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Abstract
A graph is 2-planar if it has local crossing number two, that is, it can be drawn in the plane such
that every edge has at most two crossings. A graph is maximal 2-planar if no edge can be added
such that the resulting graph remains 2-planar. A 2-planar graph on n vertices has at most 5n − 10
edges, and some (maximal) 2-planar graphs – referred to as optimal 2-planar – achieve this bound.
However, in strong contrast to maximal planar graphs, a maximal 2-planar graph may have fewer
than the maximum possible number of edges. In this paper, we determine the minimum edge density
of maximal 2-planar graphs by proving that every maximal 2-planar graph on n ≥ 5 vertices has at
least 2n edges. We also show that this bound is tight, up to an additive constant. The lower bound
is based on an analysis of the degree distribution in specific classes of drawings of the graph. The
upper bound construction is verified by carefully exploring the space of admissible drawings using
computer support.
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1 Introduction

Maximal planar graphs a.k.a. (combinatorial) triangulations are a rather important and
well-studied class of graphs with a number of nice and useful properties. To begin with, the
number of edges is uniquely determined by the number of vertices, as every maximal planar
graph on n ≥ 3 vertices has 3n − 6 edges. It is natural to wonder if a similar statement can
be made for the various families of near-planar graphs, which have received considerable
attention over the past decade; see, e.g. [11, 15].

In this paper we focus on k-planar graphs, specifically for k = 2. These are graphs with
local crossing number at most k, that is, they admit a drawing in R2 where every edge
has at most k crossings. The class of 1-planar graphs was introduced by Ringel [21] in the
context of vertex-face colorings of planar graphs. Later, Pach and Tóth [20] used upper
bounds on the number of edges in k-planar graphs to derive an improved version of the
Crossing Lemma, which gives a lower bound on the crossing number of a simple (no loops
or multi-edges) graph in terms of its number of vertices and edges. The class of k-planar
graphs is not closed under edge contractions and already for k = 1 there are infinitely many
minimal non-1-planar graphs, as shown by Korzhik [17].
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39:2 The Number of Edges in Maximal 2-Planar Graphs

The maximum number of edges in a k-planar graph on n vertices increases with k, but
the exact dependency is not known. A general upper bound of O(

√
kn) is known due to

Ackerman and Pach and Tóth [1, 20] for graphs that admit a simple k-plane drawing, that
is, a drawing where every pair of edges has at most one common point. Only for small k we
have tight bounds. A 1-planar graph on n vertices has at most 4n − 8 edges and there are
infinitely many optimal 1-planar graphs that achieve this bound, as shown by Bodendiek,
Schumacher, and Wagner [7]. A 2-planar graph on n vertices has at most 5n − 10 edges and
there are infinitely many optimal 2-planar graphs that achieve this bound, as shown by Pach
and Tóth [20]. In fact, there are complete characterizations, for optimal 1-planar graphs by
Suzuki [23] and for optimal 2-planar graphs by Bekos, Kaufmann, and Raftopoulou [6].

Much less is known about maximal k-planar graphs, that is, graphs for which adding any
edge results in a graph that is not k-planar anymore. In contrast to planar graphs, where
maximal and optimal coincide, it is easy to find examples of maximal k-planar graphs that
are not optimal; a trivial example is the complete graph K5. In fact, the difference between
maximal and optimal can be quite large for k-planar graphs, even – perhaps counterintuitively
– maximal k-planar graphs for k ≥ 1 may have fewer edges than maximal planar graphs on
the same number of vertices. Hudák, Madaras, and Suzuki [16] describe an infinite family of
maximal 1-planar graphs with only 8n/3 + O(1) ≈ 2.667n edges. An improved construction
with 45n/17+O(1) ≈ 2.647n edges was given by Brandenburg, Eppstein, Gleißner, Goodrich,
Hanauer, and Reislhuber [8] who also established a lower bound by showing that every
maximal 1-planar graph has at least 28n/13 − O(1) ≈ 2.153n edges. Later, this lower bound
was improved to 20n/9 ≈ 2.22n by Barát and Tóth [4].

Maximal 2-planar graphs were studied by Auer, Brandenburg, Gleißner, and Hanauer [3]
who constructed an infinite family of maximal 2-planar graphs with n vertices and 387n/147+
O(1) ≈ 2.63n edges.1 We are not aware of any nontrivial lower bounds on the number of
edges in maximal k-planar graphs, for k ≥ 2.

Results. In this paper, we give tight bounds on the minimum number of edges in maximal 2-
planar graphs, up to an additive constant.

▶ Theorem 1. Every maximal 2-planar graph on n ≥ 5 vertices has at least 2n edges.

▶ Theorem 2. There exists a constant c ∈ N such that for every n ∈ N there exists a
maximal 2-planar graph on n vertices with at most 2n + c edges.

