
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Geosciences Faculty Publications and 
Presentations Department of Geosciences 

5-12-2023 

Estimating Snow Accumulation and Ablation with L-Band Estimating Snow Accumulation and Ablation with L-Band 

Interferometric Synthetic Aperture Radar (InSAR) Interferometric Synthetic Aperture Radar (InSAR) 

Jack Tarricone 
University of Nevada, Reno 

Ryan W. Webb 
University of Wyoming 

Hans-Peter Marshall 
Boise State University 

Anne W. Nolin 
University of Nevada, Reno 

Franz J. Meyer 
University of Alaska Fairbanks 

The works published in this journal are distributed under the Creative Commons Attribution 4.0 License. This 
licence does not affect the Crown copyright work, which is re-usable under the Open Government Licence (OGL). 
The Creative Commons Attribution 4.0 License and the OGL are interoperable and do not conflict with, reduce or 
limit each other. 
© Crown copyright 2023 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/geo_facpubs
https://scholarworks.boisestate.edu/geo_facpubs
https://scholarworks.boisestate.edu/geosciences


The Cryosphere, 17, 1997–2019, 2023
https://doi.org/10.5194/tc-17-1997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimating snow accumulation and ablation with L-band
interferometric synthetic aperture radar (InSAR)
Jack Tarricone1,2, Ryan W. Webb3, Hans-Peter Marshall4, Anne W. Nolin2,1, and Franz J. Meyer5

1Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, NV, USA
2Department of Geography, University of Nevada, Reno, Reno, NV, USA
3Department of Civil and Architectural Engineering and Construction Management,
University of Wyoming, Laramie, WY, USA
4Department of Geosciences, Boise State University, Boise, ID, USA
5Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA

Correspondence: Jack Tarricone (jtarricone@nevada.unr.edu)

Received: 11 November 2022 – Discussion started: 16 November 2022
Revised: 31 March 2023 – Accepted: 11 April 2023 – Published: 12 May 2023

Abstract. Snow is a critical water resource for the western
United States and many regions across the globe. However,
our ability to accurately measure and monitor changes in
snow mass from satellite remote sensing, specifically its wa-
ter equivalent, remains a challenge. To confront these chal-
lenges, NASA initiated the SnowEx program, a multiyear
effort to address knowledge gaps in snow remote sensing.
During SnowEx 2020, the Uninhabited Aerial Vehicle Syn-
thetic Aperture Radar (UAVSAR) team acquired an L-band
interferometric synthetic aperture radar (InSAR) data time
series to evaluate the capabilities and limitations of repeat-
pass L-band InSAR for tracking changes in snow water
equivalent (SWE). The goal was to develop a more com-
prehensive understanding of where and when L-band In-
SAR can provide SWE change estimates, allowing the snow
community to leverage the upcoming NASA–ISRO (NASA–
Indian Space Research Organization) SAR (NISAR) mis-
sion. Our study analyzed three InSAR image pairs from
the Jemez Mountains, NM, between 12 and 26 February
2020. We developed a snow-focused multi-sensor method
that uses UAVSAR InSAR data synergistically with optical
fractional snow-covered area (fSCA) information. Combin-
ing these two remote sensing datasets allows for atmospheric
correction and delineation of snow-covered pixels within the
radar swath. For all InSAR pairs, we converted phase change
values to SWE change estimates between the three acquisi-
tion dates. We then evaluated InSAR-derived retrievals us-
ing a combination of fSCA, snow pits, meteorological sta-

tion data, in situ snow depth sensors, and ground-penetrating
radar (GPR). The results of this study show that repeat-pass
L-band InSAR is effective for estimating both snow accu-
mulation and ablation with the proper measurement timing,
reference phase, and snowpack conditions.

1 Introduction

1.1 Significance and motivation

In the western United States (WUS), seasonal mountain
snowmelt produces approximately 70 % of the annual dis-
charge (D. Li et al., 2017) and is the primary water source
for about 60 million people (Stewart et al., 2004). To ade-
quately manage this resource, an accurate accounting of the
spatiotemporal variations in snow water equivalent (SWE)
is needed (Bales et al., 2006). Climate change is affecting
the stationarity of the WUS hydrologic cycle (Milly et al.,
2008), causing an overall decline in mountain snowpack
(Mote et al., 2018) and emphasizing the importance of prop-
erly monitoring snow into the future (Siirila-Woodburn et al.,
2021).

Water managers could benefit from regular repeat cover-
age of spatially distributed, low-latency SWE data at spatial
resolutions that are appropriate for mountain water forecast-
ing. While remote sensing has made significant advances in
measuring snow properties, there is still no remote sensing
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technique that can continually measure SWE from space for
mountain hydrologic applications (Lettenmaier et al., 2015).
Here, we explore L-band interferometric synthetic aperture
radar (InSAR) for monitoring changes in SWE.

1.2 Background and previous work

The most effective and widely used SWE estimation tech-
nique combines suborbital lidar (Deems et al., 2006; Trujillo
et al., 2007) with hyperspectral imaging (Nolin et al., 1993)
to produce both snow depth and fractional snow-covered area
(fSCA) at the watershed scale. Converting these measure-
ments into SWE requires spatially distributed snowpack en-
ergy balance modeling (Painter et al., 2016). Like all opti-
cal techniques, lidar and hyperspectral imaging are limited
by cloud cover, which can be frequent in mountain environ-
ments, and global spaceborne monitoring with lidar is not
currently practical.

