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Abstract

Reverse mathematics aims to determine which set theoretic axioms are necessary

to prove the theorems outside of the set theory. Since the 1970’s, there has been an

interest in applying reverse mathematics to study combinatorial principles like Ramsey’s

theorem to analyze its strength and relation to other theorems. Ramsey’s theorem for

pairs states that for any infinite complete graph with a finite coloring on edges, there is

an infinite subset of nodes all of whose edges share one color. In this thesis, we introduce

the fundamental terminology and techniques for reverse mathematics, and demonstrate

their use in proving Kőnig’s lemma and Ramsey’s theorem over RCA0.
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Chapter 1

Introduction

Reverse mathematics is a novel field of logic, related directly computability

theory. Per Hirschfeldt [Hir15], the primary question in the field of reverse mathematics

is “What are the necessary axioms in mathematics?” To find an answer, we must reason in

the language of second order arithmetic–the weakest possible language that still retains

the ability to express most mathematical definitions. The existence of such approach

to studying mathematics was foreshadowed by the equivalence of the Axiom of Choice

(AC) to Zorn’s Lemma under the Zermelo-Fraenkel (ZF) axiom system. This equivalence

shows that Zorn’s Lemma is a fundamental notion in the given axiom system and that

set theory is used in the said areas of mathematics implicitly. Similar results for other

various theorems let us compare them by their relative strength. In such process, we can

better understand the importance and the connections between them as they are applied

to their each respective subfield of mathematics, motivating further research into reverse

mathematics.

In this paper, we aim to provide an introduction to assessing provability of

Ramsey’s theorem, an important statement for the field of combinatorics. All our work

will be based off of the limited sets of axioms from the subsystems of second order

arithmetic, such as ACA0 and RCA0. Throughout this process, we will introduce some

notions from computability theory such as encodings, though the majority of our focus will

remain on obtaining Ramsey’s theorem through several proofs with limited accessibility

to other theorems.

Most of our material comes from [Sim09], [Hir15], and [Soa16]. We also assume
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the reader knows some of the basics of first-order logic, including the recursive definition

of a first-order language, though this document is designed to provide a “ground-up”

approach to the topic. For additional reference on this point, please see [End01].
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Chapter 2

Models and ACA0

2.1 Models

The development of theorems in this document will be following the manner as

they are presented in Simpson, Soare, and Hirschfeldt where relevant. In order to start

proving theorems with a limited “toolbox“ of mathematical axioms, we first must define

the environment in which we will be proving the said theorems. In this section, we will

extrapolate on Z2, the formal system of second order arithmetic and define the relevant

terminology. We will use N for the natural numbers, though some texts on this topic will

use ω.

Definition 2.1. If a variable i ∈ N = {0, 1, 2, ...}, then i is a number variable or,

alternatively termed, a variable of the first sort.

Definition 2.2. If a variable X ⊆ N = {0, 1, 2, ...}, then X is a set variable or, alterna-

tively termed, a variable of the second sort.

For minimization of our “toolbox,“ we must define the symbolic “set“ of our

given language–many symbols in mathematics have various uses. If we define “addition“

with the plus symbol, we can no longer use the plus symbol to show group action in the

same language. As such, we proceed with the following definition:

Definition 2.3. We define the language of the second order arithmetic, or L2 as follows:

• Numerical terms are defined as the number variables from the Definition 1, including

the terms defined by binary operations.
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• Constant symbols are defined as “0“ and “1“, respectively meaning the empty set

and the unit of the natural numbers.

• We allow “+“ and “·“ to represent addition and multiplication of natural numbers.

It follows that t1 + t2 and t1 · t2 are number variables as well, allowing the numerical

terms denote every element of natural numbers.

• For numeric terms t1, t2 and set variable X, we define atomic formulas of L2 as

t1 = t2, t1 < t2, and t1 ∈ X. The respective intended meanings are of equivalence

between the two terms, t1 being less than t2, and t1 being an element of X.

• A formula in L2 is built up from atomic formulas, connected with propositional

connective of ∧ (and), ∨ (or), ¬ (not), → (implies), and ↔ (if and only if).

• To make additional statements in L2, we can employ number quantifiers ∀n (for all

n) and ∃n (There exists an n) and set quantifiers ∀X (for all X) and ∃X (there

exists a set X).

• We define a sentence in L2 as a formula with no free variables, meaning there is

no bound on the given variable.

Definition 2.4. We define a model for L2 (otherwise known as a structure for L2 or an

L2-structure) as an ordered 7-tuple:

M = (|M |,SM ,+M , ·M , 0M , 1M , <M )

• |M | is the range of number variables

• SM is the set of subsets of |M | that defines the range of set variables.

• 0M and 1M are distinguished elements or constant symbols of M

• <M is the binary relation on |M |.

We always assume |M | and SM are disjoint and nonempty.

Definition 2.5. We claim M models ϕ(n) for any formula of L2 using a number variable

n, if ϕ(n) holds in M . We denote it with M ⊨ ϕ(n).

The model determines which sentences are considered true and false. For inves-

tigating the natural numbers, it is necessary to define a type of models termed ω-models.
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Definition 2.6. For any subset B ⊂ |M | ∪ SM , we define L2(B) to be the extended

language that has constant symbols representing all elements of B. A formula in L2(B)

is referred to as a formula with parameters from B.

Though we will not be mentioning it explicitly, we will be continuously using

formulas with parameters from B, such as when we will be defining trees of sequences.

Definition 2.7. A set A ⊆ |M | is definable over M allowing parameters from B if there

exists a formula ϕ(n) with parameters from B and no free variables other than n such

that:

A = {a ∈ |M | : M ⊨ ϕ(a)}

Definition 2.8. We define ω-model as an L2-structure of the form:

M = (N,S,+, ·, 0, 1, <)

We define S as S ⊆ P (N), where P (N) is the power set of N, the subset containing every

possible subset of N.

Other models for use with N are possible, like β-models, but they will not be

explored within this work. So from now on, number variables are assumed to take integer

values, and set variables are assumed to be interpreted as subsets of N. Given an L2-

structure M , it is a question which subsets of N actually appear (or are guaranteed to

appear by the axioms true in M).

Because we wish to minimize the amount of statements we need to derive state-

ments of advanced mathematics, we must also consider the smallest set of sentences in L2

that can be used to derive all the other desired statements. When we consider ω-models

going forward, we will only consider models of these basic axioms that are widely accepted

to give true statements about N. These axioms constitute the first-order L2-theory Z2,

sometimes referred to as second order arithmetic. We define Z2 as follows:

Definition 2.9. We define the set of axioms of the second order arithmetic P0 as the

universal closure of the following statements:

1. Basic axioms:

n+ 1 ̸= 0

n+ 1 = n+ 1 → m = n
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m+ 0 = m

m+ (n+ 1) = (m+ n) + 1

m · 0 = 0

m · (n+ 1) = (m · n) +m

¬m < 0

2. Induction axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)) → ∀n(n ∈ X)

3. Comprehension scheme:

∃X∀n(n ∈ X ↔ ϕ(n))

The main reason for developing the subsystems of Z2 is to provide different

constraints for set existence. In particular, notice that the Comprehension scheme is the

only vector for proving existence of certain subsets of N. For example, developing an

infinite tree with restrictions may be possible in one formal system, but not in the other,

thus limiting which sentences can be derived. Of particular interest to us are the two

systems ACA0 and RCA0, which are restricted in specific manner to deal exclusively with

arithmetical formulas.

