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Abstract

Given a string S over an alphabet Σ, the string indexing problem is to preprocess S to subsequently
support efficient pattern matching queries, that is, given a pattern string P report all the occurrences
of P in S. In this paper we study the streaming sliding window string indexing problem. Here
the string S arrives as a stream, one character at a time, and the goal is to maintain an index
of the last w characters, called the window, for a specified parameter w. At any point in time a
pattern matching query for a pattern P may arrive, also streamed one character at a time, and all
occurrences of P within the current window must be returned. The streaming sliding window string
indexing problem naturally captures scenarios where we want to index the most recent data (i.e.
the window) of a stream while supporting efficient pattern matching.

Our main result is a simple O(w) space data structure that uses O(log w) time with high
probability to process each character from both the input string S and any pattern string P .
Reporting each occurrence of P uses additional constant time per reported occurrence. Compared
to previous work in similar scenarios this result is the first to achieve an efficient worst-case time per
character from the input stream with high probability. We also consider a delayed variant of the
problem, where a query may be answered at any point within the next δ characters that arrive from
either stream. We present an O(w + δ) space data structure for this problem that improves the
above time bounds to O(log(w/δ)). In particular, for a delay of δ = ϵw we obtain an O(w) space
data structure with constant time processing per character. The key idea to achieve our result is a
novel and simple hierarchical structure of suffix trees of independent interest, inspired by the classic
log-structured merge trees.
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4:2 Sliding Window String Indexing in Streams

1 Introduction

The string indexing problem is to preprocess a string S into a compact data structure that
supports efficient subsequent pattern matching queries, that is, given a pattern string P ,
report all occurrences of P within S. In this paper, we introduce a basic variant of string
indexing called the streaming sliding window string indexing (SSWSI) problem. Here, the
string S arrives as a stream one character at a time, and the goal is to maintain an index of a
window of the last w characters, for a specified parameter w. At any point in time a pattern
matching query for a pattern P may arrive, also streamed one character at a time, and we
need to report the occurrences of P within the current window. The goal is to compactly
maintain the index while processing the characters arriving in either stream efficiently. We
consider two variants of the problem: a timely variant where each query must be answered
immediately, and a delayed variant where it may be answered at any point within the next
δ characters arriving from either stream, for a specified parameter δ. See Section 1.1 for
precise definitions.

The SSWSI problem naturally captures scenarios where we want to index the most recent
data (i.e. the window) of a stream while supporting efficient pattern matching. For instance,
monitoring a high-rate data stream system where we cannot feasibly index the entire stream
but still want to support efficient queries. Depending on the specific system we may require
immediate answers to queries, or we may be able to afford a delay that allows for more
efficient queries and updates.

The SSWSI problem has not been explicitly studied before in our precise formulation,
but for the timely variant several closely related problem are well-studied. In particular, the
sliding window suffix tree problem [8,13,24,25,28] is to maintain the suffix tree of the current
window (i.e., the compact trie of the suffixes of the window) as each character arrives. With
appropriate augmentation the suffix tree can be used to process pattern matching queries
efficiently, leading to a solution to the timely SSWSI problem. For constant-sized alphabets,
the best of these solutions [8] maintains the sliding window suffix tree in constant amortized
time per character while supporting efficient pattern matching queries. The worst-case time
for updates is Ω(w). The other solutions achieve similar amortized time bounds. This
amortization cannot be avoided since explicitly maintaining the suffix tree after the arrival
of a new character may incur Ω(w) changes.

Another closely related problem is the online string indexing problem [3,4,5,7,14,21,22,23].
Here the goal is to process S one character at a time (in either left-to-right or right-to-
left order), while incrementally building an index of the string read so far. The best of
these solutions update the index in either constant time per character for constant-sized
alphabets [23] or O(log log n + log log |Σ|) time for any alphabet where each character fits
in a constant number of machine words [21]. These solutions all heavily rely on processing
the string in right-to-left order to avoid the inherent linear time suffix tree updates due
to appending, as mentioned above. Therefore they cannot be applied in our left-to-right
streaming setting. Alternatively, we can instead apply these solutions on the reverse of the
string S, but then each pattern must be processed in reverse order, which also cannot be
done in our setting. Also, note that these solutions index the entire string read so far. It is
not clear if they can be adapted to efficiently index a sliding window.

Another line of work shows how to maintain a fully dynamic suffix array under insertions
and deletions [1, 2, 19, 27]. These can also be used to solve SSWSI but are more general and
lead to polylogarithmically slower bounds than our results while being more complicated.



P. Bille, J. Fischer, I. L. Gørtz, M. R. Pedersen, and T. J. Stordalen 4:3

Our main result is an efficient and simple solution to the SSWSI problem in both the
timely and delayed variant. Let w denote the size of the window. For the timely variant, we
present a string index that uses O(w) space and processes a character from the stream S

in O(log w) time. Each pattern matching query P is also supported in O(log w) time per
character with additional O(occ) time incurred after receiving the last character of P , where
occ is the number of occurrences of P in the current window. The index is randomized
and both time bounds hold with high probability. Compared to previous suffix tree based
approaches for indexing a sliding window, we improve the worst-case time bounds per
character in the stream from Ω(w) to O(log w) with high probability. This is particularly
important in the above mentioned applications, such as high-rate data stream systems. Our
solution generalizes to the delayed variant of the problem. If we allow a delay of δ before
answering each query we achieve O(w + δ) space while improving the above time bounds to
O(log(w/δ)). In particular, if we allow a delay of δ = ϵw for any constant ϵ > 0, we achieve
linear space and optimal constant time (reporting the occurrences still takes O(occ) time,
and we do not count the reporting time towards the delay). Note that δ ≤ w is sufficient
delay for optimal time bounds and we can assume O(w + δ) = O(w). The results hold on
a word RAM and for any alphabet size, assuming that each character fits into a constant
number of machine words.