Since the 1970s, spaceborne passive microwave radiome-
ters have used brightness temperature to estimate SWE at
hemispherical scales (Rango et al., 1979). More recent stud-
ies utilized the Advanced Microwave Scanning Radiome-
ter for EOS (ASMR-E) and the Scanning Multichannel Mi-
crowave Radiometer (SMMR) to continue the development
of this SWE estimation technique (Derksen et al., 2002;
Vuyovich et al., 2014). These instruments produce data on
the spatial scale of tens of kilometers, limiting their abil-
ity to capture the topographic and snowpack heterogeneity
of mountain environments. Passive microwave retrievals are
also limited to dry snowpacks with < 1 m of snow depth due
to signal saturation (Foster et al., 2005).

While passive microwave remote sensing is not well suited
for mountain environments, active microwave (radar) has
shown promise for snowpack monitoring. Time-of-flight ap-
proaches have been used for decades from ground-based
(Gubler and Hiller, 1984; Marshall and Koh, 2008) and air-
borne (McGrath et al., 2018; Lewis et al., 2017) platforms.
Synthetic aperture radar (SAR) is an active microwave re-
mote sensing technique that addresses the two main deficien-
cies in both optical and passive microwave; it can penetrate
through clouds and has a spatial resolution on the scale of
tens of meters instead of kilometers.

Spaceborne applications of SAR for estimating snow
properties have mostly focused on backscatter approaches,
where shorter wavelengths (Ku- and X-band) have been used
to estimate SWE (Rott et al., 2010; Yueh et al., 2009; King
et al., 2018; Zhu et al., 2021). However, this method requires
a complex dense-media radiative transfer model (DMRT)
with input parameters that not only include snow density (ρs)
and snowpack liquid water content (LWC) but also parame-
ters such as snow stratigraphy, snow grain size, and ground
surface conditions. Snow microstructure parameters are chal-
lenging to precisely estimate over large spatial scales (Rutter
et al., 2019).

SAR is proven for measuring snow wetness, (Nagler and
Rott, 2000; Nagler et al., 2016; Lund et al., 2020) as wet
snow attenuates the radar signal, causing a decrease in
backscatter intensity when compared with dry-snow condi-
tions. New backscatter methods are being developed to mea-
sure snow depth at C-band (Lievens et al., 2019, 2022). This
technique shows promise, especially in deeper snowpacks
(> 1 m), but the underlying physics governing the retrievals
are not yet well characterized.

Recently, the use of InSAR to estimate SWE has become
an area of interest because of the higher temporal (12 d)
frequency and L-band (∼ 24 cm) wavelength of the future
NASA–ISRO (NASA–Indian Space Research Organization)
SAR (NISAR) mission (Rosen et al., 2017). InSAR uses the
differences in radar phase between subsequent overpasses to
estimate surface displacement. The InSAR SWE theory, ini-
tially proposed by Guneriussen et al. (2001), relates changes
in the interferometric phase of a radar signal to SWE changes
in dry snow on the ground between acquisitions.

A series of studies have shown the further utility of these
InSAR methods for snow, such as Rott et al. (2003) in Aus-
tria and Deeb et al. (2011) on Alaska’s North Slope, which
both used the European Remote-Sensing Satellite (ERS-1)
C-band radar. Leinss et al. (2015) conducted an intensive
season-long ground-based dual-frequency (Ku- and X-band)
interferometric experiment in Finland with measurements
every 4 h, where they found that the method was success-
ful for continually measuring SWE in dry taiga snow but that
liquid water and vegetation quickly cause coherence loss at
these higher frequencies.

More recent studies have also used C-band radar from
various spaceborne platforms. Sentinel-1A and B were uti-
lized in Finland, leveraging the more consistent overpass re-
peat cycle (Conde et al., 2019). H. Li et al. (2017) analyzed
two InSAR pairs from the Envisat Advanced Synthetic Aper-
ture Radar (ASAR) instrument in the Tianshan Mountains of
northwestern China, where they found promising results but
were limited by large interferometric temporal baselines and
the lack of in situ validation data. Eppler et al. (2022) used
a 9-year RADARSAT-2 time series in Canada to develop
“SlopeVar”, a method for estimating SWE change without
phase unwrapping by spatially correlating phase sensitivity
to local topography. Nagler et al. (2022) conducted an air-
borne L- and C-band experiment in the Austrian Alps in
preparation for Radar Observing System for Europe in L-
band (ROSE-L). While their results are preliminary, they
show good performance for tracking snowfall events at L-
band because of its lack of impairment from 2π phase wrap-
ping ambiguities.

These orbital InSAR studies showed promise for estimat-
ing SWE but lacked sufficient temporal length and variety of
vegetation, topography, and snowpack characteristics. More-
over, they also lacked adequate validation data and a small
spatial scale to thoroughly understand the technique’s limita-
tions and synergies with other types of snow measurements.
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1.3 Research objectives

To address these InSAR-derived SWE limitations, the 2020
NASA SnowEx campaign (Marshall et al., 2019) conducted
an Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) L-band InSAR time series flight campaign at
13 research sites across the WUS. The goal of the 2020
SnowEx experiment was to test L-band InSAR’s ability to
measure SWE changes over a wide range of geographic lo-
cations, snow conditions, and land cover types with corre-
sponding in situ ground-based observations. InSAR-derived
snow depth changes measured over a 2-week interval on the
open western end of Grand Mesa, CO, in February 2020
showed high correlation (r2

= 0.76) with snow depth dif-
ferences measured by coincident repeat lidar from the same
time period. Root-mean-square error (RMSE) differences be-
tween the two 5 m resolution depth change maps were within
typical lidar error (< 5 cm) for depth and 0.9 cm of SWE
(Marshall et al., 2021).

