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Abstract
In this paper we give a new, efficient algorithm for computing curve skeletons, based on local
separators. Our efficiency stems from a multilevel approach, where we solve small problems across
levels of detail and combine these in order to quickly obtain a skeleton. We do this in a highly
modular fashion, ensuring complete flexibility in adapting the algorithm for specific types of input
or for otherwise targeting specific applications.

Separator based skeletonization was first proposed by Bærentzen and Rotenberg in [ACM Tran.
Graphics’21], showing high quality output at the cost of running times which become prohibitive for
large inputs. Our new approach retains the high quality output, and applicability to any spatially
embedded graph, while being orders of magnitude faster for all practical purposes.

We test our skeletonization algorithm for efficiency and quality in practice, comparing it to local
separator skeletonization on the University of Groningen Skeletonization Benchmark [Telea’16].

2012 ACM Subject Classification Computing methodologies → Computer graphics; Theory of
computation → Computational geometry; Software and its engineering → Software design engineering

Keywords and phrases Algorithm engineering, experimentation and implementation, shape skeleton-
ization, curve skeletons, multilevel algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.13

Related Version Full Version: https://arxiv.org/abs/2303.07210

Supplementary Material
Software: https://github.com/janba/GEL [10]

archived at swh:1:dir:91f125aa9a06d7adf992cdb11ca2108d86acdefe
Software (Supplementary repo for testing and additional variations): https://github.com/Sgelet/
GEL, archived at swh:1:dir:09aadd7e8f82cc8dfdbbc72ea71e56e65a6e0cfc

Funding Emil Toftegaard Gæde and Eva Rotenberg: supported by Eva Rotenberg’s Carlsberg Found-
ation Young Researcher Fellowship CF21-0302 - “Graph Algorithms with Geometric Applications”.
J. Andreas Bærentzen: Partially supported by the Villum Foundation through Villum Investigator
Project InnoTop.

1 Introduction

A curve skeleton is a compact simplified representation of a shape, consisting only of curves.
The act of skeletonization, in this context, is the computation of such a curve skeleton for a
given input. For the remainder of this paper skeleton refers exclusively to curve skeletons.
Various fields, including feature extraction, visualisation and medical imaging, care not only
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about shapes and objects, but also about their structures and features. In applications such
as shape matching, the skeleton acts as a simplified representation of an object, allowing for
reduced computation cost [8], whereas in virtual navigation the curve skeleton can act as a
collision free navigational structure [24, 30].

The broad areas of application, and the different roles that skeletons play, lead to differing
interpretations of exactly what the skeleton is. Although no widely agreed upon definition of
skeletons exist, work has been done on narrowing down desirable properties of skeletons in
the general case [12].

Figure 1 Shaded renders of triangle meshes and skeletons obtained by our algorithm.

Instead of giving a formal definition, we will base our work on the evocative if imprecise
definition of skeletons as simplified curve representations of the underlying structure and
topology. In Figure 1 we show skeletons of various input, to exemplify our definition.

Many different approaches to skeletonization exist [27], such as computing and pruning
the medial surface [13], computing mean curvature flow [26] or contracting meshes [20].
In a recent paper A. Bærentzen and E. Rotenberg present a new algorithm that bases
itself on computing local separators [5]. We refer to this algorithm as the local separator
skeletonization algorithm, LSS. This approach has the benefit that it requires only that the
input be given as a spatially embedded graph, rather than a specific shape representation.
This makes the method applicable to a wide variety of inputs, such as meshes, voxel grids
or even input that does not necessarily represent a shape. In addition, the skeletons that
it generates are of high quality, capturing features that contractive methods tend to miss.
However, the algorithm is also computationally expensive.

In this paper we present a multilevel algorithm for computing curve skeletons that we
obtain by adapting LSS to a multilevel framework. Below, we start with some preliminaries
and then present an overview of our contributions. Next, after a discussion of related work,
we describe our approach to graph coarsening, projecting separators onto finer level graphs,
and, finally, the multilevel skeletonization algorithm that builds on these components. We
provide analyses of the algorithms in the paper and we test our work on a skeletonization
benchmark. Our results show that our algorithm is orders of magnitude faster than that
proposed by Bærentzen and Rotenberg while producing skeletons of comparable quality.

