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Abstract
We consider ternary disc packings of the plane, i.e. the packings using discs of three different radii.
Packings in which each “hole” is bounded by three pairwise tangent discs are called triangulated.
Connelly conjectured that when such packings exist, one of them maximizes the proportion of the
covered surface: this holds for unary and binary disc packings. For ternary packings, there are 164
pairs (r, s), 1 > r > s, allowing triangulated packings by discs of radii 1, r and s. In this paper,
we enhance existing methods of dealing with maximal-density packings in order to study ternary
triangulated packings. We prove that the conjecture holds for 31 triplets of disc radii and disprove it
for 40 other triplets. Finally, we classify the remaining cases where our methods are not applicable.
Our approach is based on the ideas present in the Hales’ proof of the Kepler conjecture. Notably,
our proof features local density redistribution based on computer search and interval arithmetic.
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1 Introduction

Given a finite set S of discs, a packing of the plane by S is a collection of translated copies
of discs from S with disjoint interiors.

Given a packing P , its density δ(P ) is the proportion of the plane covered by the discs.
More formally,

δ(P ) := lim sup
n→∞

area([−n, n]2 ∩ P )
area([−n, n]2) .

Nowadays, the density of disc packings is widely studied in different contexts. The worst-
case optimal density of packings in triangular and circular containers is found in [11, 12]. In
computer science, there are various connections between sphere packings and error-correcting
codes [4]. Researchers in chemical physics used Monte Carlo simulations on 2-disc packings
and, among others, obtained lower bounds on the maximal density of packings with particular
disc sizes [7]. Two other groups of physicists found lower bounds on maximal densities of
packings in R3 with 2 sizes of spheres [26, 31]. Upper bounds on the density are usually
much harder to obtain.

The main problem we are interested in is the following: given a finite set of ball sizes in
R2 (or R3), find a packing of the plane (or of the space) maximizing the density.
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32:2 When Ternary Triangulated Disc Packings Are Densest

Figure 1 Disc packings self-assembled from colloidal nanodiscs and nanorods in [32] (on the left)
which very accurately correspond to triangulated packings (on the right).

Answering this question has a few practical applications. Chemists, for example, are
interested in the disc and sphere sizes maximizing the density in order to eventually design
compact materials using spherical nanoparticles of given sizes [7, 26,32]. Figure 1 gives an
illustration of experimental results from [32].

The first known studies of the densest packings go back to Kepler. Many advances in
this area have been made since then.

1.1 1-sphere packings
In a Kepler manuscript dated by 1611, we find a description of the “cannonball” packing
followed by an assertion that it is a densest 1-sphere packing (i.e. packing by equally sized
spheres) of the three-dimensional Euclidean space. This assertion is widely known by name
of the Kepler conjecture. The “cannonball” packing, also called face-centered-cubic (FCC)
packing, belongs to a family of packings formed by stacking layers of spheres centered in the
vertices of a triangular lattice, like it is shown in Figure 2. After placing the first two layers, at
each step, there are two choices of how to place the next layer. This gives us an uncountable
set of packings having the same density. These packings are called close-packings.

▶ Conjecture 1 (Kepler 1611). The density δ(P ) of packing P of R3 by unit spheres never
exceeds the density of a close-packing:

δ(P ) ≤ π

3
√

2
. (1)

The first advancement in a proof of the Kepler conjecture was made by Gauss who, in
1831, showed that close sphere packings maximize the density among all possible lattice
packings, i.e. those where the disc centers form a lattice [19]. However, the proof of the whole
conjecture took four centuries to be found. Hilbert included this conjecture, also named “the
sphere packing problem”, in his famous list of 23 problems published in 1900.

The Kepler conjecture was finally proved in a series of 6 papers submitted by Hales and
Furgeson in 1998 [20,22]. Their computer-assisted proof took 8 years to be fully reviewed.
In 2003, Hales founded a project called Flyspeck in order to fully verify his proof by an
automated theorem prover. Flyspeck was completed in 2014 including the proof of the Kepler
conjecture in the list of computer verified proofs [21].

The rough idea of the proof consists of locally redistributing the density function and show-
ing inequality (1) for this redistributed density. Lagarias calls this approach “localization” [29].
In our work, we use the same general ideas discussed in detail in Section 2.
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Figure 2 First step of construction of a
3D close-packing.

Figure 3 2D hexagonal packing.

1.2 Disc packings
The two-dimensional variant of the Kepler conjecture claims the 2D hexagonal packing on
the plane (see Fig. 3) to have the highest density among all planar packings by identical
discs.

In 1772, Lagrange proved it to be a densest among lattice packings. The general result
was first shown by Thue in 1910 [33]. His proof was however considered incomplete, a reliable
proof was given by Fejes-Tóth in 1942 [8].

The proof of the two-dimensional Kepler conjecture contains the basics of the strategy used
to prove similar results for packings with several disc sizes, like binary packings (discussed
below) and ternary packings which are studied in this paper.

Packings of the plane where, as in the hexagonal one, each “hole” is bounded by three
pairwise tangent discs are called triangulated. More formally,

▶ Definition 2. A packing is called triangulated if the graph formed by connecting the
centers of every pair of tangent discs is a triangulation.

Fejes Tóth in [9] called such packings “compact”: since triangulated packings have
no “huge holes”, they intuitively look the most compact. Moreover, around each disc, its
neighbors form a corona of tangent discs which looks like a locally “optimal” way to pack.
For these reasons, triangulated packings appear to be the best candidates to maximize the
density on the whole plane.