The overall goal of this study is to assess the perfor-
mance of L-band InSAR for monitoring SWE changes in
an environment where there is both snow accumulation and
ablation (melt, evaporation, or sublimation). Currently, this
UAVSAR-based approach has only been applied to cold dry-
snow conditions on Grand Mesa (Marshall et al., 2021),
where the snow depth variations were mainly driven by wind
redistribution but not melt or evaporation. Towards this end,
the specific objectives of the work presented here are to
(1) analyze InSAR SWE retrievals over a complex mountain
region and (2) validate the retrievals using satellite and in situ
data.

2 Methods

To achieve our objectives, we analyzed three interferomet-
ric image pairs that were acquired over the Jemez Moun-
tains, NM. First, we developed a workflow (Tarricone, 2023)
that (a) corrects the observed interferometric phase for atmo-
spheric delay and (b) corrects incidence angle error effects
by using improved incidence angle estimates derived from
airborne lidar. We then computed spatial changes in SWE
over the study area and evaluated our SWE retrievals us-
ing fSCA, ultrasonic snow depth sensors, ground-penetrating
radar (GPR), and snow pits.

This section (Sect. 2) is split into the following subsec-
tions: Sect. 2.1 provides an overview of InSAR with respect
to SWE change estimation, Sect. 2.2 describes the study
area, Sect. 2.3 reviews the remote sensing and in situ data,
Sect. 2.4 is a description of the atmospheric correction steps,
Sect. 2.5 explains the creation of new incidence angle data,
and Sect. 2.7 outlines the SWE change calculation.

2.1 InSAR for detecting SWE changes

InSAR is an active remote sensing technique that uses the
differences in phase to map surface topography (single pass)
(Zebker and Goldstein, 1986) or various types of surface de-
formation (repeat pass) (Goldstein and Zebker, 1987). Using
the precise location of the orbit or flight pattern, the phase
difference between the two (repeat-pass) acquisitions can be
used to calculate deformation at the centimeter scale. Tradi-
tionally, repeat-pass InSAR (Rosen et al., 2000), where the
sensor scans the same area at two different times, has been
used to monitor tectonic motion (Funning et al., 2005), geo-
morphic processes (Colesanti et al., 2003), ice sheet velocity
(Mouginot et al., 2012), and volcanic activity (Poland and
Zebker, 2022).

For snow applications, Guneriussen et al. (2001) theorized
a relationship between InSAR phase change and change in
dry SWE between acquisitions. Dry snow has low attenu-
ation of the radar signal, and the majority of the backscat-
ter stems from the snow–soil interface at frequencies below
10 GHz (Marshall et al., 2005; Ulaby et al., 1984). Dry snow
and the atmosphere have different dielectric properties, caus-
ing a refraction or directional change in the radar propaga-
tion path and a decrease in speed when the signal propa-
gates through the snow layer (Fig. 1). The refraction and
wave speed are controlled by the refractive index of snow,
which is governed by ρs. We leverage these previous stud-
ies to develop a current workflow applied to UAVSAR data
acquisitions.

To isolate the SWE change impacts on the phase, other fac-
tors impacting phase must be identified and compensated for.
Outlined in Deeb et al. (2011) and updated for suborbital ac-
quisition considerations, total interferometric phase includes
the following contributions:

φtotal = φflat+φtopo+φatm+φsnow+φrandom+φsystematic, (1)

where φflat and φtopo are phase impacts from the flat Earth
and local topography, respectively, which are both accounted
for in the UAVSAR InSAR processing chain using the Shut-
tle Radar Topography Mission (SRTM) digital elevation
model (DEM) as input. φrandom is the random error, where the
majority comes from temporal decorrelation (Zebker et al.,
1997). φsystematic represents the systematic error within the
UAVSAR instrument. This error is mainly associated with
uncertainty in the plane’s position and deviations in the flight
track between acquisitions. Variations in the plane’s position
are accounted for within the UAVSAR processing workflow
as well as possible, but not all aircraft motion can be com-
pletely captured, which can leave residual phase change.

Assuming that all previously mentioned errors are ac-
counted for, extracting φsnow from the observed phase (φtotal)
in UAVSAR data mostly requires accurate compensation
for φatm, which is the phase contribution from change in
path delay through the atmosphere. The reader is referred to
Sect. 2.4 for a detailed explanation of how φatm is addressed
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Figure 1. Diagram adapted from Leinss et al. (2015) showing the
geometric principle of the InSAR SWE retrieval. Ra represents
propagation through atmosphere (no snow) and Rs propagation
to the wave front (with snow). The amount of refraction (θs) and
change in wave speed are controlled by εs, which is a function of
snow ρs. The variation in path length with and without snow is equal
to 1Rs−1Ra. This path length difference causes a phase delay
which is used to estimate SWE changes.

in our approach. Once φsnow is isolated, the measured phase
shifts are used to estimate SWE with the following equa-
tion proposed by Guneriussen et al. (2001), which accounts
for both the path length change caused by refraction and the
change in wave speed in snow:

1SWE=−
1φsnowλ

4π
· ρs ·

1

cosθ −
√
εs− sin2θ

, (2)

where 1SWE is the change in SWE between acquisitions,
λ is the radar wavelength (23.84 cm for UAVSAR), θ is the
radar incidence angle, and εs is the real part of the dielectric
permittivity of snow. For dry snow, there is a direct relation-
ship between εs and ρs, whereas the relationship becomes
more complex for wet snow, with even small amounts of liq-
uid water vastly increasing εs values. Recent studies from
Eppler et al. (2022) and Leinss et al. (2015) found that er-
ror in density estimates only biases total SWE change by
<∼ 5 % for dry snow for a wide range of θ (< 50◦) and ρs
(< 500 kg m−3). Leinss et al. (2015) also showed a nearly lin-
ear relationship between 1SWE and interferometric phase
for dry snow, which simplifies the SWE estimation. That
said, we used Eq. (2) because our study considers melting
snow, and εs is a direct input.

