Trie-Compressed Adaptive Set Intersection

Diego Arroyuelo =
Departamento de Informatica, Universidad Técnica Federico Santa Maria, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Juan Pablo Castillo &
Departamento de Informética, Universidad Técnica Federico Santa Maria, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

—— Abstract

We introduce space- and time-efficient algorithms and data structures for the offline set intersection

problem. We show that a sorted integer set S C [0..u) of n elements can be represented using
compressed space while supporting k-way intersections in adaptive O(kdlg(u/d)) time, & being
the alternation measure introduced by Barbay and Kenyon. Our experimental results suggest
that our approaches are competitive in practice, outperforming the most efficient alternatives
(Partitioned Elias-Fano indexes, Roaring Bitmaps, and Recursive Universe Partitioning (RUP)) in
several scenarios, offering in general relevant space-time trade-offs.

2012 ACM Subject Classification Theory of computation — Data compression; Theory of computa-
tion — Design and analysis of algorithms; Theory of computation — Data structures and algorithms
for data management; Information systems — Information retrieval query processing

Keywords and phrases Set intersection problem, Adaptive Algorithms, Compressed and compact
data structures

Digital Object Identifier 10.4230/LIPIcs.CPM.2023.1

Supplementary Material Software: https://github.com/jpcastillog/compressed-binary-tries
archived at swh:1:dir:4ec1b85ad1d97fal0c648a3ad1ad2366c0cafb5bc

Funding This work was funded by ANID — Millennium Science Initiative Program — Code ICN17_ 002,
Chile (both authors).

Acknowledgements We thank Gonzalo Navarro, Cristian Riveros, Adridn Gémez-Brandén, and
Francesco Tosoni for enlightening comments, suggestions, and discussions about this work. We also
thank the anonymous reviewers whose thorough reviews helped us to improve this paper.

1 Introduction

Sets are one of the most fundamental mathematical concepts related to the storage of data.
Operations such as set intersections, unions, and differences are key for querying them. E.g.,
the use of logical AND and OR operators in web search engines translate into intersections
and unions, respectively. Representing sets to support their basic operations efficiently has
been a major concern since many decades ago [4]. In several applications, such as query
processing in information retrieval (IR) [15] and database management systems (DBMS) [23],
sets are known in advance to queries, hence data structures can be built to speed up query
processing. With this motivation, in this paper we focus on the following problem.

THE OFFLINE SET INTERSECTION PROBLEM, OSIP

Input: A family S = {S1,...,Sn} of N sorted integer sets over universe [0..u), with |S;| = n;.

Task : To preprocess family S to efficiently support query instances of the form QO =
{i1,...,4x} C [1..N], which ask to compute Z(Q) = (.., S

© Diego Arroyuelo and Juan Pablo Castillo;

oY licensed under Creative Commons License CC-BY 4.0
34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023).
Editors: Laurent Bulteau and Zsuzsanna Lipték; Article No. 1; pp. 1:1-1:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

i€EQ

mailto:darroyue@inf.utfsm.cl
https://orcid.org/0000-0002-2509-8097
mailto:juan.castillog@sansano.usm.cl
https://doi.org/10.4230/LIPIcs.CPM.2023.1
https://github.com/jpcastillog/compressed-binary-tries
https://archive.softwareheritage.org/swh:1:dir:4ec1b85ad1d97fa10c648a3ad1ad2366c0cafb5c;origin=https://github.com/jpcastillog/compressed-binary-tries;visit=swh:1:snp:c81223b16962dc94baf4f8f8a50f1d2aa94eecc4;anchor=swh:1:rev:e2ee1cb05fce81310ec4765771912260913f5a04
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Trie-Compressed Adaptive Set Intersection

We assume u = 2F in this paper, for k& > 0. Unless explicitly otherwise stated, we also
assume lgz = [lg, 2] and 1g0 = 0. Typical applications of this problem include the efficient
support of join operations in DBMS [23, 51], query processing using inverted indexes in IR
[15, 52], and computational biology [33], among others. Building a data structure to speed
up intersections, however, increases the space usage. Today, data-intensive applications
encourage not only time- but also space-efficient solutions [7]. Being able to process big
datasets entirely in main memory is the main motivation. Compact, succinct, and compressed
data structures are important to achieve this [41]. We study here compressed data structures
to efficiently support the OSIP. We assume the word RAM model of computation with word
size w = O(lgu). Arithmetic, logic, and bitwise operations, as well as accesses to w-bit
memory cells, take O(1) time.

The literature on this problem is vast. For the online version of the problem, where sets to
be intersected are given at query time — so there is no time to preprocess them — algorithms
like the ones by Baeza-Yates [9], Demaine et al. [20], and Barbay and Kenyon [12] are among
the most efficient and well-known approaches. In particular, the two latter algorithms are
adaptive, meaning that they are able to perform faster on “easier” query instances. The
algorithm by Barbay and Kenyon runs in optimal O(6 ;.o 1g(n:/0)) time, where ¢ is the
so-called alternation measure that quantifies the query difficulty [12]. The algorithm by
Demaine et al. [20] has running time O(kdlg(n/d)), for n = >, .5 ns, which is optimal
when max;eco {lgn;} = O(min;eg {lgn;}) [11]. These algorithms require sets to be stored
in plain form, e.g. using a sorted array or a B-tree [20], requiring ©(mw) bits of space, for
m = vazl n;. This can be excessive when dealing with large databases.

For the OSIP, we have the extensive literature on inverted indexes [52, 55, 15, 46],
whose main focus is on practical space-efficient set representations supporting intersections.
Approaches like Optimized PForDelta [53], Roaring Bitmaps [36], SIMD-BP128 [35], and
Recursive Universe Partitioning [45] shine in practical scenarios, yet without appealing
theoretical guarantees of space usage and intersection computation time. Another relevant
approach on these lines is Partitioned Elias-Fano (PEF) [43], able to exploit the distribution
and clustering of set elements to improve space usage. Barbay and Kenyon’s algorithm can
be implemented on PEF, taking O(d) ;o lg (u/n;)) time. Regarding space usage, there
is no known bound (although it performs well in practice). On a more theoretical track,
Bille et al. [14] introduce a data structure that uses O(mw) bits of space and supports
intersections in O(nlg? (w)/w + k|Z(Q)|) time. Cohen and Porat [18] data structure also
uses O(mw) bits of space and allows one to compute the intersection between any two
sets in S in O(\/N|Z(Q)| + Z(Q)|) time. Besides using linear space, this approach only
works for pair-wise intersections (and is hard to efficiently extend to multiway intersections).
Finally, Ding and Konig [21] introduce a data structure able to compute intersections in
O(n/v/w + E|Z(Q)]) expected time, and uses linear O(m) space. The space can be improved
in practice to use about 1.88 times the space of an Elias v/ compressed inverted index [21],
yet with no theoretical guarantees. Later, Gagie et al. [26] showed that wavelet trees [28] can
support intersections in O(kdlg (u/0)) time, using uncompressed mw(1 + o(1)) bits of space.

In this paper we show that O(kdlg (u/d)) intersection time using compressed space
is possible. In particular, (1) in Section 3 we revisit a classic (and neglected) algorithm
by Trabb-Pardo [50] (former Knuth’s student) to prove that its running time is actually
O(kdlg (u/d)) — so it is likely the first adaptive intersection algorithm that ever existed; (2)
in Section 4 we show that Trabb-Pardo’s algorithm can be implemented in compressed space,
yielding an adaptive and compressed set intersection algorithm; (3) in Section 5 we show
how to exploit the presence of runs of successive elements, typical in some applications [8],

D. Arroyuelo and J. P. Castillo

to formally improve both space usage of input sets and the intersection computation time
by introducing an intersection algorithm that runs in time O(k¢lg (u/€)), where £ < 6 is an
adaptability measure we introduce; and (4) in Sections 6 and 7 we implement our proposals
and show preliminary experimental results that indicate that our approaches are appealing
not only in theory, but also in practice, outperforming the most competitive state-of-the-art
approaches in some practical inverted-index datasets we use in our tests. Overall, we conclude
that both theoretical guarantees and practicality can be achieved with a single approach,
which is a step forward in bridging the gap between theory and practice in this important
line of research.