Related work. Maximality has also been studied for drawings of simple graphs. Let D be a
class of drawings. A drawing D ∈ D is saturated if no edge can be added to D so that the
resulting drawing is still in D. For the class of simple drawings, Kynčl, Pach, Radoičić and
Tóth [18] showed that every saturated drawing on n vertices has at least 1.5n edges and there
exist saturated drawings with no more than 17.5n edges. The upper bound was improved
to 7n by Hajnal, Igamberdiev, Rote and Schulz [12]. Chaplick, Klute, Parada, Rollin, and
Ueckerdt [9] studied saturated k-plane drawings, for k ≥ 4, and obtained tight bounds linear
in n, where the constant depends on k, for various types of crossing restrictions. For the class
of 1-plane drawings, Brandenburg, Eppstein, Gleißner, Goodrich, Hanauer, and Reislhuber [8]

1 Maximality is proven via uniqueness of the 2-plane drawing of the graph. However, there is no explicit
proof of the uniqueness in this short abstract.
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showed that there exist saturated drawings with no more than 7n/3 + O(1) ≈ 2.33n edges.
On the lower bound side, the abovementioned bound of 20n/9 ≈ 2.22n edges by Barát and
Tóth [4] actually holds for saturated 1-plane drawings. For the class of 2-plane drawings,
Auer, Brandenburg, Gleißner, and Hanauer [3] describe saturated drawings with no more
than 4n/3 + O(1) ≈ 1.33n edges, and Barát and Tóth [5] show that every saturated 2-plane
drawing on n vertices has at least n − 1 edges.

Although the general spirit is similar, saturated drawings are quite different from maximal
abstract graphs. To obtain a sparse saturated drawing, one can choose both the graph and
the drawing, whereas for sparse maximal graphs one can choose the graph only and needs to
get a handle on all possible drawings. Universal lower bounds for saturated drawings carry
over to the maximal graph setting, and existential upper bounds for maximal graphs carry
over to saturated drawings. But bounds obtained in this fashion are far from tight usually;
compare, for instance, the range of between n and 4n/3 edges for saturated 2-plane drawings
to our bound of 2n edges for maximal 2-planar graphs.

2 Preliminaries

A drawing of a graph G = (V, E) is a map γ : G → R2 that maps each vertex v ∈ V to
a point γ(v) ∈ R2 and each each edge uv ∈ E to a simple (injective) curve γ(uv) with
endpoints γ(u) and γ(v), subject to the following conditions: (1) γ is injective on V ; (2) for
all uv ∈ E we have γ(uv)∩γ(V ) = {γ(u), γ(v)}; and (3) for each pair e0, e1 ∈ E with e0 ̸= e1
the curves γ(e0) and γ(e1) have at most finitely many intersections, and each such intersection
is either a common endpoint or a proper, transversal crossing (that is, no touching points
between these curves). The connected components of R2 \ γ(G) are the faces of γ. The
boundary of a face f is denoted by ∂f .

To avoid notational clutter we will often identify vertices and edges with their geometric
representations in a given drawing. A drawing is simple if every pair of edges has at most
one common point. A drawing is k-plane, for k ∈ N, if every edge has at most k crossings.
A graph is k-planar if it admits a k-plane drawing. A graph is maximal k-planar if no edge
can be added to it so that the resulting graph is still k-planar.

To analyze a k-planar graph one often analyzes one of its k-plane drawings. It is, therefore,
useful to impose additional restrictions on this drawing if possible. One such restriction
is to consider a crossing-minimal k-plane drawing, that is, a drawing that minimizes the
total number of edge crossings among all k-plane drawings of the graph. For small k, such a
drawing is always simple; for k ≥ 4 this is not the case in general [22, Footnote 112].

▶ Lemma 3 (Pach, Radoičić, Tardos, and Tóth [19, Lemma 1.1]). For k ≤ 3, every crossing-
minimal k-plane drawing is simple.

In figures, we use the following convention to depict edges: Uncrossed edges are shown
green, singly crossed edges are shown purple, doubly crossed edges are shown blue, and edges
for which the number of crossings is undetermined are shown black.

Connectivity. Next let us collect some basic properties of maximal k-planar graphs and
their drawings. Some of these may be folklore, but for completeness we include the (simple)
proofs in the full version [14].

▶ Lemma 4. Let D be a crossing-minimal k-plane drawing of a maximal k-planar graph G,
and let u and v be two vertices that lie on (the boundary of) a common face in D. Then uv

is an edge of G and it is uncrossed in D.

SoCG 2023
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▶ Lemma 5. Let D be a crossing-minimal k-plane drawing of a maximal k-planar graph
on n vertices, for k ≤ 2 ≤ n. Then every vertex is incident to an uncrossed edge in D.

▶ Lemma 6. For k ≤ 2, every maximal k-planar graph on n ≥ 3 vertices is 2-connected.

3 The Lower Bound

In this section we develop our lower bound on the edge density of maximal 2-planar graphs
by analyzing the distribution of vertex degrees. As we aim for a lower bound of 2n edges,
we want to show that the average vertex degree is at least four. Then, the density bound
follows by the handshaking lemma. However, maximal 2-planar graphs may contain vertices
of degree less than four. By Lemma 6 we know that the degree of every vertex is at least
two. But degree-two vertices, so-called hermits, may exist, as well as vertices of degree three.

In order to lower bound the average degree by four, we employ a charging scheme where
we argue that every low-degree vertex, that is, every vertex of degree two and three claims
a certain number of halfedges at an adjacent high-degree vertex, that is, a vertex of degree
at least five. Claims are exclusive, that is, every halfedge at a high-degree vertex can be
claimed at most once. We use the term halfedge because the claim is not on the whole edge
but rather on its incidence to one of its high-degree endpoints. The incidence at the other
endpoint may or may not be claimed independently (by another vertex). For an edge uv we
denote by −⇀uv the corresponding halfedge at v and by −⇀vu the corresponding halfedge at u.
A halfedge −⇀uv inherits the properties of its underlying edge uv, such as being crossed or
uncrossed in a particular drawing. Vertices of degree four have a special role, as they are
neither low– nor high-degree. However, a vertex of degree four that is adjacent to a hermit
is treated like a low-degree vertex. More precisely, our charging scheme works as follows:
(C1) Every hermit claims two halfedges at each high-degree neighbor.
(C2) Every degree-three vertex claims three halfedges at some high-degree neighbor.
(C3) Every degree four vertex that is adjacent to a hermit h claims two halfedges at some

neighbor v of degree ≥ 6. Further, the vertices h and v are adjacent, so h also claims
two halfedges at v by (C1). If deg(v) = 6, then v is adjacent to exactly one hermit.