The key idea to achieve our result is a novel and simple hierarchical structure of suffix
trees inspired by log-structured merge trees [26]. Instead of maintaining a single suffix tree on
the window we maintain a collection of suffix trees of exponentially increasing sizes that cover
the current window. We show how to efficiently maintain the structure as new characters
from the stream arrive by incrementally “merging” suffix trees, while supporting efficient
pattern matching queries within the window.

Our solution uses randomization to construct suffix trees in linear time with high probabil-
ity. Plugging in a deterministic construction algorithm such as the one by Ukkonen [30], we
obtain a solution using O(log w log |Σ|) time for both queries and updates. With more recent
deterministic suffix tree solutions [6, 10,14] we can improve this to obtain O(log w log log n)
time per character for both queries and updates. Note that the O(log log |Σ|) in the time
bounds of [14] has been replaced by O(log log n) here due to an additional sorting step
using [17].

1.1 Setup and Results
We formally define the problem as follows. Let S be a stream over any alphabet Σ where each
character fits in a constant number of machine words. For given integer parameters w ≥ 1
and δ ≥ 0, the δ-delayed streaming sliding window string indexing ((w, δ)-SSWSI) problem
is to maintain a data structure that, after receiving the first i characters of S, supports

Report(P ): report all the occurrences of P in S[i − w + 1, i] before an additional δ

characters have arrived from either stream.
Update(): process the next character in the stream S.

In the Report(P ) query the pattern string P is also streamed. When P is streamed it
interrupts the stream S, arrives one character at a time, and all characters of P arrive before
the streaming of S resumes. Furthermore, we do not assume that we know the length of P

before the arrival of its last character. Although P is streamed we assume random access to
its characters after they arrive, as any pattern that fits in the window is at most w characters
long and we can afford to store it. The delay is counted from after the last character of P

arrives. Characters from S and from new patterns count towards the delay, while reported
occurrences do not (otherwise it would be impossible to answer the query in time if there are
more than δ occurrences).

CPM 2023



4:4 Sliding Window String Indexing in Streams

We define the timely streaming sliding window string indexing (w-SSWSI) problem to
be (w, 0)-SSWSI, that is, queries must be answered immediately as the last character of the
pattern arrives.

We show the following general main result.

▶ Theorem 1. Let S be a stream and let w ≥ 1 and δ ≥ 0 be integers. We can solve the
(w, δ)-SSWSI problem on S with an O(w + δ) space data structure that supports Update and
Report in O(log w

δ+1 ) time per character with high probability. Furthermore, Report uses
additional worst-case constant time per reported occurrence.

Here, with high probability means with probability at least 1 − 1
wd for any constant d.

Theorem 1 provides a trade-off in the delay parameter δ. In particular, plugging in δ = 0
in Theorem 1 we obtain a solution to the timely SSWSI problem that uses O(w) space and
O(log w) time per character for both Update and Report. Compared to the previous work on
sliding window stream indexing [8, 13,18,24,25,28,29] this improves the worst-case bounds
on the Update operation from Ω(w) to O(log w) with high probability and also removes the
restriction on the alphabet. At the other extreme, plugging in δ = ϵw for constant ϵ > 0
in Theorem 1 we obtain a solution to the delayed SSWSI problem that uses O(w) space
and optimal constant time per character with high probability. All our results hold on a
word RAM where each machine word has at least log w bits, and where each character of the
alphabet fits into a constant number of machine words.

1.2 Techniques
We obtain our result for the timely variant, but without high probability guarantees, as
follows. At all times we maintain at most log w suffix trees that do not overlap and together
cover the window. The trees are organized by the log-structured merge technique [26], where
the rightmost tree is the smallest and their sizes increase exponentially towards the left.
For each new character that arrives we append its suffix tree to the right side of our data
structure. Whenever there are two trees of the same size next to each other we “merge” them
by constructing a new suffix tree covering them both. Each character from S is involved
in at most log w merges and each merge takes expected linear time, so we spend expected
amortized O(log w) time per character in S. We deamortize the updates by temporarily
keeping both trees while merging them in the background. Note that for each adjacent pair
of suffix trees we also store a suffix tree approximately covering them both, referred to as
boundary trees (see details below).

We find the occurrences of a pattern P in the window by querying each of these trees,
which takes O(log w) time per character in P . For adjacent pairs of trees larger than |P | we
find the occurrences of P crossing from one into the other using the boundary trees. The
remaining trees cover a suffix of the window of length O(|P |), and we grow a suffix tree to
answer queries in this suffix at query time. Our data structure has some “overhang” on the
left side of the window, and we use range maximum queries to report only the occurrences
that start inside the window.

This solution is generalized to incorporate a delay of δ as follows. We store the O(log(w/δ))
largest trees from the timely solution and leave a suffix of size Θ(δ) of the window uncovered
by suffix trees. We answer queries as follows. If |P | > δ/4 we say that P is long, and
otherwise it is short. For long patterns we do as in the timely case; the suffix tree we grow
at query time now must also contain the uncovered suffix, but it still has size O(|P |) since
the uncovered part of the window has length O(δ) = O(|P |). We show how to do this in
O(log(w/δ)) time per character in P . For short patterns we utilize that they are smaller
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than the delay to temporarily buffer the queries and later batch process them. We buffer up
to O(δ log(w/δ)) work and deamortize it over Θ(δ) characters, obtaining the same bound as
for long patterns. Updates run in the same bound since each character from S is involved in
at most O(log(w/δ)) merges before it leaves the window.

Finally, we improve the time bounds by proving that for any substring S′ of our window,
we can construct the suffix tree over S′ in O(|S′|) time with probability 1 − w−d for any
constant d > 1. We do so by reducing the alphabet Σ′ = {c ∈ S′} of S′ to rank-space
{1, 2, . . . , |Σ′|} from which the algorithm by Farach-Colton et al. [12] can construct the
suffix tree in worst-case linear time. For large strings (|S′| > w1/5) we pick a hash function
from Σ → [0, wc] that with high probability is injective on S′, and then we use radix sort
to reduce to rank-space in linear time. For small strings (|S′| ≤ w1/5) we pick a hash
function from Σ → [0, w/ log w] that is injective with (almost) high probability, and use this
to manually construct a mapping into rank space in O(S′) time. This mapping algorithm
uses additional O(w/ log w) space, but we construct at most O(log w) suffix trees at any time
so the total space is linear.