Definition 2.10. We claim that a formula ϕ(n) of L2 is arithmetical if it has no set

quantifiers i.e. ϕ(n) has only number quantifiers.

Remark: arithmetical formulas can contain free set variables (i.e. unbound,

without a set quantifier variables) and any kind of number variables and quantifiers. An

example of an arithmetic formula can be an asserting that all elements n of X are odd:

∀n(n ∈ X → ∃m((m+m) + 1 = n)

Further notable assertions that can be done using arithmetic formulas involve defining

sets that consist of even numbers, prime numbers, and differences of distinct natural

numbers.

Definition 2.11. We define the arithmetical comprehension scheme as a restriction to

the comprehension scheme outlined in the Definition (2.9), where ∃X∀n(n ∈ x ↔ ϕ(n))

for ϕ(n) being arithmetical. Similarly, an arithmetical induction scheme is an induction
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axiom restricted to arithmetical formulas, where ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1))) → ∀nϕ(n)

holds only for arithmetic ϕ(n).

Definition 2.12. We define the formal system ACA0 as a subsystem of Z2, which em-

ploys the language L2 and uses basic and induction axioms of Definition (2.9), as well as

arithmetical comprehension schema.

Through its language and axioms, ACA0 comes equipped with the theories we

need to assert most of the facts about a natural number system. For example, within

the system, we are able to define numerous properties like the uniqueness and divisibility

with respect to certain elements of natural numbers. Notably, n ∈ N being prime is also

a statement we can express as an arithmetic formula:

∀m∀k(n = m · k → (m = 1 ∨ k = 1)) ∧ n > 1 ∧ n ∈ X

With these tools, we are able to start defining more sophisticated sets, like the set Z of

integers and the set Q of rational numbers. While we cannot define the set R of real

numbers through the set comprehension schemes, we are able to define them as a Cauchy

sequence of rational numbers, i.e. for x = ⟨qn : n ∈ N⟩ and ϵ ranging over Q:

∀ϵ(ϵ > 0 → ∃m∀n(m < n→ |qm − qn| < ϵ))

Further notable results include defining complete separable metric spaces, separable Ba-

nach spaces, and continuous functions. While we will not explore these results in detail,

we will use ACA0 to define sequences necessary to discuss the provability of Ramsey

theory in the following sections. Notably, ACA0 is not the strongest “smallest“ formal

system that we can define using the axioms of the second order arithmetic. Additional

restrictions can be posed onto formulas with respect to their set quantifiers, allowing us

to define Σ1
k and Π1

k formulas.

Definition 2.13. Let θ be an arithmetic formula and X be a set quantifier. Then, a

formula of the form ∃Xθ is a Σ1
1 formula, while a formula of the form ∀Xθ is a Π1

1

formula. For 0 ≤ k ∈ N, we claim that a formula ϕ of the following form is Π1
k:

∀X1∃X2∀X3∃X4 · · ·Xkθ

Similarly, we claim that a formula ϕ of the following form is Σ1
k:

∃X1∀X2∃X3∀X4 · · ·Xkθ
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Additionally, the Π0
n or Σ0

n formulas are arithmetic.

Example 2.14. Let θ be an arbitrary arithmetic formula. Then, a formula of the form

∃X1∀X2∃X3θ is a σ13 formula. A formula of the form ∀X1∃X2∀X3∃X4θ is a Π1
4 formula.

Definition 2.15. For X as a set variable which does not occur freely in ϕ(n), with ϕ(n)

as any Σ0
1 formula and ψ(n) as any Π0

1 formula, we define a ∆0
1 comprehension scheme

as universal closures for the formulas of the following form:

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X∀ϕ(n))

The definitions for Σ0
k and Π0

k come from compatibility theory. By Turing’s

Thesis (otherwise known as Turing’s Theorem), we claim a function to be computable

if and only if it can be computed by a Turing machine, an abstract machine capable of

implementing all programming algorithms. Any Turing machine utilizes some number of

two-way infinite tape consisting of cells with entries and produces an output through a

set of algorithmic actions that can move, read, or change the contents of the cells.

Definition 2.16. A Turing machine M computes the partial function f : A → N for

A ⊆ N if and only if M with input x ∈ A eventually halts and outputs f(x). We say the

function f is partially computable.

Definition 2.17. A subset A ⊆ N is computably enumerable if it is the domain of a

partially computable function.

In less formal terms, we define sets A and Ā to be computably enumerable if

there is a Turing machine such that for every x ∈ N, the machine halts on input x with

“yes” if x ∈ A and halts with “no” if x /∈ A. Another word for computable is recursive.

From Simpson, we have the following characterization:

Corollary 2.18. The minimum ω-model of RCA0 is such that the subsets of N are exactly

the recursive subsets.

Thus, ∆0
1-comprehension always affords us all the recursive subsets of N. At this

stage of developing our definitions, we emphasize that the notions of Σ1
k and Π1

k formulas

can be used to restrict the axioms of ACA0 even further, allowing us to define restricted

inductions schemes:
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Definition 2.19. We define Σ0
1 induction scheme as a universal closure of ϕ(0)∧∀n(ϕ(n) →

ϕ(n+1))) → ∀nϕ(n), where ϕ(n) is any Σ0
1 formula of L2. Π0

1 and ∆0
1 induction schemas

is defined similarly for ϕ(n) respectively being any Π0
1 or ∆0

1 formula.

Generally, the notion of formulas being Σ0
k, Π0

k, and ∆0
k can be extended to sets,

where such classes define an arithmetical hierarchy corresponding to the sets’ computabil-

ity strength. The resulting hierarchy is referred to as Kleene-Mostowski hierarchy and is

also of interest in the philosophical studies associated with logic. To provide examples of

how we can reason about organizing such sets, we can take note of the Hierarchy Theorem

from Chapter 4 of [Soa16].

Definition 2.20. The Hierarchy Theorem states that for all n ∈ N+ and the collections

of corresponding formulas by type ∆n,Σn, and Πn, ∆n ⊂ Σn and ∆n ⊂ Πn such that

Σn ̸⊂ ∆n.

In this context, as a consequence of reverse mathematics, we can discuss how

computationally simple or complex specific proofs are, connecting various theorems with

the concepts of relativized halting problems (how and when a Turing program can end)

and Turing degrees (measures of computational difficulty). Though we will discuss the im-

plications of certain theorems being provable in ACA0 or RCA0, we will opt to handwave

towards these implications as opposed to formalizing them within this work. Interested

readers are encouraged to further read Chapters 3 and 4 of [Soa16] and the first two

sections of [Hir15] for a deeper insight into the matters of computability theory.

We now have enough tools to start defining an additional subsystem of interest termed

RCA0. This subsystem which concerns itself with being limited to recursive functions

while providing us with tools to work with infinite sets. RCA0 is substantially weaker

than ACA0 and can be used as a limited foundation for reconstruction of proofs of Ramsey

theory. This system, along with its importance, will be defined in the next sections, where

we will take a closer look at some foundational results, like Kőnig’s lemma along with

the Erdős/Rado trees, and how they connect to our main tool of defining tree structures

- recursive functions.
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Chapter 3

Finite Sequences

3.1 Setting up the Number System

We now established that we are working in the subsystem of the second order

arithmetic Z2, which allows us to select a very specific environment with limited axioms,

thereby limiting our ability to prove certain theorems. To demonstrate how fundamental

certain theorems are, we aspire to prove them in the most practically limited environment

possible: RCA0. In order to do so, it is helpful to define several lemmas and enable our-

selves to regard most functions as sequences, which will be the main point of this section.