Notice that, for a fixed n, there exists only a finite number of n-tuples of disc radii
(r1, · · · , rn) s.t. 1 = r1 > · · · > rn > 0 allowing a triangulated packing where all n disc sizes
are present [30].

Let us consider binary packings of the plane. Given two discs of radii 1 and r < 1, what
is the maximal density of a packing by copies of these discs? We can always obtain π

2
√

3 , the
density of the hexagonal packing, by using only one of the discs which gives as a lower bound
on the maximal density. Florian in [18] derived an upper bound on the density which is
equal to the density in the triangle formed by 2 small and one big pairwise tangent discs. [14]
gives tighter lower and upper bounds of maximal density of binary packings of the plane, for
all values of r ∈ (0, 1).

There are 9 values of r allowing triangulated binary packings where both disc sizes are
present [28]. Such packings are shown in Fig. 4. Each of the depicted packings is periodic,
i.e. if P is a packing in question, there are two non-collinear vectors u and v, called periods,
such that P + u = P + v = P . Notice that in this paper, we always consider packings of the

SoCG 2023
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Figure 4 9 triangulated periodic binary packings maximizing the density among packings with
the respective disc sizes.

whole plane, and since the triangulated packings we show here and below are all periodic,
it is enough to represent their fundamental domain (a parallelogram formed by the period
vectors, marked in black in Fig. 4) to see how the whole plane is packed.

Notice that for each of these values of r, there is actually an infinite number of packings
having the same density as the one depicted in Fig. 4. First, changing a finite portion of a
packings does not affect its density. Moreover, for b1, b3, and b7, there exist non-periodic
triangulated packings with a different global structure, having the same density as the ones
from Fig. 4 [28]. For the sake of simplicity, we choose to depict the periodic ones.

It turns out that for each of these 9 radii, the density is maximized by a triangulated
binary packing – namely, the ones shown in Figure 4 [1, 24,25,27]. This result suggests the
following conjecture [2].

▶ Conjecture 3 (Connelly, 2018). If a finite set of discs allows a triangulated saturated
packing, then the density of packings by these discs is maximized on a triangulated packing.

A packing by a set of discs is called saturated if no more discs from this set can be added
to the packing without intersecting already placed discs. In our setup, we always assume
packings to be saturated since we are interested in the upper bounds on the density.

The Connelly conjecture holds for 1-disc (unary) packings and 2-disc (binary) packings.
To study this conjecture, the next step is to verify it for 3-disc (ternary) packings which was
the main motivation of our work.
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1.3 Our results

Let us turn to the ternary packings. To begin with, we need to find the sizes of discs allowing
triangulated ternary packings. This problem was solved in [15]: there are 164 pairs (r, s)
featuring triangulated packings with discs of radii 1, r, s, 1 > r > s. In this paper, a triplet
of disc radii associated to each of such pairs is called a case.

The ternary cases are indexed by positive integers from 1 to 164, like in [15]. To avoid
confusion, the binary cases (pairs of disc radii allowing binary triangulated packings) are
denoted by b1, . . . , b9 which respectively correspond to the cases 1–9 in [1].

The Connelly conjecture is applicable only to the cases having triangulated saturated
packings. This eliminates 15 cases where no triangulated packing is saturated and leaves us
with 149 cases.

Our main contribution is a classification of 71 cases formulated in the following theorem:

▶ Theorem 4.
(a) For the 16 following cases: 53, 54, 55, 56, 66, 76, 77, 79, 93, 108, 115, 116, 118, 129,

131, 146, the density is maximized by a triangulated ternary packing.
(b) For the cases 1–15, the density is maximized by triangulated binary packings. For cases

1–5, it is the triangulated packing of b8; for case 6 – b4; for cases 7–9 – b7; for cases
10–16 – b9.

(c) For the 40 following cases: 19, 20, 25, 47, 51, 60, 63, 64, 70, 73, 80, 92, 95, 97, 98, 99,
100, 104, 110, 111, 117, 119, 126, 132, 133, 135, 136, 137, 138, 139, 141, 142, 151, 152,
154, 159, 161, 162, 163, 164, there exists a non-triangulated packing denser than any
triangulated one.

The values of radii corresponding to the cases from Theorem 4 are given in [15]. The
triangulated packings maximizing the density for the cases from Th. 4.(a) are depicted in
Fig. 5. For Th. 4.(b), the binary triangulated packings which maximize the density are
present in Fig. 4 while the ternary triangulated packings are given in Fig. 7. An instance of
a triangulated ternary packing and a non-triangulated binary denser packing for Th. 4.(c)
are given in Fig. 8 while the complete list can be found in the appendix of the extended
version of the paper [17].

All in all, we proved the Connelly conjecture to be false and classified the 149 cases where
it was applicable in several groups: 16 cases for which the conjecture holds (Th. 4.(a)), 15
cases where the density is maximized on a triangulated packing using only two discs out of
three (Th. 4.(b)), 40 (periodic) counter examples to the initial conjecture (Th. 4.(c)), and
the other cases where our proof strategy does not work. Figure 6 represents each case (i.e.
a triplet of disc radii 1, r, s, 1 > r > s) as a point with coordinates (r, s

r ) and its number
from [15]. The color of the point and the number corresponds to the class we assigned to the
case.

