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Abstract
Set cover and hitting set are fundamental problems in combinatorial optimization which are well-
studied in the offline, online, and dynamic settings. We study the geometric versions of these
problems and present new online and dynamic algorithms for them. In the online version of set
cover (resp. hitting set), m sets (resp. n points) are given and n points (resp. m sets) arrive online,
one-by-one. In the dynamic versions, points (resp. sets) can arrive as well as depart. Our goal is to
maintain a set cover (resp. hitting set), minimizing the size of the computed solution.

For online set cover for (axis-parallel) squares of arbitrary sizes, we present a tight O(log n)-
competitive algorithm. In the same setting for hitting set, we provide a tight O(log N)-competitive
algorithm, assuming that all points have integral coordinates in [0, N)2. No online algorithm had
been known for either of these settings, not even for unit squares (apart from the known online
algorithms for arbitrary set systems).

For both dynamic set cover and hitting set with d-dimensional hyperrectangles, we obtain
(log m)O(d)-approximation algorithms with (log m)O(d) worst-case update time. This partially
answers an open question posed by Chan et al. [SODA’22]. Previously, no dynamic algorithms
with polylogarithmic update time were known even in the setting of squares (for either of these
problems). Our main technical contributions are an extended quad-tree approach and a frequency
reduction technique that reduces geometric set cover instances to instances of general set cover with
bounded frequency.
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1 Introduction

Geometric set cover is a fundamental and well-studied problem in computational geometry [19,
16, 31, 26, 29]. Here, we are given a universe P of n points in Rd, and a family S of m sets,
where each set S ∈ S is a geometric object (we assume S to be a closed set in Rd and S

covers all points in P ∩ S), e.g., a hyperrectangle. Our goal is to select a collection S ′ ⊆ S
of these sets that contain (i.e., cover) all elements in P , minimizing the cardinality of S ′

(see Figure 1 for an illustration). The frequency f of the set system (P,S) is defined as the
maximum number of sets that contain an element in P .

In the offline setting of some cases of geometric set cover, better approximation ratios are
known than those for the general set cover, e.g., there is a polynomial-time approximation
scheme (PTAS) for (axis-parallel) squares [30]. However, much less is understood in the
online and in the dynamic variants of geometric set cover. In the online setting, the sets are
given offline and the points arrive one-by-one, and for an uncovered point, we have to select
a (covering) set in an immediate and irrevocable manner. To the best of our knowledge, even
for 2-D unit squares, there is no known online algorithm with an asymptotically improved
competitive ratio compared to the O(log n log m)-competitive algorithm for general online
set cover [3, 14]. In the dynamic case, the sets are again given offline and at each time step a
point is inserted or deleted. Here, we are interested in algorithms that update the current
solution quickly when the input changes. In particular, it is desirable to have algorithms
whose update times are polylogarithmic. Unfortunately, hardly any such algorithm is known
for geometric set cover. Agarwal et al. [2] initiated the study of dynamic geometric set
cover for intervals and 2-D unit squares and presented (1 + ε)- and O(1)-approximation
algorithms with polylogarithmic update times, respectively. To the best of our knowledge,
for more general objects, e.g., rectangles, three-dimensional cubes, or hyperrectangles in
higher dimensions, no such dynamic algorithms are known. Note that in dynamic geometric
set cover, the inserted points are represented by their coordinates, which is more compact
than for general (dynamic) set cover (where for each new point p we are given a list of the
sets that contain p, and hence, already to read this input we might need Ω(f) time).

(a) (b) (c)

Figure 1 (a) A set of squares S and a set of points P , (b) A set cover (in green) S ′ ⊆ S covering
P , (c) A hitting set (green points) P ′ ⊆ P for S.

Related to set cover is the hitting set problem (see Figure 1 for an illustration) where,
given a set of points P and a collection of sets S, we seek to select the minimum number
of points P ′ ⊆ P that hit each set S ∈ S, i.e., such that P ′ ∩ S ̸= ∅. Again, in the offline
geometric case, there are better approximation ratios known than for the general case, e.g., a
PTAS for squares [30], and an O(log log OPT)-approximation for rectangles [4]. However, in
the online and the dynamic cases, only few results are known that improve on the results for
the general case. In the online setting, there is an O(log n)-competitive algorithm for d = 1,
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i.e., intervals, and an O(log n)-competitive algorithm for unit disks [21]. In the dynamic case,
the only known algorithms are for intervals and unit squares (and thus, also for quadrants),
yielding approximation ratios of (1 + ε) and O(1), respectively [2].

1.1 Our results
In Section 2 we study online set cover for axis-parallel squares of arbitrary sizes and provide
an online O(log n)-competitive algorithm. We also match (asymptotically) the lower bound
of Ω(log n), and hence, our competitive ratio is tight. In our online model (as in [3]), we
assume that the sets (squares) are given initially and the elements (points) arrive online.