The material in this chapter will thoroughly reference Chapters II.1-II.3 in [Sim09]

We will first define RCA0, a subsystem of ACA0 which has further limitations

on the types of formulas it can prove.

Definition 3.1. We define P0 as a set of following first-order axioms

1. ∀x(x+ 1 ̸= 0)

2. m+ 1 = n+ 1 → m = n

3. m+ 0 = m

4. m+ (n+ 1) = (m+ n) + 1

5. m ∗ 0 = 0

6. m · (n+ 1) = (m · n) +m
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7. ∀m¬m < 0

8. ∀n∀m(m < n+ 1 ↔ (m < n ∨m = n))

Note that these axioms are some of the few tools that we have at the moment

to start proving mathematical statements of major importance–the P0 set is extremely

limited. Previously, we defined the ∆0
1 comprehension scheme, where ϕ(n) is any Σ1

0-

formula, ψ(n) is any Π0
1, n is any number variable, and set is a set variable that is not

free in ϕ(n):

∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ Xϕ(n)))

.

Alongside this scheme, another crucial component of RCA0 is the Σ0
1-induction

scheme, previously defined as a restriction of the second order induction scheme, which

provides a universal closure for any ϕ(n) such that ϕ(n) is a Σ0
1-formula of L2:

(ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n+ 1))) → ∀(n)ϕ(n)

Definition 3.2. RCA0 is a subsystem of the second order arithmetic, consisting of P0,

∆0
1-comprehension scheme, and Σ0

1-induction scheme.

To investigate any possible mathematical statements that concern natural num-

bers or operations on them, we must properly define the system of natural numbers first.

To do so, we fix any model of RCA0 as in (2.4) such that P0 holds for all m,n ∈M :

M = (|M |,SM ,+M , ·M , 0M , 1M , <M )

Our first task is to show that the first-order componentN = (|M |,+M , ·M , 0M , 1M , <M

) is a commutative ordered semi-ring with cancellation, meaning our construction M is

isomorphic to N. Note that this statement can be unraveled into 25 distinct properties

for any elements n,m, p ∈ N .

Theorem 3.3. The following statements are provable in RCA0:

1. (m+ n) + p = m+ (n+ p)

2. 0 +m = m
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3. 1 +m = m+ 1

4. m+ n = n+m

5. m · (n+ p) = m · n+m · p

6. (m · n) · p = m · (n · p)

7. (m+ n) · p = m · p+ n · p

8. 0 ·m = 0

9. 1 ·m = m

10. m · n = n ·m

11. (m < n ∧ n < p) → m < p

12. m < n→ m+ 1 < n+ 1

13. n ̸= 0 → 0 < n

14. m < n ∧m = n ∧ n < m

15. ¬n < n

16. m+ p < n+ p→ m < n

17. m < m+ n+ 1

18. m+ p = n+ p→ m = n

19. (p ̸= 0 ∧m < n) → m · p < n · p

20. (p ̸= 0 ∧m · p < n · p) → m < n

21. (p ̸= 0 ∧m · p = n · p) → m = n

22. m < n→ (∃k < n)m+ k + 1 = n

23. n ̸= 0 → (∃m < n)m+ 1 = n
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All such properties would use induction and periodically require the use of other

properties of the said semi-ring for some associated proofs. We will present an example

as follows:

Lemma 3.4. ∀n ∈ N, 1 + n = n+ 1

For this proof, we will need to assume that ∀m,n, p ∈ N, (m+n)+p = m+(n+p)

(associative property for N). In the context of Lemma 1, this property would normally

be proven beforehand.

Proof. We proceed by induction.

Base Case: Let n = 0. By an L2 axiom, we know ∀n ∈ N, n+ 0 = 0.

So, 1 + 0 = 1 = 1 + 0. Base case holds.

Inductive Assumption: 1 + (n− 1) = (n− 1) + 1

Inductive Proof: Using the inductive assumption, we want to show that 1 +n = n+ 1.

Assume that ∀m,n, p ∈ N, (m+ n) + p = m+ (n+ p).

It follows that (n−1)+1 = n+(−1+1) = n, so 1+(n−1) = n. Then, n+1 = 1+(n−1)+1.

By the associative property for N, 1 + (n− 1) + 1 = 1 + n+ (−1 + 1) = 1 + n.

Thus, n+ 1 = 1 + n.

In a manner similar to this proof, we can cascade our results to build up all the

axioms of N, allowing us to employ all the properties of natural numbers to work with

functions and sequences. For the future purposes, it is also helpful to define a pairing

map:

Definition 3.5. We define a pairing map for i, j ∈ N as (i, j) = (i+ j)2 + i.

This pairing map can also be defined as f : N×N → N and will help us develop

an encoding method to represent information in the form of natural number sequences.

We will also include an additional lemma concerning some properties in RCA0:

Lemma 3.6. The following have a pairwise equivalence over RCA0:

1. ACA0

2. Σ0
1 comprehension

3. For all one-to-one function f : N → N there exists a set X ⊆ N such that (n ∈ X ↔
(f(m) = n)). In other words, X is the range of f .
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We will examine the relevance of this lemma in the proof of Ramsey’s theorem.

In the following section, we will introduce a fundamental concept for getting to that point

concerning encoding mathematical information using natural numbers.

3.2 Encoding Algorithms

Reverse mathematics, as a field of study, needs a way to manipulate and obtain

information from various mathematical objects, such modules, rings, and topological

spaces. However, given that our methodology thus far employs numerous techniques

from computability theory, it becomes increasingly difficult to study structures that are

essentially uncountable, like particular topological spaces, while limited to the second

order arithmetic alone. To circumvent this issue, we employ encoding as a way to express

information concerning any mathematical object using natural numbers. Following, we

present a method of encoding finite sets as natural numbers. To do so, we must first

define what a finite set is and then provide two lemmas that come from basic number

theory and are necessary to show that there exists a unique encoding for each such set.

Definition 3.7. In RCA0, X such that ∃k∀i(i ∈ X → i < k) is a finite set.

Definition 3.8. We say that m1 is prime relative to m2 if ∀n(m2|m1n→ m2|n).

Lemma 3.9. The following fact is provable in RCA0: for all m1,m2 ∈M if m1 is prime

relative to m2, m2 is prime relative to m1.

Lemma 3.10. The following is provable in RCA0:

1. Given k, there exists m > 0 such that ∀i < k(i+ 1|m)

2. Let k and m be as in (1). Then m(i+ 1) + 1 and m(j + 1) + 1 are relatively prime

to each other for all i < j < k.

Theorem 3.11. For any finite set X ⊆ N,∃n,m, k ∈ N such that ∀i((i ∈ X) ⇐⇒ ((i <

k) ∧ ((m(i+ 1) + 1)|n)))

Before engaging with the proof of this statement, it is helpful to look at a few

examples to parse the importance of this theorem.
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Example 3.12. For our first example, suppose X = {0, 3}, where all of the elements of

X are denoted as i. We fix k such that ∀i ∈ X, k > i, so one possible value is k = 4.

Following, we define m consistently with Lemma 3.1. In this case, to allow ∀i < k(k+1|m)

to hold, we will define m as follows:

m =
∏

i={0,3}

(i+ 1) = (0 + 1)(3 + 1) = 4

For i = 0, m(i + 1) + 1 = 5. For i = 3,m(i + 1) + 1 = 17. The two values

are relatively prime, thus satisfying the lemma 3.2. Additionally, n = 85 satisfies the

condition that m(i+ 1) + 1|n for all i.