1.3 Outline
In Section 2 we cover the preliminaries, including some useful facts about suffix trees. In
Section 3 we give a solution to the timely SSWSI problem that supports each operation in
expected logarithmic time per character. In Section 4 we show how to generalize this to
incorporate delay, and in Section 5 we show how to get good probability guarantees, proving
Theorem 1.

2 Preliminaries

Given a string X of length n over an alphabet Σ, the ith character is denoted X[i] and the
substring starting at X[i] and ending at X[j] is denoted X[i, j]. The substrings of the form
X[i, n] are the suffixes of X.

A segment of X is an interval [i, j] = {i, i+1, . . . , j} for 1 ≤ i ≤ j ≤ n. We will sometimes
refer to segments as strings, i.e., the segment [i, j] refers to the string X[i, j]. The definition
differs from “substring” by being specific about position; even if X[1, 2] = X[3, 4] we have
[1, 2] ̸= [3, 4]. A segmentation of X is a decomposition of X into disjoint segments that cover
it. For instance, x1 = [1, i] and x2 = [i + 1, n] is a segmentation of X into two parts. The
two segments x1 and x2 are adjacent since x2 starts immediately after x1 ends, and for a
pair of adjacent segments we define the boundary (x1, x2) to be the implicit position between
i and i + 1.

The suffix tree [31] T over X is the compact trie of all suffixes of X$, where $ ̸∈ Σ is
lexicographically smaller than any letter in the alphabet. Each leaf corresponds to a suffix
of X, and the leaves are ordered from left to right in lexicographically increasing order.
The suffix tree uses O(n) space by implicitly representing the string associated with each
edge using two indices into X. Farach-Colton et al. [12] show that the optimal construction
time for T is sort(n, |Σ|), i.e., the time it takes to sort n elements from the universe Σ. For
alphabets of the form Σ = {0, . . . , nc} for constant c ≥ 1 this implies that T can be built in
worst-case O(n) time using radix sort. For larger alphabets we can reduce to the polynomial
case in expected linear time using hashing, building T in expected linear time (see Section 5
for details).

The suffix array L of X is the array where L[i] is the starting position of the ith
lexicographically smallest suffix of X. Note that L[i] corresponds to the ith leaf of T in
left-to-right order. Furthermore, let v be an internal node in T and let sv be the string
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4:6 Sliding Window String Indexing in Streams

spelled out by the root-to-v path. The descendant leaves of v exactly correspond to the
suffixes of X that start with sv, and these leaves correspond to a consecutive range [α, β]v
in L.

We augment the suffix tree to support efficient pattern matching queries as follows. First,
we use the well-known FKS perfect hashing scheme [15] to store the edges of the suffix tree,
so we can for any node determine if there is an outgoing edge matching a character a ∈ Σ in
worst-case constant time. Note that this construction takes expected linear time. Furthermore,
we also build a range maximum query data structure over L. This data structure supports
range maximum queries, i.e., given a range [α, β] return the j ∈ [α, β] maximizing L[j]. It
also supports range minimum queries, defined analogously. The data structure can be built in
linear time and supports queries in constant time [16]. Finally, we preprocess the suffix tree
in linear time such that each internal node v stores the range [α, β]v into L corresponding to
the occurrences of sv.

We can use this structure to efficiently find all the occurrences of P in O(|P | + occ)
time, where occ is the number of occurrences, or the leftmost and rightmost occurrence
of P in O(|P |) time. The locus of a string P is the minimum depth node v such that P is
a prefix of sv. First we find the locus by walking downwards in the suffix tree, matching
each character in P in worst-case constant time using the dictionary. Once we have found
v we can report all the occurrences in [α, β]v in O(occ) time. Alternatively, we can find
the rightmost occurrence of P in constant time by doing a range maximum query on the
range [α, β]v in L, which returns the j ∈ [α, β]v maximizing the string position L[j]. We can
also find the leftmost occurrence by doing a range minimum query.

Finally, note that it is possible to deamortize algorithms with expected running time using
the standard technique of distributing the work evenly. Specifically, if an algorithm runs in
expected λn time we can do λ work for n − 1 steps; by linearity of expectation only expected
λ work remains for the last step.

3 The Timely SSWSI Problem

Here we present a solution for the timely variant that matches the bounds in Theorem 1 in
expectation. Section 5 shows how to get the bounds with high probability. Throughout this
section we assume without loss of generality that w is a power of two. Section 3.3 briefly
mentions how to generalize to arbitrary w.

The main idea is as follows. We maintain a suffix of S of length at least w. This suffix is
segmented into at most log w segments whose sizes are distinct powers of two, in increasing
order from right to left. The length of the suffix we store is at most 20 + . . . + 2log w = 2w − 1.
When a new character arrives, we append a new size-one segment to our data structure and
merge equally-sized segments until they all have distinct sizes again. We also discard the
largest segment when it no longer intersects the window. For each segment we store a suffix
tree, and for every pair of adjacent segments we store a boundary tree approximately covering
them both (see below). To support queries we query the suffix tree for each individual
segment, and also each boundary tree. For the segments larger than the pattern, the boundary
trees are sufficient to find the occurrences crossing the respective boundary. The remaining
trees cover a suffix of S that is O(|P |) long, and we grow a suffix tree at query time to find
the remaining occurrences in this suffix.
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Figure 1 Example of updating the data structure with a window size of w = 8. Here we illustrate
the segments by the suffix trees built over them. Characters outside of the window are gray. As the
character s arrives we construct a new suffix tree of size one, which is then immediately merged
with the existing size-one suffix tree over e into a size-two suffix tree over es, which is then merged
to into the final size-four suffix tree over rees. After receiving a we again have a size-one suffix tree.
Note that after three more updates the suffix tree of size eight will no longer overlap the window
and will be discarded.