(C4) At most one vertex claims (one or more) halfedges at a degree five vertex.

The remainder of this section is organized as follows. First, we present the proof of
Theorem 1 in Section 3.1. Then we prove the validity of our charging scheme along with
some useful properties of low-degree vertices in Section 3.2–3.5. Specifically, we will use the
following statements in the proof of Theorem 1 below.

▶ Lemma 7. Let G be a maximal 2-planar graph on n ≥ 5 vertices, let h be a hermit, and
let x, y be the neighbors of h in G. Then we have deg(x) ≥ 4 and deg(y) ≥ 4.

▶ Lemma 8. Let G be a maximal 2-planar graph on n ≥ 5 vertices. Then a vertex of degree i

in G is adjacent to at most ⌊i/3⌋ hermits.

3.1 Proof of Theorem 1
Let G be a maximal 2-planar graph on n ≥ 5 vertices, and let m denote the number of edges
in G. We denote by vi the number of vertices of degree i in G. By Lemma 6 we know that G

is 2-connected and, therefore, we have v0 = v1 = 0. Thus, we have

n =
n−1∑
i=2

vi and by the handshaking lemma 2m =
n−1∑
i=2

i · vi. (1)
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Vertices of degree four or higher can be adjacent to hermits. Let vhj
i denote the number

of vertices of degree i incident to j hermits in G. By Lemma 8 we have

vi =
⌊i/3⌋∑
j=0

vhj
i for all i ≥ 3. (2)

By Lemma 7 both neighbors of a hermit have degree at least four. Thus, double counting
the edges between hermits and their neighbors we obtain

2v2 ≤ vh1
4 + vh1

5 + vh1
6 + 2vh2

6 + vh1
7 + 2vh2

7 + 2v8 + vh1
9 + 2vh2

9 + 3vh3
9 +

n−1∑
i=10

⌊i/3⌋vi. (3)

If a vertex u claims halfedges at a vertex v, we say that v serves u. According to (C2),
every vertex of degree three claims three halfedges at a high-degree neighbor. Every degree
four vertex that is adjacent to a hermit together with this hermit claims four halfedges at a
high-degree neighbor by (C3). We sum up the number of these claims and assess how many
of them can be served by the different types of high-degree vertices.

In general, a high-degree vertex of degree i ≥ 5 can serve at most ⌊i/3⌋ such claims.
For i ∈ {5, 6, 7, 9}, we make a more detailed analysis, taking into account the number of
adjacent hermits. Specifically, by (C3) and (C4) a degree five vertex serves at most one
low-degree vertex, which is either a hermit or a degree-three vertex. A degree six vertex
can serve two degree-three vertices but only if it is not adjacent to a hermit. If a degree six
vertex serves a degree four vertex, it is adjacent to exactly one hermit by (C3). In particular,
a degree six vertex that is adjacent to two hermits does not serve any degree three or degree
four vertex. Altogether we obtain the following inequality:

v3+vh1
4 ≤ vh0

5 +2vh0
6 +vh1

6 +2vh0
7 +2vh1

7 +vh2
7 +2v8+3vh0

9 +2vh1
9 +2vh2

9 +vh3
9 +

n−1∑
i=10

⌊i/3⌋vi. (4)

The combination ((3) + (4))/2 together with (2) yields

v2 + 1
2v3 ≤ 1

2v5 + v6 + 3
2v7 + 2v8 + 2v9 +

n−1∑
i=10

⌊i/3⌋vi. (5)

Now, using these equations and inequalities, we can prove that m − 2n ≥ 0, to complete the
proof of Theorem 1. Let us start from the left hand side, using (1).

m − 2n = 1
2

n−1∑
i=2

ivi − 2
n−1∑
i=2

vi =
n−1∑
i=2

i − 4
2 vi

= −v2 − 1
2v3 + 1

2v5 + v6 + 3
2v7 + 2v8 + 5

2v9 +
n−1∑
i=10

i − 4
2 vi

By (5) the right hand side is nonnegative, quod erat demonstrandum.

3.2 Admissible Drawings
So far we have worked with the abstract graph G. In order to discuss our charging scheme,
we also use a suitably chosen drawing of G. Specifically, we consider a maximal 2-planar
graph G on n ≥ 5 vertices and a crossing-minimal 2-plane drawing D of G that, among all
such drawings, minimizes the number of doubly crossed edges. We refer to a drawing with
these properties as an admissible drawing of G. By Lemma 3 we know that D is simple.

SoCG 2023



39:6 The Number of Edges in Maximal 2-Planar Graphs

3.3 Hermits and degree four vertices
▶ Lemma 9. Let h be a hermit and let x, y be its neighbors in G. Then x and y are adjacent
in G and all three edges xy, hx, hy are uncrossed in D.