Our online algorithm is based on a new offline algorithm that is monotone, i.e., it has the
property that if we add a new point p to P , the algorithm outputs a superset of the squares
that it outputs given only P without p. The algorithm is based on a quad-tree decomposition.
It traverses the tree from the root to the leaves, and for each cell C in which points are still
uncovered, it considers each edge e of C and selects the “most useful” squares containing e,
i.e., the squares with the largest intersection with C. We assume (throughout this paper)
that all points and all corners of the squares have integral coordinates in [0, N)2 for a given
N , and we obtain a competitive ratio of O(log N). If we know that all the inserted points
come from an initially given set of n candidate points P0 (as in, e.g., Alon et al. [3]), we
improve our competitive ratio to O(log n). For this case, we use the BBD-tree data structure
due to Arya et al. [6] which uses a more intricate decomposition into cells than a standard
quad-tree, and adapt our algorithm to it in a non-trivial manner. Due to the monotonicity
of our offline algorithm, we immediately obtain an O(log n)-competitive online algorithm.

In Section 3 we present an O(log N)-competitive algorithm for online hitting set for
squares of arbitrary sizes, where the points are given initially and the squares arrive online.
This matches the best-known O(log N)-competitive algorithm for the much simpler case of
intervals [21]. Also, there is a matching lower bound of Ω(log N), even for intervals.

In a nutshell, if a new square S is inserted by the adversary, we identify O(log N) quad-tree
cells for which S contains one of its edges. Then, we pick the most useful points in these
cells to hit such squares: those are the points closest to the four edges of the cell. We say
that this activates the cell. In our analysis, we turn this around: we show that for each
point p ∈ OPT there are only O(log N) cells that can possibly get activated if a square S is
inserted that is hit by p. This yields a competitive ratio of O(log N).

Then, in Section 4 and 5 we present our dynamic algorithms for set cover and hitting set
for hyperrectangles in d dimensions. Note that no dynamic algorithm with polylogarithmic
update time and polylogarithmic approximation ratio is known even for set cover for rectangles
and it was asked explicitly by Chan et al. [18] whether such an algorithm exists. Thus,
we answer this question in the affirmative for the case when only points are inserted and
deleted. Note that this is the relevant case when we seek to store our solution explicitly, as
discussed above. Even though our considered objects are very general, our algorithms need
only polylogarithmic worst-case update time. In contrast, Abboud et al. [1] showed that
under Strong Exponential Time Hypothesis any general (dynamic) set cover algorithm with
an amortized update time of O(f1−ε) must have an approximation ratio of Ω(nα) for some
constant α > 0, and f can be as large as Θ(m).

We first discuss our algorithm for set cover. We start with reducing the case of hyper-
rectangles in d dimensions to 2d-dimensional hypercubes with integral corners in [0, 4m]2d.
Then, a natural approach would be to adapt our algorithm for squares from above to these
hypercubes. A canonical generalization would be to build a quad-tree, traverse it from
the root to the leaves, and to select for each cell C and for each facet F of C the most

SoCG 2023



46:4 Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set

useful hypercube S containing F , i.e., the hypercube S with maximal intersection with C.
Unfortunately, this is no longer sufficient, not even in 3-D: it might be that there is a cell C

for which it is necessary that we select cubes that contain only an edge of C but not a facet
of C (see Figure 2). Here, we introduce a crucial new idea: for each cell C of the (standard)
quad-tree and for each dimension i ∈ [2d], consider the hypercubes which are “edge-covering”
C along dimension i. Based on these hypercubes a (2d−1)-dimensional recursive secondary
structure is built on all the dimensions except the i-th dimension (see Figure 11).

Figure 2 The red cube is the only cube that covers a facet of the (uncolored) cell. The green
cube (from OPT) only covers an edge of the cell. Note that there is no corner of a cube from OPT
in the cell. Picking the red cube does not cover the the intersection of the green cube with the cell.

We call the resulting tree the extended quad-tree. Even though it is much larger than
the standard quad-tree, we show that each point is contained in only (log m)O(d) cells.
Furthermore, we use it for our second crucial idea to reduce the frequency of the set cover
instance: we build an auxiliary instance of general set cover with bounded frequency. It has
the same points as the given instance of geometric set cover, but different sets: for each node
corresponding to a one-dimensional cell C of the extended quadtree, we consider each of its
endpoints p and introduce a set that corresponds to the “most useful” hypercube covering p,
i.e., the hypercube covering p with maximal intersection with C. Since each point is contained
in only (log m)O(d) cells, the resulting frequency is bounded by (log m)O(d). Also, we show that
our auxiliary set cover instance admits a solution with at most OPT·(log m)O(d) sets. Then we
use a dynamic algorithm from [12] for general set cover to maintain an approximate solution
for our auxiliary instance, which yields a dynamic (log m)O(d)-approximation algorithm.

We further adapt our dynamic set cover algorithm mentioned above to hitting set for
d-dimensional hyperrectangles with an approximation ratio of (log n)O(d). Finally, we extend
our algorithms for set cover and hitting set for d-dimensional hyperrectangles even to the
weighted case, at the expense of only an extra factor of (log W )O(1) in the update time and
approximation ratio, assuming that all sets/points in the input have weights in [1, W ].

Due to space limitations, many proofs are omitted and we refer the readers to the full
version [28] for the details. See the following tables for a summary of our results.

Table 1 Online algorithms for geometric set cover and hitting set.