1.1 Preliminaries
We consider the discrete skeletonization problem, where both the input and output is
represented by spatially embedded undirected graphs. Formally, we consider skeletonization
of a graph G = (V, E) where each vertex is associated with a geometric position pv∈V ∈ R3.
Note that we make no other assumptions about the graph, such as whether it is sampled
from the surface of a manifold, created from a point cloud, or otherwise.
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In graph theory a vertex separator is a set of vertices whose removal disconnects the
graph. In [5], this notion is extended to local separators, defined as a subset of vertices,
S ⊂ V , that is a vertex separator of the subgraph induced by the closed neighbourhood of
S. Likewise, the notion of a minimal local separator is defined as a local separator that is a
minimal vertex separator of the subgraph induced by the closed neighbourhood. Intuitively,
we cannot remove a vertex from a minimal local separator without the remaining set ceasing
to be a local separator. For the rest of this paper, the term separator means local separator.

1.2 Contributions
The LSS algorithm computes skeletons through a three-phased approach. A large number of
minimal local separators is computed, the minimal separators are selected using a greedy
packing method, and, lastly, the skeleton is extracted from the packed set of minimal
separators. A visualisation of these phases can be seen in Figure 2.

Figure 2 Visualisation of the three phases of the LSS algorithm. From left to right: A shaded
render of the input, a number of computed minimal separators, a non-overlapping subset of the
separators, and the resulting skeleton after extraction.

As the algorithms for the first two phases play an intrinsic role in our algorithm, we give
a brief description of these.

Computing local separators is done through a two-step process. First a region growing
approach is used to find a local separator. A vertex is picked, and we iteratively add to
the separator an adjacent vertex and check if the neighbourhood is disconnected. We refer
to this as growing a separator. Once a local separator has been found, it is heuristically
minimised by removing vertices that would not destroy the separator. We refer to this as
shrinking a separator.

Because the running time of LSS is often dominated by the search for local separators,
a sampling scheme is used to reduce computation. According to the scheme, vertices are
selected for separator computation with probability 2−x, where x is the number of previously
computed separators that contain that vertex.

Unfortunately, sampling only addresses the number of separators that need to be computed
and not the time it takes to compute each separator. In this paper we address the latter
issue using a multilevel approach. Specifically, we find separators on coarser versions of
the graph and project them back up onto the original graph. Importantly, this allows us
to set a patience threshold for the amount of computation that should be used to find a
separator from a given vertex. When the threshold is exceeded we stop the search relying on
a separator containing the given vertex to be found on a coarser level.

1.3 Related Work
Skeletonization, in terms of computing curve skeletons, is a diverse field not only in terms of
interpretations of skeletons, but also in the algorithmic approaches. Several classifications of
algorithms exist [12, 27], based on underlying traits of the algorithms.

SoCG 2023
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The interpretation that the curve skeleton should lie on the medial surface, gives rise to
methods that, in a sense, extract a curve skeleton from the medial surface of the input [13,
29, 19, 25, 32]. Since the medial surface is highly sensitive to noise, so are the skeletons
generated by these methods.

A class of algorithms that are resilient to noise are the contractive methods, based
on the concept of reducing the volume and surface area of the input until a skeleton is
found [31, 4, 26]. In their simplest forms these algorithms require that the input be manifold,
however it is possible to extend to other types of input [11, 18].

A related notion for shape analysis is that of Reeb graphs [7, 6]. These can be used for
skeletonization, lending themselves to a topologically driven class of algorithms [22, 23, 14].
The resulting skeletons depend on a parameter, giving some flexibility in targeting specific
properties of the output, but also requiring great care in the choice of the parameter.

In addition there are algorithms that fit into classifications not presented here [20, 15, 2].
A very successful heuristic approach to the NP-complete problem of graph partitioning is

that of multilevel algorithms [9]. Although the problem considered is different, we employ
a similar multilevel scheme for vastly improving practical performance. Such multilevel
schemes have been extensively studied [16, 21, 1].

2 The Multilevel Framework

In its most general sense, the multilevel framework is a heuristic approach that aims to solve
a problem by obtaining a solution to a smaller problem.