2.2 Description of the study area

Located in northern New Mexico, USA, the Jemez Moun-
tains and Jemez River basin are on the southern extent of

the Rocky Mountains (Fig. 2b). The UAVSAR swath encom-
passes portions of Valles Caldera National Preserve (VCNP;
35◦53′ N, 106◦32′W) (Fig. 2a). This area is mainly a moun-
tain conifer forest environment consisting of Douglas fir,
white fur, and blue spruce. VCNP is surrounded by lower-
elevation semiarid desert. Within the swath also lies the
Valles Caldera, a 25 km wide volcanic structure dating back
about 1.2 Myr. Within VCNP is Valle Grande (VG) (Fig. 2f),
an extensive open grassland. Many resurgent lava domes
form peaks over the grassy valleys, the highest of which is
Redondo Peak (3430 m). About 50 % of the total annual pre-
cipitation falls in the summer months as rain from convective
monsoonal storms, and the rest falls in the winter as snow.
The water in this area drains into the East Fork of the Jemez
River and eventually to the Rio Grande. The nearby Quema-
zon Natural Resource Conservation Services (NRCS) Snow
Telemetry (SNOTEL) site (35◦55′ N, 106◦24′W; 2898 m)
has a 1980–2022 average peak SWE of 22.4 cm.

We focus our analysis on an 82.5 km2 section of the
UAVSAR swath that encompasses VG and the surround-
ing forested hillslopes. The study area is defined by the
red rectangle in Fig. 2a, with inset maps showing elevation
(Fig. 2d), slope (Fig. 2e), binned north and south aspects with
VG delineated (Fig. 2f), and the 2016 National Land Cover
Database (NLCD) canopy cover percentage (Fig. 2g).

2.3 Data description

2.3.1 UAVSAR

UAVSAR is a fully polarimetric L-band radar deployed
on a NASA Gulfstream III aircraft, traditionally flown at
∼ 13 700 m with a 22 km nominal swath width (Hensley
et al., 2008; Rosen et al., 2006). Detailed technical specifica-
tions of the radar are provided at the top of Table 1. UAVSAR
data were accessed using the uavsar_pytools (Keskinen et
al., 2022) Python package. It uses the asf_search appli-
cation programming interface (https://github.com/asfadmin/
Discovery-asf_search, last access: 2 March 2023) for easier
downloading, formatting, and analysis of UAVSAR data. The
flights used in this study occurred on the mornings of 12,
19, and 26 February 2020. The UAVSAR team at the NASA
Jet Propulsion Laboratory (JPL) processed two 7 d (12–19
and 19–26 February) and one 14 d (12–26 February) ground-
projected (GRD) InSAR pairs. They were unwrapped using
the Integrated Correlation and Unwrapping (ICU) algorithm
(Goldstein et al., 1988). Processing parameters are outlined
at the bottom of Table 1, and information about the specific
products used is provided in the Supplement. For the three
flights used in this study, the flight track baseline was main-
tained within <±3 m, which is within the <±5 m require-
ment (Hensley et al., 2008).

Three interferometric products are produced for each In-
SAR pair: coherence, unwrapped phase, and the interfero-
gram. Coherence measures the consistency of the scattering
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Figure 2. (a) DEM of the UAVSAR acquisition area provided by NASA, with a red rectangle outlining the study area. (b) Map showing
the area of the UAVSAR acquisition (black outline) in the Jemez Mountains, NM. (c) A close-up of the GPR transect outlined by the black
rectangle in panel (d), with the Headquarters Meteorologic station (HQ Met; blue triangle) and HQ snow pit (black triangle) displayed. Due
to their close proximity, a single red triangle represents the Burned Area (BA) pit and Catalina–Jemez Critical Zone Observatory (CZO) snow
depth sensors. Within the study area extent, panel (d) is the lidar DEM; panel (e) is the lidar-derived slope; panel (f) is the lidar aspect binned
to north-facing (270–90◦, blue) and south-facing (90–270◦, orange) slopes, with the gray area representing the flat VG meadow where aspect
values are not valid; and panel (g) is the NLCD canopy cover percentage.

characteristics within a pixel between InSAR acquisitions.
Unwrapped phase is the estimated absolute phase change in a
pixel, generated from the initially ambiguous interferogram,
which is defined modulo 2π .

When there is a significant change in the landscape scatter-
ing properties between InSAR acquisitions, phase noise and
fringe discontinuities increase, coherence decreases, and the
unwrapping algorithm performs less reliably (Balzter, 2001).

We analyzed the coherence and unwrapped phase prod-
ucts for the HH (horizontal–horizontal) and VV (vertical–
vertical) polarizations to assess their quality before im-
plementing the SWE change equation. We found that co-
polarizations performed similarly (Table 2) and chose to uti-
lize HH for our study.

The right side of Fig. 3 shows the coherence values in the
study area for (a) 12–19 February, (b) 19–26 February, and

https://doi.org/10.5194/tc-17-1997-2023 The Cryosphere, 17, 1997–2019, 2023
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Figure 3. The unwrapped phase and coherence data for the (a) 12–19 February, (b) 19–26 February, and (c) 12–26 February InSAR pairs.
(d) The amplitude data for the three UAVSAR flights. Both panels (a) and (c) were atmospherically corrected. The gray area in the phase data
represents pixels lost in the unwrapping processes. VG and Jemez River main channel are outlined by blue and red dotted lines, respectively.
Triangles show the BA (red) and HQ (black) pits.