Problem Objects Competitive ratio Lower bound

Set cover intervals 2 2
2-D squares O(log n) Ω(log n)

Hitting set intervals O(log N) [21] Ω(log N) [21]
2-D squares O(log N) Ω(log N)[21]
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Table 2 Dynamic algorithms for geometric set cover and hitting set. Update times in [2] are
amortized and for the unweighted case. Our results are for worst-case update times.

Problem Objects Approximation ratio Update time

Set cover 2-D unit squares O(1) [2] (log n)O(1)

d-D hyperrectangles O(log4d−1 m) log W O(log2d m) log3(W n)

Hitting set unit squares O(1) [2] (log n)O(1)

d-D hyperrectangles O(log4d−1 n) log W O(log2d−1 n) log3(W m)

1.2 Other related work
The general set cover is well-studied in both online and dynamic settings. Several variants and
generalizations of online set cover have been considered, e.g., online submodular cover [25],
online set cover under random-order arrival [22], online set cover with recourse [23], etc.

For dynamic setting, Gupta et al. [23] initiated the study and provided O(log n)-
approximation algorithm with O(f log n)-amortized update time, even in the weighted
setting. Similar to our model, in their model sets are given offline and only elements can
appear or depart. After this, there has been a series of works [1, 9, 11, 10, 12, 23, 24, 7].

Bhattacharya et al. [12] have given deterministic (1 + ε)f -approximation in
O(f log2(Wn)/ε3)-worst-case update time, and O

(
(f2/ε3) + (f/ε2) log(W )

)
-amortized up-

date time, where W denotes the ratio of the weights of the highest and lowest weight
sets. Assadi and Solomon [7] have given a randomized f -approximation algorithm with
O(f2)-amortized update time.

Agarwal et al. [2] studied another dynamic setting for geometric set cover, where both
points and sets can arrive or depart, and presented (1 + ε)- and O(1)-approximation with
sublinear update time for intervals and unit squares, respectively. Chan and He [17] extended
it to set cover with arbitrary squares. Recently, Chan et al. [18] gave (1 + ε)-approximation
for the special case of intervals in O(log3 n/ε3)-amortized update time. They also gave
O(1)-approximation for dynamic set cover for unit squares, arbitrary squares, and weighted
intervals in amortized update time of 2O(

√
log n), n1/2+ε, and 2O(

√
log n log log n), respectively.

Dynamic algorithms are also well-studied for other geometric problems such as maximum
independent set of intervals and hyperrectangles [27, 13, 15], and geometric measure [20].

2 Set cover for squares

In this section we present our online and dynamic algorithms for set cover for squares.
We are given a set of m squares S such that each square S ∈ S has integral corners
in [0, N)2. W.l.o.g. assume that N is a power of 2. We first describe an offline O(log N)-
approximate algorithm. Then we construct an online algorithm based on it, such that it
has an approximation ratio of O(log N) as well. For our offline algorithm, we assume that
in addition to S and N , we are given a set of points P that we need to cover, such that
P ⊆ [0, N)2, and each point p ∈ P has integral coordinates.

Quad-tree

We start with the definition of a quad-tree T = (V, E), similarly as in, e.g., [5, 8]. In T each
node v ∈ V corresponds to a square cell Cv ⊆ [0, N)2 whose corners have integral coordinates.
The root r ∈ V of T corresponds to the cell Cr := [0, N)2. Recursively, consider a node v ∈ V ,
corresponding to a cell Cv and assume that Cv = [x(1)

1 , x
(1)
2 ) × [x(2)

1 , x
(2)
2 ). If Cv is a unit

SoCG 2023
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level 1 cell

level 2 cell

level 3 cell

Figure 3 Left figure shows a quad-tree cell in purple. The maximum area-covering square (solid
black) is picked, while the other edge-covering squares (dashed) are not. Right figure shows the
quad-tree cells (level-wise color-coded) containing an uncovered point. In increasing order of depth
of these cells, at most 4 maximum-area covering squares (solid black) are picked together per cell.

square, i.e., |x(1)
2 − x

(1)
1 | = |x

(2)
2 − x

(2)
1 | = 1, then we define that v is a leaf. Otherwise, we

define that v has four children v1, v2, v3, v4 that correspond to the four cells that we obtain
if we partition Cv into four equal sized smaller cells, i.e., define x

(1)
mid := (x(1)

2 − x
(1)
1 )/2 and

x
(2)
mid := (x(2)

2 − x
(2)
1 )/2 and Cv1 = [x(1)

1 , x
(1)
mid)× [x(2)

1 , x
(2)
mid), Cv2 = [x(1)

1 , x
(1)
mid)× [x(2)

mid, x
(2)
2 ),

Cv3 = [x(1)
mid, x

(1)
2 )× [x(2)

1 , x
(2)
mid), and Cv4 = [x(1)

mid, x
(1)
2 )× [x(2)

mid, x
(2)
2 ). Note that the depth of

this tree is log N , where depth of a node in the tree is its distance from the root of T , and
depth of T is the maximum depth of any node in T . By the construction, each leaf node
contains at most one point and it will lie on the bottom-left corner of the corresponding cell.

Offline algorithm

In the offline algorithm Aoff, we traverse T in a breadth-first-order, i.e., we order the nodes in
V by their distances to the root r and consider them in this order (breaking ties arbitrarily but
in a fixed manner). Suppose that in one iteration we consider a node v ∈ V , corresponding
to a cell Cv. We check whether the squares selected in the ancestors of v cover all points in
P ∩Cv. If this is the case, we do not select any squares from S in this iteration (corresponding
to v). Observe that hence we also do not select any squares in the iterations corresponding
to the descendants of v in T (so we might as well skip the whole subtree rooted at v).