Initially, a series of increasingly simplified approximations of the input is generated. We
call this the coarsening phase, and the series of simplifications we call levels. Since the last
level is small, computing a solution is much faster. In graph partitioning literature, this is
called the partitioning phase; however, we will consider it in terms of solving a restricted
problem. Then, the solution found on the last level is transformed into a solution on the input
through uncoarsening. This process is also sometimes called projection and refinement, since
uncoarsening from one level to the previous is often done by projecting onto the previous
level, and then employing some refinement process to improve the solution according to some
heuristic.

By design, the multilevel framework is highly flexible. Various coarsening schemes can be
used, that may prioritise preserving different properties of the input when simplifying. The
restricted problem can be solved by any reasonable approach, and the refinement strategies
can be adapted to suit the application.

Our algorithm works by first coarsening the input into several levels of decreasing
resolution. The details of this coarsening is described in Section 2.1. Once the hierarchy of
graphs has been generated, we do a restricted search for local separators on each level of
resolution. The details are covered in Section 2.2, but the intuition is that searching for large
local separators is slow in practice, and by restricting our search we save computation. Since
the separators found are small, this does however also mean that we are only able to capture
small features of the structure.

Since small features obtained on low resolution can represent large features on the original
input, we obtain separators capturing features of varying sizes by searching for separators
across every level.

By projection and refinement, see Section 2.3, we then transform the minimal local
separators found across the levels into minimal local separators on the input. These can then
be packed and extracted by the approach of LSS. The procedure is visualised in Figure 3.
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Figure 3 Visualisation of the multilevel skeletonization approach. A solid cylinder with a handle
is coarsened until it is of small size. A number of small local separators are found (shown in blue),
and then projected back to the original input. Searching for small local separators again yields
the separators around the handle (shown in red), but separators are too large at this level to be
discovered around the cylinder. We combine the separators to obtain a general solution.

2.1 Coarsening
Given as input a graph, G = (V, E), we construct a sequence of increasingly simplified graphs,
G0, G1, . . . , Gl s.t. G0 ≻ G1 ≻ . . . ≻ Gl where l = O(log n) and Gi ≻ Gj denotes that Gj is
a minor of Gi, and Gi = (Vi, Ei). Moreover G0 = G and ∀i ∈ [0, l), |Vi| ≥ 2|Vi+1|.

We do this by a matching contraction scheme, in which we repeatedly construct and
contract maximal matchings. Various approaches to such coarsening schemes exist in
literature [21], and from these, we choose to consider light edge matching.

To construct Gi+1 from Gi, greedily find a maximal matching and contract it. Such a
matching can be constructed in O(|Ei|) time by visiting vertices in a random order, matching
them to an unmatched neighbour of smallest euclidean distance. We repeat this procedure
until the number of vertices has been at least halved.

In Figure 4 we show some of the graphs obtained during coarsening of a triangle mesh
resembling a statue of Neptune.

Figure 4 A series of increasingly simplified approximations of neptune.ply, from the Groningen
Skeletonization Benchmark, obtained through light edge matching contraction.

SoCG 2023
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Note that by contraction we always preserve the number of connected components. This
is one of the homotopy-preserving properties of the algorithm.

Theoretical Analysis

In the worst case, we may spend O(|Vi|) rounds of contraction in order to reach the desired
number of vertices. This is a well known problem of matching contraction schemes on general
graphs, but graphs obtained from the world of geometry tend to take a small number of
rounds to contract [1].

A general bound on the time spent on the coarsening phase is then
∑l

i=0(|Vi||Ei|) =
|E|

∑l
i=0 |Vi| = O(|V ||E|). For graphs that are contracted in a constant number of rounds

we get
∑l

i=0 |Ei| and if we furthermore have |Ei| = O(|Vi|), as is the case for triangle meshes
and voxel grids, the bound becomes O(|V |).

2.2 Restricted Separator Search
For a given connected set of vertices, V ′, we refer to the subgraph induced by vertices
adjacent to V ′, that are not in V ′ themselves, as the front of V ′ and denote it F (V ′).

A region growing based approach to computing local separators is given in [5], where a
separator, Σ, is iteratively grown until F (Σ) is disconnected. The approach uses an enclosing
ball around the vertices of Σ to guide what vertex of F (Σ) is added next, and the connectivity
of F (Σ) is then checked by traversal. As noted by the authors, it is possible to improve
performance of the search by using a dynamic connectivity data structure to maintain the
front, so that a traversal in every iteration is avoided.

