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Abstract
A multistage graph problem is a generalization of a traditional graph problem where, instead of a
single input graph, we consider a sequence of graphs. We ask for a sequence of solutions, one for each
input graph, such that consecutive solutions are as similar as possible. There are several theoretical
results on different multistage problems and their complexities, as well as FPT and approximation
algorithms. However, there is a severe lack of experimental validation and resulting feedback. Not
only are there no algorithmic experiments in literature, we do not even know of any strong set of
multistage benchmark instances.

In this paper we want to improve on this situation. We consider the natural problem of multistage
shortest path (MSP). First, we propose a rich benchmark set, ranging from synthetic to real-world
data, and discuss relevant aspects to ensure non-trivial instances, which is a surprisingly delicate
task. Secondly, we present an explorative study on heuristic, approximate, and exact algorithms
for the MSP problem from a practical point of view. Our practical findings also inform theoretical
research in arguing sensible further directions. For example, based on our study we propose to focus
on algorithms for multistage instances that do not rely on 2-stage oracles.
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1 Introduction

In multistage problems, as introduced in their current form by [13,18], we are interested in
solving some problem not on a single instance, but on a sequence of instances (the stages)
which correspond to different points in time. Such problems arise, e.g., when a certain task
has to be performed multiple times at discrete points in time, but the underlying instance
(in our case a graph) has received several modifications between two such time points. Thus,
one typically expects two succeeding stages to be somewhat similar overall, but certainly
more significantly different than being attained from a single graph operation like adding or
deleting an edge. Most importantly, additionally to the original problem’s objective per stage
(the stage-wise objective), we also aim to maximize the similarity between the individual
stage’s solutions – the transition quality.

Having two distinct optimization goals at hand, one typically considers a weighted sum
of both measures to allow trade-offs between the quality of the individual solutions and the
similarity of those solutions [1–4, 15–17, 19]. Sometimes it is desired to guarantee optimal
solutions in each stage, as first motivated in [8]; then the goal is to maximize the transition
qualities by picking a suitable optimal solution (out of the set of possible optimal solutions)
per stage. In either case, one may not want to yield the largest possible transition quality
between two stages if this incurred an exorbitant quality decrease in other stage transitions.
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14:2 Multistage Shortest Path: Instances and Practical Evaluation

Also note that our problem notion is different from many other scenarios on dynamic graphs,
where the goal is to – possibly after each graph modification – update a solution as fast as
possible, not (directly) caring about the specific amount of changes to the solution.

Interestingly, most polynomial-time solvable graph problems (such as shortest paths,
matchings, minimum cuts, etc.) yield NP-complete problems in a multistage setting: this
often already occurs when only two stages are considered, and independent on whether
one restricts themselves to optimal solutions per stage or not [7, 19]. There is already
some theoretical research on several variants of this problem framework; however, there is
significant lack of practical evaluation. In fact, it seems that there have been no practical
evaluations on any multistage graph problem so far. In this paper, we want to improve on
this situation.

To this end, we consider the Multistage Shortest Path (MSP) problem, which seems
to probably be the most practically relevant multistage problem. MSP was first proposed
in [18] and introduced with a trade-off objective in [17]. We discuss it here in the setting
where we only allow optimal solutions per stage: Given an ordered set of edge-weighted
graphs (the stages) and a node pair (s, t), find a shortest s-t-path in each stage such that
the subsequent paths are as similar as possible (see Section 2 for a formal definition). For
example in a transportation scenario, it might be necessary but expensive to prepare each
road segment before using it. Thus, we want a collection of shortest paths that allows us to
reuse as many segments as possible. In a communication scenario, we prefer to use recently
established channels, but not at the cost of sacrificing transfer speed. If the optimality
requirement per stage appears too restricting, we point out that one can easily relax it in
practice by altering the notion of what a shortest path is, e.g., by rounding edge weights so
that all paths of reasonably similar length are considered optimal.

While the usual shortest s-t-path problem is long known to be efficiently solvable using
Dijkstra’s algorithm [11], MSP was shown to be NP-hard even for unweighted instances via a
reduction from 3Sat [17]. Although not stated explicitly, the proof can easily be adapted to an
approximation-preserving reduction from Max-2Sat which shows that, unless P = NP, MSP
does not admit a PTAS nor a constant-factor approximation with factor better than 21/22 [20],
even when restricted to only two stages. In [17], several similarity and dissimilarity measures
were considered, and several results w.r.t. the parameterized complexity of MSP could be
established. The specific formulation above, with only truly shortest paths per stage, is
motivated by [8] and explicitly considered in [7] in the context of approximation algorithms.

Contribution. In this paper we improve on the state-of-the-art regarding practical algorith-
mics in the following two ways: First (Section 3), we propose the first rich benchmark sets
for a multistage graph problem. We take special care to avoid ad-hoc generation schemes and
parameterizations which, in case of MSP, would typically only yield rather trivial instances.
Instead, we devise several explicit measures of reasons for triviality and actively seek schemes
and parameterizations to avoid them. Secondly, we implemented and tested a set of heuristic,
approximate, and exact algorithms to tackle MSP in practice (Section 4), and we report on
our explorative study (Section 5). A focus of this study is to test the consistency between
theoretical results and their practical realization and use it as a source for identifying new
research questions.

Theoretical research suggests to improve on algorithms for the (formally already hard)
2-stage problem variant MSP|2, as we only know a single approximation algorithm (with
non-constant approximation ratio). The multistage variants with more than two stages can
reuse any 2-stage algorithm while weakening its approximation ratio only by the constant
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ratio of 1/2. Interestingly, we find that in practice MSP|2 problems are all rather simple to
solve, but neither the known approximation nor other heuristics yield satisfactory results
for general MSP. Thus, we propose that a promising step for theoretical research would
be to further investigate the intricacies of the true multistage setting instead of relying on
algorithms for a small constant number of stages.

The implementations will be part of the next release of the open-source (GPL) Open Graph
algorithms and Data structures Framework [6] (www.ogdf.net); all benchmark instances and
experimental data are available at https://tcs.uos.de/research/msp.

2 Definitions and Preliminaries

Given a graph G with positive edge weights w : E(G)→ R+, we encode a path P ⊆ E(G) as
an edge set and denote its path length by ℓ(P ) :=

∑
e∈P w(e). Given a query (s, t) ∈ V (G)2, a

shortest s-t-path is an s-t-path with minimum path length. In contrast, we may also consider
the number of hops (edges) |P | of a path P . The hop-distance h(s, t) is the smallest number
of hops over all s-t-paths.

Let [k] := {1, 2, ..., k}. We define a multistage graph1 Gτ = ⟨Gi, wi⟩i∈[τ ] as an ordered
sequence of graphs with positive edge weights over a common node set V , i.e., Gi = (V, Ei)
and wi : Ei → R+ for all i ∈ [τ ]. Each tuple (Gi, wi) is a stage, and Gτ has τ stages. Observe
that the weights of common edges may differ between stages.

▶ Definition 1 (Multistage Shortest Path (MSP)). Given a multistage graph Gτ and a
query (s, t) ∈ V 2, find a sequence P := ⟨Pi⟩i∈[τ ] of paths such that each Pi is a shortest
s-t-path in Gi and the transition quality Q(P) :=

∑
i∈[τ−1]|Pi ∩ Pi+1| is maximized.

If there is an upper bound T on the number of stages τ , MSP may be denoted by MSP|T .
As the problem is NP-hard, we may be interested in approximate solutions. The only

known approximation algorithms for MSP|2 and general MSP arise as special cases of a
general approximation framework [7], which in turn is a generalization of the approximation
for multistage matching [8]. We will briefly summarize the algorithms later in Sections 4.2
and 4.3. For now, we may only mention that the approximation ratio is dependent on
the intertwinement µ := maxi∈[τ−1] |Ei ∩Ei+1| of the multistage graph, i.e., the maximum
commonality between the edge sets of two succeeding stages. For MSP|2 and MSP the
algorithms yield approximation ratios of (2µ)−1/2 and (8µ)−1/2, respectively. While [7]
guarantees these ratios, their tightness cannot be deduced for arbitrary subgraph problems.
However, following the construction ideas of [8], it is simple to show the tightness of the ratio
(up to a small constant) for MSP and MSP|2.