Suppose now that the squares selected in the ancestors of v do not cover all points in
P ∩ Cv. We call such a node to be explored by our algorithm. Let e be an edge of Cv. We
say that a square containing e is edge-covering for e. We select a square from S that is
edge-covering for e and that has the largest intersection with Cv among all such squares in
S (we call such a square maximum area-covering for Cv for edge e). We break ties in an
arbitrary but fixed way. If there is no square in S that is edge-covering for e then we do
not select a square corresponding to e. We do this for each of the four edges of Cv. See
Figure 3. If we reach a leaf node, and if there is an uncovered point (note that it must be on
the bottom-left corner of the cell), then we select any arbitrary square that covers the point
(the existence of such a square is guaranteed as some square in OPT covers it). See Figure 4.
This guarantees the feasibility of the solution.
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C

p

S

Figure 4 Point p lies in a leaf cell C (which may not even have any edge-covering squares). In
this case, we pick an arbitrary square S to cover the point (since one such square always exists).

▶ Lemma 1. Aoff outputs a feasible set cover for the points in P .

Approximation ratio

Let ALG ⊆ S denote the selected set of squares and let OPT denote the optimal solution. To
prove O(log N)-approximation guarantee, the main idea is the following: consider a node
v ∈ V and suppose that we selected at least one square in the iteration corresponding to
v. If Cv contains a corner of a square S ∈ OPT, then we charge the (at most four) squares
selected for v to S. Otherwise, we argue that the squares selected for v cover at least as
much of Cv as the squares in OPT, and that they cover all the remaining uncovered points
in P ∩ Cv. Thus we do not select any further squares in the descendants of v. The squares
selected for v are charged to the parent of v (which contains a corner of a square S ∈ OPT).
See Figure 5. Since each corner of each square S ∈ OPT is contained in O(log N) cells, we
show that each square S ∈ OPT receives a total charge of O(log N). Thus, we obtain the
following lemma.

▶ Lemma 2. We have that |ALG| = O(log N) · |OPT|.

Figure 5 Charging picked (red) edge-covering squares to the corner of a (cyan) square in OPT.
In the image on the left, the (yellow) cell contains a corner of the square from OPT, and in the
image on the right, the parent of the cell contains such a corner.

SoCG 2023
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2.1 Online set cover for squares
In the following, we first present an O(log N)-competitive online algorithm for online set
cover for squares. Then we improve its competitive ratio to O(log n) in the setting where we
are given a set of n points at the beginning, and the adversary can introduce only points
from this set.

2.1.1 O(log N)-competitive online algorithm
We want to turn our offline algorithm Aoff into an online algorithm Aon, assuming that in
each round a new point is introduced by the adversary. The key insight for this is that the
algorithm above is monotone, i.e., if we add a point to P , then it outputs a superset of the
squares from S that it had output before (when running it on P only). For a given set of
points P , let ALG(P ) ⊆ S denote the set of squares that our (offline) algorithm outputs.

▶ Lemma 3. Consider a set of points P and a point p. Then ALG(P ) ⊆ ALG(P ∪ {p}).

Initially, P = ∅. If a point p is introduced by the adversary, then we compute ALG(P )
(where P denotes the set of previous points, i.e., without p) and ALG(P ∪ {p}) and we add
the squares in ALG(P ∪ {p}) \ ALG(P ) to our solution. Therefore, due to Lemma 2 and
Lemma 3 we obtain an O(log N)-competitive online algorithm.

2.1.2 O(log n)-competitive online set cover for squares
We assume now that we are given a set P̃ ⊆ R2 with |P̃ | = n such that in each round a
point from P̃ is inserted to P , i.e., P ⊆ P̃ after each round. We want to get a competitive
ratio of O(log n) in this case. If N = nO(1) then this is immediate. Otherwise, we extend
our algorithm such that it uses the balanced box-decomposition tree (or BBD-tree) data
structure due to Arya et al. [6], instead of the quad-tree. Before the first round, P = ∅ and
we initialize the BBD-tree which yields a tree T̃ = (Ṽ , Ẽ) with the following properties:

each node v ∈ Ṽ corresponds to a cell C̃v ⊆ [0, N)2 which is described by an outer box
bO ⊆ [0, N)2 and an inner box bI ⊆ bO; both of them are axis-parallel rectangles and
C̃v = bO \ bI (Note that bI could be the empty set).
the aspect ratio of bO, i.e., the ratio between the length of the longest edge to the length
of the shortest edge of bO, is bounded by 3.
if bI ̸= ∅, then bI is sticky which intuitively means that in each dimension, the distance
of bI to the boundary of bO is either 0 or at least the width of bI . Formally, assume
that bO = [x(1)

O , x
(2)
O ] × [y(1)

O , y
(2)
O ] and bI = [x(1)

I , x
(2)
I ] × [y(1)

I , y
(2)
I ]. Then x

(1)
O = x

(1)
I

or x
(1)
I − x

(1)
O ≥ x

(2)
I − x

(1)
I . Also x

(2)
O = x

(2)
I or x

(2)
O − x

(2)
I ≥ x

(2)
I − x

(1)
I . Analogous

conditions also hold for the y-coordinates.
each node v ∈ Ṽ is a leaf or it has two children v1, v2 ∈ Ṽ ; in the latter case C̃v = C̃v1 ∪̇C̃v2 .
the depth of T̃ is O(log n) and each point q ∈ [0, N)2 is contained in O(log n) cells.
each leaf node v ∈ Ṽ contains at most one point in P̃ .