Section 2 is dedicated to the cases where a ternary triangulated packing is proved to
maximize the density. We explain the approach used in the similar proof for binary packings
from [1] and how we enhance it to make it work in our context. The first improvement was
the generalization of the code universal to all the cases (instead of treating them one by one
as in [1]). The second necessary generalization was leaving a bunch of parameters as free
variables instead of fixing them arbitrary. The theoretical background of the proof strategy
is given in Section 2.1. Section 2.2 provides the main ideas of the computational part of
the proof of Th. 4.(a) (the detailed version of this section is given in Section 3 of the full
version [17]). We prove Th. 4.(b) in Section 2.3 by adjusting the proof of Th. 4.(a).

SoCG 2023
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53                               54                              55                               56                

93                              108                             115                             116               

66                              76                               77                               79

118                            129                             131                             146 

Figure 5 The 16 triangulated ternary packings proved to maximize the density (the numbers
correspond to the numbering in [15]).
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Figure 6 The “map” of the 164 cases with triangulated ternary packings. Each case (i.e. a
triplet of disc radii 1, r, s, 1 > r > s) corresponds to a point with coordinates (r, s

r
) and its number

from [15]. The cases where no triangulated packing is saturated are marked in grey. The cases with
a ternary triangulated packing proved to maximize the density are marked by green + with larger
case numbers. The cases where we proved a triangulated binary packing to maximize the density
are marked by dark green +. The cases with counter examples are red ( ). The cases featuring two
coronas (find the details in Section 5.1) are orange. The cases with empty polyhedra (see Section 5.2)
are blue. The remaining cases are marked in black (Section 5.3).
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Our proof, as quite a few recent results in the domain, like [11,14,20], is based on computer
calculations. The main details of the implementation are provided in Section 3. The complete
code is given at the url: https://github.com/tooticki/ternary_triangulated_disc_packings.

Cases from Th. 4.(c) are treated in Section 4. We obtain a counter-example for each of
these cases by applying the flip-and-flow method [3] on the triangulated binary packings
with disc radii ratio close to the radii ratios of pairs of discs of this case.

Section 5 is dedicated to the remaining cases. Section 5.1 presents the 22 cases where
one of the discs appears with at least two different neighborhoods. Our proof technique is
not sufficient to treat such cases, handling them requires a less local approach.

Section 5.2 treats the 52 cases where we did not find a set of constants satisfying all
required inequalities needed in our proof. Even though after several attempts with higher
and higher precision, we concluded that the existence of valid constants is quite unlikely, it
cannot be rigorously proved for the moment. We thus leave this as an open problem.

Finally, Section 5.3 is dedicated to the 4 cases where the existence of such set of constants
is more probable since we could find the parameters satisfying the majority of constraints,
but a few of them were still not satisfied. Whether the density is maximized in these cases is
also an open problem.

2 Proof of Th. 4 (a) and (b)

In this section, we give the proof of the first two parts of Theorem 4. We follow almost the
same steps of the proof as in [1] where the same result is proven for binary triangulated
packings and in [13] which treats computationally the “simplest” case among the ternary
triangulated packings (case 53).

From the theoretical point of view, the transition from binary packings to ternary ones
seems to be straightforward. In practice, however, we have much more cases to treat (149
instead of 9) and for each of them, the problem is much more complex due to the high
number of local combinatorial configurations in possible packings. This requires a more
refined and sensitive choice of parameters than in [1].

2.1 Proof strategy
This section is strongly based on [1]: we use the idea of the proof and quite a few intermediate
results. Thus, for the sake of simplicity, we preserve the same notations.

Let us describe the theoretical background of the proof which is common for all cases,
the only difference being the choice of the parameters described in Section 3.

We are given 3 discs of radii 1, r and s, 1 > r > s and a ternary triangulated packing of
the plane by copies of these discs conjectured to maximize the density, let us denote it by
P ∗. Our aim is to prove that for any other packing P using the same discs, its density δ(P )
does not exceed the density δ∗ of P ∗.

The main idea common to all the results about the maximal density of triangulated
packings was called “cell balancing” by Heppes [25] and it perfectly matches this title. It
consists of two steps: first we locally “redistribute” the density among some well-defined cells
(triangles of the triangulation in [1, 25, 27] and a mixture of Delaunay simplices and Voronoi
cells, both encoded in so-called decomposition stars, in [23]) preserving the global density
value. Then we prove that the redistributed density of any cell of P never exceeds δ∗ .

First, let us define triangulations for packings by several sizes of discs. The FM-
triangulation of a packing was introduced in [10] (it is a particular case of weighted Delaunay
triangulations [5]). Some of its useful properties are given in [1] (Section 4). The vertices of

https://github.com/tooticki/ternary_triangulated_disc_packings
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the FM-triangulation are the disc centers. There is an edge between two disc centers if and
only if there is a point p ∈ R2 and a distance d > 0 such that p is at distance d from the
both discs and at least d from any other disc.

Let T and T ∗ respectively denote the FM-triangulations of P and P ∗. The cells we are
interested in are the triangles of these triangulations. Instead of working with densities, we
introduce an additive function E, called emptiness, which, for a triangle T in T , is defined by

E(T ) := area(T ) × δ∗ − area(T ∩ P ) .

This function was used in [27] by the name of “excess”. It was inspired by “surplus area”
introduced in [25] defined as area(T ) − area(T ∩P )

δ∗ , identical to emptiness up to multiplication
by δ∗. A similar but more complex function called “score” is used in the proof of the Kepler
conjecture [29].

The emptiness function reflects how “empty” the triangle is compared to δ∗. Indeed,
E(T ) is positive if the density of T is less than δ∗, negative if T is denser, and equals zero if
δ(T ) = δ∗. We use it rather than the density because of its additivity: the emptiness of a
union of two triangles equals the sum of their emptiness values. This property does not hold
for the density.