Preprocessing. For a given query (s, t) ∈ V 2 and looking at any stage individually, we may
remove all its non-essential edges (i.e., edges that are not in any shortest s-t-path in that
stage) without altering the set of feasible solutions. We may also discard (arising) degree-0
nodes. This can be done efficiently, as given in Algorithm 1. Thus, we assume in the following
that this preprocessing is always performed before running the actual algorithms. A stage Gi

that has been preprocessed w.r.t. a query (s, t) has the following useful properties:
(i) Gi is a DAG with unique root s and unique sink t, and
(ii) for each node v ∈ V (Gi), all paths from s to v have the same length. The same holds

for all paths from v to t.

1 This term is also sometimes used for leveled graphs, whose nodes are partitioned into levels, and edges
join consecutive levels, see, e.g., [10]. That definition and results thereon are unrelated to our scenario.
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14:4 Multistage Shortest Path: Instances and Practical Evaluation

Algorithm 1 Preprocessing non-essential elements in an edge-weighted graph G=(V, E).

1 compute shortest path distances d(v) from s to each v ∈ V using Dijkstra’s algorithm
2 remove all edges {(u, v) ∈ E | d(u) + w(u, v) ̸= d(v)}
3 compute all nodes U with a path to t (via BFS from t with reversed edges)
4 remove all nodes V \ U

After the stage-wise preprocessing, both properties in particular also hold for the graph
induced by the intersection Ei ∩ Ei+1, for each i ∈ [τ − 1].

3 Benchmark Instances

Multistage problems have mostly been viewed from a theoretical perspective up to now, and
there are thus no established sets of stage-wise temporal instances available. Furthermore,
it turns out that acquiring and even generating reasonable instances is no easy feat: In
our investigations, we learned that most ad-hoc generation schemes typically lead to rather
trivial multistage instances. If there are only very few different (or even just one unique)
shortest paths per stage, there is not much room for transition optimization; if there are
several shortest paths but on very similar stages, chances are that a single solution path can
be chosen throughout all stages; if the stages become too dissimilar, such that they have
only few edges in common between shortest paths, it again becomes rather simple to select
shortest paths that agree in terms of these edges between subsequent stages.

An adversary may argue that such issues would go away if one switches to a trade-off
based objective function where the paths’ lengths are allowed to deviate from the optimum
in order to allow better transitions. But we disagree: Generating instances with only a
trade-off based objective function in mind would easily hide the fact that such instances may
become trivial for different balancing ratios between the two considered objective functions.
If, however, the instances are well-designed for our scenario with truly optimal shortest paths,
we expect them to be also interesting for trade-off based optimization. Thus, it is important
to discuss our benchmark generating procedure in more detail than is often done otherwise.
While we cannot guarantee that our instances are especially sensible for problems beyond
MSP, we hope that the underlying generation methods and considerations may be useful for
devising new instances for experimental studies on other multistage problems as well.

We consider four different types of benchmark instances, each with slightly different
focus and motivation (see Section 3.1), and ranging from highly synthetic to real-world
origins. After discussing schemes of obtaining MSP instances from underlying graphs in
Section 3.2, we discuss the complexities of identifying good parameters to obtain non-trivial
MSP instances in Section 3.3. Then, Section 3.4 presents the final technical parameterizations
of our benchmark sets and resulting instance properties.

3.1 Rationale for the Benchmark Scenarios
As discussed in Section 2, the query-specific preprocessing of MSP instances may yield vastly
smaller stages, and the preprocessed stages have a very specific structure. In particular, their
size is not necessarily related to the original instance size anymore. To obtain interesting
instances, a main goal is thus to generate instances with a reasonable number of shortest
paths with a reasonable number of hops each, so that the preprocessing does not already
essentially solve the instance.
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To this end, we start with generating a highly synthetic benchmark set grid, which consists
of long grid graphs (i.e., two-dimensional grids where one dimension is significantly smaller
than the other). For a query (s, t) where s (t) is the lower left (upper right, respectively)
corner of the grid, these graphs (assuming unit edge weights) already resemble preprocessed
MSP instances. Further, in contrast to more quadratically-shaped grid graphs, even relatively
small modifications to the graphs are likely to yield non-trivial instances.

The benchmark set geom contains nearest-neighbor graphs [14], generated by a random
point set in the Euclidean plane. Such random graphs allow for multiple shortest paths of
reasonable lengths. In contrast, other well-established randomized generation paradigms like
Erdős-Renyi graphs or Barabási-Albert graphs would only yield very small diameters [5, 9].
Further, our geometric graphs have the additional benefit of (i) naturally occurring edge
weights, and (ii) if one stage is generated from the previous stage by adding some random
displacement to each node, they also provide a natural temporal relationship between
consecutive stages.

The probably most natural application for shortest path queries is navigation in road
networks. However, readily available data sets do not include temporal data suitable for MSP.
Our benchmark set hybr thus uses real-world road networks as the underlying graph data,
for which we artificially generate temporal differences between the stages. Our modification
methods (see Section 3.2) are mainly motivated by this scenario, but we use the same
modification methods for the previous two benchmark sets as well.

Finally, there exist real-world data sets from other applications that include time-stamped
edges. Under those, we are mainly interested in email communication networks (“who wrote
to whom, and when?”) or human contact networks (“who was near whom, and when?”), as
we can interpret these data in the context of the MSP problem: We want to quickly pass
some information from source to target, while preferring interpersonal relations that have
been used recently. We collect such instances in our benchmark set real.

3.2 Multistage Instance Generation
Modification variants. Necessarily, the stages of a multistage graph need to differ to
compose a non-trivial instance. The real instances already have differing stages; for grid,
geom, and hybr base instances we can use either of the following three modification schemes
(applied to each stage independently) to obtain multiple differing stages. Additionally, we
can also obtain differing stages for the geom instances by perturbing the node coordinates
between stages to simulate random walks of the nodes (see Section 3.4). Keep in mind that
these modifications are performed on the original graph, prior any query knowledge and thus
prior to any preprocessing.
Edge deletion: Regardless of the interpretation of the instance, there is a plethora of

different reasons to motivate the absence of edges in some stages. As simple examples,
road closures in road networks or link failures in computer networks can lead to their
temporary unavailability. Given a modification ratio λE ∈ [0, 1), we remove ⌊λE · |Ei|⌋
many edges from the respective stage, chosen uniformly at random.

Node deletion: Removing arbitrarily chosen edges might (i) not alter the set of shortest
paths too much and (ii) not describe all real-world scenarios too well, as the reason for
an edge absence can have some local impact on surrounding edges as well. A simple
method to generate local events of slightly larger impact is to remove nodes together
with all incident edges – this occurs, e.g., if some road intersection is blocked, or if some
server goes offline in a communication network. As above, we use a modification ratio
λV ∈ [0, 1) and remove ⌊λV · |V |⌋ many nodes from the respective stage, chosen uniformly
at random.

SAND 2023
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Weight scaling: Some incidents (e.g., construction sites) do not render the respective node
or edge completely unusable but rather increase the cost for their usage. This is typically
no isolated effect but also affects the neighborhood of said graph element – the closer the
proximity, the larger the effect. We model this by selecting a random node v and sorting
Ei by hop-distance from v; the closer an edge is to v, the more we scale up its weight.
The following precise parameters were selected subject to the discussion in Section 3.3:
the weights of the ⌊|Ei|/8⌋ closest edges are multiplied by a factor of 4; the next ⌊|Ei|/4⌋
edges are multiplied by a factor of 2. Observe that if edges have exponential weights
(base 2, see below) they retain this property after the scaling.