In the construction of the BBD-tree, we make the cells at the same depth disjoint so
that a point p may be contained in exactly one cell at a certain depth. Hence, for a cell
C̃v = bO \ bI we assume both bO and bI to be closed set. We now describe an adjustment of
our offline algorithm from Section 2, working with T̃ instead of T . Similarly, as before, we
traverse T̃ in a breadth-first-order. Suppose that in one iteration we consider a node v ∈ Ṽ
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corresponding to a cell C̃v. We check whether the squares selected in the ancestors of v cover
all points in P ∩ C̃v. If this is the case, we do not select any squares from S in this iteration
corresponding to v.

Suppose now that the squares selected in the ancestors of v do not cover all points in
P ∩ C̃v. Similar to Section 2, we want to select O(1) squares for C̃v such that if C̃v contains
no corner of a square S ∈ OPT, then the squares we selected for C̃v should cover all points
in P ∩ C̃v. Similarly as before, for each edge e of bO we select a square from S that contains
e and that has the largest intersection with bO among all such squares in S. We break ties
in an arbitrary but fixed way. However, as C̃v may not be a square and can have holes (due
to bI), apart from the edge-covering squares, we need to consider two additional types of
squares in OPT with nonempty overlap with C̃v: (a) crossing C̃v, i.e., squares that intersect
two parallel edges of bO; (b) has one or two corners inside bI . See Figure 6.

bO

bI

bO

bI

Figure 6 Possible intersections of a (cyan) square from OPT with a cell, such that no corner of
the square is in the cell. The left image shows edge-covering, and crossing squares. The right image
shows squares with one of two corners inside bI .

The following greedy subroutine G will be useful in our algorithm to handle such prob-
lematic cases. Let R be a box of width w and height h such that w/h ≤ B, for some
constant B ∈ N; and PR be a set of points inside R that can be covered by a collection of
vertically-crossing (i.e., they intersect both horizontal edges of R) squares S ′. Then, the set
of squares picked according to G covers PR in the following way:

While there is an uncovered point p′ ∈ PR:
Consider the leftmost such uncovered point p ∈ PR.
Select the vertically-crossing square intersecting p (by assumption, such a square exists)
with the rightmost edge.

(The above subroutine is for finding vertically-crossing squares. For finding horizontally-
crossing squares, we can appropriately rotate the input 90◦ anti-clockwise, and apply the
same subroutine.) Then, we have the following claim about the aforementioned subroutine.

▷ Claim 4. Let R be a box of width w and height h such that w/h ≤ B, for some constant
B ∈ N; and PR be a set of points inside R that can be covered by a collection of vertically-
crossing (i.e., they intersect both horizontal edges of R) squares S ′. Then we can find at
most B + 1 squares from S ′ that can cover all points inside R.

We have an analogous claim for horizontally-crossing squares when h/w ≤ B.

Now we describe our algorithm. First, we take care of the squares that can cross bO. So,
we apply the greedy subroutine G on bO. As bO has bounded aspect ratio of 3, from Claim 4,
we obtain at most (3 + 1) + (1 + 1) = 6 squares that can cross Cv vertically or horizontally.
If bI = ∅, we do not select any more squares. Otherwise, we need to take care of the squares
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that can have one or two corners inside bI . Let ℓ1, ℓ2, ℓ3, ℓ4 denote the four lines that contain
the four edges of bI . Observe that ℓ1, ℓ2, ℓ3, ℓ4 partition bO into up to nine rectangular
regions, one being identical to bI . See Figure 7. For each such rectangular region R, if it
is sharing a horizontal edge with bI , we again use G to select vertically-crossing squares.
Otherwise, if R is sharing a vertical edge with bI , we use the subroutine G appropriately to
select horizontally-crossing squares. This takes care of squares having two corners inside
bI . Otherwise, if the rectangular region R does not share an edge with bI , then we check if
there is a square S ∈ S with a corner within bI that completely contains R. We add S to our
solution too. This finally takes care of the case when a square has a single corner inside bI .

Finally, to complete our algorithm, before its execution, we do the following: for every
leaf v for which Cv contains at most one point p ∈ P̃ , we associate a fixed square which
covers p. Then, if our algorithm reaches a leaf v while traversing that has an uncovered point
p, we pick the associated square with this leaf that covers it. This condition in our algorithm
guarantees feasibility.

bO

bI

R1 R2 R3

R4 R5

R6 R7 R8

ℓ2ℓ1

ℓ3

ℓ4

Figure 7 Outer box bO being partitioned into at most 9 rectangles due to inner box bI .

Then using the following lemma, we can establish a similar charging scheme as in Section 2.