3.1 Data Structure
At any point, the data structure contains a suffix s of S of length w ≤ |s| ≤ 2w − 1 and
a segmentation of s into at most log w segments. Specifically, if |s| = 2b1 + . . . + 2bk for
integers b1 < . . . < bk then we have the segmentation s1, . . . , sk where |si| = 2bi , and s is the
concatenation of the strings sk, sk−1, . . . , s1, in that order. The set {b1, . . . , bk} is unique
and corresponds to the 1-bits in the binary encoding of |s|. Three different configurations
can be seen in Figure 1.

For each segment si we store the suffix tree Ti over si, along with a range maximum query
data structure over the suffix array of si. For each boundary (si+1, si) we store the boundary
tree Bi, which is the suffix tree over the substring centered at the boundary and extending |si|
characters in both directions. We augment Bi with an additional data structure that we will
use for reporting occurrences across the boundary. Let BLi be the suffix array corresponding
to Bi. We define the modified suffix array BL′

i as

BL′
i[j] =

{
BLi[j] if BLi[j] corresponds to a suffix starting in si+1

−∞ if BLi[j] corresponds to a suffix starting in in si

We store a range maximum query data structure over BL′
i. Each of the data structures use

O(si) space, so the whole data structures uses O(s) = O(w) space.
We note a few properties of the data structure. Let S[n] be the most recent character

to arrive and let Wn = S[n − w + 1, n] be the current window. Then Wn is a suffix of s

since |s| ≥ w. The largest, and leftmost, segment sk always has size 2log w = w; it is not larger
since log w bits are sufficient to represent |s| ≤ 2w − 1, and it is always there since |s| ≥ w

cannot be represented with log w − 1 bits. For the same reason, sk always intersects at least
partially with Wn, and each of s1, . . . , sk−1 are fully contained in Wn.

3.2 Queries
The idea is as follows, as exemplified in Figure 2. Any occurrence of a pattern P that is
fully contained in a segment is found using the suffix tree over that segment. Similarly,
any occurrence that only crosses a single boundary far enough away from the end of the
window is found in the respective boundary tree. Note that in the leftmost segment we must
be careful to not report any occurrences that start before the left window boundary. The
remaining occurrences are not contained in any of the trees in the data structure (either
because they cross multiple boundaries or because they cross a single boundary (si+1, si)
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4:8 Sliding Window String Indexing in Streams

T

a b c d

O(m)

Figure 2 Illustration of how we answer queries for a pattern P of length m. The lines denoted
a, b, c, and d indicate occurrences of P . The segmentation is illustrated by the trees over the
segments. The leftmost window boundary is marked with a vertical dashed line. Note that the
leftmost segment intersects only partially with the window. The tree T marks the smallest segment
of size at least m. The segments to the right of T are all smaller than m, so they cover at most
m + m/2 + . . . + 1 = O(m) characters. To answer the query we match P in the tree over each
segment and in each boundary tree, and we also build a suffix tree over the segments smaller than m

at query time. We find b because the respective boundary tree is sufficiently large. We find c because
it is fully contained in a segment. We find d in the suffix tree that we build at query time. Note
that a is not contained in the window; we avoid reporting it by recursively using range maximum
queries to find the rightmost occurrence of P in the leftmost segment.

but start more than |si| characters to the left of the boundary). However, these occurrences
are all located within a substring of size O(m) ending at position S[n], so we build, at query
time, a suffix tree to find these occurrences.

Let P be the length-m pattern being queried, S[n] be the most recent character to arrive,
and let Wn, the suffix s, the segmentation s1, . . . , sk, and the indices b1 < . . . < bk be defined
as above. As mentioned, any occurrence of P in Wn must either be fully contained within
one of the segments, or it must cross the boundary between two adjacent segments. We will
show how to handle each of these cases separately.

Fully Contained in a Segment

Fix a specific segment si. As each character of P arrives we match it in Ti. When the
last character arrives we have a (possibly empty) range [α, β] into the suffix array of si

corresponding to the occurrences of P . If si is not the leftmost segment then it is fully
contained in Wn and we report all the occurrences. Otherwise, si = sk is the leftmost
segment, which might overlap only partially with Wn, and it may contain occurrences of P

that are not contained in the window. However, note that the intersection between Wn and
sk is a suffix of sk. Therefore, if an occurrence of P in sk starts inside Wn it also ends inside
Wn. We find all such occurrences as follows. Let Lk be the suffix array of sk. As described
in Section 2 we find the index j of the rightmost occurrence of P by doing a range maximum
query on the range [α, β] in Lk. If Lk[j] is not inside Wn then none of the occurrences are,
and we are done. Otherwise we recurse on [α, j − 1] and [β, j − 1]. Matching P in the trees of
all the segments takes O(log w) overall time per character of P . Reporting each occurrence
takes constant time since range maximum queries run in constant time.

Crossing a Boundary

We now show how to report the occurrences of P that span a boundary. The main idea
is as follows, as illustrated in Figure 3. Let si be the smallest segment where |si| ≥ m.
Consider any boundary (sj+1, sj) to the left of si, i.e., where j ≥ i. Since both of these
segments have size at least |si| ≥ m, the boundary tree Bj extends at least m characters
in both directions from the boundary. Therefore, all the occurrences of P crossing the
boundary are contained in Bj , and none of them can cross another boundary as well. Now
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consider the suffix R of s containing the m − 1 last characters of si and extending to the
end of s. This substring contains all the other boundary-crossing occurrences. Furthermore,
all the occurrences in R cross at least one boundary since the longest consecutive part of
a single segment in R is the m − 1 characters in si. Note that the length of R is at most
m − 1 + |si−1| + |si−1|/2 + . . . + 1 < m − 1 + 2|si−1| < 3m since |si−1| < m. Thus, the
number of boundary-crossing occurrences of P equals the number of occurrences in R plus
the number of occurrences crossing the boundaries (sk, sk−1), (sk−1, sk−2), . . . (si+1, si).