We refer to the edge xy as the base of the hermit h, which hosts h.

▶ Lemma 10. Every edge of G hosts at most one hermit.

By Lemma 7 both neighbors of a hermit have degree at least four. A vertex is of type T4-H
if it has degree exactly four and it is adjacent to a hermit. The following lemma characterizes
these vertices and ensures that every hermit has at least one high-degree neighbor.

▶ Lemma 11. Let u be a T4-H vertex with neighbors h, v, w, x in G such that h is a hermit
and v is the second neighbor of h. Then both uw and ux are doubly crossed in D, and the two
faces of D \ h incident to uv are triangles that are bounded by (parts of) edges incident to u

and doubly crossed edges incident to v. Furthermore, we have deg(v) ≥ 6, and if deg(v) = 6,
then h is the only hermit adjacent to v in G.

In our charging scheme, each hermit h claims two halfedges at each high-degree neighbor v:
the halfedge −⇀

hv and the halfedge −⇀uv, where uv denotes the edge that hosts h. Each T4-H
vertex u claims the two doubly crossed halfedges at v that bound the triangular faces incident
to uv in D.

v

u
h

3.4 Degree-three vertices
We distinguish four different types of degree-three vertices in G, depending on their neigh-
borhood and on the crossings on their incident edges in D. Consider a degree-three vertex u

in G. By Lemma 5 every vertex is incident to at least one uncrossed edge in D.

T3-1: exactly one uncrossed edge. The two other edges incident to u are crossed.

▶ Lemma 12. Let u be a T3-1 vertex with neighbors v, w, x in G such that the edge uv

is uncrossed in D. Then the two faces of D incident to uv are triangles that are bounded
by (parts of) edges incident to u and doubly crossed edges incident to v. Furthermore, we
have deg(v) ≥ 5.

In our charging scheme, each T3-1 vertex u claims three halfedges at its adjacent high-
degree vertex v: the uncrossed halfedge −⇀uv along with the two neighboring halfedges at v,
which are doubly crossed by Lemma 12.

v

u
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T3-2: exactly two uncrossed edges. The third edge incident to u is crossed.

▶ Lemma 13. Let u be a T3-2 vertex in D with neighbors v, w, x such that uv is crossed
at a point α. Then α is the only crossing of uv in D. Further, the edge that crosses uv is
doubly crossed, it is incident to w or x, and its part between w or x and α is uncrossed.

By the following lemma, we are free to select which of the two edges uv and ux incident
to a T3-2 vertex are singly crossed; see Figure 1 (left and middle).

▶ Lemma 14. Let u be a T3-2 vertex in D, and let the neighbors of u be v, w, x such that
the edge uv is (singly) crossed by a (doubly crossed) edge wb. Then there exists an admissible
drawing D′ of G such that (1) D′ is identical to D except for the edge wb and (2) the edge wb

crosses the edge ux in D′.

v

u

b x

w

v

u

x

w

b

u

v x

w

Figure 1 Illustration of Lemma 14 (left and middle); halfedges claimed (marked orange) and
assessed (marked lightblue) by a T3-2 vertex u (right).

▶ Lemma 15. Let u be a T3-2 vertex with neighbors v, w, x s.t. the edge uv is singly crossed
by a doubly crossed edge wb in D. Then deg(w) ≥ 5 and min{deg(v), deg(x)} ≥ 4.

A halfedge −⇀wx is peripheral for a vertex u of G if (1) u is a common neighbor of w and x;
(2) deg(w) ≥ 5; and (3) deg(x) ≥ 4. In our charging scheme, every T3-2 vertex u claims
three halfedges at the adjacent high-degree vertex w: the halfedge −⇀uw, the doubly crossed
halfedge −⇀

bw, and one of the uncrossed peripheral halfedges −⇀vw or −⇀xw; see Figure 1 (right).
While the former two are closely tied to u, the situation is more complicated for the latter
two halfedges. Eventually, we need to argue that u can exclusively claim (at least) one of
the two peripheral halfedges. But for the time being we say that it assesses both of them.

T3-3: all three incident edges uncrossed. We say that such a vertex is of type T3-3. As
an immediate consequence of Lemma 4 each T3-3 vertex u together with its neighbors N(u)
induces a plane K4 in D. We further distiguish two subtypes of T3-3 vertices.

The first subtype accounts for the fact that there may be two adjacent T3-3 vertices in D.
We refer to such a pair as an inefficient hermit. Observe that two T3-3 vertices z, z′ that
form an inefficient hermit have the same neighbors in G \ {z, z′} by Lemma 4. A T3-3 vertex
that is part of an inefficient hermit is called a T3-3 hermit.

▶ Lemma 16. Let z be a T3-3 vertex in D, and let z′ be a neighbor of z in G with deg(z′) ≤ 3.
Then z′ is also a T3-3 vertex, that is, the pair z, z′ forms an inefficient hermit in D.

▶ Lemma 17. Let z, z′ be an inefficient hermit in D, and let x, y be their (common) neighbors
in G. Then xy is an uncrossed edge in D, and the degree of x and y is at least five each.

In particular, Lemma 17 implies that every T3-3 hermit is part of exactly one inefficient
hermit. In our charging scheme, each T3-3 hermit claims three halfedges at one of its (two)
adjacent high-degree vertices. More precisely, let z, z′ be an inefficient hermit and let x, y be

SoCG 2023



39:8 The Number of Edges in Maximal 2-Planar Graphs

its neighbors in G. Then the vertices x, y, z, z′ induce a plane K4 subdrawing Q of D. The
vertex z claims the three halfedges of Q at x, and z′ claims the three halfedges of Q at y.