Query selection. While the grid instances are constructed with specific extremal queries
in mind, we need to choose queries for the other three benchmark sets. To find multiple
queries, each with relatively long shortest paths, we use the following randomized process.
Consider some stage Gi with the least number of edges. Let h′(v, w) := h(v, w) denote the
hop-distance from v to w in Gi if they are in a common component, and h′(v, w) := −1
otherwise. Let h∗(v) := maxu∈V h′(v, u) and H(v) := {w ∈ V | h′(v, w) ≥ 3/4 · h∗(v)} denote
a set of distant nodes from v. Starting from a random node c ∈ V in the largest connected
component of Gi, we choose the source s uniformly at random from H(c). The target t is in
turn chosen uniformly at random from H(s). If the query is not feasible for all stages, it is
rejected.

3.3 Quality Criteria and Triviality Considerations
To differentiate interesting from trivial instances, multiple aspects have to align. These are
specifically derived from our view on the MSP-problem but might also be generalized to
classify instances for other multistage problems.

Triviality in a stage. Simple kinds of trivialities can be pinpointed to a specific stage.
Few paths: Let N denote the number of shortest s-t-paths in a single stage Gi. If N = 0,

node t is not reachable from s and the instance could be split into two independent
sub-instances before and after the i-th stage. Alternatively, if a practical application
would rather incentivize similarity to the last feasible solution, we could simply remove
the infeasible stage. Similarly, if N = 1, the shortest s-t-path is unique in stage i, and we
can split the instance at this stage. The case N ≤ 1 is trivial to check after preprocessing,
since then Ei is either empty or a single path. We may discard instances with such
a stage for experimental purposes. For N ≥ 2, we consider the ratio |Ei|/hi(s, t) as a
measure to estimate the non-triviality of stage Gi. Here, hi is the hop-distance in Gi,
easily computable during preprocessing.

Short paths: We may disregard instances with too small hi, as defined above.

Triviality in a transition. Trivialities arising in transitions between stages may be harder
to spot. Furthermore, even after understanding how to generate instances with reasonable
stage-wise non-triviality, finding generation parameters that yield transition-wise non-trivial
instances turned out to be much more fiddly and required more computational effort. E.g.,
to compute (or estimate) the measures below, we require optimal (or heuristic) solutions.
Section 4.1 discusses a method to (in practice) acquire an optimal solution ⟨Pi⟩i∈[τ ] in
reasonable enough time by the use of an ILP.
Small intersection: If, after preprocessing, the intersection E′ := Ei∩Ei+1 between two con-

secutive stages is too small or poorly structured (e.g., if E′ consists of mostly disconnected
edges), all of E′ might be in an optimal solution simultaneously, i.e., Ei∩Ei+1 ⊆ Pi∩Pi+1.
In this case, already the simplest greedy algorithm (see Section 4.2) would always find an
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Figure 1 Triviality measures for 2-stage geom instances.

optimal solution. We introduce the triviality measure tS := |Pi∩Pi+1|
|Ei∩Ei+1| which compares the

optimal transition quality to the intersection size. If tS = 1, the transition is trivial; if tS
is close to 0, this triviality aspect plays no important role.

Large intersection: If, on the other hand, Ei ∩ Ei+1 is too large, each solution edge may
always also be an intersection edge, i.e., Pi = Pi ∩ Ei+1 for any shortest path Pi in Gi

(and similarly for Pi+1). We introduce the triviality measure tL := 2·|Pi∩Pi+1|
|Pi|+|Pi+1| , comparing

the optimal transition quality with the mean number of hops of the respective shortest
paths. If tL = 1, the transition is trivial; if tL is close to 0, this aspect is not important.

Small transition quality: Both triviality measures tS and tL are not very expressive if the
optimal transition quality |Pi ∩ Pi+1| is low.

Identifying non-trivial instances. The selection of the underlying graphs (and/or their
generation methods) allows us to control the non-triviality within single stages in a reasonable
and predictable manner. However, controlling the transition-based triviality (mainly tS and tL)
turns out to be much more challenging. This is furthered by the fact that for a nice set
of benchmarks, we would like to have similar parameterizations over all instance classes.
To this end, we required multiple rounds of generating many instances starting with vastly
diverse parameter selections until honing in with fine-grained parameter differences. While
this may seem straight-forward on first sight, there are sometimes only very small ranges of
suitable parameter values, and they may vastly drift or even disappear by slight changes to
other parameters due to the interdependencies of the parameters.

We exemplarily discuss the effects on tS and tL by varying the modification parameters
for geom. See Figure 1 for a visualization, where instances (points in the figure) that are
trivial due to a too small (large) intersection tend to the horizontal (vertical, respectively)
axis. Consider neighborhood size k = 10. For small λE , the intersection is mostly too large,
causing low 1− tL; for larger λE , the point set moves down and to the right, rendering more
instances to have low 1− tS. This plausible effect is evident for all instance sets, albeit with
large discrepancy for sensible values of λE depending on, for example, k: while λE = 0.4 is
a sensible choice for k = 10, k = 50 would benefit from a higher λE value. Even more so,
for some instance parameterizations (e.g., k = 5 and λV = 0.4), both tS and tL are likely to
trigger. Thus, the selected parameters are a compromise between comparability of parameter
values and non-triviality w.r.t. all of the above triviality considerations.

3.4 Final Parameterization and Generation Details
After multiple rounds of investigations to identify reasonable and consistent parameterizations
that yield non-trivial instances, we finally arrive at the following generation settings. Table 1
shows key figures of the generated multistage instances, given as averages over the indicated in-
stance classes. See the appendix for more detailed tables. The full set of benchmark instances,
as well as all experimental results, can be found at https://tcs.uos.de/research/msp.
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Table 1 Instance characteristics, grouped by relevant parameters. Here, n and m (n′ and m′)
are the mean number of nodes and edge before (after, respectively) preprocessing, always understood
as the union over all stages. The ratios n′/n and m′/m thus measure the effectiveness of the
preprocessing strategy. h denotes the mean hop-count of a shortest path per stage; larger numbers
typically indicate higher problem difficulty. Value µ gives the mean intertwinement of the considered
instances after preprocessing, which is a measure relevant to the problem’s approximability (see
Section 2).

grid y = 100 y = 200 y = 500 y = 1000
n′

n
µ n′

n
µ n′

n
µ n′

n
µ

x m′

m
h m′

m
h m′

m
h m′

m
h

5 97.7% 362.8 98.0% 626.1 99.2% 1396.5 99.4% 2605.9
97.1% 105.0 97.3% 208.6 98.6% 519.6 98.9% 1037.4

10 89.6% 676.5 87.8% 962.3 90.7% 1892.5 93.9% 3476.2
88.0% 110.2 85.5% 214.8 87.7% 530.6 90.8% 1069.0

25 86.9% 2356.1 77.8% 3540.0 68.2% 4347.4 72.0% 6834.9
86.0% 123.5 76.1% 227.0 64.8% 538.6 67.0% 1069.2

50 91.1% 5506.0 80.8% 9321.3 64.8% 14414.3 55.4% 13940.5
90.7% 148.0 80.1% 249.0 63.0% 566.4 52.1% 1106.7

geom n = 1000 n = 2000 n = 5000
n′

n
µ n′

n
µ n′

n
µ

k m′

m
h m′

m
h m′

m
h

5 21.6% 53.6 17.1% 79.0 13.7% 141.4
10.5% 30.8 8.4% 47.2 6.9% 74.1

10 20.5% 60.7 18.1% 100.6 15.0% 213.3
7.7% 20.7 6.6% 30.9 5.7% 54.3

25 18.1% 120.6 17.2% 228.1 15.5% 505.0
4.7% 12.4 4.5% 18.5 4.0% 35.7

50 13.1% 165.5 15.1% 335.2 15.6% 988.0
2.3% 7.3 3.0% 13.3 3.2% 20.3

hybr n m n′

n
m′

m
µ h

CA 2.0M 2.8M 0.11% 0.09% 571.3 747.7
PA 1.1M 1.5M 0.19% 0.15% 551.4 653.6
TX 1.4M 1.9M 0.19% 0.15% 654.0 860.0

real n m n′

n
m′

m
µ h

dnc.24 401.8 1.2K 6.9% 5.8% 11.5 6.3
dnc.48 536.4 1.7K 5.5% 5.1% 15.0 5.4
enron.168 5.3K 12.4K 1.0% 0.8% 11.1 7.7
enron.744 8.9K 25.2K 0.5% 0.4% 12.4 7.4

grid: Long Grid Graphs. The underlying grids have |V | = x · y for (x, y) ∈ {5, 10, 25, 50}×
{100, 200, 500, 1000} and unit edge weights. For each of the three modification variants we
generate MSP instances with 16 stages; each stage is derived from the original underlying
graph. We consider the modification ratios λE ∈ {1/5, 1/10, 1/20} (for x = 5, λE = 1/5 is
omitted due to generating mostly infeasible instances) and λV = 1/20. Overall, we generate
36 instances for each parameter combination, so we obtain 2736 grid instances.