The algorithm for finding the occurrences in the sufficiently large boundary trees is as
follows. Fix a boundary (sx+1, sx). We match each character of P in Bx as it arrives. When
the last character arrives we know if |sx| ≥ m, and also the range [α, β] corresponding to the
occurrences of P in the boundary tree. If |sx| ≥ m (hence x ≥ i) we report the occurrences
as follows. As above we do a range maximum query to find the j maximizing BL′

x[j]. If
BL′

x[j] = −∞ then all occurrences of P start in sx, and there are no occurrences crossing
the boundary. Otherwise, BL′

x[j] corresponds to the starting position of the rightmost
occurrence of P in sx+1. Since all of P has arrived and we now know m, we know that this
occurrence crosses the boundary if and only if BL′

x[j] ≥ |sx| − m + 2 (recall that Bx extends
|sx| characters in both directions from the boundary). If it does not cross the boundary, then
none of the other occurrences do either. Otherwise we report BL′

x[j] and recurse on [α, j − 1]
and [j + 1, β] to find the remaining occurrences. Matching P in all boundary trees takes
O(log w) overall time per character, and reporting each occurrence with range maximum
queries takes constant time.

We now show how to find the occurrences of P in R with the same bounds. Assume
that we know that 2ℓ ≤ m < 2ℓ+1 for some integer ℓ. We build the suffix tree over the last
3 · 2ℓ+1 characters of s, deamortized over receiving the first 2ℓ−1 characters of P . Over the
next 2ℓ−1 characters we match P in the tree, at a rate of two characters per new character
from P . Then, when the 2ℓth character arrives, we have caught up to the stream P , and we
match the remaining m − 2ℓ characters as they arrive. When the last character arrives we
have matched P in a tree of size at least 3m, and we can start reporting occurrences. Note
that we are overestimating the size of the tree, and it potentially includes some occurrences
of P that are contained in si. To avoid reporting these, we also build a range maximum
query data structure over the suffix array such that we can use recursive range maximum
queries. When deamortized, we construct the tree in expected constant time per character
of P . Matching P also takes constant time per character. We know that m ≤ w, so we run
this algorithm simultaneously for each of the log w different choices for ℓ, using expected
O(log w) time per character in P . Note that the trees use O(w) space in total since the sum
of the space is a geometric sum where the largest term is O(w).

3.3 Amortized Updates
We show how to support updates in amortized O(log w) time. Let S[n] be the last character
to arrive and as in the description of the data structure let b1 < b2 < . . . < bk be the
positions of the 1-indices in the binary encoding of |s|. When the new character c = S[n + 1]
arrives, we update s and the segmentation s1 . . . sk to create the new suffix s′ with the new
segmentation s′

1, . . . s′
k′ . See Figure 1 for an example.

If |s| < 2w − 1 then we set s′ = sc. The segmentation of s′ corresponds to the unique
binary encoding of |s′| = |s| + 1, so we update the segmentation analogously to a “binary
increment”. One way to do so is as follows. We create a new segment of size one over c.
If there was not already a segment of size one, then we add the new segment and we are
done. Otherwise we merge (see below) the two size-one segments to create a segment of size
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4:10 Sliding Window String Indexing in Streams

si+1 si si−1

m− 1 ≤ 2m

Bi

m m

R

Figure 3 The segment si is the smallest segment where |si| ≥ m. For each boundary (sj+1, sj)
where j ≥ i, the tree Bj is large enough to find all occurrences of P across the boundary. All other
occurrences of P that cross a boundary must be in R, the string covering the m − 1 rightmost
characters of si and extending to the end of the window. The length of R is no more than
m − 1 + |si−1| + |si−1|/2 + . . . + 1 < 3m.

two. The process cascades until we reach a size 2b that does not exist in the segmentation
of s (i.e., the smallest index b ̸∈ {b1, . . . , bk}). At this point we replace all of the segments
sb−1, . . . , s1 with s′

1 covering the last 2b characters of s′. The remaining segments for s′ are
the same as the segments sb+1, . . . , sk. If |s| = 2w − 1 then there is a segment of each size
20, 21, . . . , 2log w. Since the segments have decreasing size from left to right, the log w − 1
rightmost segments cover the last 20 + . . . + 2log w−1 = w − 1 characters of s. Thus, after c

arrives, the leftmost segment of size 2log w = w no longer intersects the window. We remove
it by setting s′ = s[w + 1, |s|]c, and update the segmentation as above.

Let sa, sb and sc be three adjacent segments, in that order. To merge sb and sc we
combine them into a new segment sd that spans them both, construct the suffix tree over sd,
and construct a range maximum query data structure on the suffix array of sd. Furthermore,
since sa and sd are now adjacent we also construct the boundary-spanning suffix tree for the
boundary (sa, sd) that extends |sd| characters in each direction. The construction of all of
these data structures takes expected O(|sd|) time (see Section 2). Thus, it takes expected
constant time per character every time it moves into a new, larger segment. Each character
is contained in at most log w segments before it leaves the window, so the amortized update
time is expected O(log w) per character.

Note that all but the last merge are unnecessary to actually compute s′
1; in the amortized

setting we can simply determine where the cascade will end and immediately construct the
suffix tree over the corresponding segment. However, the cascading merges will come into
play in the deamortized variant.

Also note that if w is not a power of two we can use a similar scheme where we allow
either two simultaneous trees of size 2⌊log w⌋, or one tree of size 2⌈log w⌉. In both cases, there
are some straightforward edge cases for when to remove the leftmost segment.

3.4 Deamortized Updates
We now show how to deamortize the updates. Unfortunately the previous construction
cannot be directly deamortized since the suffix tree construction algorithm by Farach-Colton
et al. [12] requires access to the whole string. Therefore, if a new character c causes a cascade
of merges resulting in a new segment of size 2i we have to build the suffix tree over that
segment when c arrives.