2 Preliminaries and Related Work

2.1 Operations rank and select

The following operations on a sorted integer set S are of interest:
rank(S, z): for x € [0..u), yields [{y € S, y < z}|.
select(S, j): for 1 < j <|S|, yields x € S s.t. rank(S, z) = j.
A set S can be alternatively described using its characteristic bit vector (cbv, for short)
Cs[0..u), such that Cs[z] =1 if x € S, Cs[x] = 0 otherwise. On a cbv Cs we define:
Cs.ranky (z): for x € [0..u), yields the number of 1s in Cs[0..z].
Cs.selectq (k): for 1 < j < |S], yields the smallest position 0 < z < u s.t. Cs.ranky(z) = j.

Notice that rank(S,z) = Cs.ranky(x) and select(S, j) = Cs.selecty (5).

2.2 Set Compression Measures

A compression measure quantifies the amount of bits needed to encode data using a particular
compression model. For an integer universe U = [0..u), let C™) C 2V n e U, denote the class
of all sets S C U such that |S| = n. We assume S = {z1,...,2,},for 0 <z <--- <2, < u.
As |C™)| = (), in the worst case one needs at least B(n,u) = [lg ()] bits to encode a set
S e CM. If n < u, B(n,u) =nlg(u/n) +nlge— O(lgu) bits (using Stirling for n!). Notice
B(n,u) is a worst-case lower bound: some sets in C(™) can be encoded using less bits, as we
shall see.

2.2.1 The gap(S) Compression Measure

Let us denote gy = z1 and, for i1 =2,...,n, g = x; — x;_1 — 1. Thus, in the gap model we
have Cs[0..u) = 09110921 ---09~1 (assuming wlog that Cs ends with 1). Then, we define
gap(S) = >, (lgg:] +1), as the amount of bits required to represent S provided we
encode the sequence of gaps G = (g1, ..., ¢gn), using |lgg;] + 1 bits per gap. Although this
measure is not achievable, it exploits the variation in the gaps between consecutive set
elements: the closer the elements, the smallest this measure is. It holds that gap(S) < nlg %,

with equality only when g; = % (for i = 1,...,n). This is a measure traditionally used in

v
n

applications like inverted-index compression in information retrieval [15] and databases [52].

2.2.2 The rle(S) Compression Measure

When set elements tend to be clustered into runs of successive elements, a (usually)
better way to model its cbv is Cs[0..u) = 071°0721%...0% 1% where the sequences
Z={(z1,...,%)and O = ({1,...,£,) are the lengths of the alternating 0/1-runs in Cs (as-
sume wlog that Cs begins with 0 and ends with 1). Then, rle(S)=>""_; (lg(z;i — 1) + 1)+
Soi_i (lg (¢; = 1)] +1). Unfortunately, gap(S) and rle(S) are not comparable measures. If
n < u/2, it holds that rle(S) < B(n,u) +n+ O(1) [24].

1:3

CPM 2023

1:4

Trie-Compressed Adaptive Set Intersection

2.2.3 The trie(S) Compression Measure

Let us consider now representing a set S € C(™) using a binary trie denoted bintrie(S),
where the ¢ = [lgu]-bit binary encoding of every element is added. Each internal node
in bintrie(S) has two children, the left one corresponding to bit 0 and the right one to bit
1. The external nodes of bintrie(S) have no children, as usual. In our case, we distinguish
two kinds of external nodes. A wvoid external node is one whose depth is either d < ¢, or
alternatively d = ¢ yet it represents no element in S. A walid external node (or, simply,
external node, or alternatively a leaf), on the other hand, is one whose depth is exactly ¢ and
corresponds to an element in S. Thus, bintrie(S) has |S| valid external nodes, all at depth
£. For a leaf v corresponding to element x; € S, the root-to-v path is hence labeled with
the binary encoding of x;. This approach has been used for representing sets since at least
the late 70s by Trabb-Pardo [50]. Consider the example sets S; = {1,3,7,8,9,11,12}, and
Sy ={2,5,7,12,15} over universe [0..16), that we shall use as running examples. Figure
1 shows the corresponding tries bintrie(S1) and bintrie(S2), with external nodes shown as
squares and void external nodes with dotted lines. Interestingly, the following compression

Figure 1 Binary tries bintrie(S1) and bintrie(S2) encoding sets S1 = {1, 3,7,8,9,10,11,12} and
Sa = {2,5,7,12,15}. Square nodes at depth 4 in the tries correspond to set elements, whereas
dotted lines indicate void external nodes.

measure can be derived from this representation [29]. Given two bit strings = and y of
¢ bits each, let x © y denote the bit string obtained after removing the longest common
prefix among = and y from x. For instance, for x = 0110100 and y = 0111011, we have
2 ©y = 0100. The prefix omission method by Klein and Shapira [31] represents a sorted set
S as a binary sequence 7 = (x1;22 © 1;...;Tn © xp—1). If we denote |z; © ;1] the length
of bit string z; © x;_1, then the whole sequence uses

trie(S) = |z1| + Z |z; © xi—1].
i=2

It turns out that trie(S) is the number of edges in bintrie(S) [29]. Notice that trie(S)
decreases as longer trie paths are shared among set elements: consider two integers x and
y, the trie represents their longest common prefix just once (then saving space), and then
represents both © y and y © z. Extreme cases are as follows: (1) All set elements form
a single run of consecutive elements, which maximizes the number of trie edges shared
among set elements, hence minimizing the space usage; and (2) The n elements are uniformly
distributed within [0..u) (i.e., the gap between successive elements is g; = u/n), which
minimizes the number of trie edges shared among elements, and hence maximizes space
usage. Notice this is similar to the case that maximizes the gap(S) measure.

» Definition 1. We say that a node v in bintrie(S) covers all leaves that descend from it. In
such a case, we call v a cover node of the corresponding leaves.

D. Arroyuelo and J. P. Castillo

The following lemma summarizes several results that shall be important for our work:

» Lemma 2 ([26], Lemmas 1-5). For bintrie(S), the following results hold:

1. Any contiguous range of L leaves in bintrie(S) is covered by O(lg L) nodes.

2. Any set of r nodes in bintrie(S) has O(rlg %) ancestors.

3. Any set of r nodes in bintrie(S) minimally covering a contiguous range of leaves in the
trie has O(r + lgu) ancestors.

4. Any set of r nodes in bintrie(S) minimally covering L contiguous leaves has O(1gu-+rlg £)
ancestors.

» Definition 3. Given a set S = {z1,...,2,} C [0..u), let S + a, for a € [0..u), denote a
shifted version of S: S+ a = {(z1 + a) mod u, (x2 + a) mod u, ..., (z, + a) mod u}.

The following result is relevant for our proposal:

v

Lemma 4 ([29], Section 2). Given a set S C [0..u) of n elements, it holds that:
1. trie(S) < min {2gap(S5),nlg (u/n) + 2n — 2}.

2. Ja € [0..u), such that trie(S + a) < gap(S) + 2n — 2.

3. trie(S +a) < gap(S) + 2n — 2 on average over all values of a € [0..u).