geom: Random Nearest Neighbor Graphs. We use several parameters to generate MSP
instances with 16 stages. The nodes in G1 are n ∈ {1000, 2000, 5000} randomly chosen
real-valued points uniformly distributed over the unit square [0, 1]2. We obtain the node
position for each Gi+1 from Gi by moving each node independently in a random direction
chosen uniformly from [− ϱ

n , ϱ
n ]2 with ϱ ∈ {0, 1, 5}. In every stage, for each node we add an

edge to its k ∈ {5, 10, 25, 50} nearest neighbors (according to Euclidean distances). To allow
for multiple shortest paths per stage, we consider two different weight functions: unit weights
and exponential weights. The latter are generated by 2⌈log2 100d⌉, where d is the Euclidean
distance. This mapping partitions the otherwise very diverse edge weights into buckets of
(exponentially) similar weights. Due to the factor 100 (and that we have a nearest neighbor
graph) we mostly observe weights in {1, 2, 4, 8, 16}.

We consider these graphs with the edge deletion (with λE ∈ {1/2, 1/20}, omitting λE = 1/2

for k = 5 and λE = 1/20 for (k, n) = (50, 5000) due to triviality) and the weight scaling
modifications. We do not use node deletion here, as these modifications (even for small
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non-trivial values of λV ) resulted in mostly trivial instances (especially many infeasible ones).
However, unless ϱ = 0, we also consider the instances without any further modifications since
the random walks of the nodes already establish differences between the stages.

Overall, we generate 4 instances for each of the 240 parameter combinations with a
unique query selected according to the scheme described in Section 3.2. We obtain 960 geom
instances overall.

hybr: Road Networks. We use the undirected variants of the popular real-world roadNet
data set [25], namely the road networks of California (CA), Pennsylvania (PA), and Texas (TX)
as three distinct underlying graphs. As the original data set does not contain any temporal
information, we use the three modification variants to obtain multistage instances, with
λE ∈ {1/10, 1/20, 1/100} and λV ∈ {1/20, 1/100}. In contrast to the artificial graphs, we observe
that preprocessing the underlying graph w.r.t. a query yields dramatically smaller graphs
(see Table 1). Thus, we performed the stage-wise modifications after preprocessing (i.e., we
first choose a random query as described in Section 3.2, then preprocess, modify and check
feasibility), in order to guarantee that the modifications are significant within the stages.
The benchmark set hybr consists of overall 360 multistage instances with 4 stages and a
unique query each.

real: Communication Networks. Many real-world graph data sets with timestamped
edges are email data sets [22, 23], where nodes represent people and an edge indicates a
message exchange at the indicated times. We use the data sets as provided by the Konect
graph collection [23], but consider edges to be undirected. Here, timestamps are given with
a relatively high resolution ranging between 1 and 100 seconds, meaning that only very few
events happen exactly at the same time. To generate stages with a non-trivial number of
edges, we have to decrease the temporal resolution, i.e., we generate stages by accumulating
all events that occur during some time window. If we choose too large time windows, the
stages become too dense and yield only very short shortest paths. On the other hand, if
we have too many stages, there are typically no feasible non-trivial queries possible. We
thus pick time window sizes that yield interesting graphs, but restrict ourselves to 2 or 8
consecutive stages. The queries are selected as described in Section 3.2.

enron [22,23]: Email communication between employees of the energy corporation Enron.
We use time window sizes of 168 hours (a week) and 744 hours (a month). To avoid too
sparse (or obviously mislabeled) data, we only consider timestamps between May 27,
1998 and Feb 04, 2004 (a span of 297 weeks).
dnc-email [23]: Email communication between members of the US Democratic National
Committee. We use time window sizes of 24 and 48 hours. Here, we consider timestamps
between Sep 16 2013 and May 25 2016 (a span of 140 weeks).

The benchmark set real consists of 80 2-stage (66× enron, 14× dnc-email) and 20 8-stage
instances (14× enron, 6× dnc-email) that are selected as those instances with the lowest
triviality score, which is the sum over the values 10 · 1[tS = 1 ∨ tL = 1] + tS · tL for the
considered transitions.

We also conducted the same process on human contact data sets [12, 21], where a
timestamped edge indicates a measurement of physical proximity at the given point in time.
However, the resulting graphs had either a very low diameter (3 or even lower, rendering
MSP essentially trivial) if the time windows were too wide, or were highly disconnected if the
time windows were too narrow. There was no sweet spot between these effects and thus these
instances are not included. We also note that research tells us that autonomous systems and
similar networks typically experience shrinking diameters over time [24], and are thus not
well-suited to yield non-trivial MSP instances.

SAND 2023
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4 Algorithms

4.1 Exact Solutions
To compute exact MSP solutions, we propose a straight-forward integer linear programming
(ILP) formulation. The preprocessing routine gives us the length Li of any shortest s-t-path
in Gi, for each i ∈ [τ ]. Furthermore, it lets us define δ+

i (v) ⊆ Ei (δ−
i (v) ⊆ Ei) as the edges

that enter (leave) node v when used in a shortest s-t-path. This allows us to use a directed
flow formulation for assuring the path property.

For each stage i ∈ [τ ], the binary variable xi(e) indicates whether edge e ∈ Ei is in Pi.
Constraints (1) ensure that each Pi is an s-t-path, constraint (2) forces Pi to be of shortest
length. For each transition (Gi, Gi+1) the (de facto binary) variable zi(e) indicates – due
to constraints (3) and (4) and the objective function – whether edge e ∈ Ei ∩ Ei+1 is in
Pi ∩ Pi+1. Thus, the objective function maximizes the transition quality.

max
∑

i∈[τ−1]
∑

e∈Ei
zi(e)

s.t.
∑

e∈δ−(v)xi(e)−
∑

e∈δ+(v)xi(e) = 1[v = s]− 1[v = t] ∀ i ∈ [τ ], ∀ v ∈ V (1)∑
e∈Ei

wi(e) · xi(e) = Li ∀ i ∈ [τ ] (2)
zi(e) ≤ xi(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (3)
zi(e) ≤ xi+1(e) ∀ i ∈ [τ − 1], ∀ e ∈ Ei ∩ Ei+1 (4)
xi(e) ∈ {0, 1} ∀ i ∈ [τ ], ∀ e ∈ Ei (5)

4.2 Two-Stage Algorithms
In the following, we make extensive use of the auxiliary algorithm prefPath(i, F). It finds,
among all shortest s-t-paths in Gi, a shortest s-t-path with the maximum number of edges
from F . It does so by computing Dijkstra’s algorithm w.r.t. the edge weights of Ei where
the weight of the edges in F ∩Ei is reduced by some small ε. See [7] for details, where it is
presented as the preficiency algorithm for MSP.

