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Abstract
Approximating convex bodies is a fundamental question in geometry and has a wide variety of
applications. Consider a convex body K of diameter ∆ in Rd for fixed d. The objective is to
minimize the number of vertices (alternatively, the number of facets) of an approximating polytope
for a given Hausdorff error ε. It is known from classical results of Dudley (1974) and Bronshteyn and
Ivanov (1976) that Θ((∆/ε)(d−1)/2) vertices (alternatively, facets) are both necessary and sufficient.
While this bound is tight in the worst case, that of Euclidean balls, it is far from optimal for skinny
convex bodies.

A natural way to characterize a convex object’s skinniness is in terms of its relationship to
the Euclidean ball. Given a convex body K, define its volume diameter ∆d to be the diameter of
a Euclidean ball of the same volume as K, and define its surface diameter ∆d−1 analogously for
surface area. It follows from generalizations of the isoperimetric inequality that ∆ ≥ ∆d−1 ≥ ∆d.

Arya, da Fonseca, and Mount (SoCG 2012) demonstrated that the diameter-based bound could
be made surface-area sensitive, improving the above bound to O((∆d−1/ε)(d−1)/2). In this paper,
we strengthen this by proving the existence of an approximation with O((∆d/ε)(d−1)/2) facets.

This improvement is a result of the combination of a number of new ideas. As in prior work,
we exploit properties of the original body and its polar dual. In order to obtain a volume-sensitive
bound, we explore the following more general problem. Given two convex bodies, one nested within
the other, find a low-complexity convex polytope that is sandwiched between them. We show that
this problem can be reduced to a covering problem involving a natural intermediate body based on
the harmonic mean. Our proof relies on a geometric analysis of a relative notion of fatness involving
these bodies.
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1 Introduction

Approximating convex bodies by polytopes is a fundamental problem, which has been
extensively studied in the literature (see, e.g., Bronstein [11]). We are given a convex body K

in Euclidean d-dimensional space and an error parameter ε > 0. The problem is to determine
the minimum combinatorial complexity of a polytope that is ε-close to K according to
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9:2 Optimal Volume-Sensitive Bounds for Polytope Approximation

some measure of similarity. In this paper, we define similarity in terms of the Hausdorff
distance [11], and we define combinatorial complexity in terms of the number of facets.
Throughout, we assume that the dimension d is a constant.

Approximation bounds presented in the literature are of two common types. In both
cases, it is shown that there exists ε0 > 0 such that the bounds hold for all ε ≤ ε0. The first
of these are nonuniform bounds, where the value of ε0 may depend on properties of K, for
example, bounds on its maximum curvature [8, 12, 16, 19, 29, 32]. This is in contrast to
uniform bounds, where the value of ε0 is independent of K (but may depend on d).

Examples of uniform bounds include the classical work of Dudley [13] and Bronshteyn
and Ivanov [10]. Dudley showed that, for ε ≤ 1, any convex body K can be ε-approximated
by a polytope P with O((∆/ε)(d−1)/2) facets, where ∆ is K’s diameter. Bronshteyn and
Ivanov showed the same bound holds for the number of vertices. Constants hidden in the
O-notation depend only on d. These results have numerous applications in computational
geometry, for example the construction of coresets [1, 3, 5].

The approximation bounds of both Dudley and Bronshteyn-Ivanov are tight in the worst
case up to constant factors (specifically when K is a Euclidean ball) [11]. However, these
bounds may be significantly suboptimal if K is “skinny”. A natural way to characterize
a convex object’s skinniness is in terms of its relationship to the Euclidean ball. Given
a convex body K, define its volume diameter ∆d to be the diameter of a Euclidean ball
of the same volume as K, and define its surface diameter ∆d−1 analogously for surface
area. These quantities are closely related (up to constant factors) to the classical concepts
of quermassintegrals and of intrinsic volumes of the convex body [20, 21]. It follows from
generalizations of the isoperimetric inequality that ∆ ≥ ∆d−1 ≥ ∆d [21].

Arya, da Fonseca, and Mount [4] proved that the diameter-based bound could be made
surface-area sensitive, improving the above bound to O((∆d−1/ε)(d−1)/2). In this paper, we
strengthen this to the following volume-sensitive bound.

▶ Theorem 1.1. Consider real d-space, Rd. There exists a constant cd (depending on d)
such that for any convex body K ⊆ Rd and any ε > 0, if the width of K in any direction is
at least ε, then there exists an ε-approximating polytope P whose number of facets is at most(

cd∆d

ε

)d−1
2

.

This bound is the strongest to date. For example, in R3, the area-sensitive bound yields
better bounds for pencil-like objects that are thin along two dimensions, while the volume-
sensitive bound yields better bounds for pancake-like objects as well, which are thin in just
one dimension.

The minimum-width assumption seems to be a technical necessity, since it is not difficult to
construct counterexamples where this condition does not hold. But this is not a fundamental
impediment. If the body’s width is less than ε in some direction, then by projecting the
body onto a hyperplane orthogonal to this direction, it is possible to reduce the problem
to a convex approximation problem in one lower dimension. This can be repeated until the
body’s width is sufficiently large in all remaining dimensions, and the stated bound can be
applied in this lower dimensional subspace, albeit with volume measured appropriate to this
dimension.