To prove that δ ≤ δ∗, it is enough to show that
∑

T ∈T
E(T ) ≥ 0 [1]. This intuitively means

that P is globally more empty and less dense than P ∗.
Instead of working directly with the emptiness, we define a so-called potential which plays

the role of density redistribution mentioned above. We do it since this function, constructed
explicitly, is easier to manipulate. We will construct a potential U such that for any triangle
T ∈ T , its potential does not exceed its emptiness:

E(T ) ≥ U(T ) (2)

and the sum of potentials of all triangles in T is non-negative:∑
T ∈T

U(T ) ≥ 0 (3)

If, for P ∗, there exists U satisfying (2) and (3) for any packing P , then P ∗ maximizes
the density among packings using the same disc radii:

(2),(3) =⇒
∑
T ∈T

E(T ) ≥ 0 =⇒ δ∗ ≥ δ .

The rest of the proof consists in construction of potential U satisfying both (2) and (3)
for any packing P .

2.2 Sketch of our proof of Th. 4 (a)
This section provides the short version of our proof, please find the detailed version in [17].

We follow the method of “localizing potentials” introduced by Kennedy in [27]. The idea
is to distribute the potential U of each triangle among its vertices in a way that the sum of
vertex potentials of the triangles around each vertex of any packing is non-negative. This
local constraint of non-negativity implies inequality (3).

We choose the potential function as simple as possible to facilitate further calculations.
As in [27] and [1], the potential in a vertex of a triangle depends only on the three disc radii
of the triangle and the angle in the vertex.

SoCG 2023
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Let us first introduce tight triangles: the triangles formed by three tangent discs. For
ternary packings, there are always 10 of them. Let Vxyz denote the vertex potential of the
tight triangle formed by discs of radii x, y, z in the vertex corresponding to the center of the
y-disc, we call these constants tight vertex potentials and we fix them below.

Given a triangle T with discs of radii x, y, z and with vertex v in the center of the y-disc,
we denote by v̂ the angle of v in T and by x̂yz the angle in the center of the y-disc of the
tight triangle formed by the discs of radii x, y, z. We define the vertex potential of T in v as

.
Uv(T ) := Vxyz + my|v̂ − x̂yz|,

where my is a constant fixed below.
As in [1], we choose constants Vxyz and my in a way to satisfy the non-negativity around

each vertex v ∈ T :∑
T ∈T |v∈T

.
Uv(T ) ≥ 0 . (•)

Besides that, tight vertex potentials should satisfy 5 equations in order to guarantee (2),(3)
in P ∗ (you can find them in Section 3.2.1 of the full version of the paper [17]). In [1], the
remaining tight vertex potentials are all set to 0 for the sake of simplicity. This strategy does
not work in our case; we thus leave 6 tight vertex potentials V1r1, V1s1, Vr1r, Vrsr, Vs1s, Vsrs

as free variables at this point.
The solutions of inequalities (•) form a polyhedron in R9 containing all valid values of the

tight vertex potentials and constants m1, mr, ms. You can find more details on the vertex
potentials in [17], the implementation details of the polyhedra are discussed in Section 3.2.

Choosing values of Vxyz and my among all the solutions found above, we seek to satisfy (2):
we pick the solution where Vxyz and my are “small” (find details in [17]).

This is however not enough because of two “limit” cases of triangles. The first are so-called
“stretched” triangles: those where one of the angles is very large which causes high vertex
potential and low emptiness. However, the triangle sharing the longest edge of a stretched
triangle always features low vertex potentials and high emptiness. We thus introduce an
edge potential Ū aiming to make stretched triangles share their potential with their empty
neighbors. You can find the exact formulas of the edge potentials in Section 3.2.2 of the full
version of the paper [17].

The second problematic case are so-called ϵ-tight triangles: those which are close to tight
ones. In tight triangles, the emptiness is equal to the potential by definition which means
that these values are close in ϵ-tight triangles. To verify (2) in this case, we have to compare
the derivatives of the emptiness and the potential. This part is explained in Section 3.3.1
of [17].

As these cases are treated, we verify (2) for the remaining triangles using interval
arithmetic which is discussed in Section 3.1. The details of this verification process are given
in Section 3.3.2 of [17].

2.3 Proof of Th. 4 (b)
Cases 1-18 are special: they are called large separated in [15] since they do not contain
pairs of adjacent medium and small discs (see Fig. 7 for the first 15). For each of these
cases, in addition to ternary triangulated packings, there are other triangulated packings
using only two discs out of three. It happens because the radii of small and medium discs
coincide with the radii of small discs of two cases among b1–b9. It is thus possible to assemble
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packings having the same density as the binary packings of mentioned cases using only two
of three discs. It turns out that in all these cases, the density of one of the mentioned binary
packings exceeds the density of the ternary one. That means, for each of cases 1-18, the
densest packing among the triangulated ones is a binary packing corresponding to a case
from b1–b9 (Fig. 4).

1                            2                            3                            4                             5 

11                          12                          13                          14                          15

6                            7                            8                            9                            10 

Figure 7 Triangulated ternary packings for cases 1-15, where a triangulated binary packing
maximizes the density. For cases 1–5, it is the triangulated packing of b8; for case 6 – b4; for cases
7–9 – b7; for cases 10–16 – b9.

Indeed, each of these ternary packings is formed as a “combination” of two binary packings
one of which is denser than the other. Thus, the densest of the binary packings will also be
denser than its combination with a less dense packing.