Instead, we modify the structure slightly. When two segments of size 2i become adjacent
we temporarily keep both while deamortizing the cost of merging them over the next 2i

characters of S, doing expected constant work per character. Note that queries are unaffected,
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with one exception for reporting occurrences across the boundaries; there might now be two
adjacent segments si+1 and si of the same size that are both the smallest segment at least
as large as |P |. In this case the suffix R extends only m − 1 characters into the rightmost
segment si. The boundary tree for (si+1, si) is large enough to report all occurrence crossing
that boundary since both segments have size at least |P |. Furthermore, R potentially becomes
twice as long, so we adjust the constants of the trees that we grow at query time.

To bound the time for updates we show that we are constructing at most log w suffix
trees at any point, from which it follows that the update time is expected O(log w). To do
so we show the following lemma.

▶ Lemma 2. When the construction of a segment of size 2i finishes there is exactly one
segment of each size 2i−1, . . . , 20.

Proof. The proof is by induction on i. For i = 1, when two size-one segments become
adjacent we merge them when the next character c from S arrives. This results in a segment
of size two, as well as a size-one segment containing c, proving the base case.

Inductively, consider the first time two segments of size 2i become adjacent. By the
induction hypothesis, there is one segment of each size 20, 21, . . . , 2i−1 to the right of these
two segments. For another segment of size 2i to be constructed, we must first receive one
more character, which triggers a merge that eventually cascades through all i − 1 of these
segments. For this to happen, 1 + (20 + 21 + . . . + 2i−1) = 2i more characters from S must
arrive, where the 1 is for the next character to arrive, and 2j is the amount of characters
the jth merge is deamortized over. However, at this point the merge of the two segments of
size 2i is complete, so we constructed two new segments, one of size 2i+1 and one of size 2i.
By the induction hypothesis, there is also one segment of each size 20, . . . , 2i−1, concluding
the proof. ◀

Lemma 2 implies that there are never more than two segments of the same size adjacent to
each other, and therefore at most one merging process for each segment size 20, 21, . . . , 2log w.
To see this, consider the first time two segments a and b of size 2i are adjacent. At this
point, there are 20 + 21 + . . . + 2i−1 = 2i − 1 characters to the right of b. When the next
segment c of size 2i arrives there are 2i − 1 characters to the right of that, too. But then
there are |c| + 2i − 1 = 2i + 2i − 1 characters to the right of b. Thus 2i new characters must
have arrived in the meanwhile, and the merging of a and b is done.

We obtain the following theorem.

▶ Theorem 3. Let S be a stream and let w ≥ 1 be an integer. We can solve the w-SSWSI
problem on S with an O(w) space data structure that supports Update and Report in expected
O(log w) time per character. Furthermore, Report uses additional worst-case constant time
per reported occurrence.

4 The Delayed SSWSI Problem

In this section we show how to improve the result from Section 3 if we are allowed a delay of δ.
The main idea is as follows. As before, we maintain suffix trees of exponentially increasing
sizes, although only the O(log(w/δ)) largest of them. As a result there are fewer trees to
query, but also an uncovered suffix of size Θ(δ) of the window for which we do not have any
suffix trees. As in Section 3 we denote the part of S covered by suffix trees by s and we
denote the uncovered suffix by t. As above, s is segmented into s1, . . . , sk.

We will first explain how to solve the problem when all patterns are long, that is, |P | > δ/4,
and then when all patterns are short, that is, |P | ≤ δ/4. Finally we show how to combine
these solutions. When all the patterns are long we can afford to construct, at query time,
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a suffix tree covering t. On the other hand, when all the patterns are short we can do
both updates and queries in an offline fashion; we buffer queries and updates until we have
approximately δ/2 operations to do, at which point we can afford to construct a suffix tree
over t in a deamortized manner. See Figure 4 for an example.

Throughout this section we assume without loss of generality that δ is a power of two.
Otherwise we instead use a more restrictive delay of δ′ = 2⌊log δ⌋ and achieve the same
asymptotic bounds.

4.1 Long Patterns
We first show how to support queries if all patterns have a length m > δ/4. We modify the
data structure from Section 3 slightly. The smallest tree now has size δ/2 as opposed to 1, so
there are Θ(log w − log(δ/2)) = O(log(w/δ)) segments and boundary trees. The uncovered
suffix t has length at most δ.

We answer queries the same way as in Section 3.2, with only small modifications. Let P

be a pattern of length m > δ/4. As before, let si be the smallest and rightmost segment
with |si| ≥ m. We find any occurrence within a segment or crossing a single boundary by
using the suffix trees over each segment and the boundary trees to the left of si, as before.
The remaining occurrences we again find by growing suffix trees of exponentially increasing
sizes from the right window boundary. The only change is that we now grow the trees faster,
as we must also cover t, and we can afford to let the smallest tree have size δ since we have
m > δ/4 characters in the pattern to deamortize the work over. As above, let R be the
string covering the m − 1 last characters of si and extending to the right window boundary,
which now also includes t. As |t| < δ the length of R is |R| < 3m + δ < 7m. Assuming
2ℓ ≤ m < 2ℓ+1, we build the suffix tree of size 7 · 2ℓ+1 and match P in it, amortized over
the characters of P . As we have m > δ/4 characters to deamortize the work over, we only
do this for each choice of ℓ where 2ℓ+1 ≥ δ, which results in O(log w − log δ) = O(log(w/δ))
work per character in P . As in Section 3.2 we use recursive range maximum queries to avoid
double reporting any occurrences of P that are also in s. As there are also only O(log(w/δ))
segments and boundary trees we spend O(log(w/δ)) time per character in P . Note that we
answer these queries without delay.