While our uniform bound trivially holds in the nonuniform setting, we present a separate
(and much shorter) proof that the same bounds hold in the nonuniform setting, assuming
that K’s boundary is C2 continuous. This is presented in the full version.
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▶ Theorem 1.2. Consider real d-space, Rd. There exists a constant cd (depending on d)
such that for any convex body K ⊆ Rd of C2 boundary, as ε approaches zero, there exists an
ε-approximating polytope P whose number of facets is at most(

cd∆d

ε

)d−1
2

.

2 Overview of Techniques

Broadly speaking, the problem of approximating a convex body by a polytope involves
“sandwiching” a polytope between two nested convex bodies, call them K0 and K1. For
example, K0 may be the original body to be approximated and K1 is an expansion based
on the allowed error bound. Most of the prior work in this area has focused on the specific
manner in which K1 is defined relative to K0, which is typically confined to Euclidean space
(for Hausdorff distance) or affine space (for the Banach-Mazur distance).

Recent approaches to convex approximation have been based on covering the body
to be approximated with convex objects that respect the local shape of the body being
approximated [2, 6]. Macbeath regions have been a key tool in this regard. Given a convex
body K and a point x in K’s interior, the Macbeath region at x, MK(x), is the largest
centrally symmetric body nested within K and centered at x (see Figure 1(a)). A Macbeath
region that has been shrunken by some constant factor λ is denoted by Mλ

K(x). Shrunken
Macbeath regions have nice packing and covering properties, and they behave much like
metric balls.

K

(a) (b)

K1

K0

x

MK(x)

M
1/2
K (x)

Figure 1 (a) Macbeath regions and (b) covering K0 by Macbeath regions.

A natural way to construct a sandwiching polytope between two nested bodies K0 and
K1 is to construct a collection of shrunken Macbeath regions that cover K0 but lie entirely
within K1 (see Figure 1(b)). If done properly, a sandwiching polytope can be constructed by
sampling a constant number of points from each of these Macbeath regions, and taking the
convex hull of their union. Thus, the number of Macbeath regions provides an upper bound
on the number of vertices in the sandwiched polytope.

The “sandwiching” perspective described above yields additional new challenges. Consider
the two bodies K0 and K1 shown in Figure 2, where K0 is a diamond shape nested within
the square K1. Consider 1/2-scaled Macbeath region centered at a point x that lies at
the top vertex of K0. Observe that almost all of its volume lies outside of K0. This is
problematic because our analysis is based on the number of Macbeath regions needed to
cover the boundary of a body, in this case ∂K0. We want a significant amount of the volume
of each Macbeath region to lie within K0. In cases like that shown in Figure 2, only a tiny
fraction of the volume can be charged in this manner against K0.

SoCG 2023
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K0

K1

x

O

Figure 2 Relative fatness.

Intuitively, while the body K0 is “fat” in a standard sense1, it is not fat “relative” to the
enclosing body K1. To deal with this inconvenience, we will replace K1 with an intermediate
body between K0 and K1 that satisfies this property. In Section 3.5 we formally define this
notion of relative fatness, and we present an intermediate body, called the harmonic-mean
body, that satisfies this notion of fatness. We will see that this body can be used as a proxy
for the sake of approximation.

3 Preliminaries

In this section, we introduce terminology and notation, which will be used throughout the
paper. This section can be skipped on first reading (moving directly to Section 4).

Let us first recall some standard notation. Given vectors u, v ∈ Rd, let ⟨u, v⟩ denote their
dot product, and let ∥v∥ =

√
⟨v, v⟩ denote v’s Euclidean length. Throughout, we will use the

terms point and vector interchangeably. Given points p, q ∈ Rd, let ∥pq∥ = ∥p − q∥ denote
the Euclidean distance between them. Let vol(·) and area(·) denote the d-dimensional and
(d − 1)-dimensional Lebesgue measures, respectively.

3.1 Polarity and Centrality Properties
Given a bounded convex body K ⊆ Rd that contains the origin O in its interior, define its
polar, denoted K∗, to be the convex set

K∗ = {u : ⟨u, v⟩ ≤ 1, for all v ∈ K}.

The polar enjoys many useful properties (see, e.g., Eggleston [14]). For example, it is well
known that K∗ is bounded and (K∗)∗ = K. Further, if K1 and K2 are two convex bodies
both containing the origin such that K1 ⊆ K2, then K∗

2 ⊆ K∗
1 .

Given a nonzero vector v ∈ Rd, we define its “polar” v∗ to be the hyperplane that is
orthogonal to v and at distance 1/∥v∥ from the origin, on the same side of the origin as v.
The polar of a hyperplane is defined as the inverse of this mapping. We may equivalently
define K∗ as the intersection of the closed halfspaces that contain the origin, bounded by
the hyperplanes v∗, for all v ∈ K.

Given a convex body K ⊆ Rd and x ∈ int(K), there are many ways to characterize the
property that x is “central” within K [17, 31]. For our purposes, we will make it precise
using the concept of Mahler volume. Define K’s Mahler volume, denoted µ(K), to be the

1 That is, the largest ball enclosed in K0 and the smallest ball containing K0 differ in size by a constant.



S. Arya and D. M. Mount 9:5

product vol(K) · vol(K∗). The Mahler volume is well studied (see, e.g. [28, 22, 30]). It is
invariant under linear transformations, and it depends on the location of the origin within
K. We say that K is well-centered with respect to a point x ∈ int(K) if the Mahler volume
µ(K − x) is at most O(1). When x is not specified, it is understood to be the origin. We
have the following lemma [6, 23].
▶ Lemma 3.1. Any convex body K is well-centered with respect to its centroid.