(c) 12–26 February. In the coherence maps, there are clear
patterns with respect to topography and probable variations
in snowpack LWC. The area of lowest coherence surrounds
the main channel of the Jemez River (dotted red line) that
flows through the southern central portion of VG. As seen in
Fig. 3d, there is a variable area of low backscatter in all three
amplitude images. This backscatter decrease is likely caused
by snowpack LWC or subnivean surface water attenuating
the radar signal. The spatial variability in backscatter values
in this riparian area between acquisitions causes low coher-

ence and the loss of pixels in the unwrapping processes for
all three pairs. There are also horizontal streaks of low coher-
ence and high backscatter within the images. These are likely
a result of radio frequency interference (RFI) during the ac-
quisitions. These lines do not propagate into the unwrapped
phase data and, therefore, are not of concern.

The left side of Fig. 3a–c displays the unwrapped phase
values for the three InSAR pairs. The 12–19 February and
12–26 February pairs show the atmospherically corrected
data, with this methodology discussed in Sect. 2.4. In the

The Cryosphere, 17, 1997–2019, 2023 https://doi.org/10.5194/tc-17-1997-2023
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Table 1. Technical specifications of the UAVSAR L-band radar
(top). InSAR processing and data parameters (bottom).

Parameter Value

Wavelength 23.84 cm
Frequency 1.26 GHz
Polarization Quad pol
Bandwidth 80 MHz
Pulse length 40 µs
Radar look direction Left
Range swath width 22 km
Average near-range look angle 28.01◦

Average far-range look angle 68.9◦

Ground range pixel spacing 6 m
Number of looks in range 3
Number of looks in azimuth 12
Phase unwrapping method ICU
Phase unwrapping filtering method Low pass
Phase unwrapping filter window size 3 pixels× 3 pixels

open VG meadow (dotted blue line), the unwrapping algo-
rithm performs well, and most pixels are preserved except
in the riparian area for the reasons described previously. The
other source of low coherence and corresponding unwrap-
ping pixel loss occurs on the forested hill slopes (outside
of the dotted blue line) surrounding the VG meadow. Over-
all, the unwrapped data provide a high-quality input into the
SWE change inversion equation.

2.3.2 Landsat fSCA

No current technique can confidently discriminate dry snow
cover using solely L-band radar (Tsai et al., 2019). Our
study aims to assess the ability of L-band InSAR to esti-
mate spatiotemporal SWE changes. Therefore, our analy-
sis requires the proper identification of snow-covered pixels
within the UAVSAR swath, ensuring the radar signal inter-
acts with mostly snow cover and not bare ground. To do
this, we utilized Landsat 8 fSCA (U.S. Geological Survey
and Center, 2018) data from 18 February and 5 March 2020
(Fig. 4). These data are generated using a spectral unmix-
ing analysis based on the Snow Covered Area and Grain
size (SCAG) algorithm developed for MODIS (Painter et al.,
2009). The data processing workflow includes water mask-
ing, cloud masking, and canopy cover corrections (Selkowitz
et al., 2017; Stillinger et al., 2023). Within the full UAVSAR
swath, 29.7 % of pixels were entirely snow-free on 18 Febru-
ary (Fig. 4a), increasing to 38.1 % on 5 March (Fig. 4b).
For just the study area, 4.1 % of pixels were snow-free on
18 February (Fig. 4d), with an increase to 9.1 % by 5 March
(Fig. 4e).

2.3.3 Snow pit and meteorologic station data

Snowpack information was collected at two pit locations
during each of the three UAVSAR overflights. These data
are stored in the SnowEx database (Johnson and Sandusky,
2023). The Headquarters Meteorologic station (HQ Met) pit
was located at 35◦51′30′′ N, 106◦31′17′′W at an elevation
of 2650 m. The Burned Area (BA) pit was located near Re-
dondo Peak at 35◦53′18′′ N, 106◦31′57′′W at an elevation of
3030 m.

Measurements of snow depth, snow layer stratigraphy
(grain size, grain shape, hand hardness, and manual wetness),
ρs, εs, and temperature were recorded for each pit. ρs, εs,
and temperature were measured in 10 cm increments starting
at the top of the pit. Stratigraphic layer size is variable and
defined by the observer. In situ ρs measurements have been
shown to have an uncertainty of ∼ 10 % (Conger and Mc-
Clung, 2009; Proksch et al., 2016). εs was measured using
an A2 Photonics WISe instrument (A2P, 2021), which Webb
et al. (2021b) showed to have a mean absolute error (MAE)
of 0.106 when compared to other in situ observations.

Summary statistics from each pit are located in Table 3.
Interval boards, which are small plastic manual precipitation
gauges placed on the snow surface used to track new snow
accumulation, were located in close proximity to both snow
pits. The HQ pit data noted minor melting for both the 20 and
26 February, and it is important to clarify that the snow pits
were collected ∼ 1–3 h after the radar data acquisition.

The Western Climate Research Center (WRCC) de-
ployed two meteorologic stations that measured snow depth
(Fig. 5a), air temperature (Fig. 5b), wind speed (Fig. 5c), and
incoming solar radiation (Fig. 5d). The first station is the
aforementioned HQ Met, and the second is located on Re-
dondo Peak (RP Met; 35◦53′02′′ N, 106◦33′13′′W). Six ul-
trasonic snow depth sensors (∼ 3030 m), originally installed
by Molotch et al. (2009) and employed in subsequent stud-
ies (Musselman et al., 2008; Harpold et al., 2015), were used
to measure variations in snow depth near the BA pit. Ultra-
sonic snow depth sensors have a known uncertainty of±1 cm
(Ryan et al., 2008).