2.3 Adaptive Set Intersection Algorithms

An adaptive algorithm is one whose running time is a function not only of the instance size
(as usual), but also of a difficulty measure of the instance. In this way, “easy” instances are
solved faster than “difficult” ones, allowing for a more refined analysis than typical worst-case
approaches. For the set intersection problem, algorithms by Demaine, Lépez-Ortiz, and
Munro [20] and by Barbay and Kenyon [12] are the most important adaptive approaches. To
analyze adaptive intersection algorithms, Demaine et al. and Barbay and Kenyon agree in
that any algorithm that computes Z(Q) must show a certificate [12] or proof [20] to prove
that the intersection is correct. That is, that any element in Z(Q) belongs to the k sets
Siy,---55,, and no element in the intersection has been left out of the result. Then, the

analysis determines the size of a certificate (or proof) and the time it takes to compute them.

In particular, Barbay and Kenyon [12] partition certificates are defined as follows.

» Definition 5. Given a query Q = {iy,...,ir} C [1..N], a partition certificate is a partition
of the universe [0..u) into a set of intervals Pex(Q) = {I1,1I2,...,1,}, such that:

1. Vo € Z(Q), [z..2] € Pp(Q);

2. Ve ¢7(Q), 3, € P(Q),z € I; N g€ Q,5,NI;=0.

For a given query Q, several valid partition certificates could be given. However, we are

interested in the smallest partition certificate of Q, as it takes the least time to be computed.

» Definition 6. For a given query instance Q = {iy,...,ix} C[1..N], let 0 denote the size
of the smallest partition certificate of Q.

Measure § is known as the alternation of the query instance [12], measuring its difficulty.

Notice |Z(Q)| < 6 holds. Figure 2 shows the smallest partition certificate (of size § = 8) for
sets S7 and Sy of our running example. Barbay and Kenyon [11, 12] proved a lower bound
of (03 ;cole(ni/d)) comparisons for the set intersection problem. They also gave and
optimal intersection algorithm running in O(d } ;o 1g(n:/d)) time.

1:5

CPM 2023

1:6

Trie-Compressed Adaptive Set Intersection

Sy 1
So :

8 9 10 11 | 12

12 15

Figure 2 Vertical lines show the smallest partition certificate P = {[0..1],[2..2], [3..4], [5..6],
[7..7],[8..11],[12..12], [13..15]} of size 6 = 8 of the universe [0..16) for the intersection of sets
Sy =1{1,3,7,8,9,10,11,12} and S» = {2,5,7,12,15}.

3 Trie Intersection Certificates: A Reuvisit to Trabb-Pardo Algorithm

In this section we revisit an old divide-and-conquer intersection algorithm by Trabb-Pardo [50],
not only to review it but also to prove an adaptive bound on its running time. Algorithm 1
shows the pseudocode. Given a query instance Q = {i1,...,4x} C [1..N], the algorithm must

Algorithm 1 TP-Intersection(sets Si,...,Sk; universe [L..R)).

Result: The set intersection S1N---N Sk
begin

// Base cases

2 for i + 1 to k do

3 L if S; = @ then

[

L return g

if L = R then
‘ return {L} // Universe of size 1, all sets are the same singleton
else
// Divide
M« [(R+L)/2]
for i <+ 1 to k do
10 Sii{xeSi|ze[L.M)}
11 L SLT(—{ZEGSE ‘ S [MR)}

// Conquer

12 R1 + TP-Intersection(Si,..., Sk, [L..M))

13 Ry < TP-Intersection(Si,r,...,Skr, [M..R))

// Combine

14 return R; U Ry // Disjoint set union

be invoked as TP-Intersection(S;,,...,Si,,[0..u)). The main idea is to divide the universe
into two halves, to then split each set according to this universe division. This differs from,
e.g., Baeza-Yates’s algorithm [9, 10], which splits according to the median of one of the sets.
The Divide steps (lines 10 and 11) can be implemented using binary search. At the first level
of recursion, the most-significant bit of every element in sets S;; is 0, as they belong to the
left half of the universe. Similarly, for .S; , the most-significant bit is 1 as all elements belong
to the right half. At each node of the recursion tree, the current universe is divided into two
halves, to then recurse on the sets split accordingly.

As sets are known in advance to queries and set splits carried out by Algorithm 1 depend
just on the universe, the Divide step of Algorithm 1 can be implemented efficiently by using
a suitable set representation that not only stores the set values, but also precomputes the
set splits carried out recursively by the algorithm. Trabb-Pardo proposes to represent each
S; € S using bintrie(S;), mimicking the way set S; is recursively split by Algorithm 1. The
left child of the root represents all elements whose most-significant bit is 0, i.e., elements in
set S;; of Algorithm 1 (line 10) in the first level of recursion; similarly for S; ., containing

D. Arroyuelo and J. P. Castillo

all elements in S; whose most-significant bit is 1. To simulate the recursive execution of
Algorithm 1 on the binary tries, one must carry out a DFS traversal in synchronization on
all tries involved in the query, following the same path in all of them and stopping (and
backtracking if needed) as soon as we reach a dead end in one of the tries (which correspond
to dotted lines in Figure 1), or we reach a leaf node in all the tries (in which case we have
found an element belonging to the intersection). In this way, (1) we stop as soon as we detect
a universe interval that does not have any element in the intersection, and (2) we find the
relevant elements when we arrive at the leaves.

To analyze Algorithm 1, we introduce the concept of trie intersection certificates, denoted
cert(Q), as an alternative to existing certificates [20, 12]. Figure 3 shows a possible cert(Q)
for the intersection of S; and Sy from Figure 1. Let path(v) denote the binary string labelling
the root-to-v path, and depth(v) = |path(v)|. For a query Q, a binary trie cert(Q) is a

Figure 3 Trie certificate for the intersection {1, 3,7,8,9,10,11,12} N {2,5,7,12,15}. This trie
shows the nodes that must be checked to determine that the result is, in this case, {7,12}. This
corresponds to the intersection of the binary tries representing these sets.

trie partition certificate if: (1) for any internal node v of cert(Q) such that path(v) = b,
there exists an internal node v; with path(v;) = b in every bintrie(S;), i € Q; (2) for any
void external node v with depth(v) = d < ¢ = [lgu] and path(v) = b, there exists at least
a set S; (i € Q) such that there is no node v; with path(v;) = b in bintrie(S;). So, the
universe interval [dec(b- 0°~%)..dec(b- 1°~%)] has no element in the intersection, where dec(z)
denotes the decimal representation of a binary string x. We call them fail nodes, shown
as “x” in Figure 3; and (3) for any valid external node v with depth(v) = ¢ corresponding
to path(v) = b, there exists a valid external node v; with path(v;) = b in every bintrie(S;),
1 € Q. We call them success nodes as they correspond to elements in Z(Q).

Notice that cert(Q) is the trie obtained by intersecting bintrie(.S;), for all i € Q, and that
it is the smallest trie that allows us to prove the correctness of the intersection. For instance,
Figure 3 shows cert(Q) for a given query. Interestingly, the recursion tree of Algorithm 1 is
exactly cert(Q), as the algorithm stops as soon as one arrives at a fail node. The external
nodes of cert(Q) cover the universe [0..u) with intervals, similar to Barbay and Kenyon
partition certificates, as stated by the following definition.

» Definition 7. Given a query Q = {i1,...,ix} C [1..N], its trie partition certificate is
a partition of the universe [0..u) into a set of intervals, we say that cert(Q) induces the
following partition of [0..u) into a set of intervals that we call trie partition certificate:

Prc(Q) = U {[dec(path(l) -0f~derthl))_ dec(path(l) - 1€_depth(l))]} ,
€& (cert(Q))
where E(cert(Q)) denotes the set of external nodes of cert(Q).

For instance, the trie certificate of Figure 3 induces the following trie partition certificate of
the universe [0..16): {[0..1],[2..2], [3..3], [4..5], [6..6], [7..7], [8..11], [12..12], [13..13], [14..15]}.

