

1,R,i and T ∗
2,R,i for the single value of i such that Cxj ∈ H(li) ∪ H(l̄i). By

inspection, the labels of X − P also appear at most twice. Hence the instance ({T1, T2},X )
contains two binary MUL-trees with multiplicity 2. It suffices to now show the reduction, in
two parts.

▶ Lemma 7. If C is a satisfied instance of 3-SAT then the corresponding instance ({T1, T2},X )
of MULSETPC admits a perfect pruning giving a consistent set of trees.



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:7

Proof. Suppose that C is satisfiable. Then there exists a valuation of every variable which
satisfies every clause of C; fix one such valuation and label it V. For each clause Cj , mark
one of the position labels Cxj for x ∈ {1, 2, 3} such that h(Cxj ) is valued true by V. Since V
satisfies every clause, we will always be able to choose a label to mark; if there are multiple
legitimate choices choose arbitrarily. Refer to any label Cxj we have not marked as unmarked.

By our construction of T1 and T2, if we show that after pruning each T1,L,j and T ∗
1,R,i is

leaf-label isomorphic to T2,L,j and T ∗
2,R,i respectively, then T1 is leaf-label isomorphic to T2.

Consider first the labels of P. Prune from each T1,L,j and T2,L,j the one marked label
Cxj , and leave the two unmarked labels Cxj . We must keep the other copy of the marked Cxj
and prune away the other copies of the unmarked Cxj in whichever T ∗

1,R,i and T ∗
2,R,i they

appear. Consider the sets H(li) and H(l̄i). If Cxj is marked, then h(Cxj ) is true, and so at
most one of H(li), H(l̄i) contains a marked label. Keeping this information in mind, we can
now simply look at the subtrees themselves.

After this pruning each T1,L,j will be leaf-label isomorphic to the corresponding T2,L,j ,
by inspection.
Consider T ∗

1,R,i and T ∗
2,R,i. We have already pruned away unmarked labels of P. If li

is true, prune the copy of li in T ∗
1,R,i closest to the root of T ∗

1,R,i and the copy of l̄i
furthest from the root; if l̄i is true do the opposite. In T ∗

2,R,i prune the copies of Fi, Vi
closer to the literal li or l̄i which evaluates as false. Hence we have pruned away the
extra copies of each leaf label. It is clear, mostly by inspection, that T ∗

1,R,i is leaf-label
isomorphic to T ∗

2,R,i; the most important point is that since at most one of H(li) and
H(l̄i) contains a marked label, at least one of these sets has been pruned away entirely in
T ∗

2,R,i (specifically the set closer to the false literal).
Hence, after pruning, T1 and T2 are leaf-label isomorphic, and thus {T1, T2} is consistent. ◀

See Figure 3 for an illustration of the reduction in Lemma 7.

▶ Lemma 8. If C is not a satisfied instance of 3-SAT then the corresponding instance
({T1, T2},X ) of MULSETPC do not admit perfect prunings giving a consistent set of trees.

We omit the proof of Lemma 8 for reasons of space. We now prove our main result.

▶ Theorem 9. The MULSETPC problem is NP-complete, even restricted to instances con-
taining at most two binary MUL-trees with multiplicity 2.

Proof. Note first that MULSETPC is in NP, since given a set of pruned leaves, a perfect
pruning can be constructed in polynomial time, and the consistency of the set of trees
determined in polynomial time using the BUILD algorithm [1, 15].

The result then follows directly from Lemma 7 and Lemma 8. ◀

It is also possible to swap our requirement that the MUL-trees are binary for an alternative
requirement that the MUL-trees have height at most 5. Proving this result is very similar to
the binary case, but we omit it here on grounds of space; the proof will appear in the journal
version of this article. Thus we get the following result.

▶ Theorem 10. The MULSETPC problem is NP-complete, even restricted to instances
containing at most two MUL-trees with multiplicity 2 and height at most 5.

CPM 2023



14:8 MUL-Tree Pruning for Consistency and Compatibility

T1

l̄1l1F1

Ca
1

Ca
3 V1

l1 l̄1

l2 l̄2F2

Cb
1

Ca
2

Cb
3
V2

l2 l̄2

l3 l̄3F3

Cc
1

Cb
2
V3

l̄3l3

l4 l̄4F4

Cc
2

Cc
3 V4

l4 l̄4

Ca
1

Cb
1
Cc

1
Ca

2

Cb
2
Cc

2

Ca
3

Cb
3
Cc

3

(a) The MUL-tree T1.