Figure 5 is a time series of in situ meteorologic data from
HQ Met and RP Met. Figure 5a shows snow depths from
seven ultrasonic sensors from 11 February to 6 March. The
shaded gray area on the plot shows a small snowfall event
starting the night of 22 February and ending 23 February. In
situ snow depths were converted to SWE by multiplying by
the bulk ρs (from snow pit observations) for the 12–19 and
12–26 February pairs. We used a ρs of 240 kg m−3 for new
snow measured from the BA pit interval board for the 19–
26 February pair.

2.3.4 GPR survey

We used GPR to estimate SWE along a transect for ground-
based validation near the HQ site (Marshall et al., 2005;
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Table 2. UAVSAR unwrapped phase (UNW) and coherence statistics for the full scene (FS) and study area (SA). UNW loss (%) is the
percentage of pixels lost in the unwrapping process.

Pair Polarization FS mean coherence SA mean coherence FS UNW loss (%) SA UNW loss (%)

12–19 Feb HH 0.53 0.50 9.4 7.7
12–19 Feb VV 0.54 0.50 8.9 12.8
19–26 Feb HH 0.55 0.52 5.0 4.1
19–26 Feb VV 0.57 0.54 4.3 3.7
12–26 Feb HH 0.50 0.48 8.3 6.6
12–26 Feb VV 0.53 0.51 6.7 5.5

Figure 4. Landsat fSCA clipped to the UAVSAR swath extent (black outline) for (a) 18 February 2020 and (b) 5 March 2020. (c) The
pixel-wise percent fSCA change between the two dates, with the black area representing 0 % fSCA from 18 February 2020. The study area
fSCA (red box) for (d) 18 February 2020 and (e) 5 March 2020 as well as (f) the difference between the two dates. Landsat true-color image
in the study area for (g) 18 February 2020 and (h) 5 March 2020.

Webb, 2021). GPR data were collected on 12, 20, and
26 February at the same time as the snow pit data collec-
tion (Table 3). A GPR pulse is an electromagnetic wave that
travels through the snowpack and is reflected off interfaces
between materials with different dielectric properties such

as ρs, with the strongest reflection often from the snow–soil
interface at L-band (Bradford et al., 2009; Holbrook et al.,
2016; Webb, 2017). For this study, two-way travel time (t2)
of GPR waves through the snow was obtained along transects
using a MALÅ Geoscience ProEx control unit pulse GPR
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Table 3. Snow pit data collected for the UAVSAR time series. Bulk ρs and εs, which are an average of the 10 cm segments, are reported.
No εs was collected at the BA pit. Data were collected on 20 February but not during the 19 February flight date. No BA pit was dug on
12 February. The 12 February SWE was estimated using 10 depth measurements around the pit area and the 20 February ρs.

Pit Date UAVSAR start Pit start Depth Bulk ρs SWE Bulk Condition
(month/day) (HH:MM LT) (HH:MM LT) (cm) (kg m−3) (cm) εs

HQ 2/12 09:46 13:05 78 261 20.3 1.26 Mostly dry
HQ 2/20 10:10 11:56 67 302 20.2 1.39 Melting
HQ 2/26 10:27 11:57 66 309 20.4 1.29 Melting
HQ 3/04 NA 11:05 57 342 19.5 1.56 Melting
BA 2/12 09:46 13:37 82 290 23.8 NA NA
BA 2/20 10:10 12:24 80 290 23.2 NA Dry
BA 2/26 10:27 11:39 82 290 23.8 NA Dry
BA 3/04 NA 11:16 76 307 23.3 NA Dry

NA: not available.

Figure 5. (a) A snow depth time series of the six CZO snow depth
sensors (gray lines, ∼ 3030 m) and HQ Met (black, 2650 m). The
shaded gray area represents a small storm registered by the sensors
on Redondo Peak. HQ Met and RP Met (red, 3231 m) time series
of (b) average hourly temperature, (c) average hourly wind speed,
(d) and average hourly incoming solar radiation (insolation) from
11 February to 6 March. The vertical blue dotted lines represent
the three UAVSAR flights (12, 19, and 26 February), and the ver-
tical orange dotted lines represent the Landsat fSCA acquisitions
(19 February and 5 March).

system with an 800 MHz shielded antenna. The antenna was
fixed in place on a plastic sled towed behind the operator. A
GPS antenna connected to the ProEx control unit registered
location information every second.

Radar pulses were triggered on 0.05 s intervals us-
ing eight-times stacking (i.e., eight signals collected per
point and averaged). The average survey travel speed was

∼ 0.5 m s−1 resulting in ∼ 40 returns per meter. The Re-
flexW 2D software package (Sandmeier, 2022) was used for
time-zero adjustment, removing low-frequency background
energy (i.e., dewow), and correcting for signal attenuation
through the snow. For further details of GPR processing
methods applied to snow, the reader is referred to Bonnell
et al. (2021), McGrath et al. (2019), and Webb et al. (2018).
The radar reflection from the snow–soil interface was then
selected at the first break prior to the first peak of the reflec-
tion. A topographic correction was performed by dividing t2
by the cosine of the ground surface slope at that location.