1:7

CPM 2023

1:8

Trie-Compressed Adaptive Set Intersection

Since cert(Q) is the recursion tree of Algorithm 1, its running time is O(k|cert(Q)]). As
in the worst-case one must traverse completely all tries bintrie(S;), i € Q, we have:

klcert(Q)| < Ztrie(Si) < Zni lg nﬁ + 2n; — 2,
i€Q i€Q !

where the last bound is from Lemma 4 (1). Next we prove an adaptive bound for k|cert(Q)|.

» Theorem 8. Given a query instance Q = {i1,...,ix} C [1..N] with alternation measure §
and over sets with universe [0..u), algorithm TP-Intersection computes T(Q) = N;c0S; in

time O(ko1g(u/9)).

Proof. Consider a smallest partition certificate Ppx(Q) = {I1, ..., Is} of universe [0..u), such
that |I;] = L; for i = 1,...,0. Let us think now of the worst-case smallest cert(Q) we could
have, by covering the ¢ intervals in Ppx(Q) with as many external nodes of cert(Q) as possible.
For any I; € Pe(Q) formed by elements not in Z(Q), there exists a set of external fail nodes
in cert(Q) that cover I;. This is because when traversing the tries bintrie(.S;) in coordination,
i € Q, the algorithm stops as long as one gets into one of the cover nodes of I;, since it does
not belong to at least one of the tries. According to Lemma 2 (1), a contiguous range of L
leaves (corresponding to the values in I;) can be covered with up to O(lg L) nodes. Thus,
in the worst-case, cert(Q) has O(Zf:1 lg L;) external nodes that overall cover [0..u). Now,
recall that the external nodes of cert(Q) cover the contiguous range of leaves corresponding
to [0..u). Hence, according to Lemma 2 (3), these external nodes have O(Zf:1 lgL; +1gu)
ancestors, so overall cert(Q) has O(Zf:1 lg L; +1gu) nodes. The sum is maximized when
L; =u/d, for all 1 <i <4, hence cert(Q) has O(d1g (u/d)) nodes. The result follows from
the fact that for each node in cert(Q) the algorithm runs in time O(k). <

4 Compressed Intersectable Sets

We devise next a space-efficient representation of bintrie(.S), for a set S = {x1,...,z,} C [0..u)
of n elements such that 0 < 7 < --- < x, < u. This representation will also allow for
efficient intersections, supporting Trabb-Pardo’s [50] algorithm.

We represent bintrie(.S) level-wise [30]. Let By[1..201],..., Be[1..2l;] be bit vectors such
that B; represents the I; nodes at level i of bintrie(S) (1 <14 < {), from left to right. Each
node is encoded using 2 bits, indicating the presence (using bit 1) or absence (bit 0) of the
left and right children, respectively. In this way, the feasible codewords for trie nodes are 01,
10, and 11, whereas 00 is not a valid codeword. The codewords of all nodes at level i > 1 in
the trie are concatenated from left to right to form B;. The j-th node at level i (from left to
right) is stored at positions 25 — 1 and 2j. We say that 2j — 1 is the position of such node
in B;.

Let p be the position in B; corresponding to a node v at level ¢ of bintrie(S). As the
nodes are stored level-wise and from left to right, the number of 1s before position p in
B; equals the number of nodes in level i + 1 that are before the child(ren) of node v. So,
2B;.ranky(p — 1) + 1 yields the position of B;;; where the first child of node v is. Figure 4
illustrates our representation.

The total number of 1s in the bit vectors of our representation equals the number of
edges in the trie. That is, there are trie(S) 1s. Besides, the trie has trie(S) + 1 internal
nodes and leaves: n of them are leaves, so trie(S) —n+ 1 are internal. In our representation
we only need to represent the internal trie nodes. As we encode each node using 2 bits, the
total space usage for By, ..., By is 2(trie(S) — n + 1) bits. On top of them we use Clark’s
data structure [16] to support rank in O(1) time, adding o(trie(S)) extra bits overall.

D. Arroyuelo and J. P. Castillo

Bl .
By :

Figure 4 Level-wise bit vector representation of bintrie(S) for S = {1,3,7,8,9,10,11,12}. Dotted
lines are implicit, as they are computed using operation rank; on the bit vectors.

Given a query Q = {i1,...,9} C [1..N], we traverse bintrie(S;,), ..., bintrie(S;,) using a
recursive DF'S traversal as in Algorithm 1. Besides the query itself, our algorithm receives: (1)
an integer value, level, indicating the current recursion level, and (2) integer values rq, ..., g,
indicating the current nodes in each trie, represented as the positions of these nodes within
Bieyer. Algorithm 2 shows the pseudo-code of our adaptive and compressed algorithm to
compute the compact representation for bintrie(Z(Q)) (denoted T in the pseudocode). The
algorithm uses a binary variable s, initialized with 11, which stores the bitwise-and of all
current node codewords (line 4). So, s = 00 means that recursion must stop, s = 10 indicates
to go down only to the left, s = 01 just to the right, and s = 11 to both children.

Lines 9-13 carry out the needed computation to go down to the left child. In particular,
we compute the positions of the left-subtrie roots using rank; operation. Then, in line 13
we recursively go down to the left. The result of that recursion in stored in variable IChild,
indicating with a 1 that the left recursion yielded a non-empty intersection, 0 otherwise.
A similar procedure is carried out for the right child in lines 14-21. Line 17 determines
whether we have already computed the rankys corresponding to the left child. If that is not
the case, we compute them in line 18. In this way, we compute only one rank; operation
per traversed node in the tries, which is important in practice. Just as for the left child,
we store the result of the right-child recursion in variable rC'hild in line 21. Finally, in line
22 we determine whether the left and right recursions yielded an empty intersection or not.
If both IChild = rChild = 0, the intersection was empty on both children, so we return
0. Otherwise, we append [Child and rChild to T.Bjevel, as that is the codeword of the
corresponding node in T7. Note how we actually generate the output trie 77 in postorder,
after we visited both children of the current nodes, despite the input is traversed in preorder.
Thus, we write the output in time proportional to its size. Although the total running time
is still proportional to |cert(Q)], this can save important time in practice.

Besides computing Z(Q), a distinctive feature of our algorithm is that it also allows one to
obtain the sequence (rank(S;,,x),...,rank(S;,,x)), for all z € Z(Q), for free (in asymptotic
terms). The idea is to compute (bintrie(S;,). Bp.ranky (r1), . . ., bintrie(S;,). Be.ranky (ry)) every
time the recursion reaches level ¢ (i.e., just before the return of line 7 in Algorithm 2).
Outputting this information is important for several applications, such as cases where set
elements have satellite data associated to them. For an element z; € S;, the associated
data d; is stored in an auxiliary array D;[1..n;] such that D[rank(S;,z;)] = d,;. Typical
applications are inverted indexes in IR (where ranking information, such as frequencies, is
associated to inverted list elements), and the Leapfrog Triejoin algorithm [51] (where at each
step we must compute the intersection of sets, and for each element in the intersection we
must go down following a pointer associated to it).

1:9

CPM 2023

1:10 Trie-Compressed Adaptive Set Intersection

Algorithm 2 AC-Intersection(query Q; roots ri,...,rg; level).