The second subtype is formed by those T3-3 vertices that are not T3-3 hermits; we call
them T3-3 minglers. By Lemma 16 all neighbors of a T3-3 mingler have degree at least four.

▶ Lemma 18. Let u be a T3-3 mingler in D, and let v, w, x be its neighbors. Then each
of v, w, x has degree at least four. Further, at least one vertex among v, w, x has degree at
least six, or at least two vertices among v, w, x have degree at least five.

Let Q denote the plane K4 induced by u, v, w, x in D. In our charging scheme, the T3-3
mingler u claims the three halfedges of Q at one of its high-degree neighbors. That is, the
vertex u assesses all of its (up to six) peripheral halfedges at high-degree neighbors.

3.5 The charging scheme
In this section we argue that our charging scheme works out, that is, all claims made by
low-degree vertices and T4-H vertices can be served by adjacent high-degree vertices. Figure 2
presents a summary of the different types of vertices and their claims.

v

u

(a) T3-1.

u

v

(b) T3-2.

u

v

? ?

(c) T3-3.

v

u
h

(d) T4-H.

Figure 2 A vertex u with deg(u) ∈ {3, 4} and an adjacent high-degree vertex v at which u claims
halfedges. Claimed halfedges are marked orange. Assessed halfedges are marked lightblue: A T3-2
vertex claims one of the two lightblue peripheral edges, and a T3-3 vertex claims a triple of halfedges
at one of its high-degree neighbors.

For some halfedges it is easy to see that they are claimed at most once; these halfedges
are shown orange in Figure 2. In particular, it is clear that a halfedge that is incident to
the vertex that claims it is claimed at most once. We also need to consider the claims by
hermits, which are not shown in the figure (except for the hermit adjacent to a T4-H vertex).

▶ Lemma 19. Every halfedge claimed by a hermit is claimed by this hermit only.

The next lemma settles the validity of our charging scheme for T3-1 and T4-H vertices.

▶ Lemma 20. Every doubly crossed halfedge is claimed at most once.

It remains to argue about the claims to peripheral halfedges by T3-2 and T3-3 vertices.
Every T3-2 vertex assesses two peripheral halfedges of which it needs to claim one, and
every T3-3 vertex assesses three pairs of halfedges of which it needs to claim one. In order
to find a suitable assignment of claims for these vertices it is crucial that not too many
vertices compete for the same sets of halfedges. Fortunately, we can show that this is not the
case. We say that an edge of G is assessed by a low-degree vertex u if (at least) one of its
corresponding halfedges is assessed by u.

▶ Lemma 21. Every edge is assessed by at most two vertices.
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Proof. For a contradiction consider three vertices u0, u1, u2 of type T3-2 or T3-3 that
assess one of the halfedges of an edge uv. Then the edge uv is uncrossed in D, and all
of u0, u1, u2 are common neighbors of u and v in G. Moreover, we may suppose that all
edges between u0, u1, u2 and u, v are uncrossed in D: For T3-3 vertices all incident edges are
uncrossed, anyway, and for T3-2 vertices this follows by Lemma 14. In other words, we have
a plane K2,3 subdrawing B in D between u0, u1, u2 and u, v. Let ϕ0, ϕ1, ϕ2 denote the three
faces of B such that ∂ϕi = uuivui⊕1, where ⊕ denotes addition modulo 3.

Consider some i ∈ {0, 1, 2}. As deg(ui) = 3, there is exactly one vertex xi /∈ {u, v} that
is adjacent to ui in G. The edge from ui to xi in D enters the interior of exactly one of ϕi

or ϕi⊕2. In other words, for exactly one of ϕi or ϕi⊕2, no edge incident to ui enters its interior.
It follows that G− := G \ {u, v} is disconnected, in particular, the vertices u0, u1, u2 are split
into at least two components. Suppose without loss of generality that u0 is separated from
both u1 and u2 in G−, and let C0 denote the component of G− that contains u0. Let D0
denote the subdrawing of D induced by C0 along with all edges between C0 and u, v. Observe
that uu0v is an uncrossed path along the outer face of D0.

We remove D0 from D and put it back right next to the uncrossed path uu1v, in the
face (ϕ0 or ϕ1) incident to u1 that is not entered by any edge incident to u1; see Figure 3
for illustration. Furthermore, we flip D0 with respect to u, v if necessary so as to ensure
that the two uncrossed paths uu1v and uu0v appear consecutively in the circular order of
edges incident to u and v, respectively, in the resulting drawing D′, effectively creating a
quadrilateral face uu1vu0. The drawing D′ is an admissible drawing of G, to which we can
add an uncrossed edge u0u1 in the face uu1vu0, a contradiction to the maximality of G.
Therefore, no such triple u0, u1, u2 of vertices exists in G. ◀

v

u

u0 u1
u2

φ0

φ1 φ2
C0

v

u

u0u1
u2

C0

Figure 3 Redrawing in case that three vertices u0, u1, u2 claim a halfedge of the edge uv.