Updates are performed as follows. For each segment of δ/2 characters that arrives we
construct the suffix tree over it, deamortized over the next δ/2 characters of S. We merge
suffix trees as before, also deamortized over new characters of S. The induction proof from
Section 3.4 still works by modifying the base case; the merging of two trees of size δ/2 takes
δ/2 characters, at which point another tree of size δ/2 is constructed. The inductive step
follows from the fact that δ is a power of two. Thus, we spend expected O(log(w/δ)) time
per update.

4.2 Short Patterns
We now show how to support queries if all patterns have a length m ≤ δ/4. We extend
the data structure with a buffer of size δ. This buffer will contain queries that we have
not yet answered and characters for S that we have not yet processed. The total space is
still O(w + δ) = O(w).

Whenever a character from S arrives we append it to both t and to the buffer. When
a pattern arrives we append the full pattern to the buffer, and along with it we store the
current position of the right window boundary. Once the buffer has more than δ/2 characters
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si si−1 si−2 t

m− 1 < 2m < δ

R

si t

< 2δ
2(m− 1)

Figure 4 Left: Example of a query with a long pattern. Here si is the smallest and rightmost
segment with |si| ≥ m. Note that the non-indexed suffix t is less than δ < 4m characters long. Right:
Example of a query with a short pattern. Note that for short patterns, si is always the rightmost
segment. Any occurrence in s cross at most a single boundary and is found using the constructed
trees. Any occurrence in t is found by the suffix tree over t that we construct when we flush the
buffer. Any occurrence that cross the boundary (s, t) is found by the KMP automaton we build over
the substring the extends m − 1 characters in both directions from the boundary, which is hatched
in the figure.

(patterns and text combined) we immediately allocate a new buffer of size δ and flush the
old buffer as follows. Note that at this point there are strictly less 3

4 δ characters in the buffer
since each pattern is short.

When we flush the buffer, we first answer all the buffered queries, and then we process
all the buffered updates. We deamortize this work over the next δ/4 characters that arrive
from either stream. To answer the buffered queries we do as follows. Let P1, . . . , Pℓ be the
patterns in the buffer, let mi = |Pi|, and let M =

∑
1≤i≤ℓ mi. We have M < δ. We start

by building a suffix tree over t, along with a range maximum query data structure over the
suffix array of t. This takes expected O(δ) time. An occurrence of Pi is either contained in s,
or it crosses the boundary (s, t), or it is contained in t. Since Pi is smaller than each segment
sj we can find all the occurrences within s using the suffix trees over the segments and the
boundary trees in O(mi log(w/δ)) time. To find the occurrences crossing the boundary we
build the KMP matching automaton [20] for Pi. In it we match the string that is centered at
the boundary (s, t) and extends mi − 1 characters in each direction. This takes O(mi) time.
To find the occurrences in t we match Pi in the suffix tree over t in O(mi) time. In total,
this takes O(M log(w/δ)) = O(δ log(w/δ)) time for all the patterns, or expected O(log(w/δ))
time per character when deamortized. Note however, that after Pi arrived more characters
from S could have arrived and been appended to t. We must therefore take care not to
report any occurrences of Pi that extend past what was the right window boundary when Pi

arrived. The KMP automaton finds the occurrences in left-to-right order, and in t we avoid
reporting too far right using recursive range minimum queries.

Finally, we process each update in the buffer in the order they arrived, using the same
procedure as for long patterns. This takes O(log(w/δ)) time per update and O(δ log(w/δ))
time in total. Thus flushing the buffer takes expected O(log(w/δ)) time per character since
we deamortize the expected O(δ log(w/δ)) work over δ/4 characters. Since we allocate a new
buffer immediately when we begin flushing, we will complete the flush before the next flush
begins.

4.3 Both Long and Short Patterns
We now show how to combine the solutions for short and long patterns, to obtain a solution
that handles patterns of any length. The data structure is the same as for small patterns
above. As above, we append each new character to the buffer. However, whenever we start
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streaming a pattern we also proceed as if P were long. If P turns out to fit in the buffer
without triggering a flush (which might also happen if P is long), we simply discard the work
we did for the long-pattern case. However, if adding P to the buffer results in more than 3

4 δ

characters being in the buffer, then P must be long. We immediately start flushing the buffer
(ignoring the characters related to P ) and also continue processing P as a long pattern. Note
that since we are potentially streaming a long pattern while batch processing the updates
in the buffer, the data structure might change while we are matching in it. However, it
only changes when a merge finishes, replacing a pair of suffix trees by a larger tree. If this
happens we keep the old trees in memory until we are done processing the pattern, at which
point we discard them.

We obtain the following theorem.

▶ Theorem 4. Let S be a stream and let w ≥ 1 and δ ≥ 1 be integers. We can solve the
(w, δ)-SSWSI problem on S with an O(w) space data structure that supports Update and
Report in expected O(log(w/δ)) time per character. Furthermore, Report uses additional
worst-case constant time per reported occurrence.

5 Obtaining High Probability

In this section we show how to improve the time bounds to O(log(w/δ)) with probability
1 − w−d for any constant d ≥ 1.

The expectation in the time bounds in Section 4 comes from the construction of suffix
trees (recall that we also build suffix trees at query time). Below, in Lemma 5, we prove that
given a string K of length k = O(w) we can construct the suffix tree over K in O(k) time
with probability 1 − 1/w1+ϵ, using additional O(w/ log w) space. We use this algorithm to
construct suffix trees during updates and queries, deamortizing them as before and doing
O(log(w/δ)) work per character that arrives. When a new character arrives from S or P , at
most O(log(w/δ)) = O(log w) suffix tree constructions will finish. At this point, we finish
constructing those trees that did not finish in time, that is, used more more time than what
was allotted to them. By the union bound, the probability that any of them fail to finish
in time (and thus incurring extra construction cost) is no more than c log w/w1+ϵ for some
constant c which is no more than 1/w for large w. Thus, for each character from S or P

we spend O(log(w/δ)) time with high probability in w. We obtain the 1 − 1/wd probability
bound by probability boosting, running d = O(1) independent copies of the construction
algorithm simultaneously. The algorithm from Lemma 5 uses additional O(w/ log w) space,
but we are never constructing more than O(log w) suffix trees, so the space usage is O(w) in
total.