The εs of snow is sensitive to ρs and LWC (Bradford et al.,
2009; Heilig et al., 2015; Webb et al., 2018) and is related to
the velocity (v) of the radar wave through snow:

v =
s
√
εs
, (3)

where s is the speed of light in a vacuum (∼ 0.3 m ns−1).
For this study, the εs was directly measured in snow pit ob-
servations using an A2 Photonics WISe instrument at 10 cm
vertical increments for the entirety of the snow pit height.
We then averaged all WISe εs pit observations as the bulk εs
value (Table 3). The observed εs was subsequently used to
estimate a velocity to distribute snow depth estimates along
GPR transects.

ds =
vt2

2
(4)

These depth estimates were then converted to SWE by
multiplying snow depth by the pit-observed bulk ρs for direct
comparison to UAVSAR-derived 1SWE (described further
in Sect. 2.6). When using this approach of GPR observations
in combination with a pit-observed bulk ρs, we expect to ob-
serve SWE values within 5 % at the frequency used (Marshall
et al., 2005). We calibrated our GPR 1SWE data to the ob-
served 1SWE at the snow pit. To do this, we defined a bias
as the observed mean 1SWE difference between all GPR
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observations within 20 m of the snow pit and the SWE mea-
sured at the pit. We then removed this bias from the entire
GPR dataset to create a directly comparable dataset relative
to the UAVSAR-derived 1SWE. This is a similar method to
that described below to tie the UAVSAR data to snow pit ob-
servations. The point-based GPR returns were rasterized to
the 6 m UAVSAR resolution, and only those pixels with 30
or more GPR point observations were retained.

2.4 InSAR atmospheric correction

While radar signals can penetrate a moist and cloudy atmo-
sphere, variation in dielectric properties between wet and dry
air can significantly affect the radar signal (Ferretti et al.,
2001). While substantial research has been conducted with
respect to correcting both tropospheric (Yu et al., 2018) and
ionospheric (Meyer, 2011) effects from satellite-based SAR,
suborbital SAR is both less common and has different correc-
tion considerations due to the lower acquisition altitude and
often shallower and more diverse observation geometries.

Tropospheric atmospheric delay effects can be divided
into two parts: dry delay and wet delay. The dry delay is
caused by variations in temperature and pressure and is of-
ten considered less significant than the wet delay for space-
borne applications (Zebker et al., 1997). Wet delay is caused
by spatial (within swath) and temporal (between acquisi-
tions) variations in atmospheric water vapor concentrations
(Danklmayer et al., 2009). Two recent studies (Michaelides
et al., 2021; Bekaert et al., 2018) have developed unique ap-
proaches to correct UAVSAR atmospheric delay; however,
these methods were not directly applicable to the type of de-
lay seen in our UAVSAR data.

As seen in Fig. 6a, the 12–19 February uncorrected un-
wrapped phase data show a noticeable near to far range
phase ramp. For this UAVSAR flight, the average altitude
was 12.9 km, compared with a satellite that traditionally or-
bits at ∼ 750 km. This vastly lower sensing altitude causes a
larger diversity in look angles and radar look vector length
variations between the near and far ranges of the radar swath
to emerge. The radar slant range, or the distance between
a point on the ground and the radar, spanned from 11.4 to
27.8 km. The look angle varied from 28.51◦ in the near range
to 69.01◦ in the far range. Thus, the radar wave in the far
range is traveling through more atmosphere than the near
range by a factor of 2.4.

Assuming a spatially homogeneous change in atmosphere
between acquisitions, we used the pixel-wise slant range dis-
tance, or radar look vector (LKV), to correct the phase ramp.
LKV is mostly dependent on the near to far range position
in the scene but also varies with local topography. LKV is
calculated by geocoding the east (e), north (n), and up (u)
components of the single-look complex (SLC) .lkv file (Sup-
plement). The distance is then calculated by summing these

components in quadrature:

LKV=
√
e2+ n2+ u2. (5)

Phase values can be impacted by atmospheric delay and
snowpack fluctuations simultaneously. By calculating the at-
mospheric delay of only snow-free pixels defined by the
18 February fSCA product for the whole UAVSAR swath
and comparing it to the atmospheric delay of only snow-
covered pixels, we were able to confirm that the bulk of
the observed signal is atmospheric and not snowpack re-
lated (Fig. 7b). Using data from meteorological stations, we
know there was not a large-scale snowfall event between the
two flights. Using the linear relationship (r2

= 0.81) between
LKV and phase shown in Fig. 7a, we subtract the estimated
atmospheric component from the uncorrected data to achieve
the atmospherically corrected image (Fig. 6b). This correc-
tion method was applied to the 12–19 and 12–26 February
pairs.

2.5 Generating local incidence angle data

The local incidence angle (θ ) is the angle between the ground
surface normal and the LKV on a per-pixel basis. The angle
is calculated by deriving the surface normal from a DEM and
computing the dot product with the LKV:

θ = cos−1(−n̂ ·LKV), (6)

where n̂ is the surface normal. θ varies with respect to local
topography and the LKV. θ affects the distance that the radar
wave will travel through the snowpack and is a direct input
into the SWE change inversion algorithm (Eq. 2). We found
errors within the original SRTM DEM used in the UAVSAR
data processing (Fig. 8b). This error is likely due to phase
noise in the SRTM interferograms, as it is consistent through-
out the dataset and falls within the known SRTM vertical un-
certainty of±16 m (Rodríguez et al., 2006; Sun et al., 2003).
VG is relatively flat and smooth outside of river channels
and gullies; however, the original DEM shows artifacts on
the order of 5–15 m throughout the meadow and does not ac-
curately represent the ground surface. These DEM artifacts
propagate into the estimate of θ (Fig. 8d), which is then in-
put into the SWE change equation, causing errors in SWE
change estimations.