▶ Lemma 5. Let C̃v be a cell such that the squares selected in the ancestors of v do not
cover all points in P ∩ C̃v. Then
(a) we select at most O(1) squares for C̃v and
(b) if C̃v contains no corner of a square S ∈ OPT, then the squares we selected for C̃v cover

all points in P ∩ C̃v.
To pay for our solution, we charge each corner q of a square S ∈ OPT at most O(log n)

times. Hence, our approximation ratio is O(log n). Similarly as in Section 2, we can modify
the above offline algorithm to an online algorithm with an approximation ratio of O(log n).

▶ Theorem 6. There is a deterministic O(log n)-competitive online algorithm for set cover
for axis-parallel squares of arbitrary sizes.

It is a natural question whether algorithms having a competitive factor better than
O(log n) are possible for online set cover for squares. We answer this question in the negative.

▶ Theorem 7. Any deterministic or randomized online algorithm for set cover for unit
squares has a competitive ratio of Ω(log n), even if all squares contain the origin and all
points are contained in the same quadrant.

3 Online hitting set for squares

Now we present our online algorithm for hitting set for squares. We are given a fixed set
of points P ⊆ [0, N)2 with integral coordinates. We maintain a set P ′ of selected points
such that initially P ′ := ∅. In each round, we are given a square S ⊆ [0, N)2 whose corners
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have integral coordinates. We assume w.l.o.g. that N is a power of 2. Let Q be all (grid)
points with integral coordinates in [0, N)2, i.e., P ⊆ Q. For each point q ∈ Q we say that
q = (qx, qy) is of level ℓ if both qx and qy are integral multiples of N/2ℓ, but not both are
integral multiples of N/2(ℓ−1). We build the same quad-tree as in Section 2. We say that a
cell Cv is of level ℓ if its side length equals N/2ℓ.

We present our algorithm now. Suppose that in some round a new square S is given. If
S ∩ P ′ ≠ ∅ then we do not add any point to P ′. Suppose now that S ∩ P ′ = ∅. Let q be a
point of smallest level among all points in Q∩S (if there are many such points, then we select
an arbitrary point in Q∩S of smallest level). Intuitively, we interpret q as if it were the origin
and partition the plane into four quadrants. We define OT R := {(px, py) | px ≥ qx , py ≥ qy},
and ST R := OT R ∩ S, and define similarly OT L, OBR, OBL, and ST L, SBR, SBL. Consider
OT R and ST R. For each level ℓ = 0, 1, . . . , log N , we do the following. Consider each cell C

of level ℓ in some fixed order such that C ⊆ OT R and ST R is edge-covering for some edge e

of C. Then, for each edge identify the point pb (pt, pl, pr, resp.) in P ∩ C that is closest to
its bottom (top, left, and right, resp.) edge. We add these (at most 4) points to our solution
if at least one of pb, pt, pl, pr is contained in ST R (see Figure 8). If we add at least one such
point p of the cell C to P ′ in this way, we say that C gets activated. Note that we add
possibly all of the points pb, pt, pl, pr to P ′ even though only one may be contained in ST R.
This is to ensure that C gets activated at most once during a run of the online algorithm. If
for the current level ℓ we activate at least one cell C of level ℓ, then we stop the loop and do
not consider the other levels ℓ + 1, . . . , log N . Otherwise, we continue with level ℓ + 1. We
do a symmetric operation for the pairs (OT L, ST L), (OBR, SBR), and (OBL, SBL).

For the analysis of the algorithm, we show that for a point p ∈ OPT, the number of rounds
for which the adversary can possibly introduce a square S such that p ∈ S and S ∩ P ′ = ∅ is
O(log N). More specifically, we identify a set of cells Cp such that |Cp| = O(log N) and in
any such round where p ∈ S, one of the cells in Cp is activated. The competitive ratio of the
algorithm follows from the fact that any cell of the quad-tree is activated at most once.

S

q

STR

C

pb

pl

pt

pr

STL

SBL SBR

Figure 8 In the cell C (contained in OTR) the red points are chosen by the algorithm.

▶ Theorem 8. There is an O(log N)-competitive deterministic online algorithm for hitting
set for axis-parallel squares of arbitrary sizes.

This is tight, as even for intervals, Even et al. [21] have shown an Ω(log N) lower bound.
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4 Dynamic set cover for d-dimensional hyperrectangles

In this section, we will design an algorithm to dynamically maintain an approximate set cover
for d-dimensional hyperrectangles. The main result we prove in this section is the following.

▶ Theorem 9. After performing a pre-processing step which takes O(m log2d m) time, there is
an algorithm for dynamic set cover for d-dimensional hyperrectangles with an approximation
factor of O(log4d−1 m) and an update time of O(log2d+2 m).