T2

F1

Ca
3V1

l̄1

F1

Ca
1 V1

l1

F2

V2 l̄2

F2

Cb
1

Ca
2

Cb
3
V2

l2

F3

Cc
1V3

l̄3

F3

Cb
2
V3

l3

F4

Cc
3V4

l̄4

F4

Cc
2 V4

l4

Cc
1

Cb
1
Ca

1
Cc

2

Cb
2
Ca

2

Cc
3

Cb
3
Ca

3

(b) The MUL-tree T2.
T

Cb
3 Cc

3

Ca
2 Cb

2

Ca
1 Cb

1

l̄1
V1 Ca

3

F1

l1

l̄2 V2

F2

l2

l̄3
V3 Cc

1

F3

l3

l4

V4 Cc
2

F4

l̄4

(c) Tree T displays the two MUL-trees T1 and T2 after they have been perfectly pruned.

Figure 3 Illustrating the reduction from 3-SAT in Lemma 7. The two MUL-trees T1 and T2 are
constructed from C = (C1∧C2∧C3) where C1 = (l1∨l2∨l3), C2 = (l2∨l3∨l4), and C3 = (l1∨l2∨l4).
Figure 3c shows the corresponding tree T which displays the pruned T1 and T2 corresponding to a
satisfiable assignment l1 = l2 = l3 = l4 = true with marked labels Cc

1 , C
c
2 and Ca

3 .



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:9

4 NP-completeness for MULSETPComp

In this section, we extend our previous results regarding the problem MULSETPC to the
similar problem MULSETPComp. We present the following two theorems.

▶ Theorem 11. MULSETPComp is NP-complete, even when restricted to instances containing
at most two MUL-trees with multiplicity at most 3 and where the MUL-trees have height at
most 4.

▶ Theorem 12. MULSETPComp is NP-complete, even when restricted to instances containing
at most two MUL-trees with height at most 3 and where one MUL-tree is a single-labelled
tree containing all leaf labels.

As was the case in Section 3, these two results have very similar proofs. We shall prove
Theorem 11, but omit the proof of Theorem 12 for space reasons. Here, we reduce from
X3C3, also known to be NP-complete [14].

Exact 3-cover with multiplicity 3 (X3C3) Problem:
Input: A set X = {x1, . . . , x3q} and a collection C = {S1, . . . , Sk} of 3-element subsets
of X, such that any element of X appears in at most three sets in C.
Output: ∃? an exact cover for X.

As before, our first goal is to construct, given an instance (X,C) of X3C3, a set of two
MUL-trees we shall use to construct our corresponding instance of MULSETPComp.

Recall that |X| = 3q and that k := |C|. Let m := k − q, the number of sets of C not
chosen to be part of our exact 3 cover. Define A := {aij |i = 1, . . . ,m, j = 1, . . . , k} and
B = {bij |i = 1, . . . ,m, j = 1, . . . , k}. Let Ai = {aij |j = 1 . . . , k} and Aj = {aij |i = 1, . . . ,m},
and define Bi, Bj similarly. The labels in A∪B are another set of “dummy” labels we use for
technical reasons. Let Y = X ∪A∪B. We may assume that q ≥ 3. We may also assume that
k is even; if not, add to X three additional elements {x3q+1, x3q+2, x3q+3} (which increases
q by 1) and add to C a additional set S′ = {x3q+1, x3q+2, x3q+3} (which increases k = |C|
by 1). It is clear this modified instance contains an exact 3-cover if and only if the original
instance did.

We denote our two trees T1 and T2. Our corresponding instance of MULSETPComp for
Theorem 11 will be ({T1, T2}, Y ).

…

…

…

…

…

S1 SkA1

B1

Ak

Bk

… …

µ

µℓ µr

π1 πk

π′
1 π′

k

α1 αm
β1 βm

Figure 4 The tree T1 for MULSETPComp.

CPM 2023



14:10 MUL-Tree Pruning for Consistency and Compatibility

… … … …

……

X

A1 B1 Am Bm

… …

γ

γℓ γr

ρ1 ρm

ᾱ1 ᾱm
β̄1 β̄m

Figure 5 The tree T2 for MULSETPComp.

α
i

a
i
1 a

i

1+
k

2

a
i
2 a

i

2+
k

2

a
i

k

2

a
i

k

. . .

Figure 6 The subtree of T1 rooted by αi.

ᾱ
i

a
i
1

a
i
2

a
i
2

a
i
3

a
i

k−1
a
i

k

. . .

Figure 7 The subtree of T2 rooted by ᾱi.

See Figures 4 and 6 for the construction of T1, and Figures 5 and 7 for the construction
of T2. Note that a node labelled αi in Figure 4 is the root of the appropriate subtree from
Figure 6, not a leaf labelled by αi. An equivalent statement holds for ᾱi, βi and β̄i, where
the subtree rooted at βi is found by taking the subtree of Figure 6 and replacing each aij
with bij . (An equivalent statement holds for β̄i and Figure 7). Note the following other useful
facts about our construction:

Trees T1 and T2 have the same set of leaf labels. Hence a perfect pruning of T1 and T2 is
a compatible set of trees if and only if there exists a tree T ∗ on the same leaf label set
which is a refinement of both perfect prunings.
In T1 any label of X may appear at most three times, since any xi may appear in at most
three sets of C. Every label of A and B appears once in Tµℓ

1 and once in Tµr

1 . Hence T1
has multiplicity 3. In T2 any label of X appears only once, and the labels of A and B

appear at most thrice, once in T γℓ

2 and once or twice in T γr

2 . Hence T2 has multiplicity 3.
The heights of both MUL-trees can be determined by inspection.