Lower bounds on the Mahler volume have also been extensively studied and it is known
that the following bound holds irrespective of the location of the origin [9, 18, 25].
▶ Lemma 3.2. Given a convex body K ⊆ Rd whose interior contains the origin, µ(K) = Ω(1).

3.2 Caps, Rays, and Relative Measures
Consider a compact convex body K in d-dimensional space Rd with the origin O in its
interior. A cap C of K is defined to be the nonempty intersection of K with a halfspace.
Letting h1 denote a hyperplane that does not pass through the origin, let capK(h1) denote
the cap resulting by intersecting K with the halfspace bounded by h1 that does not contain
the origin (see Figure 3(a)). Define the base of C, denoted base(C), to be h1 ∩ K. Letting
h0 denote a supporting hyperplane for K and C parallel to h1, define an apex of C to be
any point of h0 ∩ K.

K K∗

O O

h1h0

p1 p0

h∗
1

p∗0

p∗1p2

p∗2h∗
2

h2

C base(C)

(a) (b)

h∗
0

Figure 3 Convex body K and polar K∗ with definitions used for width and ray.

We define the absolute width of cap C to be dist(h1, h0). When a cap does not contain
the origin, it will be convenient to define distances in relative terms. Define the relative width
of such a cap C, denoted widK(C), to be the ratio dist(h1, h0)/ dist(O, h0) and, to simplify
notation, define widK(h1) = widK(capK(h1)). Observe that as a hyperplane is translated
from a supporting hyperplane to the origin, the relative width of its cap ranges from 0 to a
limiting value of 1.

We also characterize the closeness of a point to the boundary in both absolute and relative
terms. Given a point p1 ∈ K, let p0 denote the point of intersection of the ray Op1 with the
boundary of K. Define the absolute ray distance of p1 to be ∥p1p0∥, and define the relative
ray distance of p1, denoted rayK(p1), to be the ratio ∥p1p0∥/∥Op0∥. Relative widths and
relative ray distances are both affine invariants, and unless otherwise specified, references to
widths and ray distances will be understood to be in the relative sense.

We can also define volumes in a manner that is affine invariant. Recall that vol(·) denotes
the standard Lebesgue volume measure. For any region Λ ⊆ K, define the relative volume of
Λ with respect to K, denoted volK(Λ), to be vol(Λ)/ vol(K).

SoCG 2023



9:6 Optimal Volume-Sensitive Bounds for Polytope Approximation

With the aid of the polar transformation we can extend the concepts of width and
ray distance to objects lying outside of K. Consider a hyperplane h2 parallel to h1 that
lies beyond the supporting hyperplane h0 (see Figure 3(a)). It follows that h∗

2 ∈ K∗, and
we define widK(h2) = rayK∗(h∗

2) (see Figure 3(b)). Similarly, for a point p2 /∈ K that
lies along the ray Op1, it follows that the hyperplane p∗

2 intersects K∗, and we define
rayK(p2) = widK∗(p∗

2). By properties of the polar transformation, it is easy to see that
widK(h2) = dist(h0, h2)/ dist(O, h2). Similarly, rayK(p2) = ∥p0p2∥/∥Op2∥. Henceforth, we
will omit references to K when it is clear from context.

Some of our results apply only when we are sufficiently close to the boundary of K.
Given α ≤ 1

2 , we say that a cap C is α-shallow if wid(C) ≤ α, and we say that a point p is
α-shallow if ray(p) ≤ α. We will simply say shallow to mean α-shallow, where α ≤ 1

2 is a
sufficiently small constant.

3.3 Macbeath Regions and MNets
Given a convex body K and a point x ∈ K, and a scaling factor λ > 0, the Macbeath region
Mλ

K(x) is defined as

Mλ
K(x) = x + λ((K − x) ∩ (x − K)).

It is easy to see that M1
K(x) is the intersection of K with the reflection of K around x, and

so M1
K(x) is centrally symmetric about x. Indeed, it is the largest centrally symmetric body

centered at x and contained in K. Furthermore, Mλ
K(x) is a copy of M1

K(x) scaled by the
factor λ about the center x (see Figure 1(a)). We will omit the subscript K when the convex
body is clear from the context. As a convenience, we define M(x) = M1(x).

The following lemma states that points in a shrunken Macbeath region all have similar
ray distances. The proof appears in [7, Section 2.5].

▶ Lemma 3.3. Let K be a convex body. If x is a 1
2 -shallow point in K and y ∈ M1/5(x),

then ray(x)/2 ≤ ray(y) ≤ 2 ray(x).

The next lemma shows that translated copies of a Macbeath region act as proxies for
Macbeath regions in the vicinity. The proof appears in Section 3.3 of the full version.

▶ Lemma 3.4. Let λ ≤ 1/2 and γ ≤ 1/10. Let x be a point in a convex body K. Let
R = M(x) − x. Let y be a point in x + λR. Then y + γR ⊆ M2γ(y).