In addition to adapting the algorithm to use a dynamic connectivity data structure,
we will also restrict the number of iterations the search performs. Given a vertex, v, set
Σ0 = ∅, F0 = {v}, and then iteratively construct Σi = Σi−1 ∪ {vi ∈ F (Σi−1)}, where vi

is the closest neighbour of the front to an enclosing sphere around Σi−1. Maintain F (Σi),
update the enclosing sphere and repeat until F (Σi) is disconnected or empty, or |Σi| exceeds
a threshold value. Pseudocode for this restricted separator search is shown in Algorithm 1.

Theoretical Analysis

We analyse the complexity of this restricted separator search in terms of the graph G′ =
Σ ∪ F (Σ) with n′ vertices and m′ edges, using the dynamic connectivity data structure of
Holm, de Lichtenberg and Thorup with updates in amortized O(log2 n′) time [17]. Since
the size of the separator is at most α and we add one vertex each iteration, we use at
most α iterations selecting the closest vertex from the front, updating the bounding sphere
and maintaining the dynamic connectivity structure. Selecting the closest vertex is done
naively with a scan through the front, taking O(n′) time and updating the bounding sphere
takes O(1) time each iteration. This gives a running time of O(αn′). Each edge in the
dynamic connectivity structure is inserted and removed at most once, with each operation
taking O(log2 n′) amortized time, totalling O(m′ log2 n′). The total running time is then
O(αn′ + m′ log2 n′).

In the general case we give no better worst case bound than O(α|V | + |E| log2 |V |). For
graphs of bounded maximum degree we can bound the size of the front. Let ∆ be the
maximum degree of G, then n′ = O(|Σ|∆) = O(α∆) and m′ = O(α∆2). This gives a time
of O(α2∆ + α∆2 log2(α∆)). In addition if we choose α to be a small constant, the bound
is further improved to O(∆2 log2 ∆). For graphs where ∆ = O(1) as for voxel grids or
knn-graphs, the search then becomes O(1). Note that for this bound to be applicable across
the entirety of the algorithm, the degree needs to remain bounded through coarsening.
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Algorithm 1 Restricted Separator Search
Given a spatially embedded graph, G, a starting vertex, v0, and a thresholding value, α,
search for a separator of size at most α and return it, or ∅ if failure. Here ϵ is a small constant
to prevent division by zero.

Restricted-Separator-Search(G, v0, α):
Σ = ∅
F = ({v0}, ∅)
c = pv0

i = 0
r = 0
repeat

v = arg minf∈V (F )∥c − pf ∥ // Scan front for closest vertex
if ∥c − pv∥ > r then

r = 1
2 (r + ∥c − pv∥) // Update the sphere

c = pv + r
ϵ+∥c−pv∥ (c − pv)

Σ = Σ ∪ {v}
remove(F, v)
for (x, y) ∈ E(Neighbourhood(G,v) − Σ) do

connect(F, x, y) // Maintain the front of Σ
i = i + 1

until number-of-components(F )> 1 or i = α

if number-of-components(F ) = 1 then
return ∅

return Σ

2.3 Projection and Refinement
For projecting separators to graphs of higher levels of detail, we employ a simple uncoarsening
technique. By storing information about what vertices were contracted during coarsening, we
can reverse the contractions that gave rise to the vertices of a given separator. Note however
that a separator that has been projected in such a way is not guaranteed to be minimal.

The simplest refinement scheme is thus one that uses the algorithm for minimising
separators as in LSS. The minimising algorithm is a heuristic approach that seeks to minimise
a separator such that the structure becomes that of a thin band. When used on separators
that are obtained through projection, there is not necessarily much room for choice. Therefore
we consider a variation of our refinement scheme, we thus choose to “thicken” the separators
after projection, by adding the adjacent vertices if it would not destroy the separator. This
gives the heuristic minimisation more options for creating separators of shorter length, as
visualised in Figure 5.

Projecting a separator can be done in linear time proportional to the size of the resulting
separator, while the minimisation in worst case takes quadratic time (see the full version).