We will need the following two technical lemmas – as the proofs are straightforward we
omit them.

▶ Lemma 13. Consider a set of elements X = {x1, . . . xk} together with a subset X ′ ⊂ X

such that |X ′| = k − 1 and a collection of sets X = {xi, xi+i}i∈[k−1]. Then it is possible to
construct a set equal to X ′ by choosing one element from each set in X .



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:11

▶ Lemma 14. Let T, T ∗ be single-labelled trees such that T ≤ T ∗, and let u, x, y be leaf nodes
in T (and hence also in T ∗). If lcaT (u, x) < lcaT (u, y) then lcaT∗(u, x) < lcaT∗(u, y).

The following two lemmas form the core of our main result.

▶ Lemma 15. If (X,C) is an instance of X3C3 that allows an exact 3-cover C ′ then the
corresponding instance ({T1, T2}, Y ) of MULSETPComp admits a perfect pruning giving a
compatible set of trees.

Proof. Let I ⊂ [k] denote the set of m indices i of those Si we did not choose as part of our
exact 3-cover, that is the sets Si ∈ C − C ′. Let ψ : I → [m] be an arbitrary isomorphism.
Prune the tree T1 as follows:

For each Si (or equivalently, each subtree rooted at πi):
If Si ∈ C ′ then keep the labels of Si as the children of π′

i but prune away all other
leaf labels in the subtree Tπi

1 . After pruning there are three leaves (with labels
corresponding to the elements of Si) as children of π′

i, which is itself a child of µℓ.
If Si ̸∈ C ′ then prune away all leaf labels in Tπi

1 except aψ(i)
i and bψ(i)

i . After pruning,
the remaining leaves will be children of πi.

In each Tαj

1 , prune away aji if the leaf label appears in Tµℓ

1 . Since m sets of C are not in
C ′, there are m leaf labels of the form aji appearing in Tµℓ

1 , specifically aψ(i)
i for the m

values of i for which ψ(i) is defined, or equivalently for all ψ(i) = 1, . . . ,m. Hence we
must prune away one leaf label in each Tα

j

1 .
Repeat the previous step for each T β

j

1 – the argument is identical.

Denote the pruned version of T1 by T ′
1. Every leaf label of X appears once; this follows

directly from C ′ being an exact 3 cover. All other leaf labels appear only once by inspection;
hence this is a perfect pruning.

We now prune T2 as follows:
For each T ρ

j

2 , prune away all leaf labels except ajψ−1(j) and bjψ−1(j); after pruning ρj has
two children, both leaves.
For each T ᾱj

2 , we wish to prune this subtree to create a (k− 1) leaf star with all labels aji
for our fixed j except ajψ−1(j). This is possible due to Lemma 13; from each pair of leaf
labels rooted by a child of ᾱj we pick one leaf to keep and one to prune away such that
we keep one copy of everything except ajψ−1(j).

Repeat the previous step for each T β̄
j

2 – as before the argument is identical.
There is one copy of each leaf label of X in T2, which we do not prune. We prune the leaf
labels of A ∪B in T2 so that the leaf labels of A ∪B in T γr

2 are exactly those that do not
appear in T γℓ

2 . Hence this is a perfect pruning, which we denote T ′
2.

We now show that T ′
2 can be constructed from T ′

1 by repeated non-leaf edge contractions,
which will show {T ′

1, T
′
2} form a compatible set (with T ∗ := T ′

1).
In T ′

1 contract every remaining π′
i (one for each of the q sets Si ∈ C ′) into its parent µℓ.

Furthermore in each Tαi

1 and T β
i

1 , contract every non-leaf edge to create a star rooted at αi
or βi. By inspection, we can see T ′

2 ≤ T ′
1, giving our required compatible set of trees. ◀

See Figures 8, 9, 10, and 11 for an example of a pruning as in Lemma 15.

CPM 2023



14:12 MUL-Tree Pruning for Consistency and Compatibility

…

S1 Sk

… …

µ

µℓ µr

π′1 π′k

α1 αm β1 βm

a
ψ(2)
2 b

ψ(2)
2

π2

Figure 8 As an illustrated example, a possible perfect pruning T ′
1 as in Lemma 15. In this

example, S1, Sk ∈ C′, but S2 ̸∈ C′.