We were able to show that the denser triangulated binary packing maximizes the density
among all packings (not only triangulated ones) for the cases from 1 to 15 (Fig. 7). The
proof is almost the same as in Section 2.

Let i be the case number and P3 denote its triangulated ternary packing. Let P ∗
2 denote

the densest triangulated binary packing using two discs of case i and let P2 denote the less
dense triangulated binary packing using two discs of case i. We already know that P ∗

2 is
denser than the two others, δ(P ∗

2 ) > δ(P3) > δ(P2). Our aim is to show that P ∗
2 maximizes

the density among all packings by the discs of case i.
The only difference with the strategy used for other cases concerns vertex potentials.

Since P ∗
2 uses only two discs out of three, it features only 2 coronas instead of 3. Thus, these

2 coronas together with the 10 equations for tight triangles, give us at most 11 independent
equations instead of 12.

We now need to chose 7 free variables instead of 6. We can pick 6 tight potentials of
isosceles triangles as before. There remains to choose the last free variable. Vertex potentials
of equilateral tight triangles cannot be picked because of the equations of type Vxxx = Exxx:
they are already fixed. The remaining vertex potentials of isosceles triangles (Vxxy, x ≠ y)
cannot be used since they are dependent of the first 6 free variables and the equations
2Vxxy + Vxyx = Exyx. The only candidates thus are V1rs, V1sr, Vr1s; we add one of them.
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For cases 16, 17, and 18, the densest binary packing is b5 which features two different
coronas around the small disc, so our method is not applicable to them as discussed in
Section 5.1.

To summarize, for cases 1-18, among triangulated packings, the density is maximized by
a binary packing, not a ternary one as in the Connelly conjecture. However, whether this
packing maximizes the density among all packings is still an open question for cases 16–18.

3 Computer implementation

As many proofs of the domain, notably the proof of the Kepler Conjecture [20], the proofs
of the maximal density for triangulated packings, like ours and those from [1, 13, 27], es-
sentially rely on computer calculations. In this section, we discuss the details of computer
implementation. You can find the complete code at https://github.com/tooticki/ternary_
triangulated_disc_packings.

The treatment of each case consists of two steps summarized in Section 2.2. We first
choose all the values necessary to define the potential: tight vertex potentials Vxqy, constants
mq and capping values Zq (Section 3.2.1, [17]), the value of ϵ (Section 3.3.1, [17]), and the
constants lxy, qxy of the edge potentials (Section 3.2.2, [17]). We choose them in a way to
satisfy the “global” inequality (3). The second step is to verify the “local” inequality (2) on
all possible triangles.

3.1 Interval arithmetic

We use interval arithmetic in two completely different contexts: to work with real numbers
non representable in computer memory and to verify inequalities on uncountable but compact
sets of values. More precisely, we use intervals to store the values of radii of discs which
are algebraic numbers obtained as roots of polynomials in [15] as well as the value of π.
The other situation where we use intervals is to verify the local inequalities on a compact
continuum set of triangles.

In interval arithmetic, each value is represented by an interval which contains it and whose
endpoints are exact values finitely representable in computer memory (floating-point numbers).
Performing functions in interval arithmetic preserves both properties. More precisely, if
x1, . . . , xn are intervals, and f is an n-ary function, the interval f(x1, . . . , xn) must contain
f(y1, . . . , yn) for all (y1, . . . , yn) ∈ x1× . . . ×xn and its endpoints are floating-point numbers.

To verify an inequality on two intervals x1 < x2, it is enough to compare the right
endpoint of x1 and the left endpoint of x2. The returned value is True only if each pair of
values from these intervals satisfy the inequality. However, if the result is False, that does
not mean that the inequality is false on the numbers represented by x1 and x2, it might also
mean that these intervals overlap.

We worked with interval arithmetic implemented in SageMath [6], called Arbitrary
Precision Real Intervals 1. The intervals endpoints are floating-point numbers, the precision
we use in the majority of cases is the default precision of the library where the mantissa
encoding has 53 bits.

1 https://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_mpfi.html

https://github.com/tooticki/ternary_triangulated_disc_packings
https://github.com/tooticki/ternary_triangulated_disc_packings
https://doc.sagemath.org/html/en/reference/rings_numerical/sage/rings/real_mpfi.html
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3.2 Polyhedra
As mentioned in Section 2.2, we choose the values of vertex potentials in tight triangles and
constants m1, mr, ms in a way to satisfy all the necessary constraints (more details are given
in [17]). These constraints together define a subset of R9 (where the variables are 6 tight
vertex potentials V1r1, V1s1, Vr1r, Vrsr, Vs1s, Vsrs and 3 constants m1, mr, ms). We use the
Polyhedra module2 of SageMath to work with them (it allows us to store the solutions of a
system of linear inequalities as a convex polyhedron).

Even more constraints are added by ϵ-tight triangles, since there should exist a positive
value of ϵ satisfying the inequalities on derivatives of emptiness and potential given in [17].
To guarantee that, we verify if the inequality hold for ϵ = 0, in other words, we make sure
that it holds for some non-negative ϵ. We do it in SageMath: to compute both parts of
the inequality, we use interval arithmetic and calculations of derivatives. The obtained
inequalities are intersected with the polyhedron calculated above. For all the cases considered
in this section, this intersection is not empty (the cases where it was empty are discussed in
Section 5.2). Then we find the maximal value of ϵ > 0 allowing the intersection not to be
empty and this permits us to fix ϵ.