We first present some algorithms for the 2-stage problem MSP|2, as these are later used
as black-box algorithms for general MSP.
Greedy (G): Computes a shortest s-t-path P1 ← prefPath(1, E2) in G1 and, favoring this

path, a shortest s-t-path P2 ← prefPath(2, P1) in G2.
Double Greedy (Gd): Calls G twice independently: once as described above, then with the

roles of the stages interchanged. The output is the solution with larger transition quality.
Iterated Greedy (Gi): Computes (P1, P2) with G and then alternatingly reoptimizes Pi ←

prefPath(i, P3−i) for i = 1, 2 until the transition quality does not improve anymore.
Approximation (A): This (2µ)−1/2-approximation algorithm from [7] iteratively computes

candidate solutions (pairs of paths) and finally outputs the pair with largest transition
quality. Let Y := E1 ∩E2 be the initial set of edges to be preferred. In each iteration j, a
pair of paths P

(j)
1 ← prefPath(1, Y ) and P

(j)
2 ← prefPath(2, P

(j)
1 ) is computed as a new

candidate solution, and we update the set of preferred edges to Y ← Y \ P
(j)
1 . According

to [7], the algorithm continues until eventually Y = ∅ (which is guaranteed to happen
due to our preprocessing). Our implementation can furthermore correctly halt earlier if
the current best transition quality matches the upper bound |E1 ∩ prefPath(2, E1)|.

Double Approximation (Ad): Similarly to how Gd doubles G, this variant calls A twice, the
second time with the roles of the two stages interchanged. It outputs the solution with
larger transition quality.

Bounded Approximation (A5): A variation of A that halts after the first 5 candidate solutions
(or earlier if A halts earlier).
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4.3 Multistage Algorithms
We consider two different polynomial-time approaches to find solutions if τ > 2.
Multistage Greedy (M-G): After initializing P1 ← prefPath(1, E2), subsequent paths Pi ←

prefPath(i, Pi−1) are computed iteratively for i = 2, ..., τ . Proceeding in the reversed
direction, for each i = τ − 1, ..., 1 the solution Pi is updated to prefPath(i, Pi+1). This
process is repeated alternatingly front to back and back to front as long as the transition
quality increases. Note that M-G for τ = 2 coincides with Gi.

Multistage with black-box (B-*): This algorithm from [7] uses any MSP|2-algorithm * as a
black-box. The latter is executed on each consecutive pair of stages. Using a linear-time
dynamic programming approach, it computes a collection of non-adjacent transitions
whose transition qualities sum to the largest number. If the individual (2-stage) transitions
are computed using some α-approximation, this routine yields an α

2 -approximation; in
the case of B-A we thus obtain an (8µ)−1/2-approximation.
Improving over the description in [7] in practice, our implementation does not use
arbitrary solutions for a stage that is neither optimized to the previous nor to the next
stage. Instead, considering such a stage Gi, we set Pi to either prefPath(i, Pi−1) or
prefPath(i, Pi+1), depending on which path yields the better transition qualities in
conjunction with the solution paths of its neighboring stages (both of which are naturally
fixed by the dynamic programming). We evaluate the algorithm’s performance using each
of the 2-stage algorithms described above as a black-box.

5 Experiments

The different algorithmic variants differ mainly in their approach for solving two-stage sub-
instances. Therefore it is natural to first investigate their performance on MSP|2 instances
separately. Thereafter, we consider the multistage instances with τ > 2.

Given some instance and some algorithm X, the gap is the ratio (opt− heu)/opt where
heu is the objective value computed by X and opt the optimal objective value.

Hard- and Software. All computations were run on an Intel Xeon Gold 6134 with 3.2 GHz
and 256 GB RAM running Debian 9. We limit each run to a single thread with a 10 minute
time limit. Our C++ (gcc 8.3.0) code uses OGDF Dogwood [6] as a graph algorithms library;
the code will become part of the next OGDF release. We use CPLEX 20.1 as our ILP solver.

5.1 MSP|2

To obtain MSP|2 instances, we simply use the first two stages of every instance of grid, geom
and hybr, as well as the two-stage instances from real (which, by construction, are selected
to have better non-triviality than a random stage pair in the 8-stage real instances). See
Table 2 for some average key figures on the two-stage experiments.

Nearly all two-stage algorithms are able to find solutions for all MSP|2 instances within the
time limit, except for ILP, which hits the time limit on 1.1% of the instances. In particular,
due to the high success rate of ILP (whose few fails are restricted to very large grid instances),
allows us to understand how often the heuristics and approximation algorithms yield optimal
solutions as well. For grid and geom instances, the running times behave as one would
expect on average: The greedy variants are fastest, followed by the A versions. The exact
ILP is slower than the greedy approaches by up to 3 orders of magnitude (and still up to 2
orders of magnitude compared to A and Ad); only for hybr it is only roughly 10-fold slower
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Table 2 Results for MSP|2 experiments: The instances successfully solved by ILP yield a
subset of each benchmark set for which we now know the optimal solutions. The “solved optimally”
columns for ILP give the mean size of the respective subsets relative to the overall size of the
benchmark sets. For the other algorithms, the values in the “solved optimally” columns, as well as
the various “gap” columns, are then always given w.r.t. to these subsets. The columns “avg. gap”
and “avg. gap (¬opt)” give the mean observed gaps to the optima, where the latter is restricted to
the instances not solved to optimality by the considered algorithm. We suppress the “gap” columns
for real, since all algorithms solved all these instances to optimality.

time [ms] solved optimally avg. gap avg. gap (¬opt) max. gap
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id
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al
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id
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id
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om

hy
br

ILP 46787 897 2947 148 98.9% 100% 100% 100% — — — — — — — — —
G 20 3 185 1 48.3% 95.0% 91.4% 100% 3.0% 0.8% 0.1% 5.9% 15.4% 0.9% 43.6% 37.5% 7.4%
Gd 41 5 316 1 56.2% 98.5% 99.2% 100% 1.5% 0.2% 0.0% 3.4% 11.2% 0.3% 23.7% 22.2% 0.4%
Gi 31 4 256 1 70.4% 96.9% 98.6% 100% 1.0% 0.5% 0.0% 3.2% 15.3% 0.7% 28.5% 33.3% 1.9%
A 972 17 361 1 48.9% 96.5% 91.4% 100% 2.6% 0.5% 0.1% 5.1% 13.0% 0.9% 27.4% 23.1% 6.0%
Ad 1913 34 660 2 56.6% 99.0% 99.2% 100% 1.4% 0.1% 0.0% 3.2% 9.5% 0.3% 19.5% 16.7% 0.4%
A5 46 4 346 1 48.9% 96.2% 91.4% 100% 2.6% 0.5% 0.1% 5.2% 13.1% 0.9% 27.4% 25.0% 6.0%

than the non-exact approaches. Naturally, Gd and Ad take about double the time of their
basic counterparts. While Gi is slower than G, it is still faster than Gd on average: G and Gd
require 2 and 4 calls to prefPath, respectively, but Gi typically terminates after the 3rd call,
realizing that it cannot improve on the solution after the first two calls (i.e., the solution
is identical to the one of G). Interestingly, A5’s running time is roughly comparable to that
of Gd: it requires 2.64 iterations on average (and thus roughly 5 calls to prefPath on average,
with a median of 2 calls), and does not suffer from outliers with a vast number of iterations
as A does (see below). On the hybr benchmark set, A requires drastically fewer iterations
than on grid and geom, and its running time becomes comparable to A5 and thus not too
far off from the greedy approaches. The running times on the real instances are negligibly
small for all algorithms, so we refrain from analyzing them in detail.

However, as depicted in Figure 2a, the average running times do not tell the whole story.
While most algorithms expose a rather predictable running time, the high variance in the
running time of A is stunning: for many grid and geom instances, A spends a lot of time on
later iterations that only yield candidate solutions with trivially small transition quality, but
is unable to deduce that further iterations are futile.

For the following quality comparisons of the non-exact algorithms, we only consider
instances with known optimal objective value (i.e. those that ILP could solve to proven
optimality). The 2-stage real instances can all be solved to optimality by all algorithms.
We conclude that they are, despite our best effort, still too trivial. Also the hybr and
geom instances can typically be solved to optimality by most algorithms, with success
rates of (clearly) above 90%. In contrast to this, the grid instances yield comparably
hard instances for the heuristics (seemingly independent of the precise parameter choices).
Note that this is also the only set where ILP sometimes fails to prove optimal solutions
(for (x, y) ∈ {50} × {500, 1000}). Interestingly, Gi finds the maximum number of optimal
solutions (79.7%) overall.