We employ Macbeath region-based coverings in our polytope approximation scheme. In
particular, we employ the concept of MNets, as defined in [6]. Let K ⊆ Rd be a convex
body, let Λ be an arbitrary subset of int(K), and let c ≥ 5 be any constant. Given X ⊆ K,
define Mλ

K(X) = {Mλ
K(x) : x ∈ X}. Define a (K, Λ, c)-MNet to be any maximal set of points

X ⊆ Λ such that the shrunken Macbeath regions M
1/4c
K (X) are pairwise disjoint. We refer

to c as the expansion factor of the MNet. The following lemma, proved in [6], summarizes
the key properties of MNets.

▶ Lemma 3.5 ([6]). Given a convex body K ⊆ Rd, Λ ⊂ int(K), and c ≥ 5, a (K, Λ, c)-MNet
X satisfies the following properties:

(Packing) The elements of M1/4c
K (X) are pairwise disjoint.

(Covering) The union of M1/c
K (X) covers Λ.

(Buffering) The union of MK(X) is contained within K.
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For the purposes of this paper, c will be any sufficiently large constant, specifically c ≥ 5.
To simplify notation, we use (K, Λ)-MNet to refer to such an MNet.

As mentioned before, we reduce our polytope approximation problem to that of finding a
polytope which is sandwiched between two convex bodies. In turn we tackle this problem
using MNets as indicated in the next lemma. The proof appears in Section 3.3 of the full
version.

▶ Lemma 3.6. Let K0 ⊂ K1 be two convex bodies. Let X be a (K1, ∂K0)-MNet. Then there
exists a polytope P with O(|X|) vertices such that K0 ⊆ P ⊆ K1.

The following lemma bounds the sizes of MNets in important special cases involving
points at roughly the same ray distance. These bounds will be useful in obtaining our
volume-sensitive bounds. The proof appears in Section 4 of the full version.

▶ Lemma 3.7. Let 0 < ε ≤ 1/2 be sufficiently small and let K ⊆ Rd be a well-centered
convex body. Let Λ be the points of K at ray distances between ε and 2ε, and let X be a
(K, Λ)-MNet. Then:

(i) |X| = O(1/ε(d−1)/2).
(ii) For any positive real f ≤ 1, let Xf ⊆ K be such that the total relative volume of the

Macbeath regions of M1/4c(Xf ) is O(fε). Then |Xf | = O(
√

f/ε(d−1)/2).

3.4 Concepts from Projective Geometry

In this section we present some relevant standard concepts from projective geometry. For
further details see any standard reference (e.g., [27]). Given four collinear points, a, b, c, d (not
necessarily in this order), the cross ratio (a, b; c, d) is defined to be (∥ac∥/∥ad∥)/(∥bc∥/∥bd∥),
where these are understood to be signed distances determined by the orientations of the
segments along the line. We follow the convention of using symbols a, b, c, d, . . . for points,
and the distinction from other uses (such as d for the dimension) should be clear from the
context.

It is well known that cross ratios are preserved under projective transformations. If the
cross ratio (a, b; c, d) is −1, we say that this quadruple of points forms a harmonic bundle (see
Figure 4). This is an important special case which occurs frequently in constructions. In this
case, the points lie on the line in the order of a, d, b, c and the ratio in which a divides c and
d externally (i.e., ∥ac∥/∥ad∥) is the same as the ratio in which b divides c and d internally
(i.e., ∥bc∥/∥bd∥). The sign is negative since bc and bd have opposite directions. If the point a

is at infinity, the cross ratio degenerates to ∥bd∥/∥bc∥, implying that b is midway between c

and d.

a d b c

Figure 4 Harmonic bundle (from the quadrilateral construction [27]).

SoCG 2023
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3.5 Intermediate Bodies

In this section we explore the concept of relative fatness, which was introduced in Section 2.
Given two convex bodies K0 and K1 such that K0 ⊂ K1 and 0 < γ < 1, we say that K0 is
relatively γ-fat with respect to K1 if, for any point p ∈ ∂K0, and any scaling factor 0 < λ ≤ 1,
at least a constant fraction γ of the volume of the Macbeath region M = Mλ

K1
(p) lies within

K0, that is, vol(M ∩ K0)/ vol(M) ≥ γ. We say that K0 is relatively fat with respect to K1 if
it is relatively γ-fat for some constant γ. Relative fatness will play an important role in our
analyses. Since an arbitrary nested pair K0 ⊂ K1 may not necessarily satisfy this property,
it will be useful to define an intermediate body sandwiched between K0 and K1 that does.

There are a few natural ways to define such an intermediate body. Given two convex
bodies K0 and K1, where K0 ⊆ K1, the arithmetic-mean body, KA(K0, K1), is defined to be
the convex body 1

2 (K0 ⊕ K1), where “⊕” denotes Minkowski sum. Equivalently, for any unit
vector u consider the two supporting halfspaces of K0 and K1 orthogonal to u, and take
the halfspace that is midway between the two. The arithmetic-mean body is obtained by
intersecting such halfspaces for all unit vectors u.

O

K1

KA

K1

KH

O
br

cr

δ
δ

K0

(a) (b)

r

K0

dr

Figure 5 (a) Arithmetic and (b) harmonic-mean bodies.