α
i

a
i
1

a
i
2 a

i

2+
k

2

a
i

k

2

a
i

k

. . .

Figure 9 A subtree of T ′
1 in the pruning from Figure 8. In this example, ψ(1 + k

2 ) = i.

……

X

… …

γ

γℓ γr

ρ1 ρm

ᾱ1 ᾱm β̄1 β̄m

a1ψ−1(1) b1ψ−1(1)
amψ−1(m) b

m
ψ−1(m)

Figure 10 A possible perfect pruning T ′
2, corresponding to the perfect pruning of Figure 8.

ᾱ
i

a
i
1 a

i

k

2

a
i

k

2
+2

a
i

k

. . . . . .

Figure 11 A subtree of T ′
2 in the pruning from Figure 10. Again, here ψ−1(i) = k

2 + 1.

▶ Lemma 16. If (X,C) is an instance of X3C3 that does not allow an exact 3-cover C ′ then
the corresponding instance ({T1, T2}, Y ) of MULSETPComp does not admit a perfect pruning
giving a compatible set of trees.

We omit the proof of Lemma 16 due to space concerns. We now prove Theorem 11.



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:13

Proof of Theorem 11. Note first that MULSETPComp is in NP, since given a set of pruned
leaves, a perfect pruning can be constructed in polynomial time. The compatibility of this
set of trees can be determined in polynomial time using the BUILDST algorithm [9]. The
result then follows directly from Lemma 15 and Lemma 16. ◀

We close this section with the following related result.

▶ Remark 17. MULSETPComp is NP-complete when restricted to instances with at most
two MUL-trees with multiplicity 2, as long as all trees are binary.

Recall that in general any consistent set of trees is also a compatible set; in the case where
all trees are binary the inverse also holds, as a binary tree cannot be refined further. This
proves Remark 17.

5 An algorithm for MULSETPC instances with k binary MUL-trees
where every label is unique in at least one tree

In this section, we consider the instances of MULSETPC in which we are given k binary
MUL-trees T1, . . . , Tk such that every label appears uniquely in at least one tree, that is,⋃k
i=1 D(Ti) = X , where X =

⋃k
i=1 X (Ti).

We adapt a technique using dynamic programming over k-tuples of nodes previously used
for the MAST problem [13, 22, 32]. For all k-tuples of nodes (a1, . . . , ak) ∈

∏k
i=1 V (Ti), let

S(a1, . . . , ak) =
⋃k
i=1 D(T ai

i ) denote the set of unique leaf labels that occur in the subtrees
T a1

1 , . . . , T ak

k , rooted at a1, . . . , ak, respectively.
We aim to find a binary tree T that is leaf-labelled by S(a1, . . . , ak) such that each of

T ai
i for i = 1, . . . , k displays T ↾X (Ti). Lemma 18, below, shows that the necessary condition

of the existence of such a tree is that S(a1, . . . , ak) ∩ X (Ti) ⊆ X (T ai
i ) for i = 1, . . . , k.

▶ Lemma 18. Let T be a binary tree leaf-labelled by S(a1, . . . , ak). If S(a1, . . . , ak)∩X (Ti) ̸⊆
X (T ai

i ) for some i, T ai
i does not display T ↾X (Ti).

Proof. Suppose that S(a1, . . . , ak) ∩ X (Ti) ̸⊆ X (T ai
i ), then there exists x ∈ S(a1, . . . , ak)

such that x ̸∈ X (T ai
i ). Since x ∈ T ↾X (Ti), we have that T ai

i cannot display T ↾X (Ti). ◀

Next, for each ai ∈ V (Ti), let P (ai) = {ϵ, ai, ali, ari }, for each i = 1, . . . , k, where aℓi and
ari denotes the two (unordered) children of vertex ai, and with ali = ϵ and ari = ai in the case
that ai ∈ L is a leaf vertex w.l.o.g. Let ci : P (ai) → P (xi) be the involution given by

ci(ϵ) = ai, ci(ai) = ϵ, ci(ari ) = aℓi , and ci(aℓi) = ari ,

associating each x ∈ P (ai) with a complement. Let Π(a1, . . . , ak) =
∏k
i=1 P (ai) −

{(ϵ, . . . , ϵ), (a1, . . . , ak)}, and note that |Π(a1, . . . , ak)| ≤ 4k, for all ai ∈ V (Ti), for
i = 1, . . . , k.
We define a function W :

∏k
i=1 V (Ti) → {true, false} recursively, as follows:

If |S(a1, . . . , ak)| ≤ 1, W (a1, . . . , ak) = true.
If S(a1, . . . , ak) ∩ X (Ti) ̸⊆ X (T ai

i ) for some i, W (a1, . . . , ak) = false.
Otherwise,

W (⃗a) =
∨

x⃗∈Π(a⃗)

(
W (x⃗) ∧W (c⃗(x⃗)) ∧Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗))