Note that Lemma 21 settles the claims by T3-3 hermits, as they come in pairs that
assess the same halfedges. By Lemma 21 no other vertex assesses these halfedges, so our
scheme of assigning the halfedges at one endpoint to each works out. It remains to consider
T3-2 vertices and T3-3 minglers. Let us start with the T3-2 vertices. Consider an edge or
halfedge e that is assessed by a low-degree vertex u. We say that e is contested if there
exists another low-degree vertex u′ ≠ u that also assesses e. An edge or halfedge that is not
contested is uncontested.

▶ Lemma 22. The claims of all T3-2 vertices can be resolved in a greedy manner.

Proof. Let u be a T3-2 vertex in D, and let −⇀wv and −⇀xv denote the halfedges that u

assesses. We start a sequence of greedy selections for the claims of vertices u1, u2, . . . , uk

by letting u1 := u claim one of −⇀wv and −⇀xv arbitrarily, say, let u claim −⇀wv (and withdraw
its assessment of −⇀xv). More generally, at the i-th step of our selection procedure we have a
vertex ui that has just claimed one of its assessed halfedges −−⇀wivi. By Lemma 21 there is at
most one other vertex ui+1 that also assesses −−⇀wivi. If no such vertex ui+1 exists, then we are
done and the selection procedure ends here with i = k. Otherwise, we consider two cases.
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39:10 The Number of Edges in Maximal 2-Planar Graphs

Case 1: ui+1 is a T3-2 vertex. Then there is only one other (than −−⇀wivi) halfedge that ui+1
assesses, denote it by −−−⇀xi+1vi. We let ui+1 claim −−−⇀xi+1vi and proceed with the next step. ◁

Case 2: ui+1 is a T3-3 mingler. Then ui+1 also assesses −−⇀viwi, which is uncontested now,
and it also assesses a second halfedge −−−−⇀xi+1wi at wi. We let ui+1 claim both −−⇀viwi and −−−−⇀xi+1wi

and then proceed with the next step. ◁

For the correctness of the selection procedure it suffices to note that at every step exactly
one halfedge is claimed that is (still) contested, and the claims of the (unique) vertex that
assesses this halfedge are resolved in the next step. In particular, at the end of the procedure,
all (still) assessed edges are unclaimed. As long as there exists another T3-2 vertex in D that
has not claimed one of the two halfedges it requires, we start another selection procedure
from there. Thus, eventually the claims of all T3-2 vertices are resolved. ◀

At this point it only remains to handle the claims of the remaining T3-3 minglers. They
are more tricky to deal with compared to the T3-2 vertices because they require two halfedges
at a single high-degree vertex. We may restrict our attention to a subclass of T3-3 minglers
which we call tricky, as they assess a directed 3-cycle of contested halfedges. Consider a T3-3
mingler u, and let v, w, x be its neighbors in G. We say that u is tricky if (1) it assesses
all six halfedges among its neighbors and (2) all of the halfedges −⇀vw, −⇀wx, −⇀xv or all of the
halfedges −⇀vx, −⇀xw, −⇀wv (or both sets) are contested. A T3-3 mingler that is not tricky is easy.

▶ Lemma 23. The claims of all easy T3-3 minglers can be resolved in a postprocessing step.

Proof. Let M denote the set of easy T3-3 minglers in D. We remove M along with all
the corresponding assessments from consideration, and let all other (that is, tricky) T3-3
minglers make their claims. We make no assumption about preceding claims, other than that
every vertex (1) claims edges incident to one vertex only and (2) claims only edges it assesses.
After all tricky T3-3 minglers have made their claims, we process the vertices from M , one
by one, in an arbitrary order. In the following, the terms assessed and (un)contested refer
to the initial situation, before any claims were made. The current state of a halfedge is
described as either claimed or unclaimed.

Consider a vertex u ∈ M . If not all six halfedges are assessed by u, then not all of its
neighbors are high-degree, in which case, at most one peripheral edge of u is contested. Thus,
there always exists one pair of halfedges that is unclaimed and can be claimed by u. In
the other case, let H denote the set of six halfedges that are assessed by u. By (2) every
uncontested halfedge in H is unclaimed. By Lemma 21 every edge is assessed by at most
two vertices. Thus, for each of the edges vx, xw, wv at most one vertex other than u assesses
this edge. This other vertex may have claimed a corresponding halfedge, but by (1) for every
edge vx, xw, wv at least one of its two corresponding halfedges is unclaimed.

As u is easy, at least one of −⇀vw, −⇀wx, −⇀xv and at least one of −⇀vx, −⇀xw, −⇀wv is uncontested.
Suppose without loss of generality that −⇀vw is uncontested. We conclude with three cases.

Case 1: −⇀vx is uncontested. At least one of −⇀xw or −⇀wx is unclaimed. Thus, we can let u claim
one of the pairs −⇀xw, −⇀vw or −⇀wx, −⇀vx. ◁

Case 2: −⇀xw is uncontested. Then we let u claim −⇀vw, −⇀xw. ◁

Case 3: −⇀wv is uncontested. If one of −⇀xw or −⇀xv is unclaimed, then we let u claim it together
with the matching halfedge of the edge vw, which is uncontested by assumption. Otherwise,
both −⇀xw and −⇀xv are claimed. Then both −⇀wx and −⇀vx are unclaimed, and so u can safely claim
these two halfedges. ◀
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It remains to resolve the claims of tricky T3-3 minglers. Note that the classification tricky
vs. easy depends on the other T3-3 minglers. For instance, a T3-3 mingler that is tricky
initially may become easy after removing another easy T3-3 mingler. Here we have to deal
with those T3-3 minglers only that remain tricky after all easy T3-3 minglers have been
iteratively removed from consideration.