After processing each separator in this way, we obtain a set of minimal separators for the
current level. If we accumulate separators indiscriminately, we will spend time projecting
and refining separators that will ultimately be discarded due to overlapping. If we perform
set packing on every level, we are going to be too eager in our efforts, discarding things
that might not overlap once projected further. Intuitively, we would like to only discard
separators if there is a large overlap.

SoCG 2023
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Figure 5 A separator undergoing expansion as part of refinement. (A) shows an input, (B) a
coarsened representation, (C) a computed separator denoted by red vertices, (D) the projected
separator denoted by red vertices and the added vertices denoted by orange, (E) shows the separator
obtained by minimising the thickened separator.

To do this, we associate with each vertex, v, of every graph, Gi, a capacity, ci
v, equal to

the sum of capacities of vertices contracted to obtain it. For vertices of G0 we define the
capacities as 1, formally ∀v ∈ V (G0), c0

v = 1. In this way, the capacity of a given vertex is
the number of vertices of the original input that it represents.

We then modify the greedy set packing algorithm of LSS, so that we include a separator
iff it would not cause any vertex to exceed its capacity. Since the capacities of G0 are 1, this
packing is equivalent to the original when applied to the highest level of resolution, and thus
we will still have a non-overlapping set of separators at the end.

Note however that this packing allows for duplicates to persist through packing, essentially
reducing the capacities of vertices while providing no valuable information. To counteract
this, we perform a filtering step using hashing to rid duplicates prior to the packing procedure.
Filtering and packing in this way takes time linear in the sum of sizes of separators in the set.

2.4 The Multilevel Skeletonization Algorithm

With the details of the phases in place, we can then combine these to construct the multilevel
skeletonization algorithm. Given a spatially embedded input graph, G = (V, E), and a
threshold value α, we construct a curve skeleton by the following:

Generate Gi from Gi−1 by coarsening, until |Gl| ≤ α for some l. This generates
the sequence of graphs of decreasing resolution G0, G1, . . . , Gl where l = O(log |V |) and∑l

i=0 |Vi| = O(|V |).
Then, starting at the lowest resolution, Gl, find restricted separators. We do this by

the restricted separator search, starting at each vertex with probability 2−x, where x is the
number of currently computed separators containing that vertex, using α as the restriction
on the size of the search. After computing the separators for a level, we perform capacity
packing, and then we project the computed separators to the next level and refine them.
This process is repeated for every level until we arrive at the original graph. At this point,
after performing capacity packing, we obtain a non-overlapping set of minimal separators
from which we extract the skeleton, using the extraction procedure of LSS [5]. Pseudocode
for this algorithm can be seen in Algorithm 2.
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Algorithm 2 Multilevel Skeletonization
Given a spatially embedded graph, G, and a thresholding value, α, compute a curve skeleton.

Multilevel-Skeletonization(G, α):
G0 = G

l = 0
repeat // Coarsening phase

l = l + 1
Gl = Coarsen(Gl−1)

until |V (Gl)| ≤ α

S = ∅ // Maintain set of minimal separators
for i = l to 0 do // From low to high resolution

S′ = ∅
for s ∈ S do // Project and refine from previous levels

S′ = S′ ∪ Project-Refine(s)
S = S′

for v ∈ V (Gi) with probability 2−x(v) do // Search on this level
s = Restricted-Separator-Search(Gi, v, α)
S = S ∪ {Minimise-Separator(s)}

S = Capacity-Pack(S)
return Extract-Skeleton(G, S)

Theoretical Analysis

For completeness’ sake we consider then the complexity of the algorithm. Recall that the
coarsening phase in the general worst case takes O(|V ||E|) time, but for not too irregular
input takes O(|V |) time. We then perform a restricted separator search from each vertex
across every level, which is O(α|V |2 + |V ||E| log2 |V |) in the general worst case, but O(α|V |)
for graphs that retain constant bounded degree through coarsening. We consider then the
time a single separator contributes to the total when expanding, filtering and packing. These
operations are linear in the size of the separator on each level, which is worst case O(|Vi|) on
level i. This totals

∑l
i=0 O(|Vi|) = O(|V |) for a single separator across all levels. Minimizing

a single separator takes worst case O(|Vi|2) on level i, which for a single separator contributes∑l
i=0 O(|Vi|2) = O(|V |2) across all levels. We also perform packing on each level, linear

in the sum of sizes of separators, which in total takes
∑l

i=0 O(|Vi|2) = O(|V |2) time. The
general worst case bound then becomes O(|V |3 + |V ||E| log2 |V |), which is an improvement
over LSS. It is worth mentioning however, that in practice the running time for both LSS
and our algorithm is heavily dominated by the search for separators, and that theoretically
expensive procedures, such as minimisation, make up only a small fraction of the running
time.