Example 3.13. Another example satisfying both the Theorem 4 and Lemma 3 is as

follows. Consider X = {2, 4, 5},m = (2 + 1)(4 + 1)(5 + 1) = 90. Then, the outputs of

m(i + 1) + 1 for each i ∈ X are, respectively, 271, 451, and 541. Remarkably, all of the

values are relatively prime. Then, n = 271 ∗ 451 ∗ 541 = 66121561.

Proof. (of Theorem 3.11) Let k satisfy ∀i(i ∈ X → i < k). By Lemma 3, we can fix

m such that m(i + 1) + 1 for i < k are pairwise relatively prime. From construction of

RCA0, we can create a Σ0
1-formula as follows:

φ(j) = j > k ∨ ∃n∀i < k [(m(i+ 1) + 1)|n↔ (i ∈ X ∧ i < j)]

We can verify that this formula is Σ0
1 by writing out an equivalent formula:

φ(j) = j > k ∨ ∃n∀i < k [(∃t < n)((m(i+ 1) + 1) · t = n) ↔ (i ∈ X ∧ i < j)]

In turn, by standard first-order logical equivalences (see [End01]), this is equivalent to:

φ(j) = ∃n[j > k ∨ ∀i < k [(∃t < n)((m(i+ 1) + 1) · t = n) ↔ (i ∈ X ∧ i < j)]]

All possible cases for values of j can be summarized as follows:

(1) j = 0

(2) j > k

(3) 0 < j ≤ k
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We will aim to show that φ(j) holds for all j ∈ N. In the case of (2), φ(j) is

trivially true. To show that φ(j) holds in the other cases, we will focus on proving that

∃n∀i < k [(m(i+ 1) + 1)|n↔ (i ∈ X ∧ i < j)] (3.1)

holds by induction while using (1) as a base case for such a statement. Note that we may

assume j < k in our induction hypothesis, because the induction hypothesis for j = k

immediately yields φ(j + 1) since we fall into case (2).

Note that we can avoid claiming that j = k fixing k = Πi<k(i+ 1).

Let j = 0. Then, clearly j ≤ k, meaning we only need to show that m(i +

1) + 1 ∤ n. Assume m(i + 1) + 1|n where n = (Πi<km(i + 1) + 1) + 1. It follows that

m(i + 1) + 1|n −
∏

i<k(m(i + 1) + 1). Then m(i + 1) + 1|1, but m(i + 1) + 1 ≥ 2 for

any i ∈ N. This is a contradiction, so m(i + 1) + 1 ∤ n and the base case holds. For an

inductive assumption, suppose that ∃n∀i < k [(m(i+ 1) + 1)|n↔ (i ∈ X ∧ i < j)]. We

must now show that for j′ = j + 1 ≤ k, n′ = n(m(j + 1) + 1).

Note that if j ̸∈ X, j > k or j = k.

If j ̸∈ X, we set n′ = n If j > k, φ(j) is true. By inductive assumption, ((i ∈ X) ∧ i <
j′) → ∀i < k[((m(i + 1) + 1)|n], meaning φ(j) holds. In either case, φ(j) holds for all

j ∈ N. This concludes the proof.

While we have a way to encode finite sets now, we do not directly have a way

to start defining operations on natural numbers. This can be done by defining functions

as sequences of natural numbers which can be encoded with the method provided above.

By Σ0
1-comprehension, as all of the possible sequences we can consider can be described

in a formula using an existential quantifier, we can define a set containing all the codes of

finite sequences. We will denote it as either “Seq“ or N<N. Note that while each natural

number that corresponds to a unique sequence is a regular, finite value, the sequence of

natural numbers that corresponds to it and encodes information is not always finite.

We will denote the sequence S as one of the following:

s = ⟨s(0), s(1), ..., s(lh(s) − 1)⟩

s = ⟨s(i) : i < lh(s)⟩

For s, t ∈ Seq, s being concatenated with t as denoted as follows:

sˆt = ⟨s(0), ..., (s(lh(s) − 1), t(0), ..., t(lh(s) − 1)⟩
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Note that lh(sˆt) = lh(s)+ lh(t).

3.3 Recursion

In order to prove certain statements, we must introduce the concept of functions

and primitive recursion. The purpose of defining the latter here is for developing a

theorem that can generate successors to certain inputs on a sequence, thus allowing us

to prove Kőnig’s lemma and other mathematical statements within a limited system like

RCA0.

To proceed, we first definite functions within RCA0:

Definition 3.14. Assume RCA0 and let X,Y ⊂ N. We claim X ⊆ Y if ∀n(n ∈ X →
n ∈ Y ).

Definition 3.15. X × Y is the set of all k such that ∃t ≤ k∃j ≤ k[(i ∈ X) ∧ (j ∈
Y ) ∧ ((i, j) = k)]

Definition 3.16. Let f ⊂ (X×Y ). f : X → Y is a function if the following two formulas

hold:

∀i∀j∀k[(((i, j) ∈ f) ∧ ((i, k) ∈ f)) → (j = k)]

∀i∃j[(i ∈ X) → ((i, j) ∈ f)]

If f : X → Y and i ∈ X, f(i) = j such that (i, j) ∈ f .

Theorem 3.17. Under RCA0, if f : X → Y , g : Y → Z, then there is h = gf : X → Z

such that h(i) = g(f(i)).

Proof. By the definition of a function, since we are given g and f , we know:

[(∃j((i, j) ∈ f ∧ (j, k) ∈ g)) ↔ ((i ∈ X) ∧ (∀j(((i, j) ∈ f → (j, k)) ∈ g))]

Let m = (i, k) = (i + k)2 + i. Then, let φ(m) = ∃j[((i, j) ∈ f ∧ (j, k) ∈ g) and

ψ(m) = ∀j(((i, j) ∈ f → (j, k)) ∈ g. Notably ψ(m) ↔ φ(m), as g and f would contradict

the given restrictions otherwise. By ∆0
1-comprehension, there exists a set h witnessed by

the formula θ(m) such that:

θ(m) = [∀m(ϕ(m) ↔ ψ(m)) ↔ ∃h∀m((m ∈ h) ∧ (ϕ(m))
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This formula satisfies the conditions for the definition of h(i, k) as a function, where

h = gf .

Definition 3.18. By Σ0
0-comprehension, there exists a set of all s ∈ Seq such that lh(s) =

k, denoted Nk. For f : Nk → N and s = ⟨n1, ..., nk⟩ ∈ Nk, we can write f(n1, ..., nm) =

f(s).

Definition 3.19. We define the successor function as S(n) = n+ 1 for n ∈ N.