)

CPM 2023



14:14 MUL-Tree Pruning for Consistency and Compatibility

where x⃗ = (x1, . . . , xk), c⃗(x⃗) = (c1(xi), . . . , ck(xk)) and

Q(⃗a, x⃗) =
∧
i ̸=j

(
xi = ai ∧ xj = ϵ → L(ai) ∩ L(aℓj) = ∅ ∨ L(ai) ∩ L(arj) = ∅

)
∧

∧
i ̸=j

(
xi = ai ∧ xj = aℓj ; → L(ai) ∩ L(arj) = ∅

)
∧

∧
i ̸=j

(
xi = ai ∧ xj = arj ; → L(ai) ∩ L(aℓj) = ∅

)
.

We may define a partial ordering ◁ on
∏k
i=1(V (Ti) ∪ {ϵ}) by taking

(a1, . . . , ak) ◁ (a′
1, . . . , a

′
k) ⇐⇒ ai = ϵ or ai ≺i a

′
i, for all i = 1, . . . , k

where ≺i is the successor relation in Ti, with the unique ◁-minimum element (ϵ, . . . , ϵ). An
example computation of the function W is described in Figure 12.

1

a a b
T1

2 = 1l
3 = 1r

4 5

6

a b
T2

7 8

Figure 12 Given the trees T1 and T2, W (1, 6) = true since W (2, 7) ∧W (3, 8) ← W (2, 7) ∧
W (4, ϵ)∧W (5, 8) = true. Note that W (1, 6) would also compute W (2, 8)∧W (3, 7), W (2, 6)∧W (3, ϵ),
W (2, ϵ) ∧W (3, 6), W (1, 7) ∧W (ϵ, 8), and W (1, 8) ∧W (ϵ, 7).

▶ Lemma 19. Let T1, T2, . . . , Tk be a collection of k binary MUL-trees such that
⋃
i X (Ti) =⋃

iD(Ti). Then W (a1, . . . , ak) = true if and only if there exists a single-labelled tree T

leaf-labelled by S(a1, . . . , ak) such that T ai
i displays T ↾X (Ti), under a mapping that maps

ri(T ) 7→ xi, for all i = 1, . . . , k.

Proof. We prove this by induction on k. For the base case, suppose that each of (a1, . . . ak) =
(ϵ, . . . , ϵ) is the ≺-minimum, so that T ai

i = T ϵi = T∅ is the empty tree, for i = 1, . . . , k. In
which case S(ϵ, . . . , ϵ) = ∅, and hence W (a1, . . . ak) = true by definition, while (trivially)
the empty tree T = T∅ is such that T ai

i = T∅ displays T∅↾X (Ti) = T∅. Next, suppose that the
result holds for all (u1, . . . , uk) ◁ (a1, . . . , ak) for some tuple (a1, . . . , ak). We claim that the
result holds too for (a1, . . . , ak).
(⇐) Suppose that T is as described. Then for each i = 1, . . . , k there is some subtree

Si ⊆ T ai and some label-preserving isomorphism fi : V (Si) → V (T ↾X (Ti)).
Let T ℓ and T r denote the left and right subtrees attached at r(T ). As T is a single-labelled
tree, it follows that L(T ℓ) ∩ L(T r) = ∅, as each label occurs exactly once.
We can partition each V (Si) into three parts Li = {v ∈ V (Si) : fi(v) ∈ T ℓ} and
Ri = {v ∈ V (Si) : fi(v) ∈ T r} and Ci = {v ∈ V (Si) : fi(v) = r(T )}. Note that, since fi
is an isomorphism, if u ∈ X and u <i v then v ∈ X, for X ∈ {Li, Ri}.
We have three cases depending on which of these three sets lies the root node ai of the
subtree T ai

i :
If ai ∈ Ci then it follows that either aℓi ∈ Li and ari ∈ Ri or ari ∈ Li and aℓi ∈ Ri.

If aℓi ∈ Li and ari ∈ Ri then T
aℓ

i
i displays T ℓ↾X (ai) and T

ar
i

i displays T r↾X (ai).
If ari ∈ Li and aℓi ∈ Ri then T

ar
i

i displays T ℓ↾X (ai) and T
aℓ

i
i displays T r↾X (ai).



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:15

In each case, there is some xi ∈ {aℓi , ari } such that T xi
i displays T ℓ↾X (ai) and T

ci(xi)
i

displays T ℓ↾X (ai).
If ai ∈ Li then it follows that Li = V (Si) and Ci = Ri = ∅. Hence we have that T ai

i

displays T ℓ↾X (ai), while T ϵi = T∅ (trivially) displays the empty tree T r↾X (ai) = T∅.
Symmetrically, if ai ∈ Ri then T ai

i displays T r↾X (ai) and T ϵi displays T ℓ↾X (ai).