For all the cases treated in this section, these constraints together define a compact
polyhedron in R9 (where the variables are the 6 tight vertex potentials and m1, mr, ms).

After we get a polyhedron of valid values, we are free to choose a point inside to fix them.
Our aim at that step is to minimize potentials of all triangles in order to satisfy (2). We thus
find the three vertices of the polyhedron minimizing m1, mr and ms respectively, compute a
linear combination of them (the weights that worked well in practice were respectively 1,1
and 4), and take a point between this one and the center of the polyhedron in order to avoid
the approximations problems on the border which are discussed in the next paragraph. Our
method to choose the point described above is a heuristic.

Implementing construction of polyhedra, we encounter the following problem: the Polyhe-
dra class does not allow coefficients of constraints to be intervals, while some of the coefficients
of our inequalities are stored as such due to their dependency of π and disc radii. Polyhedra
do not support intervals as a base ring for a good reason: solutions of a system of linear
inequalities with interval coefficients might not form a convex polyhedron. We choose to
replace the intervals with their centers and work with an approximation of the actual set
of valid values for tight potentials and m1, mr, ms. Our polyhedron is stored in a field of
rational values, since this field is computationally quite efficient.

That means, after choosing a point inside this approximated polyhedra, we cannot know
if this point actually satisfies all the constraints. To make sure it does, we then rigorously
verify that all the inequalities with interval coefficients hold in this point.

4 Counter-examples: proof of Th. 4 (c)

Starting to work on the density of ternary saturated triangulated packings, we believed the
Connelly conjecture to hold, i.e. that for all of the 149 cases, a triangulated packing would
maximize the density. Realization that our proof strategy failed for many of them made us
suspect the conjecture to be false. Knowing that the density of binary triangulated packings
(all of them are given in Figure 4) often exceeds the density of ternary triangulated packings
in question gave us an idea to use them in order to find counter examples.

2 https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/
constructor.html
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The first result we obtained was for case 110 [16]. After generalization, we ended up with
40 counter examples (19, 20, 25, 47, 51, 60, 63, 64, 70, 73, 80, 92, 95, 97, 98, 99, 100, 104, 110,
111, 117, 119, 126, 132, 133, 135, 136, 137, 138, 139, 141, 142, 151, 152, 154, 159, 161, 162,
163, 164). They are all non triangulated packings using only two discs out of three which
have greater densities than triangulated packings using all three discs. We obtained each of
them deforming a triangulated binary packing with discs whose size ratio is close to the one
of a pair of discs in the triplet associated to the case. Tiny deformations do not dramatically
lower the density and these packings are dense enough to beat the ternary triangulated ones.

δb7 ≈ 0.931901 rb7 ≈ 0.280776 δ ′ 73 ≥ 0.924545 s73 ≈ 0.263654 δ73 0.920565 s73 ≈ 0.263654

Figure 8 Left: a triangulated binary packing of case b7. Middle: a deformation where the small
discs are replaced with the small discs of case 73. Right: a triangulated periodic packing of case 73,
its fundamental domain and description are given in [15].

Let us explain our method on an example. Recall that the pairs of discs allowing binary
triangulated packings are denoted by b1, . . . , b9 while the triplets with ternary triangulated
packings are indexed by positive integers from 1 to 164. Let us consider case 73, its
triangulated ternary packing is given in Figure 8, on the right. Notice that the radius of the
small disc (s73 ≈ 0.263) of case 73 is close to the radius of the small disc (rb7 ≈ 0.281) of
case b7. Let us deform the triangulated binary packing of b7 (Figure 8, on the left) replacing
the small disc of b7 by the small disc from 73. We choose a deformation which breaks as few
contacts between discs as possible (Figure 8, in the middle). Observe that the only broken
contact is between the two small discs: they are not tangent anymore. The density of this
new non-triangulated packing δ′ ≈ 0.9245 is higher than the density of the triangulated
packing 73 δ73 ≈ 0.9206 (Figure 8, on the right).

This method is called flip-and-flow [3]. The 40 counter examples were found by computer
search. First, for each case bi, we find the set of pairs of radii from the cases 1-164 with
radii ratio “close enough” (we choose the distance heuristically) to the ratio of the discs
of bi. Then we deform the triangulated packing of bi to obtain packings with the found
disc ratios. Our way to deform packings was chosen in order to minimize the number of
broken contacts between discs since intuitively it is the best way to keep the density high.
Finally, the densities of 40 packings obtained by our method were higher than the densities
of the respective ternary triangulated packings which leaves us with the counter examples
illustrated in the appendix of the full version of the paper [17].

Our method is not universal: there might be other deformations for certain cases to obtain
even higher density and even more counter examples. Besides that, there might be other
cases with ternary counter examples (notably, among the cases discussed in Sections 5.2).
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5 Other cases

5.1 2 coronas
Among the necessary conditions on vertex potentials in tight triangles given in [17], we saw
that the sum of potentials in the corona around any vertex of triangulated packing T ∗ must
be equal to zero. In all the proved cases, each disc has only one possible corona in T ∗. It is
not always the case, more precisely, among the cases where T ∗ is saturated, and for which we
did not find counter examples, there are 22 cases where one of the discs appears with at least
two different coronas in T ∗: 16, 17, 18, 36, 49, 52, 57, 58, 65, 78, 84, 90, 106, 114, 120, 148,
153, 155, 156, 157, 158, 160. Each of these cases features a supplementary corona consisting
of 6 discs of the same size as the central one. We thus have to add a supplementary condition
6Vxxx = 0, where x is the radius of the disc with two coronas. This however contradicts the
condition 3Vxxx = Exxx in all of these cases. Our density redistribution would need to be
less local to solve this problem. In the context of binary triangulated packings, such a case
(b5, see Figure 4) is treated in detail in Section 5.3 of [1].