Considering the average gaps, however, the difference in hardness between grid and geom
seems to flip: even though many grid instances are not solved optimally, the observed gaps
are relatively low, within one-digit percentages. In contrast to this, non-optimally solved
geom instances typically yield gaps in the range of 10%–15% for all non-exact algorithms.

The two greedy variants Gd and Gi beat G w.r.t. the objective value on 20.7% and 32.5%
of the instances, respectively. The average improvement over the initial greedy objective
value in these cases is 30.2% and 21.6%, respectively.
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Figure 2 Visualizations for the MSP|2 experiments. (a) The boxes show the median and
quartiles; the whiskers extend to the farthest data point within 1.5 times the interquartile range.
(b)–(d) We show the average gaps on all instances with known optimum; a gap g is equivalent to
an observed approximation ratio of 1 − g; the y-axes are arranged such that vertically higher data
points represent solutions closer to the optimum.

For A, the average number of iterations (each iteration requiring two calls to prefPath)
is 35.3. However, the actual output solution is already found after 1.2 iterations on average,
generating an average computational overhead of 60.7% per instance for futile subsequent
iterations. In fact, for 95.6% of the instances A already finds the optimal solution with
the initial candidate solution (which is the same solution G finds). For nearly all instances
(99.2%), A finds its output solution within the first 5 iterations, i.e., here A5 outputs the
same solution as A. Inversely, even if A5 terminates earlier than A, this yields worse solutions
only in 2.1% of those instances. Using Ad improves the objective value compared to A on
19.9% of the instances; the average improvement is 31.2% (coming at the cost of doubling
the running time).

Algorithm A has an approximation ratio of (2µ)−1/2. As Figure 2c shows, A not only
performs much better than the worst-case analysis suggests, but the correlation between the
observed approximation ratio (which is 1− g for gap g) and the intertwinement µ is just not
very pronounced on our instances (as shown more clearly in Figure 2d). Clearly, the quite
intricate instance structures necessary to yield weak approximations do typical not appear in
practice (at least not in our benchmark sets).

Figure 2b shows the trade-off between solution quality (in terms of average gap over the
instances solved by ILP) and required running time for all considered algorithms. We can
conclude that the ILP should be preferred if running time is not an issue, and one of the
two greedy approaches Gi or Gd in all other cases. The slightly better running time of G is
typically not worth it due to the drop in quality. One could also make a case for Ad which,
despite requiring much more time, sometimes finds slightly better solutions than the greedy
variants.
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Table 3 Results for MSP (τ > 2) experiments: Columns are interpreted as in Table 2.
Recall that the grid, geom, hybr, and real instances have 16, 16, 4, and 8 stages, respectively.

time [ms] solved optimally avg. gap (¬opt) max. gap
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ILP 165242 6453 4202 666 84.4% 100% 100% 100% — — — — — — — —
B-G 206 48 627 13 0.0% 1.6% 10.8% 35.0% 15.6% 13.8% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
B-Gd 397 71 1023 19 0.0% 1.7% 11.4% 35.0% 14.7% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-Gi 338 58 839 16 0.0% 1.6% 11.1% 35.0% 14.1% 13.6% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-A 13922 130 1185 13 0.0% 1.5% 10.8% 35.0% 15.5% 13.6% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
B-Ad 19096 245 2107 22 0.0% 1.6% 11.4% 35.0% 14.6% 13.4% 3.2% 10.4% 37.6% 45.2% 14.5% 20.8%
B-A5 572 68 1121 16 0.0% 1.5% 10.8% 35.0% 15.5% 13.7% 3.2% 10.4% 37.6% 45.2% 14.9% 20.8%
M-G 257 31 692 8 0.1% 2.1% 15.3% 0.0% 16.8% 23.5% 3.2% 23.0% 45.1% 68.8% 23.7% 42.9%

5.2 MSP

Considering the true multistage instances, i.e., τ > 2, we compare M-G and the various
variants B-{G,Gd,Gi,A,Ad,A5}. Some key figures are presented in Table 3.

The ILP’s running times increase compared to the 2-stage scenarios, but not by as much
as one might expect: compared to their 2-stage counterparts, the 16-stage grid, 16-stage
geom, 4-stage hybr, and 8-stage real instances require roughly 3.5x, 7.2x, 1.4x, and 4.5x
more time, respectively. Thus, while ILP is certainly a time-wise expensive algorithm, we
still can solve nearly all multistage instances to proven optimality within the time limit: it
only fails on roughly 1/6 of the grid instances. This still allows us to investigate the ability
of the non-exact algorithms to find optimal solutions.

First we may consider their running times. Observe that all B-* variants first run their
internal MSP|2 algorithm for τ − 1 transitions. The subsequent dynamic programming over a
sequence of only τ−1 integers requires negligible time compared to the various prefPath-calls.
Hence, the running times of these algorithms are essentially the running times observed for
their internal MSP|2 algorithms, scaled by the number of stage transitions. B-Ad is the only
non-exact algorithm that (on 1.3% of the grid instances) runs into the time limit. The
running time of M-G is very competitive and roughly comparable with the fastest B-* variant,
namely B-G.

The most interesting finding is how seldom the heuristics and the approximation approach
find optimal solutions. While they all do so in most of the cases for MSP|2, the situation
changes drastically for τ > 2: We may start with discussing the B-* variants, as they all
yield essentially the same success rates: not a single multistage grid instance is solved to
optimality (and only mediocre 19% and 11% of geom and hybr, respectively). Even for the
previously too trivial real instances, the algorithms find optimal solutions only for roughly a
third of the 8-stage instances. The reason for this consistent picture amongst all B-* variants
is easy to see: generally, the solution quality for the individual 2-stage sub-problems is very
similar. Their common ingredient, i.e., the selection of “good” non-adjacent transitions, is to
blame for the weak performance. While it is theoretically sound to simply essentially “ignore”
every second transition (while still retaining an approximation guarantee), this turns out
to be abysmal in practice. In fact, we can see that this worst-case scenario is even (nearly)
happening for some geom instances: despite the fact that half of the individual transitions
are essentially optimal, we observe instances with an overall gap of 45.2% – very close to the
worst case of 50%. Generally, this effect overshadows the influence of the precise selection
of the black-box algorithm. Even when considering the gaps yielded by the non-optimal
solutions, we only see slight deviations between the variants. Interestingly, the hybr instances
allow generally lower gaps than the other benchmark sets.
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Now, one may hope that the straight-forward but reasonable sounding heuristic M-G may
fare better, but this is also hardly the case: it finds (only) two optimal solutions on grid
instances and is slightly more successful than B-* on geom and hybr. For the real instances,
however, is fails to find any optimal solution at all. Generally over all benchmark sets, its
obtained gaps are weaker than those of B-*. In fact, on the grid instances its gaps can
become close to 50% and for geom it even achieves a solution quality only 31.2% of the
optimum (a gap of 68.8%).

Overall, we can see that no non-exact algorithm comes close to the optimal solution
quality obtained by ILP, which is thus the probably best algorithmic choice – if time is not an
issue. Otherwise, we would have to recommend the use of B-G or M-G, which are comparable
in quality and running time. The other more expensive MSP|2 algorithms are not worth it
when used within the B-* context on these instances.

6 Conclusion

In theory, the only known approximations for MSP|2 and general MSP (A and B-A) guarantee
ratios of (2µ)−1/2 and (8µ)−1/2 = 1/2 · (2µ)−1/2, respectively, where B-A uses A internally and
only causes an additional constant ratio of 1/2. Thus, in the hunt for better (in particular
constant) approximation ratios, it seems natural to focus on stronger approximations for
MSP|2. However, our study shows that this is precisely not the interesting question when we
want to obtain practically strong algorithms: MSP|2 is rather simple to solve in practice, the
worst-case ratios of A are never met, and even simple greedy heuristics find close-to-optimal
solutions. In contrast, the lifting from 2 to τ > 2 stages is a central weak point which
undermines the algorithms’ success. Also, straight-forward alternative greedy strategies (M-G)
do not work well. We therefore propose to focus on finding true multistage approximation
routines, instead of relying on simple liftings from algorithms for few stages.