In all cases there is some xi ∈ P (ai) such that T xi
i displays T ℓ↾X (ai) and T ci(xi)

i displays
T ℓ↾X (ai), for all i = 1, . . . , k. Since both (x1, . . . , xk), (c1(x1), . . . , ck(xk)) ◁ (a1, . . . , ak),
it follows from the induction hypothesis that W (x⃗) ∧W (c⃗(x⃗)) = true.
For all i ̸= j, if xi = ai and xj = ϵ then by definition ai ∈ Li ⊆ L(T ℓ) while aj ∈ Cj .
If aℓj ∈ Ri then L(ai) ∩ L(aℓj) = ∅, otherwise arj ∈ Ri and so L(ai) ∩ L(arj) = ∅, since
Ri ⊆ L(T r) and L(T ℓ) ∩ L(T r) = ∅. If xi = ai and xj = alj then ai ∈ Li ⊆ L(T l) while
aℓj ∈ Lj and arj ∈ Rj ⊆ L(T r). From which it follows that L(ai) ∩ L(arj) = ∅.
Similarly, if xi = ai and xj = arj then it follows L(ai) ∩ L(alj) = ∅. This is to say that
Q(⃗a, x⃗) = true, and by the same argument, so too that Q(⃗a, c⃗(x⃗)) = true.
Hence, by definition, W (a1, . . . , ak) = true, as required.

(⇒) Suppose that W (a1, . . . , ak) = true, then there are two possible cases:
(i) |S(ai, . . . , ak)| ≤ 1; (ii) there is some (x1, . . . , xk) ∈ Π(a1, . . . , ak) such that
W (x⃗) ∧W (c⃗(x⃗)) ∧Q(x⃗) = true:

(i) If S(a1, . . . , ak) = ∅ then we may take T ai
i to display T = T∅ as the empty tree for all

i = 1, . . . , k. Otherwise, if S(a1, . . . , ak) = {x} is a singleton then we may take T to
be the tree with a single leaf-labelled by x, where it is straightforward to check that
T ai
i can display T ↾X (ai) for all i = 1, . . . , k.

(ii) It follows from the induction hypothesis that there exist single-labelled trees Tx and
Ty, leaf-labelled by S(x1, . . . xk) and S(y1, . . . yk), respectively, such that T xi

i displays
Tx↾X (Ti) and T yi

i under a mapping that maps ri(Tx) 7→ xi, and displays Tyy↾X (Ti)
under a mapping that maps ri(Ty) 7→ yi, for all i = 1, . . . , k, where yi = c(xi). If
L(Tx) ∩ L(Ty) = ∅ then we construct a new tree T by connecting the roots r(Tx) and
r(Ty) of Tx and Ty to a common (new) root node r.
Otherwise since Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗)) = true, it follows that either L(Tx) ∩ L(T ry ) = ∅
or L(Tx) ∩ L(T ℓy ) = ∅. In the first case we can construct a new tree T by merging Tx
with the left sub-tree of Ty, while in the latter case we can construct T by merging Tx
with the left sub-tree of Ty.
In all cases, we have that T is a single-labelled tree, as required, as it remains to show
that T ai

i displays T ↾X (Ti), for each i = 1, . . . , k:
If xi = ari then T ai

i displays T ↾X (Ti), mapping r(T x) 7→ ari , r(T y) 7→ aℓi , and r 7→ ai.
If xi = aℓi then T ai

i displays T ↾X (Ti), mapping r(T x) 7→ aℓi , r(T y) 7→ ari , and r 7→ ai.
If xi = ai then T ai

i displays T ↾X (Ti) under the mapping that maps r(T x) 7→ ai.
If xi = ϵ then T ai

i displays T ↾X (Ti) under the mapping that maps r(T y) 7→ ai.

Hence, it follows from induction that W (a1, . . . , ak) = true if and only if there is some
tree T leaf-labelled by S(a1, . . . , ak) such that T ai

i displays T ↾X (Ti) under a mapping that
maps ri(T ) 7→ xi, for each i = 1, . . . , k, as required. ◀

Lemma 19 provides us with a criterion for deciding the MULSETPC problem for a given
collection of binary MUL-trees, that can be computed in polynomial-time in the size of the
trees, for any fixed number of trees, and scales exponentially with the number of trees.

CPM 2023



14:16 MUL-Tree Pruning for Consistency and Compatibility

▶ Theorem 20. Let T1, T2, . . . , Tk be a collection of k binary MUL-trees such that
⋃
i X (Ti) =⋃

iD(Ti). Then MULSETPC for this instance can be solved in O(k2 · 4k
∏k
i=1(|Ti| + 1)) =

O(4k
∏k
i=1 |Ti|) time.

Proof. Based on Lemma 19, it is sufficient to compute W (r(T1), . . . , r(Tk)), since T r(Ti)
i = Ti,

by definition. We can compute W via dynamic programming as outlined in Algorithm 1,
which will return true if T1, . . . , Tk display a single labelled tree.