3 Experiments

In this work, our main objective was to make an algorithm that produces the same quality
of skeletons as LSS [5], only with improved running times, using new algorithmic ideas and
algorithm engineering. As we will show in this section, the improvements to practical running
times are very satisfactory.

As for quality, it is our overall assessment that the quality has not been compromised by
the speed-up.

SoCG 2023
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There is, however, no standard for how skeletons should be compared. In [27] it is
remarked that quantifying the quality of skeletons is an open challenge, but we shall instead
compare ourselves only to skeletons obtained by LSS, to quantify the deviation obtained by
employing the multilevel approach.

To do this, we will measure a number of metrics, namely the number of vertices in the
skeleton, the number of leaf nodes, branch nodes, chordless cycles which estimates the genus
of the input, and the directed Hausdorff distance in both directions. For our comparisons,
it is the relationship between directed Hausdorff distances that matter, rather than the
magnitudes. A high distance from an LSS skeleton to our skeleton, with a low distance the
other way, could indicate that LSS captures a feature that our skeleton does not. Likewise
for the inverse, which might indicate that we are capturing a feature that LSS does not deem
to exist. We give our Hausdorff distances divided by the radius of a bounding sphere, to
reduce influence from the differing scales of input.

We run our tests on the Groningen Skeletonization Benchmark [28], consisting of several
triangle meshes of varying structure. The test are executed on HPC Cluster nodes with Xeon
Gold 6226R (2.90GHz) CPUs, using 8 cores of a single CPU for each test. For running time
measurements, tests are run three times, and the median value is reported.

For comparisons we examine three algorithms, namely the local separator skeletonization
algorithm (LSS) [5], our multilevel algorithm using light edge matchings, described in
Section 2.1, as contraction scheme (LEM) as well as with light edge matchings and thickened
separators, described in Section 2.3, as the refinement scheme (LEMTS).

We note that the variation of LSS with which we compare our algorithms also includes
usage of a dynamic connectivity structure, so that the search procedures are identical up to
the threshold parameter.

Implementation

Our implementation is written in C++, built into the GEL library, and made publicly
available [10]. This is the same library that contains LSS, and as such our algorithms use
the same underlying data structures and subroutines. All programs are compiled using -O3
optimisation flags. Details regarding the dynamic connectivity structure are given in the full
version. We run the restricted searches in parallel internally on each level, using a simple
fork-join pattern, identical to that of LSS. To account for the multilevel structure of our
algorithm, we then pack using a single thread, project using at most two threads and repeat
the pattern for the next level. The decision to use only two threads for projection stems
from the fact that the overhead associated with spinning up threads quickly outweighs the
benefits of parallel projection since there are often few separators after packing.

3.1 Results

Here we present our results in terms of measurements on the Groningen Skeletonization
Benchmark. Initially we argue for our choice of α, showing how the threshold impacts both
skeleton quality as well as running time. We then present a number of results relating to the
skeletons themselves to showcase the quality of output. We then present our measurements
of running times, as well as discuss interesting observations.

Additional measurements are presented in the full version.
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The Right Amount of Patience – Determining a Threshold Value α

To show the effects of α on the running time, we consider a small test suite using subdivisions
of a mesh to generate various sizes of input. This is done to ensure a similar underlying
structure throughout the test. We test our multilevel algorithm for α = 8, 16, 32, 64, 128 (see
Figure 6). Not surprisingly, a lower threshold leads to a lower running time.

Figure 6 Running time measurements of varying values of α on subdivisions of a mesh.

Figure 7 Skeletons found on human_hand.ply for increasing patience thresholds. From left to
right: α = 8, 16, 32, 64, 128.

However, there may be a trade-off between skeleton quality and threshold value, which
we explore qualitatively.