In [7], a more general version of A is presented that is applicable to all subgraph problems
that are preficient, which roughly speaking means that they allow a routine along the lines of
prefPath. Thus, all G variants (as well as M-G) can also be used there, and we wonder if they
perform similarly strong for such other problems as they do for MSP|2 (MSP, respectively).
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Table 6 Instance characteristics of geom graphs. We use the same notation as in Table 4.
Weights are given either as unit weights (denoted as 1x) or exponential weights (2x).

geom k = 5 k = 10 k = 25 k = 50
n′

n
m′

m
µ h n′

n
m′

m
µ h n′

n
m′

m
µ h n′

n
m′

m
µ h

n = 1000, 1x, ϱ = 1, λE = 0 19.5% 10.3% 142.0 26.8 13.6% 6.2% 258.5 16.7 13.9% 4.5% 444.2 9.2 8.5% 1.8% 444.2 6.0
n = 1000, 2x, ϱ = 1, λE = 0 10.1% 4.9% 55.8 33.2 7.3% 2.2% 66.8 22.1 5.4% 0.7% 34.2 13.6 4.4% 0.3% 46.5 8.1
n = 1000, 1x, ϱ = 5, λE = 0 24.2% 12.0% 70.8 26.7 22.8% 10.2% 144.8 16.8 22.5% 8.7% 394.0 9.3 12.3% 2.5% 307.8 6.0
n = 1000, 2x, ϱ = 5, λE = 0 16.1% 7.3% 33.2 29.2 13.9% 4.6% 37.0 22.0 10.3% 1.9% 34.0 14.4 8.0% 0.8% 38.0 7.7
n = 1000, 1x, ϱ = 0, λE = 0.2 19.5% 11.1% 43.8 29.1 16.0% 7.0% 84.8 17.9 16.0% 4.9% 193.2 10.1 11.2% 2.3% 316.2 6.0
n = 1000, 2x, ϱ = 0, λE = 0.2 13.8% 7.4% 30.2 33.0 9.8% 3.1% 29.0 22.0 9.3% 1.6% 49.2 15.4 5.5% 0.5% 23.2 8.0
n = 1000, 1x, ϱ = 1, λE = 0.2 21.0% 11.9% 41.0 29.3 18.6% 8.4% 76.0 17.0 16.2% 5.3% 210.2 9.6 12.2% 2.4% 271.8 6.0
n = 1000, 2x, ϱ = 1, λE = 0.2 15.4% 8.1% 28.2 31.7 12.4% 4.0% 28.2 22.3 8.3% 1.3% 30.8 14.2 5.7% 0.5% 33.5 7.9
n = 1000, 1x, ϱ = 5, λE = 0.2 24.4% 11.6% 29.2 28.5 22.9% 9.8% 74.0 16.9 19.7% 6.3% 161.8 9.9 16.2% 4.2% 337.8 6.1
n = 1000, 2x, ϱ = 5, λE = 0.2 20.8% 9.1% 22.2 32.0 15.7% 4.9% 18.2 21.5 12.4% 2.1% 18.0 14.8 6.7% 0.5% 15.8 7.6
n = 1000, 1x, ϱ = 0, λE = 0.5 — — — — 22.2% 10.0% 19.8 20.8 26.1% 8.1% 55.0 11.1 16.8% 4.5% 124.5 6.6
n = 1000, 2x, ϱ = 0, λE = 0.5 — — — — 15.8% 5.5% 11.2 24.7 10.9% 1.9% 9.8 13.8 8.0% 0.8% 10.5 8.6
n = 1000, 1x, ϱ = 1, λE = 0.5 — — — — 26.8% 10.6% 17.8 20.7 20.6% 5.6% 51.0 10.6 21.5% 4.6% 92.0 6.4
n = 1000, 2x, ϱ = 1, λE = 0.5 — — — — 16.2% 5.4% 9.8 23.8 10.6% 2.0% 12.8 13.5 8.5% 0.9% 11.5 8.4
n = 1000, 1x, ϱ = 5, λE = 0.5 — — — — 24.2% 9.3% 23.5 18.9 24.0% 6.9% 47.2 10.2 20.0% 4.6% 104.8 6.3
n = 1000, 2x, ϱ = 5, λE = 0.5 — — — — 19.0% 5.7% 10.2 23.8 11.9% 2.2% 9.5 13.6 8.9% 0.7% 8.8 8.0
n = 1000, 1x, ϱ = 0, scaling 23.8% 12.1% 105.2 30.0 29.4% 11.9% 142.8 19.6 26.8% 8.1% 233.8 10.8 20.2% 4.2% 444.5 6.5
n = 1000, 2x, ϱ = 0, scaling 19.0% 8.6% 48.8 34.7 20.1% 5.9% 46.2 23.0 20.4% 2.8% 30.5 16.1 9.2% 0.7% 44.5 9.2
n = 1000, 1x, ϱ = 1, scaling 28.3% 14.4% 83.8 28.5 34.9% 14.2% 102.2 18.7 32.5% 10.0% 356.8 10.3 25.6% 6.2% 703.8 6.7
n = 1000, 2x, ϱ = 1, scaling 28.9% 12.7% 48.8 35.8 23.2% 6.4% 42.2 25.6 20.2% 2.8% 26.2 16.5 12.3% 1.0% 47.2 8.8
n = 1000, 1x, ϱ = 5, scaling 31.9% 14.2% 50.5 28.9 41.6% 15.6% 66.0 18.0 37.0% 12.2% 230.2 10.1 30.5% 6.2% 191.0 6.5
n = 1000, 2x, ϱ = 5, scaling 28.1% 10.8% 24.5 34.8 24.9% 6.7% 25.8 23.5 23.7% 3.2% 20.0 15.7 15.0% 1.2% 23.2 9.3
n = 2000, 1x, ϱ = 1, λE = 0 7.9% 4.0% 126.5 38.0 12.1% 4.9% 366.5 24.4 11.6% 3.9% 921.8 13.9 11.3% 2.9% 1411.0 8.9
n = 2000, 2x, ϱ = 1, λE = 0 8.3% 4.1% 90.2 52.4 5.2% 1.5% 86.5 33.6 5.5% 0.8% 111.2 21.3 4.9% 0.4% 124.8 16.9
n = 2000, 1x, ϱ = 5, λE = 0 17.0% 9.0% 117.0 39.4 17.4% 7.7% 251.0 24.9 22.8% 8.3% 983.8 14.7 10.0% 2.0% 559.5 9.0
n = 2000, 2x, ϱ = 5, λE = 0 13.6% 6.4% 60.5 50.2 12.9% 4.2% 64.0 34.4 10.8% 2.1% 67.5 21.2 8.9% 1.0% 92.0 17.7
n = 2000, 1x, ϱ = 0, λE = 0.2 11.8% 6.8% 45.0 39.8 18.6% 8.2% 232.5 26.4 12.3% 4.3% 270.8 14.5 14.1% 3.9% 968.2 9.5
n = 2000, 2x, ϱ = 0, λE = 0.2 13.9% 7.5% 60.5 56.1 10.8% 3.4% 64.2 35.0 7.2% 1.1% 60.8 21.0 7.1% 0.6% 55.5 17.2
n = 2000, 1x, ϱ = 1, λE = 0.2 16.2% 9.1% 53.8 41.3 16.4% 7.6% 126.2 26.2 19.7% 6.9% 365.5 14.9 17.6% 4.6% 337.8 9.5
n = 2000, 2x, ϱ = 1, λE = 0.2 12.8% 7.1% 47.5 50.2 10.7% 3.6% 59.5 36.2 7.8% 1.3% 45.8 20.8 6.1% 0.6% 35.0 16.6