Result: The binary trie T7 representing Z(Q) = Nic0S;
1 begin
2 s <11 // binary encoding
3 for i € Q do
4 L s+ s & (bintrie(Si).Blevel [’I"L] . bintrie(S’i).Blevel [Ti + 1})

if level = ¢ then
append s to 17.B,
return 1

N o o

8 IChild < 0; rChild + 0
// Go down to the left in the tries
9 if s is 10 or 11 then

10 lRoots <~ @

11 for i € Q do

12 L [Roots <— [Roots U {2 x bintrie(S;).Bjever.ranky (r; — 1) + 1}
13 | lChild < AC-Intersection(Q,lRoots, level + 1)

// Go down to the right in the tries
14 if s is 01 or 11 then

15 rRoots < @

16 for i € Q do

17 if s=01 then

18 ‘ rRoots <— rRoots U {2 x bintrie(S;).Biever.ranky (r; — 1) + 2}
19 else

20 L rRoots < rRoots U {lRoots; + 2}

21 rChild + AC-Intersection(Q, rRoots,level + 1)

// Output written in postorder
22 if IChild # 0 or rChild # 0 then

23 append [Child - rChild to Tr.Bieyer
24 return 1

25 else

26 L return 0

We have proved the following theorem:

» Theorem 9. Let S = {S1,...,Sn} be a family of N integer sets, each of size |S;| =
n; and universe [0..u). There exists a data structure able to represent each set S; using
2(trie(S;) — n; + 1) + o(trie(S;)) bits, such that given a query Q = {i1,...,ix} C [1..N],
the intersection Z(Q) = N;jcoS; can be computed in O(kdlg (u/d)) time, where § is the
alternation measure of Q. Besides, for every x € T(Q), the data structure also allows one to
obtain the sequence (rank(S;,,x),...,rank(S;,,x)) asymptotically for free.

5 Compressing Runs of Elements

Next, we exploit the presence of runs of successive elements in the input sets to reduce both
the space usage of the binary trie representation, as well as intersection time. Runs tend
to be captured by full subtrees in the corresponding binary tries. See, e.g., the full subtree
whose leaves correspond to elements 8,9,10,11 in the binary trie of Figure 5. Let v be a
bintrie(S) node whose subtree is full. Let depth(v) = d. If b = path(v), the 2°~¢ leaves

D. Arroyuelo and J. P. Castillo

covered by v correspond to the integer interval [dec(b- 0°~9)..dec(b- 1°~%)]. So, the subtree
of v can be removed, keeping just v, saving space and still being able to recover the removed
elements.

S5
it
[

& W
P IS
-
= =
2 [5]
= =
iR

B

B [o1] [o1] [of

Figure 5 Left side, the binary trie representing set {1,3,7,8,9,10,11,12}. Notice that the
subtree whose leaves correspond to elements 8,9, 10, 11 is a full subtree. Right side, our compact
representation removing full subtrees and encoding their roots with 00.

» Definition 10. Let S C [0..u) be a set of n elements. We define rTrie(S) as the number
of edges in bintrie(S) after removing the mazimal full subtrees.

This immediately implies rTrie(S) < trie(S) < 2gap(95), yet we can prove tighter bounds.
Assume a set S with r runs of ¢;,..., ¢, successive elements each, respectively. The /;
elements of a given run correspond to ¢; contiguous leaves in bintrie(S) which, according
to Lemma 2 (item 1), are covered by at most 2|lg(¢;/2)] nodes. This is a pessimistic
case that removes the least edges, so we analyze it. Among the cover nodes, there are
2 whose subtrees have 0 edges, 2 whose subtrees have 2 edges, 2 whose subtrees have 6
edges, and so on. In general, for each i = 1,...,|lg (¢;/2)], there are 2 cover nodes whose
subtrees have 2i — 2 edges. If we remove them all, the total number of edges removed is

ZU% (&:/2)] (2" —2) < 2¢; — 41g¥;. This removes the least edges belonging to full subtrees,
so we can bound

rTrie(S) < trie(S Z —4lg¥;). (1)

i=1

We can also prove the following bounds.

» Lemma 11. Given a set S C [0..u) of n elements, it holds that

1. rTrie(S) < 2-min{rle(S)+>.._,1gl;, gap(9)}.

2. Ja € [0..u), such that rTrie(S + a) < min{rle(S)—> | _, 6;+3> ._,lgtl;, gap(S)} +
2n — 2.

3. rTrie(S + a) < min{rle(S)—> . , 6 +3> . ,1gl;, gap(S)} + 2n — 2 on average,
assuming a € [0..u) is chosen uniformly at random.

Proof. Since S has 7 runs of {1, ..., ¢, elements, we can rewrite gap(S) = >\, (|lg(z; — 1)]
1)+ >0, (6; —1). As rTrie(S) < trie(S) < 2gap(S), and rTrie(S) < trie(S) —
iy (2¢; — 41g¢;) (Equation 1), it holds that

1:11

CPM 2023

1:12

Trie-Compressed Adaptive Set Intersection

rTrie(S) < trie(S Z 20, — 41g¥;)

=1
§2(i(ug(zﬁl)J+1)+Z(€rl Z 20; — Algt;)
=1 3 =1
_22 g (z —1)] +1) —|—4Zlg€ =2(rle(S —I—Zlgé

=1

proving item 1. Items 2 and 3 can be proved similarly from items 2 and 3 of Lemma 4. <«

In our compact representation, we encode a full-subtree cover node using 00. Recall that
00 is an invalid codeword, so we use it as a special mark. See Figure 5 for an illustration.

Given a query Q = {iy,...,ix} C [1..N], the procedure to compute Z(Q) is similar to
that of Algorithm 2. The only difference is that if in a given trie bintrie(S;) we arrive at a
node encoded 00, every possible set element in the subtrie of the node belongs to S;. In other
words, the intersection within the current subtries is independent of .S;, so we can safely
temporarily exclude bintrie(S;) from the intersection and continue intersecting the remaining
tries. To implement this idea, we keep boolean flags fi,..., fi such that f; corresponds to
bintrie(.S;;). The idea is that at each point during the synchronized DFS traversal, only tries
whose flag is true participate in the intersection. Initially, we set f; < true, for 1 < i < k.
If, during the intersection process, we arrive at a node encoded 00 in bintrie(S;), we set
fi < false. When the recursion at a node encoded 00 in bintrie(S;) finishes, we set f; + true
again. If, at a given point, all tries have been temporarily excluded but one, let us say
bintrie(.S;), we only need to traverse the current subtree in S;, copying it verbatim to the
output. If this subtree contains nodes encoded 00, they will appear in the output. This way,
the maximal runs of successive elements in the output will be covered by nodes encoded 00.
This fact is key for the adaptive running time of our algorithm, as we shall see below.

We analyze our algorithm introducing the following variant of partition certificates.

» Definition 12. Given a query instance Q = {iy,...,ix} C [1..N], a run-partition certificate
for it is a partition of the universe [0..u) into a set of intervals Py (Q) = {I1,Is,...,Ip},
such that the following conditions hold:

1. Vo € Z(Q), 3; € Pi(Q), such that x € I; NI(Q)NI; =I;;

2. Vo ¢ Z(Q),3I; € Pyo(Q), such that x € I; N Jge€ Q,5,NI; =0.

Let & denote the size of the smallest run-partition certificate Pjo(Q) of Q. We call £ the run
alternation measure.

Item 2 is the same as for Barbay and Kenyon’s partition certificates, corresponding to
intervals of elements not in Z(Q). Item 1, on the other hand, corresponds to elements in
Z(Q) which, unlike Barbay and Kenyon certificates, are not necessarily covered by singletons:
our definition allows one to cover a run of successive elements in Z(Q) using a single interval.
Clearly, £ < 6 holds. Besides, although |Z(Q)| < § holds, in our case there can be query
instances such that & < |Z(Q)|. Figure 6 illustrates our definition for an intersection of 4
sets on the universe [0..15). Notice that £ = 5, whereas |Z(Q)| = 6 and 6 = 9.

We must also introduce a fourth type of node to our trie certificate definition of Section 3.
If for an internal node v of cert(Q) with path(v) = b, it holds that there is a node v; with
path(v;) = b in every bintrie(S;), ¢ € Q, and the subtries of all v;s is full, then v is called
an internal success node. It is important to note that every interval I; from item 1 of
Definition 12 is covered only by internal success nodes. Also, internal success nodes only
cover intervals from item 1 of Definition 12.