▶ Lemma 24. The claims of all tricky T3-3 minglers can be resolved in a greedy manner.

Proof. Let u be a tricky T3-3 mingler, and let v, w, x be its neighbors in G. As for each
tricky T3-3 mingler all three peripheral edges are contested by other tricky T3-3 minglers,
there exists a circular sequence u = u1, . . . , uk, with k ≥ 2, of tricky T3-3 minglers that are
neighbors of v in G and whose connecting edges appear in this order around v in D. We
distinguish two cases, depending on the parity of k.

Case 1: k is even. Then we let each ui, for i odd, claim the two halfedges at v that it assesses.
This resolves the claims for all ui, with i odd, and we claim that now all ui, with i even, are
easy. To see this, consider a vertex ui, with i even. Both of its assessed halfedges at v are
now claimed; denote these halfedges by −⇀wiv and −⇀xiv. It follows that both −⇀vwi and −⇀vxi are
unclaimed and ui is the only vertex that still assesses them. As there is no directed 3-cycle
of contested halfedges among the halfedges assessed by ui anymore, the vertex ui is easy. ◁

Case 2: k is odd. Then we let each ui, for i < k odd, claim the two halfedges at v that it
assesses. This resolves the claims for these ui and makes all ui, with i < k − 1 even, easy, as
in Case 1 above. It remains to argue about uk−1 and uk. Let xiv denote the edge assessed
by both ui and ui+1, for 1 ≤ i < k, and let xkv denote the edge assessed by both uk and u1.
As −⇀xkv is claimed by u1, we can let uk claim −⇀vxk and −−−−⇀xk−1xk along with it. This makes uk−1
easy, as both −−−⇀vxk−2 and −−−⇀vxk−1 are uncontested now. However, we still need to sort out the
bold claim on −−−−⇀xk−1xk by uk. To this end, we apply the same greedy selection procedure as
in the proof of Lemma 22, except that here we start with the selection of −−−−⇀xk−1xk, as the only
contested halfedge that is claimed, and here we can only encounter (tricky) T3-3 minglers
over the course of the procedure. ◁

We get rid of at least two tricky T3-3 minglers, either by resolving their claims or by
making them easy. Thus, after a finite number of steps, no tricky T3-3 mingler remains. ◀

Our analysis of the charging scheme is almost complete now. However, we still need to
justify our claim about degree five vertices in Property (C4). In principle it would be possible
that two halfedges at a degree five vertex are claimed by a hermit and the remaining three
by a degree-three vertex. But we can show that this is impossible.

▶ Lemma 25. At most one low-degree vertex claims halfedges at a degree five vertex.

4 The Upper Bound: Proof outline of Theorem 2

In this section we describe a construction for a family of maximal 2-planar graphs with few
edges. We give a complete description of this family. But due to space constraints we give a
very rough sketch only for the challenging part of the proof: to show that these graphs are
maximal 2-planar. The full version [14] provides a complete version of this section, with all
proofs.

The graphs can roughly be described as braided cylindrical grids. More precisely, for a
given k ∈ N we construct our graph Gk on 10k + 140 vertices as follows.
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Take k copies of C10, the cycle on 10 vertices, and denote them by D1, . . . , Dk. Denote the
vertices of Di, for i ∈ {1, . . . , 10}, by vi

0, . . . , vi
9 so that the edges of Di are {vi

jvi
j⊕1 : 0 ≤

j ≤ 9}, where ⊕ denotes addition modulo 10.
For every i ∈ {1, . . . , k − 1}, connect the vertices of Di and Di+1 by a braided matching,
as follows. For j even, add the edge vi

jvi+1
j⊕8 to Gk and for j odd, add the edge vi

jvi+1
j⊕2

to Gk. See Figure 4 (left) for illustration.
To each edge of D1 and Dk we attach a gadget X ≃ K9 \ (K2 + K2 + P3) so as
to forbid crossings along these edges. Denote the vertices of X by x0, . . . , x8 such
that degX(x0) = degX(x1) = 8, degX(x8) = 6 and all other vertices have degree seven.
Let x6, x7 be the non-neighbors of x8. To an edge e of D1 and Dk we attach a copy of X

so that e takes the role of the edge x6x7 in this copy of X. As altogether there are 20
edges in D1 and Dk and each copy of X adds seven more vertices, a total of 20 · 7 = 140
vertices are added to Gk with these gadgets.
Finally, we add the edges vi

jvi
j⊕2, for all 0 ≤ j ≤ 9 and i ∈ {1, k}.

This completes the description of the graph Gk. Note that Gk has 10k + 140 vertices
and 10k + 10(k − 1) + 20 · 31 + 2 · 10 = 20k + 630 edges. So to prove Theorem 2 asymptotically
it suffices to choose c ≥ 630 − 2 · 140 = 350 and show that Gk is maximal 2-planar. Using
some small local modifications we can then obtain the statement for all values of n.