Our goal is to adapt the quad-tree based algorithms designed in the previous sections of
the paper. As a first step towards that, we transform the problem such that the points and
hyperrectangles in Rd get transformed to points and hypercubes in R2d, and the new problem
is to cover the points in R2d with these hypercubes. As discussed in the introduction, a
simple 2d-dimensional quad-tree on the hypercubes does not suffice for our purpose. We
augment the quad-tree in two ways: (a) at each node, we collect the hypercubes which are
edge-covering w.r.t. that node and “ignore” that dimension in which they are edge-covering,
and (b) recursively construct a (2d−1)-dimensional quad-tree on these hypercubes based
on the remaining 2d−1 dimensions. We call this new structure an extended quad-tree. This
yields the important property that any point in R2d will belong to only O(log2d m) cells in the
extended quad-tree. Furthermore, at the 1-dimensional cells of the extended quad-tree, for
each cell we will identify O(1) “most useful” hypercubes. This ensures that any point belongs
to only O(log2d m) of these most useful hypercubes. As a result, a “bounded frequency” set
system can be constructed with the most useful hypercubes. The dynamic algorithm from
Bhattacharya et al. [12] (for general set cover) works efficiently on bounded frequency set
systems and applying it in our setting leads to an O(log4d−1 m)-approximation algorithm.

4.1 Transformation to hypercubes in R2d

Recall that the input is a set of points P and S is a collection of hyperrectangles in Rd.
By a standard rank-space reduction, we can assume that each corner of each hyperrectangle

in S is contained in {0, 1, ..., 2m}d and that the intersection of any two input hyperrectangles
in S is either d-dimensional or empty. Also, we perturb each input point p ∈ P slightly so
that p is not contained in the face of any hyperrectangle in S, without changing the collection
of hyperrectangles that cover p.

The first step of the algorithm is to transform the hyperrectangles in S to hypercubes
in R2d. Consider a hyperrectangle S ∈ S with a = (a1, . . . , ad) and b = (b1, . . . , bd) being
the “lower-left” and the “upper-right” corners of S, respectively. Let ∆ = maxd

j=1(bj − aj).
Then S is transformed to a hypercube S′ in R2d with side-length ∆ and “top-right” corner
(−a1,−a2, . . . ,−ad, b1, b2, . . . , bd). Let S ′ be the collection of these m transformed hypercubes.
Let P ′ be the set of n points in R2d obtained by transforming each point p = (p1, . . . , pd) ∈ P

to p′ = (−p1, . . . ,−pd, p1, . . . , pd). See Figure 9 for an example.

▶ Observation 10. A point p = (p1, . . . , pd) lies inside S if and only if the point p′ =
(−p1, . . . ,−pd, p1, . . . , pd) lies inside S′.

After applying the above transformation, we note that the coordinates of each corner
of each hypercube in S ′ will be contained in {−4m, ..., 0}d × {−2m, ..., 2m}d. We perform
a suitable shifting so that all the corners of the hypercubes in S ′ will be contained in
{0, ..., 4m}2d. Then, our assumption on the input set of hyperrectangles S and the input
points P implies that for any point p′ ∈ P ′, it does not lie on a face of any hypercube in S ′.
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p = (p1)

a = (a1) b = (b1)

(−a1, b1)

(a) (b)

p′ = (−p1, p1)

(−b1, a1)

S′

Figure 9 (a) A point p in 1-D lying inside an interval S = [a1, b1], and (b) the transformation of
p into a point p′ = (−p1, p1), and the transformation of S into a square S′ in 2-D.

4.2 Constructing a bounded frequency set system

We will now present a technique to select a set Ŝ ⊆ S ′ with the following properties:
1. (Bounded frequency) Any point in P ′ lies inside O(log2d m) hypercubes in Ŝ.
2. An α-approximation dynamic set cover algorithm for (P ′, Ŝ) implies an O(α log2d−1 m)-

approximation dynamic set cover algorithm for (P ′,S ′).
3. The time taken to update the solution for the set system (P ′, Ŝ) is O(log2d m · log2 n).
4. The time taken to construct the set Ŝ is O(m log2d m).

4.2.1 Extended quad-tree for 2-dimensional squares

Given a set of squares S ′, we construct a 2-dimensional quad-tree T (as defined in Section 2)
such that its root cell contains all the squares in S ′. Consider a node v ∈ T and a square
S ∈ S ′. Let C and par(C) be the cell corresponding to node v and the parent node of v,
respectively. Let proji(C), proji(par(C)) and proji(S) be the projection of C, par(C) and S,
respectively, on to the i-th dimension. Then S is i-long at v if and only if proji(C) ⊆ proji(S)
but proji(par(C)) ̸⊆ proji(S). See Figure 10(a). For all u ∈ T, let S(u, i) ⊆ S ′ be the squares
which are i-long at node u. Intuitively, these are squares that cover the edge of C in the i-th
dimension but do not cover any edge of par(C) in the i-th dimension. Now, at each node of
T we will construct two secondary structures as follows: the first structure is a 1-dimensional
quad-tree built on the projection of the squares in S(u, 1) on to the second dimension, and
the second structure is a 1-dimensional quad-tree built on the projection of the squares in
S(u, 2) on to the first dimension.

In each secondary structure, an interval I (corresponding to a square S ∈ S ′) is assigned to
a node u if and only if u is the node with the smallest depth (the root is at depth zero) where
I intersects either the left endpoint or the right endpoint of the cell Cu. See Figure 10(b). By
this definition, any interval will be assigned to at most two nodes in the secondary structure.