D. Arroyuelo and J. P. Castillo

Siy 718 91011 12 13 14| 15
Sy 5 6 78 9]10|11 12 13 14
Si;: 4 5 6 78 9 11 12 13 14
Siy 8§ 911011 12 13 14 | 15

Figure 6 A query instance Q = {S;,, Si,, Sis,Si, } and its smallest run-partition certificate
PL(Q) = {[0..7], [8..9], [10..10], [11..14], [15..15]} of size & = 5.

Our main result is stated in the following theorem:

» Theorem 13. Let S = {S1,...,Sn} be a family of N integer sets, each of size |S;| =
n; and universe [0..u). There exists a data structure able to represent each set S; using
2rTrie(S;)(1 + o(xTrie(S;))) bits, such that given a query Q = {i1,...,ix} C [1..N], the
intersection I(Q) = N;coS; can be computed in O(k&lg (u/€)) time, where £ is the run
alternation measure of Q.

Proof. Consider the smallest run-partition certificate Py(Q) = {I1,...,I¢} of universe
[0..u), such that |I;] = L; for i = 1,...,&. Let us cover these ¢ intervals with as many
nodes of the smallest cert(Q) as possible. As we already saw in the proof of Theorem 8, all
intervals I; such that I; N Z(Q) = 0 are covered by at most O(lg L;) nodes in cert(Q). We
now prove the same for intervals I; C 7 (Q), which are covered by internal success nodes of
cert(Q). The only thing to note is that our algorithm stops as soon as it arrives to an internal
success node. As there can be O(Ig L;) such cover nodes, universe [0..u) can be covered by
O(lgu + Ele lgL;) =O(lgu + Zle lg(u/€)) nodes, hence cert(Q) has O(&1g(u/€)) nodes
overall. The result follows from the fact that at each node the algorithm runs in time

O(k). <

6 Implementation

We implemented bit vectors By, ..., By in plain form using class bit_vector<> from the sdsl
library [27]. We support ranky on them using different data structures to obtain the following
schemes. (trie v, rTrie v): the variants defined in Section 4 and 5, respectively, using

rank_support_v for ranky. It uses ~25% extra space on top of the bit vector, supporting
ranky in O(1) time. (trie v5, rTrie v5): use rank_support_v5, requiring ~6.25% extra

space on top of the bit vectors, supporting ranky in O(1) time. This alternative is smaller,
yet slower in practice. (trie IL, rTrie IL): use rank_support_il, aiming at reducing the

number of cache misses to compute rank;. We use block size 512, requiring ~12.5% extra
space on top of the bit vectors, while supporting rank; in O(1) time.

Most state-of-the-art alternatives we compare with do not support operation rank(S, x).
So, to be fair, we do not store any ranky data structure for the last-level bit vector By. Recall
that rank(S, z) is equivalent to a ranky on the corresponding position of By. We implemented
Algorithm 2 on our compact trie data structures, following the descriptions from Sections 4
and 5 very closely. We implemented, however, two alternatives for representing the output:
(1) the binary trie representation, and (2) the plain array representation. In our experiments
we will use the latter, to be fair: all testes alternatives produce their outputs in plain form.

We also implemented a simple multithreaded version of our algorithm. Let ¢ denote
the number of available threads. Then, we define ¢ = |lgt|. Our algorithm proceeds as
in Algorithm 2, generating a binary trie of height ¢ (that we will call top trie), with at
most t leaves. Then, we execute Algorithm 2 again, this time in parallel, with each thread

1:13

CPM 2023

1:14

Trie-Compressed Adaptive Set Intersection

starting from a different leaf of the top trie. Each thread generates its own output in parallel,
using our compact trie representation. Once all threads finish, we concatenate these tries to
generate the final output. We just need to count, in parallel, how many nodes there are in
each level of the trie. Then, we allocate a bit vector of the appropriate size for each level,
where each thread will write its own part of the output in parallel. This simple approach does
not guarantees load balancing among threads, however it works relatively well in practice.
Our source code and instructions to replicate our experiments are available at https:
//github.com/jpcastillog/compressed-binary-tries.

7 Experimental Results

We experimentally evaluate our approaches on a server with an i7 10700k CPU, 8 cores
and 16 threads at 4.70 GHz, 32 GB of RAM (DDR4-3.6GHz) running in dual channel, and
Ubuntu 20.04 LTS OS. Our implementation is developed in C++, compiled with g++ 9.3.0
and optimization flags -03 and -march=native.

In our tests, we used families of sets corresponding to inverted indexes of three standard
document collections: Gov2 [17], ClueWeb09 [1], and CC-News [38]. For Gov2 and ClueWeb09
collections, we used the freely-available inverted indexes and query logs by Daniel Lemire
(see [34] for details), corresponding to the URL-sorted document enumeration [48] (which
tends to yield runs of successive elements in the sets). The query log contains 20,000 random
queries from the TREC million-query track (1IMQ). Each query has at least 2 query terms.
Also, each term is in the top-1M most frequently queried terms. For CC-News we use
the freely-available inverted index by Mackenzie et al. [38] in Common Index File Format
(CIFF) [37], as well as their query log of 9,666 queries. Table 1 shows a summary of statistics
of the collections. In all cases, we only keep sets with at least 4,096 elements.

Table 1 Dataset summary and average space usage (in bits per integer, bpi) for different
compression measures and baseline representations.

Gov2 ClueWeb09 CC-News
Lists 57,225 131,567 79,831
Integers 5,509,206,378 14,895,136.282 18,415,151,585
U 25,205,179 50,220,423 43,495,426
Mg u] 25 26 26
gap(S) 2.25 3.25 3,70
rle(S) 1.99 3.33 4,23
trie(S) 3.48 4.56 5,18
rTrie(S) 2.51 4.00 5,12
Elias ~ 3.71 5.74 6.81
Elias § 3.64 5.40 6.69
Fibonacci 3.90 5.35 6.09
Elias v 128 4.07 6.10 7.05
Elias § 128 4.00 5.77 7.7
Fibonacci 128 4.26 5.71 6.45
rrr_vector<> 11.82 19.94 11.29

sd_vector<> 8.45 8.52 7.17

https://github.com/jpcastillog/compressed-binary-tries
https://github.com/jpcastillog/compressed-binary-tries

D. Arroyuelo and J. P. Castillo

As baseline, Table 1 also shows the average bit per integer (bpi) for different compression
measures on our tested set collections. We also show the average bpi for different integer
compression approaches, namely Elias v and § [22], Fibonacci [25], rrr_vector<> [47], and
sd_vector<> [42], all of them from the sdsl library [27]. In particular, Elias v, 4, and
Fibonacci codes are known for yielding highly space-efficient set representations in IR indexing
[15], hence they are a strong baselines for comparison. We show a plain version of them, as well
as variants with blocks of 128 integers. The latter are needed to speed up decoding. However,
these approaches are relatively slow to be decoded [15, See Table 6.9], and hence yield higher
intersection times. On the other hand, sd_vector<> uses nlg (u/n) + 2n + o(n) bits to
encode a set of n elements and universe [0..u). Finally, rrr_vector<> uses B(n,u) + o(u)
bits of space. As it can be seen, the o(u)-bit term yields a higher space usage.

Next, we compare our approaches with state-of-the-art set compression alternatives
available at the project Performant Indexes and Search for Academia ! (PISA) [39]:

IPC: the Binary Interpolative Coding approach by Moffat et al. [40]. This is a highly

space-efficient approach, with a relatively slow processing performance [15, 40].

PEF Opt: the highly competitive approach by Ottaviano and Venturini [43].

0ptPFD: The Optimized PForDelta approach by Yan et al. [53].

SIMD-BP128: The highly efficient approach by Lemire and Boytsov [35], aimed at decoding

billions of integers per second using vectorization capabilities of modern processors.

Simplel16: The approach by Zhang at al. [54], a variant of the Simple9 approach [5] that

combines a relatively good space usage and an efficient intersection time.