Example 3.20. One of the most primitive recursive functions one can define is the ad-

dition function A(n,m) = h(m) = m+n for n,m ∈ N. We can define h as a combination

of two functions f and g:

h(0, n) = f(n) = n+ 0 = n

h(m+ 1, n) = g(h(m,n),m, n) = S(h(m,n)) = S(n+m)

It is evident that if we add 0 to any n, n is the output of the addition. In case of m ̸= 0,

suppose A(2, 3), the following occurs:

A(2, 3) = g(2) = S(1) + 3 = S(1 + 3) = S(4) = 5

Theorem 3.21. In RCA0, given f : Nk → N and g : Nk+2 → N, there exists a unique

h : Nk+1 → N defined as:

h(0, n1, ..., nk) = f(n1, ..., nk)

h(m+ 1, n1, ..., nk) = g(h(m,n1, ...nk),m, n1, ..., nk)

Proof. Consider a formula θ(s,m, ⟨n1, ..., nk⟩) as follows:

θ(s,m, ⟨n1, ..., nk⟩) = [((s ∈ Seq) ∧ ((lh(s) = m+ 1) ∧
(s(0) = f(n1, ..., nm))∧ (∀i < m(s(i+ 1) = g(s(i), i, n1, ..., nk)))))]

Note that for ⟨n1, ..., nk⟩ ∈ Nk, The formula φ(s) = ∃s(θ(s,m, ⟨n1, ..., nk⟩)) is provable

by Σ0
1-induction on m. Note that our underlying model M ⊨ RCA0. We proceed by

exploring the base case of m = 0. Then, for θ(0, ⟨n1, ..., nk⟩), lh(s) = 1 and i must be

less than 0. Hence, θ holds vacuously true for m = 0. For the inductive assumption,

we assume RCA0 proves θ(m, ⟨n1, ..., nk⟩) and now proceed to show that RCA0 proves

θ(m + 1, ⟨n1⟩). Consider a sequence s2 ∈ M such that s2 = sˆt for some t ∈ N where

lh(t) = 1. Then, it follows that:
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1. s2 ∈ Seq

2. lh(s2) = m+ 2

3. s2(0) = f(n1, ..., nk) = s(0)

4. ∀i such that i < m + 1, by inductive assumption, s(i + 1) = g(s(i), i, n1, ..., nk).

Note that if i = m, then s2(m + 2) = t(0), meaning s(i + 1) = g(s(i), i, n1, ..., nk)

holds by the base case.

Hence, φ(s) = ∃s(θ(s,m, ⟨n1, ..., nk⟩)) holds for all lengths finite lengths m. By a similar

approach, RCA0 ⊨ (θ(s,m, ⟨n1, ..., nk⟩) = θ(s′,m, ⟨n1, ..., nk) ↔ (s(i) = s′(i))) by induc-

tion on i, for all i < m+ 1. Then, for all m, j ∈ N, ⟨n1, ..., nk⟩ ∈ Nk, the following formula

holds:

((∃s((θ(s,m, ⟨n1, ..., nk⟩) ∧ (s(m) = j)))) ↔ (∀s((s,m, ⟨n1, ..., nk⟩) → (s(m) = j))))

Note that this formula satisfies the antecedent for a ∆0
1-comprehension. Thus, by ∆0

1-

comprehension, there exists a finite set h ⊆ Nk+1×N, a function by definition of the term,

such that h(m,n1, ..., nk) = j if and only if ∃s(θ(s,m, ⟨n1, ..., nk⟩) ∧ (s(m) = j)).

It is worth further discussing that RCA0 proves the closure under minimization,

that is that functions have the smallest element that they hold for.

Theorem 3.22. Under RCA0, let f : Nk+1 → N such that for all ⟨n1, ..., nk⟩ ∈ Nk,

there exists m ∈ N such that f(m,n1, ..., nk) = 1. It follows that there exists a function

g : Nk → N such that g(n1, ..., nk) = least m and f(m,n1, ..., nk) = 1.

Proof. Note that to define a subset of Nk × N, we do not require any quantifiers. Thus,

by Σ0
0-comprehension, there exists a set g ⊆ Nk × N such that ((⟨n1, ..., nk⟩,m) ∈ g) ↔

(((⟨m,n1, ..., nk⟩, 1) ∈ f) ∧ (¬(∃j < m(⟨j, n1, ..., nk⟩, 1) ∈ f)). The given conditions for

the set g satisfy the definition of a function that holds consistent with closure under

minimization as described above.

Closure under minimization yields useful theorems, such as closure under or-

dering and infinite recursively enumerable set being a range of a one-to-one recursive

function.
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Lemma 3.23. In RCA0, for any infinite set X ⊆ N, there exists a function πX : N → N

such that ∀k∀m((k < m) → (πX(k) < πX(m))) and ∀n((n ∈ X) ↔ (∃m(πX(m) = n))).

Lemma 3.24. Let φ(n) be a Σ0
1-formula such that X and f do not occur freely. Then,

the following is provable in RCA0. Either there is a finite set X such that ∀n((n ∈ X) ↔
(φ(n))) or there exists a one-to-one f : N → N such that ∀n((φ(n) ↔ (∃m(f(m) = n))).

While these results are notable on their own, we can use them to expand the

range of theorems provable in RCA0 by developing additional induction and comprehen-

sion schemes. Some of such notable results are as follows:

Theorem 3.25. RCA0 proves bounded Σ0
1-comprehension.

Theorem 3.26. RCA0 proves the Π0
1-induction scheme for any Π0

1-formula (n):

(ψ(0) ∧ ∀n(ψ(n) → ψ(n+ 1))) → ∀n(ψ(n))

Thus far, we were able to define several notions with respect to recursive char-

acter of various functions for natural numbers. Our ability to discuss these functions

in RCA0 also holds some implications for the provided functions through computability

concepts.

Lemma 3.27. Let X,Y ⊂ N. The following are equivalent:

1. X is recursively enumerable (i.e. X serves as a range of some recursive function)

in Y .

2. X is definable in some model of Z2 by a Σ0
1 formula with parameter Y .

Additionally, we can discuss the collection of all possible recursive functions for

N as follows:

Lemma 3.28. The minimum ω-model of RCA0 is the collection REC = {X ⊆ ω :

X is recursive}.

The nature of recursive sets as a minimum ω-model carries significant mathe-

matical power for provability of theorems and organization of sets in model theory and are

studied for theorems related to degrees of unsolvability. For deeper insight, we recommend

reading Chapters I II, specifically p. 64 of [Sim09] for further direction. We will now

transition from recursive functions to their application in proving a major fundamental

result for our goal: Kőnig’s lemma.
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3.4 Kőnig’s Lemma

Our work in RCA0 thus far allowed us to analyze and assert the existence of

certain functions using the provided set of axioms. It should be obvious by now that

existence of a set is rarely a trivial matter. This matter requires us to employ RCA0

over ACA0 to show the existence of certain infinite sets - a property that is essential to

obtaining Ramsey’s Theory through reverse mathematics. Through the following defini-

tions, we hope to prove Kőnig’s lemma and show that given RCA0, there exists an infinite

subset in a provided collection of subsets. We will employ the methodology as Simpson

does in Chapter III.7 of [Sim09]. We begin our method with defining trees.

Definition 3.29. A tree is a set T ⊆ N<N such that ∀σ∀τ [((σ ∈ N<N) ∧ (σ ⊆ τ) ∧ (τ ∈
T )) → (σ ∈ T )].

Remark: we will typically refer to trees as structures that have downward clo-

sure.

Definition 3.30. If ∀σ[(σ ∈ T ) → (∃n∀m((σ⌢⟨m⟩ ∈ T ) → (m < n)))], we say that T is

finitely branching.

Definition 3.31. A path through T is a function g : N → N such that ∀n ∈ N(g[n] ∈ T ).

We write g[n] = ⟨g(0), g(1), ..., g(n− 1)⟩.

Definition 3.32. We define the set T ∗ as the set of all τ ∈ T such that there exist

infinitely many σ ∈ T such that σ ⊇ τ .

Lemma 3.33. T ∗ is a tree.