Another natural choice arises from a polar viewpoint. Assume that K0 ⊂ K1 and the
origin O ∈ int(K0). The harmonic-mean body, KH(K0, K1), was introduced by Firey [15]
and is defined as follows. For any ray r from the origin O, let br and dr denote the points of
intersection of r with ∂K0 and ∂K1, respectively (see Figure 5(b)). Let cr be the point on the
ray such that 1/∥Ocr∥ = (1/∥Obr∥ + 1/∥Odr∥)/2. Equivalently, the cross ratio (O, cr; dr, br)
equals −1, that is, this quadruple forms a harmonic bundle. Clearly, cr lies between br and
dr, and hence the union of these points over all rays r defines the boundary of a body that is
sandwiched between K0 and K1. This body is the harmonic-mean body. By considering the
supporting hyperplanes orthogonal to the ray r, it is easy to see that the arithmetic-mean
body of K0 and K1 is mapped to the harmonic-mean body of K∗

0 and K∗
1 under polarity, that

is, (KA(K0, K1))∗ = KH(K∗
0 , K∗

1 ). Therefore, KH(K0, K1) is convex. When K0 and K1 are
clear from context, we will just write KA and KH , omitting references to their arguments.

In order to understand why these intermediate bodies are useful to us, recall the diamond
and square bodies K0 and K1 from Figure 2 (see Figure 6(a)). Recall the issue that a large
fraction of the volume of the Macbeath region M

1/2
K1

(x) lies outside of K0. If we replace K1
with KH = KH(K0, K1) and compute the Macbeath region with respect to KH instead (see
Figure 6(b) and (c)), we see that a constant fraction of the volume of the Macbeath region
lies within K0 and so relative fatness is satisfied.
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(a) (b)

K0

K1

K0

K1 M
1/2
KH

(x)
x

M
1/2
K1

(x)

O OO

(c)

x
KH

K0

K1KH

Figure 6 Relative fatness of KH .

In Section 4, we will present an important result by showing that the inner body K0 is
relatively fat with respect to the harmonic-mean body KH(K0, K1). The proof makes heavy
use of concepts from projective geometry, such as the harmonic bundle. This fact will be
critical to establishing the volume-sensitive bounds given in this paper.

4 Relative Fatness and the Harmonic-Mean Body

In this section, we establish properties of the harmonic-mean body that are critical to the
main results of this paper. In particular, given two bodies K0 ⊂ K1, we show that K0 is
relatively fat with respect to KH . In fact, we present a stronger result in Lemma 4.4, which
implies relative fatness as an immediate consequence. We will employ this stronger result in
Section 5 to obtain our volume-sensitive bounds for polytope approximation.

The proof of Lemma 4.4 is based on the following technical lemma. For constant λ, it
implies that for any point b ∈ K0 that is not too close to the boundary of K0, the Macbeath
regions centered at b with respect to K0 and KH , respectively, are roughly similar up to a
constant scaling factor. This is formally stated in the corollary following the lemma.

▶ Lemma 4.1. Let 0 < λ < 1 be a parameter. Let K0 ⊂ K1 be two convex bodies, where the
origin O lies in the interior of K0. Let KH denote the harmonic-mean body of K0 and K1.
Consider any ray emanating from the origin O. Let c and d denote the points of intersection
of this ray with ∂K0 and ∂K1, respectively (see figure). Let b ∈ K0 be a point on this ray
such that the cross ratio (O, c; d, b) ≤ −λ. Consider any line passing through b. Let c′ and
c′′ denote the points of intersection of this line with ∂KH . Then

min(∥bc′ ∩ K0∥, ∥bc′′ ∩ K0∥) ≥ s(λ) · min(∥bc′∥, ∥bc′′∥), where s(λ) = λ/6.

Proof. We sketch the key ideas and present a complete proof in the full version. Consider the
two dimensional flat that contains the origin and the line ℓ that passes through the points c′,
b, and c′′. Henceforth, let K0, K1, KH refer to the two dimensional convex bodies obtained by
intersecting the respective bodies with this flat. Let b′ and d′ denote the points of intersection
of the ray Oc′ with ∂K0 and ∂K1, respectively, and define b′′ and d′′ analogously for Oc′′.
All these points lie on the flat, and it follows from the definition of the harmonic-mean body
that (O, c′; d′, b′) = (O, c′′; d′′, b′′) = −1 (see Figure 7(a)).

By rotating space, we may assume that ℓ is horizontal and above the origin. Through an
infinitesimal perturbation, we may assume that there is a supporting line for K1 at d that is
not parallel to ℓ. Without loss of generality, we may assume that it intersects ℓ to the left of

SoCG 2023
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Figure 7 Lemma 4.1 and its proof.

b. Since c′ and c′′ are symmetrical in the statement of the lemma, we may assume that c′ lies
to left of b and c′′ lies to its right. Let f denote the intersection point of the line dd′ with ℓ

(see Figure 7(a)). Clearly, the left-to-right order of points along ℓ is ⟨f, c′, b, c′′⟩. Observe
that the points c, d, d′, and d′′ all lie strictly above ℓ, and the points b′ and b′′ lie strictly
below.

Let e′ denote the point of intersection of the segment cb′ with segment bc′, and define e′′

analogously for segment cb′′. Since c, b′ and b′′ all lie on ∂K0, by convexity, e′ and e′′ are
contained in K0. Thus, to prove the lemma, it suffices to show that

min(∥be′∥, ∥be′′∥) ≥ s(λ) · min(∥bc′∥, ∥bc′′∥). (1)

We begin by proving bounds on two cross ratios:
(i) −(f, e′; c′, b) ≥ λ/2, and
(ii) −(f, e′′; c′′, b) ≥ λ/2.