VarintGB: The approach used in Google and presented by Dean [19].

Varint-G8IU: by Stepanov et al. [49], using SIMD instructions to speed-up set processing.

We also compared with the following approaches, available from their authors:
Roaring: the compressed bitmap approach by Lemire et al. [36], widely used as indexing
tool on several systems and platforms [3]. Roaring bitmaps are highly competitive,
leveraging modern CPU hardware architectures. We use the code from the authors [2].
RUP: The recent recursive universe partitioning approach by Pibiri [45], using also SIMD
instructions to speed up processing. We use the code from the author [44].

Table 2 shows the average experimental intersection time (in milliseconds per query) and
space usage (in bits per integer) for all the alternatives tested. Figure 7 (in the Appendix)
shows the same results, using space vs. time plots. Our approaches introduce competitive
trade-offs, as follows:

Results for Gov2: rTrie uses 1.166—1.329 times the space of PEF, the former being 1.549—
2.442 times faster. rTrie uses 0.481-0.548 times the space of Roaring, the former being
up to 1.415 times faster. Finally, rTrie uses 0.837-0.954 times the space of RUP, the
former being up to 1.428 times faster.

Results for ClueWeb09: rTrie uses 1.188-1.361 times the space of PEF, the former being
2.117-3.316 times faster. Also, rTrie uses 0.551-0.631 times the space of Roaring, the
former being 1.221-1.913 times faster. Finally, rTrie uses 0.823-0.943 times the space of
RUP, the former being 1.391-2.178 times faster.

Results for CC-News: for this dataset, the resulting inverted lists have considerably less
runs, hence the space usage of trie and rTrie are about the same. However, trie is
faster than rTrie, as the code to handle runs introduces an overhead that does not pay

! https://github.com/pisa-engine/pisa

1:15

CPM 2023

https://github.com/pisa-engine/pisa

1:16

Trie-Compressed Adaptive Set Intersection

Table 2 Average intersection time (milliseconds per query) and space usage (in bits per integer)
for all alternatives tested.

Gov2 ClueWeb09 CC-News
Data Structure Space Time Space Time Space Time
IPC 3.34 8.66 5.15 30.18 5.87 68.98
Simplel6 4.65 2.44 6.72 8.66 6.88 19.74
OptPFD 4.07 2.15 6.28 7.79 6.50 11.80
PEF Opt 3.62 1.88 5.85 6.50 5.80 17.33
VarintGB 10.80 1.43 11.40 7.34 11.04 12.38
Varint-G8IU 9.97 1.38 10.55 5.25 10.24 12.09
SIMD-BP128 6.07 1.29 8.98 4.47 7.36 15.90
Roaring 8.77 1.09 12.62 3.75 9.86 5.56
RUP 5.04 1.10 8.44 4.27 8.41 5.44
trie (v5) 518 121 746 281 877 872
trie (IL) 541 106 7.83 242 930 7.46
trie (v) 5.85 0.77 8.50 1.64 9.99 5.21
rTrie (v5) 422 122 695 307 873 9.74
rTrie (IL) 4.42 1.10 7.31 2.62 9.16 8.13
rTrie (v) 4.81 0.77 7.96 1.96 9.95 6.09

off in this case. So, we will use trie to compare here. It uses 1.512-1.722 times the space
of PEF, the former being 1.987-3.326 times faster. trie uses 0.889-1.013 times the space
of Roaring, the former being up to 1.067 times faster. Finally, trie uses 1.043-1.188
times the space of RUP, the former being up to 1.044 times faster.

We can conclude that in all tested datasets, at least one of our trade-offs is the fastest
and competitive in space usage, outperforming the highly-engineered ultra-efficient set
compression techniques we tested.

8 Conclusions

Trie partition certificates, the main concept we introduced as an alternative to existing
certificates by Demaine et al. [20] and Barbay and Kenyon [12], allowed us to introduce our
main contributions. In particular, we were able to prove that Trabb-Pardo’s intersection
algorithm [50] works in O(kdlg (u/0)) time, where ¢ is the alternation measure of the query
instance [12]. Thus, Trabb-Pardo’s intersection algorithm was likely the first adaptive
intersection algorithm that ever existed, appearing about 22 years before Demaine et al.’s
adaptive approach. The lack of analysis on this algorithm (the original author only analyzed
his algorithm in the average case) might explain the lack of consideration regarding this
algorithm, in particular in practice. Motivated by this result, we introduced compressed
representations of integer sets preserving the running time of Trabb-Pardo’s algorithm,
and even improving it. Summarizing, our proposals: (1) use compressed space usage, (2)
have adaptive intersection computation time, and (3) have highly competitive practical
performance.

Multiple avenues for future research are open now. For instance, novel data structures
supporting operation rank; have emerged recently [32]. These offer interesting trade-offs,
using less space than then ones we used, with competitive operation times. Another interesting

D. Arroyuelo and J. P. Castillo

line is that of alternative binary trie compact representations. E.g., a DFS representation [13]
(rather than BFS, as the one used in this paper), which would potentially reduce the number
of cache misses when traversing the tries. Finally, our representation would support dynamic
sets (where insertion and deletion of elements are allowed) if we use dynamic binary tries [6].

—— References

1
2
3

10

11

12

13

14

15

16
17

18

19

20

21

The Lemur Project. https://lemurproject.org/. Accessed March 14, 2023.

Roaring bitmaps. https://github.com/RoaringBitmap/CRoaring. Accessed March 14, 2023.
Roaring bitmaps: A better compressed bitset. https://roaringbitmap.org/. Accessed March
14, 2023.

A.V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

V. Ngoc Anh and A. Moffat. Inverted index compression using word-aligned binary codes.
Information Retrieval, 8(1):151-166, 2005.

D. Arroyuelo, P. Davoodi, and S. Rao Satti. Succinct dynamic cardinal trees. Algorithmica,
T4(2):742-777, 2016.

D. Arroyuelo, J. Fuentes-Sepiilveda, and D. Seco. Three success stories about compact data
structures. Communications of the ACM, 63(11):64-65, 2020.

D. Arroyuelo and R. Raman. Adaptive succinctness. Algorithmica, 84(3):694-718, 2022.

R. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Proc. 15th Annual
Symposium on Combinatorial Pattern Matching (CPM), LNCS 3109, pages 400-408. Springer,
2004.

R. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection algorithm for
sorted sequences. In Proc. 12th International Conference on String Processing and Information
Retrieval (SPIRE), LNCS 3772, pages 13-24. Springer, 2005.

J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 390-399. ACM /SIAM,
2002.

J. Barbay and C. Kenyon. Alternation and redundancy analysis of the intersection problem.
ACM Transations on Algorithms, 4(1):4:1-4:18, 2008. doi:10.1145/1328911.1328915.
David Benoit, Erik D. Demaine, J. lan Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275-292, 2005.
doi:10.1007/s00453-004-1146-6.

P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union-intersection expressions. In Proc.
18th International Symposium on Algorithms and Computation (ISAAC), LNCS 4835, pages
739-750. Springer, 2007.

S. Biittcher, C. Clarke, and G. Cormack. Information Retrieval: Implementing and Fvaluating
Search Engines. MIT Press, 2010.

D. Clark. Compact PAT trees. PhD thesis, University of Waterloo, 1997.

C. Clarke, F. Scholer, and I. Soboroff. TREC terabyte track. https://www-nlpir.nist.gov/
projects/terabyte/. Accessed March 14, 2023.

H. Cohen and E. Porat. Fast set intersection and two-patterns matching. Theoretical Computer
Science, 411(40-42):3795-3800, 2010. doi:10.1016/j.tcs.2010.06.002.

J. Dean. Challenges in building large-scale information retrieval systems: invited talk. In
Proc. 2nd ACM International Conference on Web Search and Data Mining (WSDM’09), pages
1-1, 2009.