Algorithm 1 Recursive dynamic programming algorithm for W (a1, . . . , ak).

1: let S = S(a1, . . . , ak)
2: if |S| ≤ 1 then return true
3: else if S ∩ X (Ti) ̸⊆ X (T ai

i ) for some i = 1, . . . , k then return false
4: else
5: for (x1, . . . , xk) ∈ Π(a1, . . . , ak) do
6: if W (x⃗) ∧W (c⃗(x⃗)) ∧Q(⃗a, x⃗) ∧Q(⃗a, c⃗(x⃗)) then return true

7: return false

For the time complexity, we can use memoization to store the values of W in a table with
at most O(

∏k
i=1 |V (Ti) ∪ {ϵ}|) = O(

∏k
i=1(|Ti| + 1)) entries. Furthermore, we require at most

O(k2 · 4k) time to compute the value of each entry W (a1, . . . , ak), since |Π(a1, . . . , ak)| =
|P (ai)| × · · · × |P (ak)| ≤ 4k, while Q(⃗a, x⃗) and Q(⃗a, c⃗(x⃗)) can each be computed in quadratic
time. Hence, the running time is O(k2 · 4k

∏k
i=1(|Ti| + 1)) = O(4k

∏k
i=1 |Ti|), as required. ◀

6 Conclusions

The above results resolve an open problem posed in [15, 16] as to whether the MULSETPC
problem remains NP-complete when the number of MUL-trees is constant. According to
Theorems 9 and 10, two MUL-trees are sufficient for NP-completeness, even with each label
appearing at most twice in any tree and either the height or the degree constant. Theorems 11
and 12 extend this result and show that the more general MULSETPComp problem also
remains NP-complete even when the number of MUL-trees is constant. Theorem 9 is tight
in the sense that, if we restrict our attention to MUL-trees in which each label appears
uniquely in at least one tree, we obtain a polynomial-upper bound for a fixed number of
trees (Theorem 20). However, Theorem 12 suggests the algorithm presented in Theorem 20
for MULSETPC cannot be directly generalised to solve equivalent MULSETPComp instances
in polynomial time, unless P = NP .

The above results also suggest two new open problems. Firstly, is it possible to improve
Theorem 11 to show that MULSETPComp is still NP-complete when restricted to MUL-trees
with multiplicity 2? Secondly, what can be said about the complexity of MULSETPC and
MULSETPComp for instances in which the multiplicity is not restricted but the number of
leaf labels that may appear more than once is restricted? That is, for each MUL-tree, k leaf
labels may appear an unbounded number of times in the tree, whereas all other labels appear
at most once. For which values of k are these subproblems NP-complete? This question is
interesting because of its connection to the instances investigated in Section 5.

References
1 Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman. Inferring

a tree from lowest common ancestors with an application to the optimization of relational
expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

2 Amihood Amir and Dmitry Keselman. Maximum Agreement Subtree in a Set of Evolutionary
Trees: Metrics and Efficient Algorithms. SIAM Journal on Computing, 26(6):1656–1669, 1997.



C. Hampson, D. J. Harvey, C. S. Iliopoulos, J. Jansson, Z. Lim, and W.-K. Sung 14:17

3 Mukul S Bansal. Linear-time algorithms for some phylogenetic tree completion problems under
Robinson-Foulds distance. In RECOMB International conference on Comparative Genomics,
pages 209–226. Springer, 2018.

4 Mukul S Bansal, J Gordon Burleigh, Oliver Eulenstein, and David Fernández-Baca. Robinson-
Foulds supertrees. Algorithms for molecular biology, 5(1):1–12, 2010.

5 Magnus Bordewich and Charles Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Annals of combinatorics, 8(4):409–423, 2005.

6 David Bryant. A classification of consensus methods for phylogenetics. In M. F. Janowitz, F.-J.
Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts, editors, Bioconsensus, volume 61 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 163–184.
American Mathematical Society, 2003.

7 Richard Cole, Martin Farach-Colton, Ramesh Hariharan, Teresa Przytycka, and Mikkel Thorup.
An O(n logn) Algorithm for the Maximum Agreement Subtree Problem for Binary Trees.
SIAM Journal on Computing, 30(5):1385–1404, 2000.

8 Yun Cui, Jesper Jansson, and Wing-Kin Sung. Polynomial-time Algorithms for Building a
Consensus MUL-Tree. Journal of Computational Biology, 19(9):1073–1088, 2012.

9 Yun Deng and David Fernández-Baca. Fast compatibility testing for rooted phylogenetic trees.
Algorithmica, 80(8):2453–2477, 2018.