Because projective transformations preserve cross ratios, it will be convenient to prove these
bounds after first applying a projective transformation. In particular, this transformation
maps O and f to infinity so that lines through O map to vertical lines and lines through
f map to horizontal lines (see Figure 7(b)). After this transformation, Oc′, Oc, and Oc′′

are vertical and directed upwards and d′d and c′b are horizontal and directed to the right.
Clearly, ∥c′d′∥ = ∥bd∥. Since d′′ lies above ℓ and below the line d′d we have ∥c′′d′′∥ ≤ ∥bd∥.
By definition of b, we have (O, c; d, b) = −1/(∥cd∥/∥cb∥) ≤ −λ. Since ∥cb∥ + ∥cd∥ = ∥bd∥,
we have ∥cb∥ ≥ ∥bd∥λ/(1 + λ).

Given that f is at infinity, the above cross ratios reduce to simple ratios. Thus, it suffices
to show:

(i) ∥e′b∥/∥e′c′∥ ≥ λ/2, and
(ii) ∥e′′b∥/∥e′′c′′∥ ≥ λ/2.

To show (i), observe that since (O, c′; d′, b′) = −1 and since O is at infinity and c′ lies
between b′ and d′, this is equivalent to 1/(∥c′d′∥/∥c′b′∥) = 1, that is, ∥c′b′∥ = ∥c′d′∥. By
similar triangles △e′bc and △e′c′b′, the fact that ∥c′b′∥ = ∥c′d′∥ = ∥bd∥, and our bounds on
λ, we have

∥e′c′∥
∥e′b∥

= ∥c′b′∥
∥cb∥

≤ ∥bd∥
∥bd∥λ/(1 + λ) = 1 + λ

λ
≤ 2

λ
, (2)

which implies (i).
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The analysis for (ii) is essentially the same as above. Since (O, c′′; d′′, b′′) = −1 we have
∥c′′b′′∥ = ∥c′′d′′∥. By similar triangles △e′′bc and △e′′c′′b′′ and the fact that ∥c′′b′′∥ =
∥c′′d′′∥ ≤ ∥bd∥, the inequalities of Eq. (2) (with double primes for single primes) show that

∥e′′c′′∥
∥e′′b∥

≤ 2
λ

,

which implies (ii).
These inequalities hold only in transformed configuration, but the cross ratios of (i)

and (ii) hold unconditionally. Returning to the original configuration and using (i), we can
show that ∥be′∥/∥bc′∥ ≥ λ/3 and from (ii), we can show that either ∥be′′∥/∥bf∥ ≥ λ/6 or
∥be′′∥/∥e′′c′′∥ ≥ λ/5. We omit the details of this calculation, which can be found in the full
version. In both cases, we are able to establish Eq. (1), as desired. ◀

The following corollary is immediate from the definition of Macbeath regions.

▶ Corollary 4.2. Assume all entities to be as defined in the statement of Lemma 4.1. Then
M

s(λ)
KH

(b) ⊆ MK0(b), where s(λ) = λ/6.

We have the following lemma which in conjunction with Corollary 4.2 will be useful in
proving Lemma 4.4. The proof is presented in the full version.

▶ Lemma 4.3. Let λ, K0, K1, KH , the origin O, and points c and d be as in Lemma 4.1.
Let h denote the point of intersection of the ray Oc with the boundary of KH . Then:

(i) ∥Oc∥ ≥ ∥hc∥.
(ii) Let b be a point on segment Oc, which is not contained in the interior of Mλ

KH
(c). Then

(O, c; d, b) ≤ −λ/2.

We now have all the key ingredients to present the main result of this section. The
relative fatness of K0 with respect to KH is an immediate consequence of parts (i) and (ii) of
this lemma. In order to state part (iii), we need a definition. Given a convex body K with
the origin O in its interior and a region R ⊆ K, define the shadow of R with respect to K,
denoted shadowK(R), to be the set of points x ∈ K such that the segment Ox intersects R.

▶ Lemma 4.4. Let 0 < β ≤ 1 be a real parameter. Let K0 ⊂ K1 be two convex bodies, let
the origin O lie in the interior of K0, and let KH denote the harmonic-mean body of K0 and
K1. Let c be any point on the boundary of K0 and let M = Mβ

KH
(c). Then there exists a

convex body M ′ such that
(i) vol(M ′) = Ω(vol(M)),
(ii) M ′ ⊆ M ∩ K0, and
(iii) shadowK0(M ′) ⊆ M .

Proof. We sketch the proof of (i) and (ii) here. A complete proof appears in the full version.
For the sake of convenience, assume that the ray Oc is directed vertically upwards. Let h be
the point of intersection of the ray Oc with ∂KH . Let R = MKH

(c) − c be the recentering
of MKH

(c) about the origin. By definition, M = Mβ
KH

(c) = c + βR. Let b be the point of
intersection of the segment Oc with the boundary of Mλ

KH
(c) = c + λR, where λ = β/κ for a

suitable large constant κ ≥ 2 (independent of dimension). Recalling from Lemma 4.3(a) that
∥ch∥ ≤ ∥Oc∥, it follows that b is vertically below c at a distance of λ∥ch∥. Recalling s(λ)
from Corollary 4.2, let M ′ = b + γR for

γ = s(λ/2)
10 = s(β/2κ)

10 = β

120κ

SoCG 2023
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Figure 8 Proof of Lemma 4.4. (Objects are not drawn to scale.)