E. Demaine, A. Lopez-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and differences.

In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743-752. ACM/SIAM, 2000.

B. Ding and A. Kénig. Fast set intersection in memory. Proc. VLDB Endowment, 4(4):255-266,
2011. doi:10.14778/1938545.1938550.

1:17

CPM 2023

https://lemurproject.org/
https://github.com/RoaringBitmap/CRoaring
https://roaringbitmap.org/
https://doi.org/10.1145/1328911.1328915
https://doi.org/10.1007/s00453-004-1146-6
https://www-nlpir.nist.gov/projects/terabyte/
https://www-nlpir.nist.gov/projects/terabyte/
https://doi.org/10.1016/j.tcs.2010.06.002
https://doi.org/10.14778/1938545.1938550

1:18

Trie-Compressed Adaptive Set Intersection

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2):194-203, 1975.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 6th Edition. Pearson, 2011.
L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression:
Experiments with compressing suffix arrays and applications. ACM Transactions on Algorithms,
2(4):611-639, 2006.

A. S. Fraenkel and S. T. Klein. Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64(1):31-55, 1996. doi:10.1016/0166-218X(93)
00116-H.

T. Gagie, G. Navarro, and S. J. Puglisi. New algorithms on wavelet trees and applications to
information retrieval. Theoretical Computer Science, 426:25-41, 2012.

S. Gog and M. Petri. Optimized succinct data structures for massive data. Software: Practice
and Ezperience, 44(11):1287-1314, 2014.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841-850.
ACM/SIAM, 2003.

A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed data structures: Dictionaries
and data-aware measures. Theoretical Computer Science, 387(3):313-331, 2007.

G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th Annual Symposium on
Foundations of Computer Science (FOCS), pages 549-554. IEEE Computer Society, 1989.
doi:10.1109/SFCS.1989.63533.

S. T. Klein and D. Shapira. Searching in compressed dictionaries. In Proc. Data Compression
Conference (DCC), page 142. IEEE Computer Society, 2002.

F. Kurpicz. Engineering compact data structures for rank and select queries on bit vectors. In
Proc. 29th International Symposium on String Processing and Information Retrieval (SPIRE),
LNCS 13617, pages 257-272. Springer, 2022.

R. M. Layer and A. R. Quinlan. A parallel algorithm for n-way interval set intersection. Proc.
IFEEE, 105(3):5427551, 2017. doi:10.1109/JPR0OC.2015.2461494.

D. Lemire. Document identifier data set. https://lemire.me/data/integercompression2014.
html. Accessed March 14, 2023.

D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization.
Software: Practice and Ezperience, 45(1):1-29, 2015.

D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O’Hara, F. Saint-Jacques, and G. Ssi Yan Kai.
Roaring bitmaps: Implementation of an optimized software library. Software: Practice €
Ezperience, 48(4):867-895, 2018. doi:10.1002/spe.2560.

J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia, M. Siedlaczek, A. Trotman, and
A. de Vries. Supporting interoperability between open-source search engines with the common
index file format, 2020. doi:10.48550/ARXIV.2003.08276.

J. M. Mackenzie, R. Benham, M. Petri, J. R. Trippas, J. S. Culpepper, and A. Moffat.
CC-News-En: A large english news corpus. In Proc. 29th ACM International Conference on
Information and Knowledge Management (CIKM), pages 3077-3084. ACM, 2020.

A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: performant indexes and search
for academia. In Proc. of the Open-Source IR Replicability Challenge co-located with 42nd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 50-56, 2019.

A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression. Inform-
ation Retrieval, 3(1):25-47, 2000.

G. Navarro. Compact Data Structures — A Practical Approach. Cambridge University Press,
2016.

D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In Proc.
of 9th Workshop on Algorithm Engineering and Ezperiments (ALENEX), pages 60-70, 2007.

https://doi.org/10.1016/0166-218X(93)00116-H
https://doi.org/10.1016/0166-218X(93)00116-H
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/JPROC.2015.2461494
https://lemire.me/data/integercompression2014.html
https://lemire.me/data/integercompression2014.html
https://doi.org/10.1002/spe.2560
https://doi.org/10.48550/ARXIV.2003.08276

D.

43

44

45

46

47

48

49

50

51

52

53

54

55

A

Intersection time [millisecs/query]

Arroyuelo and J. P. Castillo

G. Ottaviano and R. Venturini. Partitioned elias-fano indexes. In Proc. of 37th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 273-282,
2014.

G. E. Pibiri. Sliced indices. https://github.com/jermp/s_indexes. Accessed March 14,
2023.

G. E. Pibiri. Fast and compact set intersection through recursive universe partitioning. In
Proc. Data Compression Conference (DCC), pages 293-302. IEEE, 2021.

G. E. Pibiri and R. Venturini. Techniques for inverted index compression. ACM Computing
Surveys, 53(6):125:1-125:36, 2021. doi:10.1145/3415148.

R. Raman, V. Raman, and S. Rao Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms, 3(4):43,
2007.

F. Silvestri. Sorting out the document identifier assignment problem. In Proc. of 29th Furopean
Conference on IR Research (ECIR), LNCS 4425, pages 101-112. Springer, 2007.

A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi. SIMD-based
decoding of posting lists. In Proc. 20th ACM International Conference on Information and
Knowledge Management (CIKM’11), pages 317-326, 2011.

L. Trabb-Pardo. Set Representation and Set Intersection. PhD thesis, STAN-CS-78-681,
Department of Computer Science, Stanford University, 1978. D. E. Knuth, advisor.

T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Nicole Schweikardt,
Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International Conference on
Database Theory (ICDT), pages 96-106. OpenProceedings.org, 2014.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing Documents
and Images, 2nd Edition. Morgan Kaufmann, 1999.

H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with optimized
document ordering. In Proc. 18th International Conference on World Wide Web (WWW),
pages 401-410, 2009.

J. Zhang, X. Long, , and T. Suel. Performance of compressed inverted list caching in search
engines. In Proc. 17th International Conference on World Wide Web (WWW), pages 387-396,
2008.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2):6, 2006. doi:10.1145/1132956.1132959.

Plots of Experimental Results
Intersection Queries, Gov2 Intersection Queries, ClueWeb09 Intersection Queries, CC-News
ol T T sl T T T T] T T 3 T T
8 B
60 b
6 | 20f 1
40 B
4+ -
O 10 1 20f] 1
2F <>O B Q@ ® ® < o X o®
g X O ® AX
7 + g + RO
00 2 4 6 8 10 00 2 4 6 8 10 12 00 2 4 6 8 10
Space [bpi] Space [bpi] Space [bpi]

() 1pPC D Simplel6 O OptPFD <> PEF Opt ® VarintGB @ Varint-G8IU X SIMD-BP128 + Roaring
S RUP A 1Trievs A\ rTrie IL 512 A\ rTriev Y/ trievs Y/ trieIL512 Y/ triev

Figure 7 Space vs. time trade-off for all alternative tested on the 3 datasets.

1:19

CPM 2023

https://github.com/jermp/s_indexes
https://doi.org/10.1145/3415148
https://doi.org/10.1145/1132956.1132959

	1 Introduction
	2 Preliminaries and Related Work
	2.1 Operations rank and select
	2.2 Set Compression Measures
	2.2.1 The gap(S) Compression Measure
	2.2.2 The rle(S) Compression Measure
	2.2.3 The trie(S) Compression Measure

	2.3 Adaptive Set Intersection Algorithms

	3 Trie Intersection Certificates: A Revisit to Trabb-Pardo Algorithm
	4 Compressed Intersectable Sets
	5 Compressing Runs of Elements
	6 Implementation
	7 Experimental Results
	8 Conclusions
	A Plots of Experimental Results