n = 2000, 1x, ϱ = 5, λE = 0.2 20.2% 9.9% 42.0 40.9 19.9% 8.3% 89.2 26.4 21.0% 7.2% 371.5 14.9 17.0% 4.4% 750.5 9.0
n = 2000, 2x, ϱ = 5, λE = 0.2 15.4% 7.1% 35.8 51.3 14.1% 4.8% 32.2 35.0 10.6% 1.8% 34.5 19.7 9.1% 0.9% 40.5 15.8
n = 2000, 1x, ϱ = 0, λE = 0.5 — — — — 19.6% 7.9% 26.5 28.7 21.3% 6.7% 73.5 15.9 22.6% 6.3% 204.0 9.9
n = 2000, 2x, ϱ = 0, λE = 0.5 — — — — 14.7% 4.8% 13.2 33.5 11.0% 1.7% 14.0 21.0 7.8% 0.7% 16.0 16.2
n = 2000, 1x, ϱ = 1, λE = 0.5 — — — — 20.4% 8.4% 31.2 27.8 18.6% 5.7% 72.0 15.0 21.8% 5.7% 245.5 10.2
n = 2000, 2x, ϱ = 1, λE = 0.5 — — — — 12.6% 4.4% 17.0 33.2 10.9% 1.8% 15.5 21.8 8.0% 0.7% 16.2 16.0
n = 2000, 1x, ϱ = 5, λE = 0.5 — — — — 20.0% 7.1% 28.0 27.1 20.6% 6.6% 85.8 15.0 17.8% 4.6% 210.5 9.6
n = 2000, 2x, ϱ = 5, λE = 0.5 — — — — 15.1% 4.7% 13.5 32.6 11.2% 1.8% 12.8 21.3 9.1% 0.9% 11.5 14.5
n = 2000, 1x, ϱ = 0, scaling 19.4% 10.0% 129.2 43.3 27.7% 11.0% 188.8 28.9 33.0% 9.9% 351.8 16.2 31.3% 8.2% 753.0 10.2
n = 2000, 2x, ϱ = 0, scaling 20.5% 9.2% 85.8 55.6 19.8% 5.5% 77.5 37.1 17.6% 2.3% 159.2 24.8 13.8% 1.0% 42.8 17.6
n = 2000, 1x, ϱ = 1, scaling 19.4% 9.9% 154.8 43.5 24.6% 9.4% 208.8 27.7 29.2% 8.9% 596.2 16.4 26.9% 6.1% 1041.5 10.8
n = 2000, 2x, ϱ = 1, scaling 18.8% 8.9% 80.8 57.1 23.8% 6.6% 76.5 36.8 20.4% 2.8% 71.2 23.3 15.7% 1.1% 70.5 18.1
n = 2000, 1x, ϱ = 5, scaling 30.4% 13.0% 88.0 41.9 36.2% 12.8% 119.0 28.6 35.6% 9.7% 299.8 16.2 34.3% 7.6% 355.2 10.8
n = 2000, 2x, ϱ = 5, scaling 28.5% 11.0% 46.5 53.9 26.6% 7.0% 40.2 36.0 19.7% 2.8% 33.8 22.2 16.6% 1.4% 33.2 17.3
n = 5000, 1x, ϱ = 1, λE = 0 5.9% 3.0% 206.5 63.7 7.7% 3.3% 455.0 39.7 13.2% 4.5% 2153.2 25.1 9.5% 2.4% 2729.5 16.3
n = 5000, 2x, ϱ = 1, λE = 0 5.9% 3.0% 214.0 80.2 7.2% 2.6% 393.2 66.1 6.0% 1.1% 401.8 53.8 4.3% 0.4% 283.5 24.3
n = 5000, 1x, ϱ = 5, λE = 0 10.2% 5.3% 188.2 64.0 14.5% 6.2% 392.5 41.3 17.1% 6.2% 1263.8 24.2 14.6% 4.0% 2787.8 16.7
n = 5000, 2x, ϱ = 5, λE = 0 9.6% 4.9% 160.0 75.8 12.3% 4.9% 263.0 67.1 8.6% 1.9% 294.0 46.3 8.5% 1.1% 284.8 22.7
n = 5000, 1x, ϱ = 0, λE = 0.2 14.1% 7.8% 94.5 69.7 13.0% 5.6% 229.0 44.0 14.2% 4.9% 621.0 24.2 — — — —
n = 5000, 2x, ϱ = 0, λE = 0.2 10.8% 6.2% 98.8 80.5 8.0% 3.2% 138.5 62.0 7.2% 1.4% 193.2 45.9 — — — —
n = 5000, 1x, ϱ = 1, λE = 0.2 11.7% 6.3% 70.8 64.0 12.6% 5.5% 194.0 41.9 13.4% 4.6% 575.8 24.4 — — — —
n = 5000, 2x, ϱ = 1, λE = 0.2 11.7% 6.4% 82.0 81.6 11.5% 4.4% 160.0 62.5 9.6% 2.0% 190.0 45.2 — — — —
n = 5000, 1x, ϱ = 5, λE = 0.2 12.8% 6.5% 56.8 65.9 14.7% 6.2% 164.2 41.8 16.2% 5.9% 549.5 24.0 — — — —
n = 5000, 2x, ϱ = 5, λE = 0.2 12.9% 6.4% 69.2 79.1 13.1% 4.9% 121.2 63.4 11.5% 2.4% 133.0 46.2 — — — —
n = 5000, 1x, ϱ = 0, λE = 0.5 — — — — 14.1% 5.7% 48.2 45.6 17.9% 5.2% 146.8 25.3 18.7% 5.0% 509.8 17.3
n = 5000, 2x, ϱ = 0, λE = 0.5 — — — — 12.5% 4.6% 30.8 60.4 10.1% 2.0% 43.8 40.1 8.2% 1.0% 36.8 21.3
n = 5000, 1x, ϱ = 1, λE = 0.5 — — — — 14.9% 5.8% 47.8 46.9 19.1% 5.5% 154.5 26.6 17.8% 4.2% 436.0 17.0
n = 5000, 2x, ϱ = 1, λE = 0.5 — — — — 12.4% 4.4% 25.8 62.2 11.2% 2.2% 38.2 40.5 9.0% 1.0% 45.2 22.1
n = 5000, 1x, ϱ = 5, λE = 0.5 — — — — 17.4% 6.1% 34.5 47.5 18.2% 5.2% 108.0 25.8 18.2% 3.9% 253.5 17.8
n = 5000, 2x, ϱ = 5, λE = 0.5 — — — — 12.9% 4.4% 29.2 61.8 12.5% 2.5% 47.5 40.5 9.2% 1.0% 34.8 21.6
n = 5000, 1x, ϱ = 0, scaling 14.1% 7.0% 219.2 69.8 19.6% 7.5% 417.0 46.1 21.1% 5.9% 1878.2 26.1 25.8% 6.2% 2086.5 18.0
n = 5000, 2x, ϱ = 0, scaling 16.4% 8.2% 152.5 83.1 20.5% 6.8% 224.5 69.5 17.8% 2.9% 274.8 48.4 14.0% 1.3% 207.8 24.5
n = 5000, 1x, ϱ = 1, scaling 20.2% 10.3% 210.5 69.8 22.3% 9.2% 606.8 44.3 26.0% 7.5% 595.5 26.3 25.3% 7.3% 4169.2 17.9
n = 5000, 2x, ϱ = 1, scaling 17.8% 8.8% 186.8 86.6 19.1% 6.3% 272.5 67.1 18.9% 3.2% 328.5 48.9 16.3% 1.5% 72.2 24.5
n = 5000, 1x, ϱ = 5, scaling 20.9% 9.3% 137.2 67.3 25.5% 9.6% 273.5 46.3 25.9% 7.2% 869.2 26.5 32.4% 8.8% 1726.5 18.3
n = 5000, 2x, ϱ = 5, scaling 23.6% 10.6% 115.8 84.9 24.2% 7.7% 171.5 67.5 24.9% 4.4% 249.2 50.8 18.3% 1.8% 144.2 24.2
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