To show that Gk is 2-planar it suffices to give a 2-plane drawing of it. Such a drawing can
be deduced from Figure 4: (1) We nest the cycles D1, . . . , Dk with their connecting edges
using the drawing depicted in Figure 4 (left), (2) draw all copies of X attached to the edges
of D1 and Dk using the drawing depicted in Figure 4 (right), and (3) draw the remaining
edges among the vertices of D1 and Dk inside and outside D1 and Dk, respectively.

vi0 vi9
vi8

vi7
vi6

vi5vi4
vi3

vi2

vi1

vi+1
0 vi+1

9

vi+1
8

vi+1
7

vi+1
6

vi+1
5vi+1

4

vi+1
3

vi+1
2

vi+1
1

vi+1
9

vi+1
5

x6 x7

x3 x5

x1

x4 x2

x8

x0

Figure 4 The braided matching between two consecutive ten-cycles in Gk, shown in blue (left);
the gadget graph X that we attach to the edges of the first and the last ten-cycle of Gk (right).

It is much more challenging, though, to argue that Gk is maximal 2-planar. In fact, we
do not know of a direct argument to establish this claim. Instead, we prove that Gk admits
essentially only one 2-plane drawing, which is the one described above. Then maximality
follows by just inspecting this drawing and observing that no edge can be added there because
every pair of non-adjacent vertices is separated by a cycle of doubly-crossed edges.

This leaves us having to prove that Gk has a unique 2-plane drawing. We solve the
problem in a somewhat brute-force way: by enumerating all 2-plane drawings of Gk, using
computer support. Still, it is not immediately clear how to do this, given that (1) the space of
(even 2-plane) drawings of a graph can be vast; (2) (Gk) is an infinite family; and (3) already
for small k, even a single graph Gk is quite large.
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First of all, the gadget graph X is of small constant size. So it can be analyzed separately,
and there is no need to explicitly include these gadgets into the analysis of Gk. Instead, we
account for the effect of the gadgets by considering the edges of D1 and Dk as uncrossable.
In this way, we also avoid counting all the variations of placing the attached copy of X on
either side of the corresponding cycle as different drawings. In fact, the gadget X itself has
a few formally different 2-plane drawings due to its automorphisms. But for our purposes
of arguing about the maximality of Gk, these differences do not matter. However, these
variations are the reason that the 2-plane drawing of Gk is essentially unique only.

We also disregard the length two edges along D1 and Dk. Denote the resulting subgraph
of Gi by G−

i . We iteratively enumerate the 2-plane drawings of G−
i , for all i ∈ N, where only

the edges of the first cycle D1 are labeled uncrossable (but not the edges of the last cycle Di).
All drawings are represented as a doubly-connected edge list (DCEL) [10, Chapter 2]. As
a base case, we use the unique (up to orientation, which we select to be counterclockwise,
without loss of generality) plane drawing of G−

1 = D1. For each drawing Γ computed, with a
specific ten-cycle of vertices labeled as D, we consider all possible ways to extend Γ by adding
another ten-cycle of new, labeled vertices and connect it to D using a braided matching, as
in the construction of Gk and depicted in Figure 4 (left).

So in each iteration we have a partial drawing Γ and a collection H of vertices and edges
still to be drawn. We then exhaustively explore the space of simple 2-plane drawings of Γ∪H.
Our approach is similar to the one used by Angelini, Bekos, Kaufmann, and Schneck [2] for
complete and complete bipartite graphs. We consider the edges to be drawn in some order
such that whenever an edge is considered, at least one of its endpoints is in the drawing
already. When drawing an edge, we go over (1) all possible positions in the rotation at the
source vertex and for each such position all options to (2) draw the edge with zero, one or
two crossings. Each option to consider amounts to a traversal of some face incident to the
source vertex, and up to two more faces in the neighborhood. At every step we ensure that
the drawing constructed remains 2-plane and simple, and backtrack whenever an edge cannot
be added or the drawing is complete (that is, it is a 2-plane drawing of G−

i , for some i ∈ N).
Every drawing for Γ ∪ H obtained in this fashion is then tested, as described below. If

the tests are successful, then the drawing is added to the list of drawings to be processed, as
a child of Γ, and such that the ten-cycle in H takes the role of D for future processing.

As for the testing a drawing Γ, we are only interested in a drawing that can – eventually,
after possibly many iterations – be extended in the same way with an uncrossable ten-
cycle Dk. In particular, all vertices and edges of Dk must lie in the same face of Γ. Hence,
we test whether there exists a suitable potential final face in Γ where Dk can be placed; if
not, then we discard Γ from further consideration. We also go over the faces of Γ and remove
irrelevant faces and vertices that are too far from any potential final face to ever be able to
interact with vertices and edges to be added in future iterations. Finally, we check whether
the resulting reduced drawing has already been discovered by comparing it to all the already
discovered drawings (by testing for an isomorphism that preserves the cycle D). If not, then
we add it to the list of valid drawings.

For each drawing for which we found at least one child drawing, we also test whether there
exists a similar extension where the cycle in H is uncrossable. Whenever such an extension
is possible, we found a 2-plane drawing of Gi, for some i ∈ N. The algorithm for G−

i runs
for about 1.5 days and discovers 86 simple 2-plane drawings of G−

i . In only one of these
drawings the last ten-cycle is uncrossed: the drawing described above (see Figure 4). The
algorithm for the gadget X runs for about 3min. and discovers 32 simple 2-plane drawings,
as expected. The full source code is available in our repository [13].
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5 Conclusions

We have obtained tight bounds on the number of edges in maximal 2-planar graphs, up to an
additive constant. Naturally, one would expect that our approach can also be applied to other
families of near-planar graphs, specifically, to maximal 1- and 3-planar graphs. Intuitively,
for k-planar graphs the challenge with increasing k is that the structure of the drawings gets
more involved, whereas with decreasing k we aim for a higher bound.
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