5.2 Empty polyhedra
In Section 3.2, we construct a polyhedron in R9 aiming to contain all valid values of tight
vertex potentials and m1, mr, ms. In this section, we talk about the 52 cases where the
polyhedron obtained by our computations is empty: 21, 22, 23, 26, 27, 34, 35, 46, 48, 50, 59,
61, 67, 68, 69, 71, 72, 74, 81, 82, 83, 85, 86, 87, 88, 89, 91, 94, 96, 101, 102, 103, 105, 107,
109, 112, 113, 121, 122, 123, 124, 125, 127, 128, 130, 134, 140, 143, 145, 147, 149, 150.

The polyhedron formed by the inequalities on vertex potentials and the inequality for ϵ-
triangles (which are given in [17]), represents the values satisfying (•) featuring a non-negative
valid ϵ. These constraints are necessary for our proof to be correct. If this polyhedron is
empty there are no valid values of tight potentials and m1, mr, ms and thus our strategy of
proof is not applicable.

Nevertheless, our computations are limited by computer memory which can represent only
certain values. Normally, we avoid this problem by using interval arithmetic (Section 3.1).
However, we can not apply this solution with polyhedra. First, as mentioned in Section 3.2,
in SageMath, the polyhedra module does not support the interval field as a base ring.
Implementing another way to represent “interval polyhedra” would be unreasonable due to
memory and time constraints of calculations: the polyhedra are constructed from thousands
of inequalities, and performing computations in interval field significantly increases time
and memory costs. Instead, we use the ring of rationals to store the inequalities coefficients.
Therefore, the polyhedron we work with is an approximation of the actual polyhedron and
may not contain all the valid sets of values.

Yet, we believe that the polyhedra in question are probably actually empty in these
cases, so the precision issues are not the principal obstacle. All in all, some of the cases from
this section might actually maximize the density but we would need an essentially different
approach to be able to prove it. Looking forward, further attempts to treat these cases would
likely need to use a less local density distribution.

5.3 The 4 mysterious cases
In the four remaining cases (45, 62, 75, and 144) the polyhedron from Section 3.2 is not
empty, like for the cases from the previous section. Nevertheless, we could not find a point in
it to guarantee the local inequality (2) in all triangles: the problematic triangles are always
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45                              62                             75                              144

Figure 9 Triangulated ternary packings of the four mysterious cases.

those close to one of the tight ones. Minimizing mq and the tight potentials is an obvious
strategy to minimize the potentials and eventually satisfy (2) but the capping constants Zq

also dramatically affect potentials.
Trying to find appropriate values of Vxyz, mq and Zq, we represented all the constraints

coming from (3) as a linear optimization problem. This allowed us to encode problematic
triangles violating (2) as constraints and add them to the system, one by one, each time one
appears during local verification, in hope to finally “converge” to a solution which would
satisfy (2) on all triangles. However, this method failed: no solutions were found.

The fact that we could not choose a set of appropriate constants in these cases does
not prove that they do not exist (due to the approximation issues already discussed in the
previous section as well as the new ones coming from encoding our constraints into a rational
linear problem). We, however, believe that these cases, as well as those from the previous
section, just cannot be treated by our proof methods. They probably require a less local
emptiness redistribution then the one we use.

References
1 N. Bedaride and T. Fernique. Density of Binary Disc Packings: The Nine Compact Packings.

Discrete and Computational Geometry, 67:1–24, 2022. doi:10.1007/s00454-021-00348-7.
2 R. Connelly, S. Gortler, E. Solomonides, and M. Yampolskaya. Circle packings, triangulations,

and rigidity. Oral presentation at the conference for the 60th birthday of Thomas C. Hales,
2018.

3 R. Connelly and S. J. Gortler. Packing Disks by Flipping and Flowing. Discret. Comput.
Geom., 66:1262–1285, 2021.

4 J. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren der
mathematischen Wissenschaften. Springer New York, 1998.

5 S. L. Devadoss and J. O’Rourke. Discrete and Computational Geometry. Princeton University
Press, 2011.

6 The Sage Developers. Sage mathematics software (version 9.0). http: // www. sagemath. org ,
2020.

7 E. Fayen, A. Jagannathan, G. Foffi, and F. Smallenburg. Infinite-pressure phase diagram of
binary mixtures of (non)additive hard disks. The Journal of Chemical Physics, 152(20):204901,
2020.

8 L. Fejes Tóth. Über die dichteste Kugellagerung. Math. Z., 48:676–684, 1943. doi:10.1007/
BF01180035.

9 L. Fejes Tóth. Compact Packing of Circles. Studia Sci. Math. Hungar., 19:103–107, 1984.
10 L. Fejes Tóth and J. Molnár. Unterdeckung und Überdeckung der Ebene durch Kreise.