We visually examine the skeletons generated for our choices of α on human_hand.ply, as
seen in Figure 7. For very low values of α, the skeletons have few curves in areas that are
relatively thick. With a low threshold, separators must be found on lower resolutions, which
in turn means that few separators can be found. As we progress to higher values of α, the
level of detail of the skeleton rises, up to a certain point. Intuitively, if the threshold is high
enough that the details can be captured on the higher levels of detail, then we gain nothing
from the lower resolution levels.

It could be argued that α = 16 or α = 32 generates the most visually appealing skeletons
for this particular input, however we find that α = 64 offers the best trade-off for running
time on other examined input such as that shown in Figure 8.

Thus, we run the remainder of our tests using α = 64.
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Figure 8 Each column indicates a different input, with each row showcasing a different method.
From top to bottom: shaded renders of the input, skeletons obtained by LSS, skeletons obtained by
LEM, skeletons obtained by LEMTS.
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Skeleton Quality

In Figure 8 we show some of the skeletons obtained by LSS, LEM and LEMTS. Note that
both LEM and LEMTS appear smoother, while also reaching the features that LSS finds
in many cases. In addition, it seems that for these inputs our methods find less spurious
features, giving a cleaner result. When comparing LEM and LEMTS the differences are
subtle. On horse.ply it can be seen that the vertex where the front legs meet the body is
positioned further to the left. This is due to LEMTS having a denser skeleton. On the other
hand, LEMTS seems to not capture the structure of the groin area of neptune.ply as well
as LEM. Although it appears as if LEMTS finds a cycle, this is not actually the case. The
skeletal branch is, however, not positioned as one would expect.

Table 1 Excerpt of measurements on skeletons. The metrics denoted by ∆ are relative to the
skeletons of LSS, with negative values implying that LSS has more vertices, leafs, branches etc.
Here H(A, B) denotes the directed Hausdorff distance between A and B, divided by the radius of a
bounding sphere, and ∗ denotes skeletons generated by our multilevel algorithms.

input algorithm ∆vertices ∆leafs ∆branches ∆genus H(LSS, ∗) H(∗, LSS)

19465 LEM -563 -3 -35 2 0.0437028 0.0415616
LEMTS -416 11 -24 3 0.0355444 0.0382796

fertility LEM -46 -3 -1 0 0.273804 0.0874419
LEMTS -30 -3 -1 0 0.240033 0.165239

happy4 LEM -589 -409 -21 -100 0.199295 0.0887277
LEMTS -560 -384 -22 -99 0.160472 0.100934

horse LEM -95 -1 -1 0 0.112222 0.111066
LEMTS -66 -2 -2 0 0.0883287 0.0851157

neptune LEM -73 -16 -5 0 0.200924 0.0508065
LEMTS -51 -15 -1 0 0.225756 0.0516766

In addition, we also showcase a small excerpt of measurements from the full version,
which can be seen in Table 1. Here it is clear that LEM and LEMTS produce slightly simpler
skeletons with fewer vertices, leaves, and branches. However, from visual inspection of the
models it is clear that (at least for the models in the table) the missing details in the skeleton
correspond to features which are so subtle that the skeletal details might be considered
spurious. For all inputs of the benchmark except happy4.ply, there is little deviation in the
genus compared to LSS.

For context on the strange genus found on happy4.ply, we show the generated skeletons
in Figure 9. Of note is that the mesh has several missing patches, which seems to cause
spurious small separators to be found on all of the local separator based methods. We
consider this an error case for all of the methods examined.

Running Time

Although the running time of local separator skeletonization methods depends very much on
the search for separators, which in turn depends on the structure of the input, we give the
running times of the examined methods in Figure 10 as a function of the number of vertices
in the input, over the entirety of the Groningen Skeletonization Benchmark [28].

Remarkably, we find that the multilevel algorithm not only outperforms LSS by several
orders of magnitude, but also that it seems to be less dependant on the underlying structure of
the triangle meshes, giving what appears to be a slightly superlinear curve. This effect is even
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Figure 9 A triangle mesh with a large number of missing patches on the surface, happy4.ply,
resulting in erroneous output for LSS, LEM, and LEMTS.

more pronounced when considering only the time to search for separators. Under assumptions
about the degree of the graphs, we showed that searching was O(1) for a single separator and
O(|V |) in total. This experiment seems to confirm that this assumption is fitting for classical
input, as is the case with the triangle meshes of the Groningen Skeletonization Benchmark.