Proof. Assume for arbitrary ρ and τ that [((ρ ∈ N<N) ∧ (ρ ⊆ τ) ∧ (τ ∈ T ∗))]. We want

to show that ρ ∈ T∗. By definition of T∗, τ is in T∗ if and only if

1. τ ∈ T

2. There exist infinitely many σ ∈ T such that σ ⊇ τ .

To show that ρ ∈ T∗ we must establish that ρ has the properties above.

1. First of all, to establish (1): ρ ∈ T holds because we assumed ρ ⊆ τ and τ ∈ T .

Note, τ ∈ T because we assumed τ ∈ T∗ and as a consequence of that assumption,

τ ∈ T . So, by the property of trees being closed downward, ρ ∈ T .



22

2. Moreover, to establish (2): every σ that contains τ must also contain ρ if ρ ⊆ τ .

This is by transitivity of inclusion.

ρ ⊆ τ (by assumption) ∧ τ ⊆ σ (by above) ⇒ ρ ⊆ σ

Thus the infinitely many σ ∈ T that witness that τ ∈ T∗ also witness that ρ is in

T∗.

Lemma 3.34. Kőnig’s lemma states that every infinite, finitely branching tree has at

least one path.

Theorem 3.35. The following statements are pairwise equivalent over RCA0:

1. ACA0

2. Kőnig’s lemma

3. Kőnig’s lemma restricted to trees T ⊆ N such that for all subsequences σ ⊂ T , σ

only has at most two immediate successors.

Proof. We first prove that ACA0 implies Kőnig’s lemma. First, we assert that T ⊆ N<N

is an infinite tree with finite branching. By arithmetical comprehension, T ∗ exists in

ACA0. Note that for any τ ∈ T , ⟨⟩ ⊆ τ . Thus, since T is infinite, ⟨⟩ has infinitely

many extensions τ ∈ T . Thus ⟨⟩ ∈ T∗. Additionally, for an empty sequence ⟨⟩, we can

construct infinitely many finitely branching extensions in T , meaning ⟨⟩ ∈ T ∗. A path

from an empty tree to a successor node can be represented with a function f : N → N,

which will vacuously satisfy the recursive function definition as empty set has zero length.

Additionally, because T∗ is finitely branching, there must exist the least succes-

sor τ⌢n ⊂ T ∗ for all τ ⊂ T ∗. We can represent a path from a node enumerated n− 1 in

τ to its successor enumerated n.

Thus, by Theorem 3.21, there exists a recursive function h : N → N such that

h(k) = m, where m is the least possible value such that h(k)⌢m ∈ T ∗. Thus, there exists a

path through any subsequence of an infinite, finitely branching tree. Thus, ACA0 implies

Kőnig’s lemma.
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Restricted Kőnig’s lemma follows automatically from the general version of the

said lemma. We only have to show that the restricted Kőnig’s lemma implies ACA0.

We assume RCA0. To achieve our goal, the easiest way is to show that for an arbitrary

one-to-one function f : N → N, the range exists as a set, as that would be equivalent to

ACA0 under Lemma 3.6:

∃X∀n((n ∈ X) ↔ (∃m(f(m) = n)))

By Σ0
0-comprehension, there exists a tree T ⊆ N<N with the following conditions:

((τ ∈ T ) ↔ (∀m < (τ))(∀n < lh(τ))((f(m) = n) ↔ (τ(n) = m+ 1)))

(∀n < lh(τ))((τ(n) > 0) → (f(τ(n) − 1) = n)

In simpler terms, we claim that for all preceding subtrees σ of τ , if τ(n) > 0, then m

is part of the domain of f . Furthermore, each m that is in domain of f has a successor

node in T , meaning that T is infinite.

It then follows that for each σ ∈ T , there are only two possibilities for its

immediate successors:

1. σ⌢(m+ 1), where f(m) = n for all τ(n) > 0.

2. σ⌢(0), which falsifies the condition of T (7), meaning m does not belong to the

domain of f

By bounded Σ0
1-comprehension, we define Y to be the set of elements for the

range of f–it is the set of all n < k such that ∃m(f(m) = n). Then, we fix k ∈ N such

that for σ ∈ N<N and lh(σ) = k, the following holds for all n < k:

σ(n) =

0 if n /∈ Y

m+ 1 if n ∈ Y ∧ f(m) = n

Note that either output is consistent with the conditions we provided for T earlier, mean-

ing σ ∈ T . Furthermore, if there is at least one node in σ such that σ(n) ̸= 0, then the

m+ 1 case applies and continues to apply for all successors by conditions of T . As such,

T is infinite. Thus, by Restricted Kőnig’s Lemma, there exists a path g through T .

By condition (number) of T, we claim ∀m∀n((f(m) = n) ↔ g(n) = m+ 1). So,

by ∆0
1-comprehension, we define the set X to contain all n such that g(n) > 0. It follows
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that ∀n((∃m(f(m) = n)) ↔ (n ∈ X)). It is worth noting that we were able to prove both

weak and strong versions of Kőnig’s lemma, with the primer being restricted to sequences

of 0’s and 1’s. For the purposes of proving Ramsey’s theorem, we will only use the strong

version of the lemma. However, we can expand RCA0 by including the weak Kőnig’s

lemma into its axiom list to define a new subsystem of Z2 called WKL0. This theory is

particularly interesting due its strength being sufficient to prove Heine/Borel theorem:

Definition 3.36. Heine/Borel theorem states that every covering of the closed unit in-

terval 0 ≤ x ≤ 1 by a sequence of open intervals has a finite subcovering.

Furthermore, it is possible to obtain a reversal showing that WKL0 is equivalent

to Heine/Borel theorem over RCA0 and compare that result to various other theorems,

including Gödel’s completeness theorem and Hahn/Banach theorem for separable Banach

spaces. However, this investigation is not included in the scope of this work. Interested

readers are encouraged to read Chapter IV of [Sim09] to obtain detailed information on

the matter. Instead, we will now proceed to employ strong Kőnig’s lemma to obtain

Ramsey Theorem in the next chapter.
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Chapter 4

Ramsey’s Theorem

4.1 Introducing the Theorem

Ramsey’s theorem is a powerful combinatorial tool that deals with the idea of

order. In layman’s terms, this theorem implies that in a sufficiently large set, we can

always find a “very orderly” subset that shares some sort of property like coloring. This

is particularly evident in the context of graph theory, where Ramsey theorem is arguably

the most prominent.

Definition 4.1. Given integers n,m, the Ramsey number p = r(m,n) is the least number

p such that for any 2-coloring of the edges of Kp, there exists a subgraph isomorphic to

Km of color 0 under this coloring, or a subgraph isomorphic to Kn of color 1 under this

coloring.

The definition above is a direct application of Ramsey theorem, which makes

a statement about the existence of order subsets. Well-known examples relevant to this

definition include R(3, 3) = 6 and R(3, 4) = 9. The results in the field are continuously

collected in [Rad94], with the most recent publicly available revision to the document

published online in 2021.

We now proceed with attempting to prove Ramsey’s theorem in RCA0, using

the theorems as provided in III.7 of [Sim09]. First, we define the theorem as follows:

Definition 4.2. In RCA0, for any X ⊆ N and k ∈ N, we define [X]k to be the set of all

increasing sequences of length k composed of elements from X.
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We assert that s ∈ [X]k if and only if s ∈ Nk and for all j < k, s(j) ∈ X and for all

i < j, s(i) < s(j), i.e. the sequences of [X]k are order-preserving.