Mathematische Nachrichten, 18:235–243, 1958.
11 S. P. Fekete, P Keldenich, and C. Scheffer. Packing disks into disks with optimal worst-case

density. Discrete and Computational Geometry, 2022. doi:https://link.springer.com/
article/10.1007/s00454-022-00422-8.

https://doi.org/10.1007/s00454-021-00348-7
http://www.sagemath.org
https://doi.org/10.1007/BF01180035
https://doi.org/10.1007/BF01180035
https://doi.org/https://link.springer.com/article/10.1007/s00454-022-00422-8
https://doi.org/https://link.springer.com/article/10.1007/s00454-022-00422-8


T. Fernique and D. Pchelina 32:17

12 S. P. Fekete, S. Morr, and C. Scheffer. Split packing: Packing circles into triangles with optimal
worst-case density. In Algorithms and Data Structures, pages 373–384. Springer International
Publishing, 2017.

13 T. Fernique. A densest ternary circle packing in the plane. https: // arxiv. org/ abs/ 1912.
02297 , 2019.

14 T. Fernique. Density of binary disc packings: Lower and upper bounds. Experimental
Mathematics, pages 1–12, 2022.

15 T. Fernique, A. Hashemi, and O. Sizova. Compact packings of the plane with three sizes of
discs. Discret. Comput. Geom., 66(2):613–635, 2021.

16 T. Fernique and D. Pchelina. Compact packings are not always the densest. https: // arxiv.
org/ abs/ 2104. 12458 , 2021.

17 T. Fernique and D. Pchelina. Density of triangulated ternary disc packings. https: // arxiv.
org/ abs/ 2211. 02905 , 2022.

18 A. Florian. Ausfüllung der Ebene durch Kreise. Rendiconti del Circolo Matematico di Palermo,
9:300–312, 1960.

19 C. F. Gauss. Untersuchungen über die Eigenschaften der positiven ternären quadratischen
Formen von Ludwig August Seber. Göttingische gelehrte Anzeigen, 1831.

20 T. C. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162(3):1065–1185,
2005.

21 T. C. Hales, M. Adams, G. Bauer, D. T. Dang, J. Harrison, T. L. Hoang, C. Kaliszyk,
V. Magron, S. McLaughlin, T. T. Nguyen, T. Q. Nguyen, T. Nipkow, S. Obua, J. Pleso,
J. Rute, A. Solovyev, A. H. T. Ta, T. N. Tran, D. T. Trieu, J. Urban, K. K. Vu, and
R. Zumkeller. A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5:e2, 2017.
doi:10.1017/fmp.2017.1.

22 T. C. Hales and S. P. Ferguson. The Kepler conjecture. Discrete Comput. Geom., 36(1):1–269,
2006.

23 T. C. Hales and S. P. Ferguson. A Formulation of the Kepler Conjecture, pages 83–133.
Springer New York, New York, NY, 2011.

24 A. Heppes. On the densest packing of discs of radius 1 and
√

2 − 1. Studia Scientiarum
Mathematicarum Hungarica, 36:433–454, 2000.

25 A. Heppes. Some densest two-size disc packings in the plane. Discrete and Computational
Geometry, 30:241–262, 2003.

26 A. B. Hopkins, F. H. Stillinger, and S. Torquato. Densest binary sphere packings. Phys. Rev.
E, 85:021130, 2012.

27 T. Kennedy. A densest compact planar packing with two sizes of discs. https: // arxiv. org/
abs/ math/ 0412418 , 2005.

28 T. Kennedy. Compact packings of the plane with two sizes of discs. Discret. Comput. Geom.,
35(2):255–267, 2006. doi:10.1007/s00454-005-1172-4.

29 J. Lagarias. Bounds for local density of sphere packings and the Kepler conjecture. Discrete
and Computational Geometry, 27:165–193, 2002. doi:10.1007/s00454-001-0060-9.

30 M. Messerschmidt. The number of configurations of radii that can occur in compact packings
of the plane with discs of n sizes is finite. https: // arxiv. org/ abs/ 2110. 15831 , 2021.
doi:10.48550/ARXIV.2110.15831.

31 P. I. O’Toole and T. S. Hudson. New high-density packings of similarly sized binary spheres.
The Journal of Physical Chemistry C, 115(39):19037–19040, 2011.

32 T. Paik, B. T. Diroll, C. R. Kagan, and C. B. Murray. Binary and Ternary Superlattices
Self-Assembled from Colloidal Nanodisks and Nanorods. Journal of the American Chemical
Society, 137(20):6662–6669, 2015.

33 A. Thue. Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene.
Christiania Videnskabs-Selskabets Skrifter, I. Math.-Naturv. Klasse, 1:1–9, 1910.

SoCG 2023

https://arxiv.org/abs/1912.02297
https://arxiv.org/abs/1912.02297
https://arxiv.org/abs/2104.12458
https://arxiv.org/abs/2104.12458
https://arxiv.org/abs/2211.02905
https://arxiv.org/abs/2211.02905
https://doi.org/10.1017/fmp.2017.1
https://arxiv.org/abs/math/0412418
https://arxiv.org/abs/math/0412418
https://doi.org/10.1007/s00454-005-1172-4
https://doi.org/10.1007/s00454-001-0060-9
https://arxiv.org/abs/2110.15831
https://doi.org/10.48550/ARXIV.2110.15831

	1 Introduction
	1.1 1-sphere packings
	1.2 Disc packings
	1.3 Our results

	2 Proof of Th. 4 (a) and (b) 
	2.1 Proof strategy
	2.2 Sketch of our proof of Th. 4 (a)
	2.3 Proof of Th. 4 (b)

	3 Computer implementation
	3.1 Interval arithmetic
	3.2 Polyhedra

	4 Counter-examples: proof of Th. 4 (c)
	5 Other cases
	5.1 2 coronas
	5.2 Empty polyhedra
	5.3 The 4 mysterious cases