In Table 2 we show an excerpt of the running time measurements, including measurements
of the phases of the algorithm. Here the vast gap in performance is clear, especially for
dragon.ply, which is the largest input for which we have been able to run LSS, given a time
frame of 20 hours. For this particular instance we achieve a running time that is almost a
thousand times faster.

Of note is that LEMTS spends more time on projection, as expected, but less time on
packing than LEM. As stated previously, the search for separators is often the dominating
phase, however there are types of input for which this is not the case, as evidenced by
19465.ply. The mesh consists of flat sheets with small details engraved, as can be seen in
Figure 11. For both LSS and the multilevel algorithms, a large portion of the time is spent
on packing and projection. This can occur if the separators are generally small and plentiful,
so that many of them may quickly be found. For 19465.ply these are particularly present
around the imprinted text on the top sheets. It is worth noting that this would likely also be
an example for which the structure of the input matters greatly for the running time of our
multilevel algorithms.

4 Conclusions and Future Work

We have proposed a multilevel algorithm for computing local separator-based curve skeletons,
and shown that the approach is very efficient. We obtain a practical running time that appears
near linear in the number of vertices of the input (see Figure 10) with up to thousandfold
improvement in running time while not deteriorating the quality of the output substantially,
if at all.

This type of running time improvement makes separator-based skeletonization applicable
as a tool in biomedical image analysis, including frame-by-frame skeletonization of videos [3].

The application to video skeletonization motivates an unexplored line of related work,
namely that of efficiently dynamically updating skeletons in a series of related shapes.

The multilevel approach offers great flexibility that has yet to be explored. It is easy
to imagine coarsening schemes targeting specific structures of input, such as contracting
clusters, rather than edges, on voxel input. These contraction schemes may provide new
trade-offs between practical performance and skeleton quality.



J. A. Bærentzen, R. E. Christensen, E. T. Gæde, and E. Rotenberg 13:15

(a) Running times of LSS. (b) Running times of LEM.

Figure 10 Running times in total (top) and for searching (bottom) as function of the number of
vertices on the Groningen Skeletonization Benchmark. Values over 20 hours omitted.

Table 2 Excerpt of running time measurements. In addition to measuring the total time, we also
measure the time spent on each phase of the algorithm.

input algorithm coarsen (s) search (s) project (s) pack (s) total (s)

19465
LSS - 25.8787 - 138.836 164.714
LEM 1.20002 9.18989 9.410914 12.4392 26.8306

LEMTS 1.21294 9.41457 14.851733 9.8696 26.5518

dragon
LSS - 46615.4 - 20637.9 67255.9
LEM 6.25851 49.6567 18.753684 3.42042 67.4554

LEMTS 6.19801 50.2347 24.6420235 3.22507 69.4672

fertility
LSS - 95.8574 - 42.1409 136.664
LEM 0.234681 2.38572 0.7753682 0.0600592 3.03186

LEMTS 0.244822 2.4305 1.8177949 0.0559833 3.44687

happy4
LSS - 7646.21 - 15731.9 23379.2
LEM 6.89638 49.6684 12.7328477 2.22244 64.2245

LEMTS 6.93433 50.1269 16.0581559 1.75872 65.4557

horse
LSS - 544.182 - 85.6915 628.3
LEM 0.504898 5.10887 1.2762728 0.0669417 6.27845

LEMTS 0.502791 5.17779 2.7604771 0.0542464 6.86374

neptune
LSS - 56.296 - 62.8555 119.232
LEM 0.312728 2.7382 1.0849813 0.230939 3.77785

LEMTS 0.308124 2.76549 2.4149765 0.182575 4.22093
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Figure 11 The triangle mesh 19465.ply, where packing makes up a large portion of the running
time for (all) local separator based skeletonization algorithms.

When applying coarsening to scale-free graphs, as might be the case for data visualisation
or areas of application that are not classical for skeletonization, we move into a domain known
from the field of graph partitioning to cause trouble for matching contraction schemes [1].
It is interesting to see if the improved practical performance, and the applicability to any
spatially embedded graph, opens up for new areas of application of skeletons.
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