(see Figure 8(a)). Since M ′ and M are translated copies of R scaled by a factor of γ and β,
respectively, we have vol(M ′) = (γ/β)d vol(M) = (1/120κ)d vol(M). This proves (i).

To prove (ii), we will show that M ′ ⊆ M and M ′ ⊆ K0. Since b ∈ c+λR and M ′ = b+γR,
it follows that M ′ ⊆ c+(λ+γ)R. For large κ, we have λ+γ ≤ β, and thus M ′ ⊆ c+βR = M .

Next we show that M ′ ⊆ K0. Let d denote the point of intersection of the ray Oc

with ∂K1. Applying Lemma 4.3(b), it follows that the cross ratio (O, c; d, b) ≤ −λ/2.
Applying Corollary 4.2 with λ/2 in place of λ and recalling that s(λ/2) = 10γ, we have
M10γ

KH
(b) ⊆ MK0(b). Also, by Lemma 3.4, we have M ′ = b + γR ⊆ M2γ

KH
(b). Thus

M ′ ⊆ M
1/5
K0

(b). By definition of Macbeath regions, MK0(b) ⊆ K0, and so M ′ ⊆ K0, as
desired. ◀

The following corollary is immediate from parts (i) and (ii) of the above lemma.

▶ Corollary 4.5. Let K0 ⊂ K1 be two convex bodies, let the origin O lie in the interior of
K0, and let KH denote the harmonic-mean body of K0 and K1. Then K0 is relatively fat
with respect to KH .

5 Uniform Volume-Sensitive Bounds

In this section, we present the proof of Theorem 1.1. Let ε > 0 and let K0 denote the convex
body K described in this theorem. Let K1 = K0 ⊕ ε denote the Minkowski sum of K0 with
a ball of radius ε. Also recall that ∆d(K0) denotes the volume diameter of K0. Let C(K0, ε)
be a shorthand for (∆d(K0)/ε)(d−1)/2, the desired number of facets.

We will show that there exists a polytope with O(C(K0, ε)) facets sandwiched between
K0 and K1. As mentioned above, we will transform the problem by mapping to the polar.
Through an appropriate translation, we may assume that the origin O coincides with the
centroid of K0. Note that the arithmetic-mean body KA of K0 and K1 is given by K0 ⊕ ε

2 ,
and recall from Section 3.5 that KH = K∗

A is the harmonic-mean body of K∗
1 and K∗

0 .
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Our construction is based on Lemma 5.1, which shows that there is a (KH , ∂K∗
1 )-MNet

X of size O(C(K0, ε)). Applying Lemma 3.6, it follows that there exists a polytope P

sandwiched between K∗
1 and KH with O(|X|) vertices. By polarity, this implies that P ∗

is a polytope sandwiched between KA and K1 having O(|X|) facets. Since K0 ⊆ KA, this
polytope is also sandwiched between K0 and K1, which proves Theorem 1.1.

All that remains is showing that |X| = O(C(K0, ε)). For this purpose, we will utilize
the tools for bounding the sizes of MNets in conjunction with the relative fatness of the
harmonic-mean body (established in Section 4).

▶ Lemma 5.1. Let ε > 0 and let K0, K1, KA, KH be convex bodies as defined above. Let X

be a (KH , ∂K∗
1 )-MNet. Then |X| = O(C(K0, ε)).

Proof. We begin by showing that vol(KH) = Ω(1/ vol(K0)), and its Mahler volume µ(KH)
is at most O(1) (implying that KH is well-centered). To see this, recall that the width of
K0 in any direction is at least ε and KA = K0 ⊕ ε

2 . It is well-known that the ratio of the
distances of the centroid from any pair of supporting hyperplanes is at most d [17, 24, 26]. It
follows that a ball of radius ε/(d + 1) centered at the origin lies within K0. Thus, a constant-
factor expansion of K0 contains KA, implying that vol(KA) = O(vol(K0)). Also, because
KH = K∗

A, by Lemma 3.2, vol(KA) · vol(KH) = Ω(1). Thus, vol(KH) = Ω(1/ vol(K0)). To
upper bound µ(KH), note that by polarity, KH ⊆ K∗

0 , and thus

µ(KH) = vol(KA) · vol(KH) = O(vol(K0) · vol(K∗
0 )) = O(µ(K0)) = O(1),

where in the last step, we have used Lemma 3.1 and our assumption that the origin coincides
with the centroid of K0.

To simplify notation, for the remainder of the proof we assume that ray distances,
Macbeath regions, and volumes are defined relative to KH , that is, ray ≡ rayKH

, M ≡ MKH
,

and vol ≡ volKH
.

For any point p ∈ ∂K∗
1 , let p′ denote the point of intersection of the ray Op with ∂KH .

We first establish a bound on the relative ray distance ray(p). Observe that since p and
p′ lie on ∂K∗

1 and ∂KH , respectively, their polar hyperplanes, p∗ and p′∗, are supporting
hyperplanes for K1 and K∗

H = KA, respectively. Letting r denote the distance between
p′∗ and the origin, it follows from the definition of KA that the distance between p∗ and
the origin is r + ε

2 . The distance of p′ and p from the origin are the reciprocals of these.
Therefore, we have

ray(p) = ∥pp′∥
∥Op′∥

= ∥Op′∥ − ∥Op∥
∥Op′∥

=
1
r − 1

r+(ε/2)
1
r

= 1 − r

r + (ε/2) = ε/2
r + (ε/2) .