Ramsey theorem for exponent k, denoted RT(k) states that for all l ∈ N and all f :

[N]k → {0, 1, · · · , l − 1}, there exists some i < l and an infinite set X ⊆ N such that

f(m1, · · · ,mk) = i for all ⟨m1, · · · ,mk⟩ ∈ [X]k.

As discussed before, provability of the theorem in RCA0 demonstrates how es-

sential it is to mathematics; the less equipped the subsystem we are working is, the more

“primal“ and necessary the theorem can be considered. To start proving certain state-

ments with respect to Ramsey theory, we will assert definitions that define a possible

ordering with a set/sequence using colors.

Definition 4.3. For a set X, let [X]n be the collection of n-element subsets of X. An

i-coloring of [X]n is a map f : [X]n → {0, · · · , i}. We claim set H ⊆ X is homogeneous

for f if there exists an l < i such that for all s ∈ [H]n, f(s) = l. We say that H is

homogeneous to l.

Remark: We can use sets and sequences interchangeably for defining homogene-

ity.

To proceed further, we define an additional type of a tree that must be constructed in

the proof of the theorem.

Definition 4.4. Given integers l and k and a function f : [N]k+1 → {0, 1, ..., l − 1},
we define an Erdős/Rado tree for the tuple (l, k, f) to be the tree T := T(l,k,f) such that

T ⊆ N<N, where t ∈ T if and only if for all n <lh(t), t(n) = the least j satisfying the

following conditions:

1. t(m) < j for all m < n.

2. f(t(m1), · · · , f(mk), j) = f(t(m1), · · · , t(mk), t(m)),

for all m1 < · · · < mk < m ≤ n.

Notably, we are guaranteed the existence of Erdős/Rado trees, given the satis-

fying l, k, and f , in RCA0 and ACA0 by Σ0
0-comprehension. As such, we can invoke this

type of trees in our proofs.



27

∅

0 1

1, 2 1, 3

1, 3, 4 1, 3, 13

1, 3, 13, 18 1, 3, 13, 17

Figure 4.1: A tree structure presented in the Example 4.5.

Colors for pairs of T

Outputs of the
coloring f

0 1 2

Corresponding
Sequences

[0,1] [0,2] [0,3]

[0,4] [2,3] [3,4]
[1,4] [3,4] [3,5]
[0,5] [4,7] [5,6]
[4,5] [4,10] [0,6]

Figure 4.2: Table for the pairs of T in the Example 4.6

Example 4.5. Let the computable coloring f : [N]3 → {0, 1} be defined f(m1,m2,m3) =

i ∈ N where i = 0 if 17 ∤ m1 + m2 + m3 and i = 1 otherwise. Because the set of prime

numbers is infinite, for any m1 and m2 we can consistently find m3 > m1,m2 such that

m1 + m2 + m3 = n ∈ N, where n is prime and, therefore, indivisible by 17. It is easy

to define, by induction, an infinite sequence (n1, n2, . . .) such that f(ni1 , ni2 , ni3) = 1 for

all i1 < i2 < i3. This set-up guarantees the existence of a homogeneous path in T . The

resulting T is provided visually in Figure 4.1.

Example 4.6. Like before, we define a coloring f : [N]2 → {0, 1, 2}. The outputs of f will

be determined by the Table 4.1. It should be noted that this example presents a coloring

that is not computable and still preserves prehomogeneity. The reader is encouraged to

draw the graph in accordance with the table themselves to observe prehomogeneity directly.
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Lemma 4.7. ACA0 proves RT(0) and ∀k(RT(k) → RT(k + 1)).

It should be evident that this lemma can be used as the two components neces-

sary for the inductive proof of ACA0 proving RT(k) for all k ∈ N.

Proof. We first wish to show that ACA0 proves RT(0). For this goal, We claim, in

symbols, s ∈ [X]0 if and only if s = ∅. Since there is only one element in [X]0 for any

X ⊆ N, it is clear that we can achieve the monochromatic subset. We claim s ∈ N0 and

(∀j < 0)(s(j)) ∈ X ∧ (∀i < j)(s(i) < s(j))). However, there is no s(j) ∈ N such that

j < 0, making the statement vacuously true. Thus, the case of RT(0) holds in ACA0,

vacuously.

We now wish to prove that ∀k(RT(k) → RT(k + 1)). We assume that RT(k) holds,

i.e. for all l ∈ N and all f : [N]k → {0, 1, · · · , l − 1}, there exists some i < l and

an infinite set X ⊆ N such that f(m1, · · · ,mk) = i for all ⟨m1, · · · ,mk⟩ ∈ [X]k. In

order to show RT(k + 1), we fix a number of colors l, and an l-coloring of k + 1-tuples

f : [N]k+1 → {0, 1, · · · , l − 1}. For this proof, we will employ the Erdős/Rado tree

T ⊆ N<N such that T is Tl,k+1,f .

First, we assert that T is infinite. To do so, we must show that for every j ∈ N, there

always exists some t⌢⟨j⟩ ∈ T . The proof of this idea is to choose maximal t ∈ T such

that j has not yet been used. Then, by properties of T listed in definition (4.4), it follows

that t⌢⟨j⟩ ∈ T . We give some of the intuition for this result in the following paragraph.

1. The definition of T (as defined in definition (3.29)), the successor ⟨j⟩ to a node t

must be such that it preserves prehomogeneity of the branch and is the smallest

j ∈ N to do so, such that one of the colors is achieved in the “last sequence“.

2. Then, for any ⟨j⟩ that succeeds an existing branch t ∈ T , there are two cases: it

either satisfies the conditions of an Erdős/Rado tree or it fails to do so.

3. Take t of minimum length such that j fails to do so. We know we can do this due

to additional colorings branching off at the least value starting from the base of T .

4. If the preceding branch to t, which we will term t− 1, can be extended, there is no

issue. However, it may not necessarily satisfy the coloring conditions. As such, we

move down the nodes of t in succession until we get a branch that can be extended

by ⟨j⟩.
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5. Note that if there are no successors for some color in the range of f , there must

exist a coloring with node values such that the properties of T hold somewhere in

T . Otherwise, T is not an Erdős/Rado tree.

6. Through exclusion, we are guaranteed to be able to find a successor to some branch

T for some output of f .

7. Consequently, since we have infinitely many successors, T must be infinite.

In addition, note that T must be finitely branching. Provided t ∈ T of length n, t⌢⟨j⟩
needs to satisfy only two conditions for a finite number of possible successors and finitely

many colors. Consequently, t can have ≤ ln
k

successors, which is finite. As a result T is

an infinite, finitely branching tree.

By Kőnig’s lemma in ACA0, there exists a path g ⊆ T . g preserves the ordering

of the sequence, so we can define an additional coloring function f ′ : [N]k → {0, 1, ..., l−1}
and use it to map f ′(m1, ...,mk) = f(g(m1), ..., g(mk), g(m)) where m1 < ... < mk < m.

The function f ′ is well-defined by prehomogeneity of the tree.

The resulting coloring of the tree, which can also be described as an induced

coloring, is guaranteed by g for a k + 1-tuple. We can use the inductive assumption,

RT(k) here, to assert that there exist i < l and X ′ ⊆ N such that X ′ is infinite and

f ′(m1, ...,mk) = i for every ⟨m1, ...,mk⟩ ∈ [X ′]k. Then, since the existence of the suc-

cessor ⟨m⟩ being guaranteed while preserving the coloring, f(m1, ...,mk,m) = i for all

⟨m1, ...,mk,m⟩ for X being the set of all g(m) for m ∈ X ′. Thus, X = {g(m) : m ∈ X ′}
is the infinite homogeneous subset that guarantees the conclusion of RT(k + 1).