Now we will use T to construct the geometric collection Ŝ. Let Vsec be the set of nodes in
all the secondary structures of T. For any node u ∈ Vsec, among its assigned intervals which
intersect the left (resp., right) endpoint of the cell Cu, identify the maximal interval Iℓ (resp.,
Ir), i.e., the interval which has maximum overlap with Cu. See Figure 10(c). We then do
the following set of operations over all the nodes in Vsec: For a node u ∈ Vsec, denote by S′

and S′′ the corresponding squares for the assigned intervals Iℓ and Ir, respectively. Further,
let w be the node in T, on which the secondary structure of u was constructed. Then, we
include in Ŝ the rectangles S1 ∩ Cw and S2 ∩ Cw.
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par(C)

S I

par(u)

u

(a) (b) (c)
dim 2

dim 1
C

Ir

Iℓ
Cu

(b)

Figure 10 (a) A square S which is 1-long at node v (corrs. cell C is highlighted in darker orange),
(b) I is assigned to the two children of v, and (c) the maximal intervals Iℓ and Ir at Cv.

4.2.2 Extended quad-tree for 2d-dimensional hypercubes

For 2d-dimensions, we need a generalization of the quad-tree defined in Section 2. For d′ > 2,
a d′-dimensional quad-tree is defined analogously to the the quad-tree defined in Section 2,
where instead of four, each internal node will now have 2d′ children. Assume by induction
that we have defined how to construct the extended quad-tree for all dimensions less than or
equal to 2d−1. (The base case is the extended quad-tree built for 2-dimensional squares.) We
define now how to construct the structure for 2d-dimensional hypercubes. First construct the
regular 2d-dimensional quad-tree T for the set of hypercubes S ′. Consider any node v ∈ T.
Generalizing the previous definition, for any 1 ≤ i ≤ 2d, a hypercube S ∈ S ′ is defined to be
i-long at node v if and only if proji(C) ⊆ proji(S), but proji(par(C)) ̸⊆ proji(S). For all v ∈ T,
let S(v, i) ⊆ S ′ be the hypercubes which are i-long at node v. Now, at each node of T we will
construct 2d secondary structures as follows: for all 1 ≤ i ≤ 2d, the i-th secondary structure
is a (2d−1)-dimensional extended quad-tree built on S(v, i) and all its 2d dimensions except
the i-th dimension. Specifically, any hypercube S ∈ S(v, i) of the form ℓ1×· · ·× ℓi×· · ·× ℓ2d

is projected to a (2d−1)-dimensional hypercube ℓ1 × · · · × ℓi−1 × ℓi+1 × · · · × ℓ2d. Let Ŝv be
the collection of the (2d−1)-dimensional hyperrectangles that are inductively picked for the
secondary structure constructed at v ∈ T using the routine. Define the function g which
maps a (2d−1)-dimensional hyperrectangle picked as part of the collection Ŝv (for a v ∈ T)
to its corresponding 2d-dimensional hypercube S ∈ S ′. We now define the collection of sets
Ŝ consisting of 2d-dimensional hyperrectangles: Ŝ ←

⋃
v∈T

(⋃
S′∈Ŝv

(g(S′) ∩ Cv)
)
. Then we

prove the following three key properties of Ŝ.

▶ Lemma 11. (Feasibility) Any point p ∈ P ′ is covered by at least one set in Ŝ.

▶ Lemma 12. (Bounded frequency) Any point in P ′ lies inside O(log2d m) sets in Ŝ.

▶ Lemma 13. If there is an α-approximation dynamic set cover algorithm for (P ′, Ŝ) then
there is an O(α log2d−1 m)-approximation dynamic set cover algorithm for (P ′,S ′).

4.3 The final algorithm

We run the O(f)-approximate algorithm by Bhattacharya et al. [12] for the dynamic set
cover problem as a black box on the instance (P ′, Ŝ). If ALG is the reported solution, we
also report ALG as our solution for the instance (P ′,S ′). One can prove that this yields
Theorem 9.
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Figure 11 Extended quad-tree with a 2 × 2 × 2 cube as the root.

4.4 Weighted setting

We present an extension of our algorithm to the setting where each hyperrectangle S ∈ S has
a weight wS ∈ [1, W ]. First, we round the weight of each set S to the smallest power of two
greater than or equal to wS , leading to O(log W ) weight classes. Next, for each weight class,
we build an extended quad-tree as in the previous section. Finally, let Ŝ be the collection
of (maximal) hypercubes obtained from all the O(log W ) extended quad-trees. We run the
dynamic set cover algorithm of Bhattacharya et al. [12] on (P ′, Ŝ).

▶ Theorem 14. There is an algorithm for weighted dynamic set cover for d-dimensional
hyperrectangles with an approximation factor of O(log4d−1 m · log W ) and an update time of
O(log2d m · log3(Wm)).

5 Dynamic hitting set for d-dimensional hyperrectangles

In this section we claim a dynamic algorithm for hitting set for d-dimensional hyperrectangles.
We obtain this by reducing the problem to an instance of dynamic set cover for 2d-dimensional
hypercubes and use the algorithm designed in the previous section to solve the instance.

▶ Theorem 15. After performing a pre-processing step which takes O(n log2d n) time, there is
an algorithm for hitting set for d-dimensional hyperrectangles with an approximation factor of
O(log4d−1 n) and an update time of O(log2d+2 n). In the weighted setting, the approximation
factor is O(log4d−1 n · log W ) and the update time is O(log2d n log3(Wn)).
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