Since 1
∥Op′∥ = r = Ω(ε), we have ray(p) = Θ(ε/r) = Θ(ε∥Op′∥). (It is noteworthy and

somewhat surprising that this relative ray distance is not a dimensionless quantity, since it
depends linearly on ∥Op′∥.)

To analyze |X|, we partition it into groups based on ∥Ox′∥ for each x ∈ X. Define R0 =
(vol(KH))1/d. By our earlier remarks, vol(KH) = Ω(1/ vol(K0)), and so R0 = Ω(1/∆d(K0)).
For any integer i (possibly negative), define Ri = 2iR0 and εi = εRi. We can express X as
the disjoint union of sets Xi, where Xi consists of points x such that Ri ≤ ∥Ox′∥ < 2Ri.
Recall that for any x ∈ Xi, we have ray(x) = Θ(ε∥Ox′∥) = Θ(εRi) = Θ(εi).

We will bound the contributions of the |Xi| to |X| based on the sign of i. Let us first
consider the nonnegative values of i. We remark that |Xi| = 0 for large i (specifically, for
i = ω(log(1/εR0))) because a ball of radius Ω(ε) centered at the origin is contained within K0,
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and so by polarity K∗
0 , and hence K∗

1 , is contained within a ball of radius O(1/ε). Recalling
that KH is well-centered and applying Lemma 3.7(i), we have (up to constant factors)

∑
i≥0

|Xi| ≤
∑
i≥0

(
1
εi

)d−1
2

=
∑
i≥0

(
1

ε2iR0

)d−1
2

≤
∑
i≥0

(
∆d(K0)

ε2i

)d−1
2

=
(

∆d(K0)
ε

)d−1
2 ∑

i≥0

(
1
2

)i(d−1)
2

≤
(

∆d(K0)
ε

)d−1
2

= O(C(K0, ε)).

In order to bound the contributions to |X| for negative values of i, we need a more
sophisticated strategy. Our approach is to first bound the total relative volume of the
Macbeath regions of M1/4c(Xi), which we assert to be O(εi2id). Assuming this assertion
for now, we complete the proof as follows. By applying Lemma 3.7(ii) with f = O(2id) and
recalling that εi = εRi = 2iεR0, we have (up to constant factors)

∑
i<0

|Xi| ≤
∑
i<0

√
f

ε
(d−1)/2
i

=
∑
i<0

2id/2

(2iεR0)(d−1)/2 =
∑
i<0

2i(d−(d−1))/2

(εR0)(d−1)/2

=
∑
i<0

2i/2

(εR0)(d−1)/2 =
∑
i<0

2i/2C(K0, ε) = C(K0, ε)
∑
i>0

(
1
2

)i
2

= O(C(K0, ε)).

It remains only to prove the assertion on the total relative volume of M1/4c(Xi). Let
x ∈ Xi and let Mx = M1/4c(x). By Lemma 4.4 (with x, K∗

1 , and KH playing the roles of c,
K0, and KH , respectively), there is an associated convex body M ′

x such that

(i) vol(M ′
x) = Ω(vol(Mx)), (ii) M ′

x ⊆ Mx ∩ K∗
1 , and (iii) shadowK∗

1
(M ′

x) ⊆ Mx.

We will use Sx as a shorthand for shadowK∗
1
(M ′

x). Since vol(Mx) = O(vol(M ′
x)) = O(vol(Sx)),

it suffices to show that the total relative volume of the shadows {Sx : x ∈ Xi} is O(εi2id).
For x ∈ Xi, we define cone Ψx to be the intersection of KH with the infinite cone consisting

of rays emanating from the origin that contain a point of Sx (see Figure 9). Since the Macbeath
regions of M1/4c(Xi) are disjoint, it follows from (iii) that the associated shadows intersect
∂K∗

1 in patches that are also disjoint. Thus the set of cones Ψ = {Ψx : x ∈ Xi} are disjoint.

KH

K∗
1

q′′

q

q′x′

x
Θ(Ri)

O

Ψx

Figure 9 Proof of Lemma 5.1.

Consider a ray emanating from the origin that is contained in any cone Ψx. Let q

and q′ be the points of intersection of this ray with ∂K∗
1 and ∂KH , respectively. Let q′′

be any point on this ray that lies inside shadow Sx. Since q′′ ∈ Mx, by Lemma 3.3, we
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have ray(q′′) = Θ(ray(x)) = Θ(εi). By the same reasoning, ray(q) = Θ(εi) = Θ(εRi).
Also, recalling our earlier bounds on the relative ray distance of points on ∂K∗

1 , we have
ray(q) = Θ(ε∥Oq′∥). Equating the two expressions for ray(q), we obtain ∥Oq′∥ = Θ(Ri).

Since the cones of Ψ are disjoint and any ray emanating from the origin and contained
in a cone of Ψ has length Θ(Ri), it follows that the total volume of these cones is O(Rd

i ).
Further, since only a fraction εi of any such ray is contained in the associated shadow, it
follows that the total volume of all the shadows {Sx : x ∈ Xi} is O(εiR

d
i ). Recalling that

vol(KH) = Rd
0 and Ri = 2iR0, it follows that the total relative volume of these shadows

is O(εiR
d
i /Rd

0) = O(εi2id). This establishes the assertion on the total relative volume of
M1/4c(Xi) and completes the proof. ◀
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