10 Zhihong Ding, Vladimir Filkov, and Dan Gusfield. A linear-time algorithm for the perfect
phylogeny haplotyping (PPH) problem. Journal of Computational Biology, 13(2):522–553,
2006.

11 Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts,
2004.

12 CR Finden and AD Gordon. Obtaining common pruned trees. Journal of Classification,
2(1):255–276, 1985.

13 Ganeshkumar Ganapathy, Barbara Goodson, Robert Jansen, Hai-son Le, Vijaya
Ramachandran, and Tandy Warnow. Pattern identification in biogeography. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 3(4):334–346, 2006.

14 Michael R Garey and David S Johnson. Computers and intractability. A Series of Books in
the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to
the theory of NP-completeness.

15 Mathieu Gascon, Riccardo Dondi, and Nadia El-Mabrouk. Complexity and Algorithms for
MUL-Tree Pruning. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms,
pages 324–339, Cham, 2021. Springer International Publishing.

16 Mathieu Gascon, Riccardo Dondi, and Nadia El-Mabrouk. MUL-tree pruning for consistency
and optimal reconciliation - complexity and algorithms. Theoret. Comput. Sci., 937:22–38,
2022.

17 Katharina T Huber and Vincent Moulton. Phylogenetic networks from multi-labelled trees.
Journal of Mathematical Biology, 52(5):613–632, 2006.

18 Katharina T Huber, Vincent Moulton, Mike Steel, and Taoyang Wu. Folding and unfolding
phylogenetic trees and networks. Journal of Mathematical Biology, 73(6):1761–1780, 2016.

19 Katharina T Huber, Bengt Oxelman, Martin Lott, and Vincent Moulton. Reconstructing the
evolutionary history of polyploids from multilabeled trees. Molecular Biology and Evolution,
23(9):1784–1791, 2006.

20 Leo van Iersel, Steven Kelk, Nela Lekić, and Celine Scornavacca. A practical approximation
algorithm for solving massive instances of hybridization number for binary and nonbinary
trees. BMC bioinformatics, 15(1):1–12, 2014.

21 Jesper Jansson, Chuanqi Shen, and Wing-Kin Sung. Improved algorithms for constructing
consensus trees. Journal of the ACM, 63(3), 2016. Article 28.

22 Manuel Lafond, Nadia El-Mabrouk, Katharina T Huber, and Vincent Moulton. The complexity
of comparing multiply-labelled trees by extending phylogenetic-tree metrics. Theoretical
Computer Science, 760:15–34, 2019.

CPM 2023



14:18 MUL-Tree Pruning for Consistency and Compatibility

23 Martin Lott, Andreas Spillner, Katharina T Huber, Anna Petri, Bengt Oxelman, and Vincent
Moulton. Inferring polyploid phylogenies from multiply-labeled gene trees. BMC Evolutionary
Biology, 9(1):1–11, 2009.

24 Nobuhiro Minaka. Cladograms and reticulated graphs: A proposal for graphic representation
of cladistic structures. Bulletin of the Biogeographical Society of Japan, 45(1):1–10, 1990.

25 Gordon L Nelson and Norman I Platnick. Systematics and Biogeography: Cladistics and
Vicariance. Columbia University Press, 1981.

26 Roderic D M Page. Parasites, phylogeny and cospeciation. International Journal for Parasito-
logy, 23(4):499–506, 1993.

27 Roderic D M Page. Maps between trees and cladistic analysis of historical associations among
genes, organisms, and areas. Systematic Biology, 43(1):58–77, 1994.

28 Itsik Pe’er, Tal Pupko, Ron Shamir, and Roded Sharan. Incomplete directed perfect phylogeny.
SIAM J. Comput., 33(3):590–607, 2004.

29 David F Robinson and Leslie R Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1-2):131–147, 1981.

30 Celine Scornavacca, Vincent Berry, and Vincent Ranwez. Building species trees from larger
parts of phylogenomic databases. Information and Computation, 209(3):590–605, 2011.

31 Mike Steel. The complexity of reconstructing trees from qualitative characters and subtrees.
J. Classification, 9(1):91–116, 1992.

32 Mike Steel and Tandy Warnow. Kaikoura tree theorems: Computing the maximum agreement
subtree. Information Processing Letters, 48:77–82, 1993.

33 Christopher Whidden, Norbert Zeh, and Robert G Beiko. Supertrees Based on the Subtree
Prune-and-Regraft Distance. Systematic biology, 63(4):566–581, 2014.

34 Yufeng Wu. A practical method for exact computation of subtree prune and regraft distance.
Bioinformatics, 25(2):190–196, 2009.


	1 Introduction
	2 Preliminaries
	3 NP-completeness for MULSETPC instances with two MUL-trees and multiplicity 2
	4 NP-completeness for MULSETPComp
	5 An algorithm for MULSETPC instances with Lg binary MUL-trees where every label is unique in at least one tree
	6 Conclusions