Furthermore, as mentioned in Section 2, we previously used an FKS dictionary [15] to
store the edges to support reporting queries in worst-case constant time per character in
the pattern. The construction time of this dictionary is expected linear, so it can no longer
be used. Instead we use a dictionary by Dietzfelbinger and Meyer auf der Heide [11]. If
there are n elements in the dictionary it supports searches in worst-case constant time and
any sequence of 1

2 n updates takes constant time per update with probability 1 − 1/nd′ for
any constant d′ ≥ 1. We store all the edges of all the suffix trees in one such dictionary.
At all times, we keep Θ(w) dummy-elements in the dictionary to ensure that we get good
probability bounds in terms of w, and we choose d′ large enough that any sequence of O(w)
operations (e.g., the construction of any one of our suffix trees) runs in O(w) time with
probability 1 − 1/wd+ϵ.
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Universal Hashing

Before we prove Lemma 5 we restate some basic facts about universal hashing, introduced by
Carter and Wegman [9]. Let M, m > 0 be integers, H be a set of functions [0, M ] → [0, m], and
h ∈ H be selected uniformly at random. Then H is universal if P [h(x) = h(y) | x ̸= y] ≤ 1/m.
Let R ⊆ [0, M ] and |R| = r. It follows from the union bound that h has a collision on R

with probability at most

P [h(x) = h(y) for some x ̸= y] ≤
∑

x ̸=y∈R

P [h(x) = h(y)] = r(r − 1)
2 · 1

m
<

r2

m
. (1)

In particular, if m = rc for constant c ≥ 1 then h is injective (i.e., has no collisions) on R

with probability at least 1 − 1/rc−2. Carter and Wegman gave several classes of universal
hash functions from which we can sample a function uniformly at random in constant time.

Fast Suffix Tree Construction

We now prove Lemma 5, showing how to construct our suffix trees in linear time with high
probability.

▶ Lemma 5. Given a string K of length k ≤ 2w there is an algorithm that uses O(k+w/ log w)
space and constructs the suffix tree over K in O(k) time with probability 1 − 1/w1+ϵ for some
ϵ > 0.

Proof. Let σ = {K[i] | i ∈ [1, k]} ⊆ Σ be the alphabet of K. We show how to, in O(k)
time, find a function h : Σ → [1, kO(1)] such that h is injective on σ with probability at least
1−1/w1+ϵ. If h is injective on σ, we can construct the suffix tree over K′ where K′[i] = h(K[i])
in time O(sort(k, kO(1))) = O(k) using radix sort. After the tree is constructed we can
substitute for the original alphabet in linear time. Therefore, the construction algorithm
finishes in O(k) time with probability at least 1 − 1/w1+ϵ (otherwise we make no guarantee
on the construction time and we can build the suffix tree in any way).

For some m to be determined later, let f : Σ → [1, m] be chosen uniformly at random
from a class of universal hash functions. By Equation 1, the probability that f has a collision
on σ is

P [f has collisions on σ] <
|σ|2

m
≤ k2

m
.

We divide into the cases of large trees (k ≥ w1/5) and small trees (k < w1/5). If k is large
then w1/5 ≤ k ≤ 2w, and we set m = w4 so the probability that f has a collision is at most

k2

m
≤ (2w)2

w4 = 4
w2 ≤ 1

w1+ϵ

for some ϵ > 0. We check whether f is injective by sorting the set {(x, f(x)) | x ∈ σ} with
respect to the f(·)-values and checking if two consecutive elements (x, f(x)) and (y, f(y))
have x ̸= y and f(x) = f(y). This takes time O(sort(k, w4)) = O(k) using radix sort since
k ≥ w1/5. If f is injective we set h = f , concluding the proof of the large case.

If k is small then we allocate an array A of length w/ log w in constant time. For simplicity
we assume that A is initialized such that A[i] = 0 for all i. This can be avoided using standard
constant-time initialization schemes; assume each entry in A contains an arbitrary value
initially. We maintain two other arrays B and C such that if we have written a value to A[i]
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at least once then A[i] is a pointer to some B[j], B[j] is a pointer to A[i], and C[j] stores the
value most recently written to A[i]. From this we can determine if A[i] has been initialized
(check if the pointers match), and if it has not we can initialize it in constant time.

Then we set m = w/ log w such that the probability that f has a collision is no more than

k2

m
<

w2/5

w/ log w
= log w

w3/5 = log w

w1/2 · 1
w1/10 ≤ 1

w1/10

for w ≥ 16. We check if f is injective on σ by for each character x in K setting A[f(x)] = x

and seeing if two distinct characters hash to the same index. If f is injective we then
arbitrarily assign the values 1, . . . , |σ| to the now non-zero indices of A and let h(x) = A[f(x)]
(at this point we know σ since it is equal to the number of entries in A that we modified). To
boost the probability of success we run this algorithm up to eleven times with independent
choices for f . The probability that all of them fail is at most 1/w11/10 ≤ 1/w1+ϵ concluding
the proof for the small case. ◀

In conjunction with Theorems 3 and 4, this proves Theorem 1.

6 Conclusion and Future Work

We have studied two variants of the streaming sliding window string indexing problem; the
timely variant, where queries must be answered immediately, and the delayed variant where
a query may be answered at any point within the next δ characters received, for a specified
parameter δ. For a sliding window of size w we have given an O(w) space data structure
that, in the timely variant, supports updates in O(log w) time with high probability and
queries in O(log w) time with high probability per character in the pattern; each occurrence
is reported in additional constant time. For the delayed variant we improved these bounds
to O(log(w/δ)), where each occurrence is still reported in constant time.

One open problem is whether these bounds can be improved. Another is to find efficient
solutions when queries may be interleaved with new updates to the stream. That is, while
you are streaming a pattern, new characters of S might arrive that move the current window.
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