4.2 Alternative proofs

While Simpson’s definition definition and proof are achievable with sequences,

Ramsey theorem can also be proven with sets. Following, we will reference Dennis

Hirschfeldt’s writing [Hir15], specifically relying on Chapter 6.1. In his book, Hirschfeldt

provides several alternatives proofs for Ramsey’s theorem that are somewhat different

from the methodology for proofs used by Simpson. For one, we can distinguish different

versions of Ramsey’s theorem by its scope of possible coloring. This is demonstrated in

the formulation of the following theorem:



30

Theorem 4.8. 1. Ramsey’s theorem for n-tuples and i-colors, denoted RTn
i states

that every i-coloring of [N]n has an infinite homogeneous set.

2. Ramsey’s theorem for n-tuples, denoted RTn
<∞ states that for all i colorings such

that i ≥ 1, RTn
i .

3. Ramsey’s theorem states that for all i colorings such that i ≥ 1, RTn
<∞.

Unlike in Simpson’s definition, we are now working with sets and not sequences.

Consequently, the tuples are unordered for RT. We will now proceed to produce a proof

of RTn
i using sets.

Proof. To prove RTn
i , we proceed by induction under RCA0. Like with sequences, the

base case of RT1
i is trivial/vacuous, as the set contains only one element. For the inductive

assumption, we assume RTn−1
i holds and let f : [N]n → i.

We first fix a0 = 0 in our set N. We map d0 : [N {a0}]n−1 → i such that

d0(s) = f(s ∪ {a0}) for s ∈ [A]n where A is an infinite set. We also let H0 be a set with

homogeneous coloring for d0 such that a0 < min H0. We label the coloring for which H0

is homogeneous as c0.

We repeat the process with the least element of H0 now. Let such element be

labeled a1. We define a mapping d1 : [H0 {a1}]n−1i such that d1(s) = f(s∪{a1}. We also

let H1 be an infinite homogeneous set for d1 such that a1 < min H1 and define a2 to be the

least element ofH1. We continue recursively, defining an ordered set A = {a0 < a1 < · · · }.

If s ∈ [A]n, we define aj ∈ s to be the least element. All other elements of s are in Hj , so

f(s) = fj . Consequently, there exists h < k such that cj = h for infinitely many j. Let

H = {aj : fj = h}. Then, f(s) = h for all s ∈ [H]n. Thus, H is an infinite homogeneous

set for f .

This proof is a version of Ramsey’s original proof in his theorem. The reader

is encouraged to read the original work [Ram29] and compare the approach themselves.

This is, however, not the only possible proof of RTn
i . We can construct an additional

proof using the notion of set homogeneity.

Lemma 4.9. Let n ≥ 2 and f : [N]n → i. If RTn−1
i holds and f has an infinite

prehomogeneous set, f must have an infinite homogeneous set.
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Proof. However, we will proceed by induction on RT. First, we regard the base case of

RT0
i . As in previous proofs, this case is vacuously true. For our inductive assumption,

we assume RTn−1
i holds and will aim to show the n-tuple case through an existence of an

infinite prehomogeneous set.

We define infinite sets I0 ⊂ I1 ⊂ · · · , where for each i < n−1, Ii = N [0, i]. We let

am = minIm. Then, by set arrangement, it follows that a0 < a1 < · · · . We let m ≥ n− 3

and a set F = s ∈ [aj : j ≤ m}]n−1. Then, we define a function d : Im {am} → iF ,

where iF is a set of functions from F into i and d is the function that maps s to the

coloring f(s∪ {x}). Then, from the inductive assumption, d functions as an i|F |-coloring

for Im {am}. If we let Im+1 be an infinite homogeneous set for d, for s ∈ [{aj : j ≤ m}]n−1

and x, y ∈ Im+1, f(s ∪ {x}) = f(s ∪ {y}). This satisfies the definition of prehomogeneity

for sets. So, f has an infinite prehomogeneous set for every i|F |-coloring. Ultimately,

since RTn−1
i holds from induction, it follows that f has an infinite homogeneous set.

It is worth noting that the provided proofs do not complete the list of proofs

possible for RT. In his book, Hirschfeldt presents an additional proof using set ultrafilters,

which takes a very different approach from the previous two. While this proof is outside

of our scope, the reader is encouraged to examine the approach themselves in [Hir15] on

p. 73-74.

In this chapter, we proved Ramsey’s theorem in RCA0, indicating its impor-

tance to the formulaic structure in mathematics. Because the theorem is provable in the

environment with minimal tools, we can reasonably claim that the theorem represents

information that is, for lack of better terms, primal when compared to other theorems

that are not provable in RCA0. It must be noted that while Ramsey’s theorem is strong

and “primal” in mathematics, certain versions of it cannot be proven in certain other

similarly limited systems like WKL0. For example, on p. 75-76 of [Hir15], Hirschfeldt

remarks that neither RCA0 nor WKL0 entail RT2
2. Furthermore, larger tuples to work

with imply larger computability complexity. This fact motivates further investigations

into how RT fits into the general arithmetical hierarchy, carrying certain implications for

computability theory. While the provability of RT in RCA0 concludes our goal for this

paper, we will showcase some recent results with respect to Ramsey’s theorem in the next

section.
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Chapter 5

New Results

While Ramsey’s theorem is a well-known topic in combinatorics, reverse math-

ematics is a relatively new field that started developing only in (approximately) 1970,

due to the efforts in part of Charles Parsons [Par70] and continued by Harvey Fried-

man, Stephen Simpson and many others. At the time of this writing, research in reverse

mathematics is continuing, including that related to Ramsey’s theorem.

One notable example of recent publications on this matter is that of Chubb,

Hirst, and McNicholl [CHM09]. Their work employs Ramsey’s theorem limited to binary

trees, which is described below:

Theorem 5.1. Suppose that [2<N]n is colored with i colors. Then, there is a subtree S

isomorphic to 2<N under RCA0 such that [S]n is monochromatic. We denote this version

of Ramsey’s theorem as TTn
i .

Just as before, additional restrictions on Ramsey’s theorem carry different im-

plications.

Lemma 5.2. Assume RCA0 and let f : 2<N be a two-coloring of the nodes for the full

binary tree. Let these colors be red and blue. For any node σ of the tree either:

1. above σ, there is a subtree isomorphic to 2<N in which every nonempty node is red

2. σ can be extended to a node τ such that every node is properly extending τ is blue.

Theorem 5.3. Assume RCA0 and Σ0
2-induction. For all k, TT1

i . That is, for any finite

coloring of 2<N, there is a monochromatic subtree isomorphic to 2<N.
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Theorem 5.4. Assume ACA0. For all i, TT2
i . hat is, for any finite coloring of pairs of

comparable nodes of 2<N, there is a monochromatic subtree isomorphic to 2<N,

Theorem 5.5. Assume ACA0. For all n ≥ 1, TTn implies TTn+1.

As usual, the reader is encouraged to read the original work to learn more about

the methodology for the proofs.
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Chapter 6

Conclusion

Throughout this thesis, we constructed the proof of Ramsey’s theorem from em-

ploying only the most primitive subsystems of second order arithmetic possible. Starting

from only P0, a comprehension schema, and an induction schema, it is possible to prove

critical combinatorial concepts, such as Kőnig’s lemma and others.
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