We generated new θ data using a snow-free lidar DEM
(Fig. 8a) acquired in 2010 for the Catalina–Jemez Criti-
cal Zone Observatory (CZO) (OpenTopography, 2012). The
high spatial resolution of 1 m and elevation accuracy of 5–
30 cm provide a more reliable starting point to calculate θ .
By using the LKV and the lidar DEM, the new θ data better
represent the bare ground surface of VG (Fig. 8c).
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Figure 6. (a) The uncorrected phase from the 12–19 February pair and (b) the atmospherically corrected phase data. There is a linearly
increasing phase ramp from the near to far range (east to west), which is a distance of ∼ 22 km.

2.6 Calculating SWE change

To begin the SWE change estimation, the three InSAR pairs
were masked with Landsat fSCA data collected on 18 Febru-
ary 2020. All pixels with > 15 % snow cover were included
so as not to mistakenly exclude pixels in the forest where
the snowpack is partially obstructed by forest canopy. Using
Eq. (2), 1SWE values were calculated on a pixel-wise basis
with inputs of λ (23.84 cm), ρs, εs, and the lidar-derived θ .
ρs and εs are averages of the two snow pit values (Table 2)
between the two acquisition dates.

InSAR phase differences produce a relative measurement
of change in SWE; therefore, these data need to be tied to
a point on the ground to estimate absolute change. As there
was near-zero SWE change at the HQ snow pit between the
three UAVSAR acquisitions (Table 3), we used this loca-
tion as our InSAR known change point. This SWE change
of −0.1 cm for 12–19 February and 0.2 cm for 19–26 Febru-
ary is well within the margin of measurement error (10 %) for
the snow pit observations. To account for error within GPS
snow pit location, 1SWE values for the snow pit pixel and
the eight surrounding pixels were averaged. This averaged
value was subtracted to obtain an absolute change. To calcu-
late the cumulative 1SWE, the two 7 d pairs were masked,
so only pixels that occurred in both scenes were considered,
and then added together.

3 Results

3.1 InSAR 1SWE

InSAR 1SWE results are displayed in Fig. 9 for (a) 12–
19 February, (b) 19–26 February, (c) 12–26 February, and
(d) the 12–26 February cumulative change (CM) in the study
area. Table 4 reports 1SWE mean, standard deviation (SD),
median, and interquartile range (IQR), and it is split into four
physiographic classes. First is the full study area (Fig. 2d),
followed by the three classes defined in Fig. 2f: VG, north-
facing slopes, and south-facing slopes. Figure 10 shows his-
tograms of InSAR-derived 1SWE for the four aforemen-
tioned classes. We note that there was a greater mean es-
timated SWE loss for 19–26 February compared with 12–
19 February for all physiographic regions (Fig. 10a, b, c, d).

In Fig. 9a (12–19 February), the full study area has a mean
1SWE of −0.52 cm, with VG showing a similar change of
−0.62 cm. In VG, the largest SWE losses occur in gullies and
terrain depressions, with these areas showing visible SWE
loss in all four pairs. The northeast corner of the study area
shows a consistent increase in SWE, on the order of < 1 cm.
There is a pattern of more SWE loss on the south-facing
slopes (mean=−0.58 cm) than on the north-facing slopes
(mean=−0.24 cm) for this pair.

Figure 9b (19–26 February) displays similar spatial pat-
terns to those of Fig. 9a. Overall, the mean SWE loss
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Figure 7. Density scatterplots showing the relationship between un-
wrapped phase and LKV in the 12–19 February InSAR pair for
(a) snow-covered pixels and (b) snow-free pixels. The similarity
in the two plots shows the large-scale phase signal is atmospheric
and not snowpack related.

was −1.24 cm, with the VG losing on average −1.34 cm.
These SWE losses are over double that of 12–19 Febru-
ary. The highest elevation occurs in the northwest corner of
the scene near Redondo Peak, and it is the only place to
show consistent SWE increases. These increases are com-
pared with in situ SWE data in the area (see Sect. 3.2).
The pattern of more than double the SWE loss on south-
facing slopes (mean=−1.45 cm) compared with north-
facing slopes (mean=−0.75 cm) continues from the first
pair.

The 14 d baseline pair, 12–26 February (Fig. 9c), has
a mean 1SWE of −2.29 cm. The 12–26 February CM
(Fig. 9d), created by adding the values of Fig. 9a and b to-
gether, has a mean value of −1.70 cm. While the IQR, SD,
and histogram shape (Fig. 10d, e, f, h) are similar in all four
physiographic sections of the 14 d data, the mean of 12–
26 February has a negative bias of ∼ 0.5 cm compared with
12–26 February CM. This is likely due to variations in how
these data were atmospherically corrected. The spatial pat-
terns observed in the two 7 d InSAR pairs become amplified
in both Fig. 9c and d.

As a first-order estimate of uncertainty within the tech-
nique, we calculated the 1SWE values for areas consid-
ered snow-free by the 18 February fSCA data (Fig. 4d).
The 1SWE data from the three pairs (12–19, 19–26, and

Table 4. 1SWE (cm) mean, SD, median, and IQR from Fig. 9 for
the four InSAR pairs analyzed. They are split into the same four
physiographic classes (full study area, VG, north-facing slopes, and
south-facing slopes) as Fig. 10. The 12–26 February cumulative
(CM) is created by adding the SWE changes from the 12–19 Febru-
ary and 19–26 February pairs.

1SWE (cm)

Full study area Mean SD Median IQR

12–19 Feb −0.52 1.11 −0.50 1.18
19–26 Feb −1.24 1.30 −1.12 1.64
12–26 Feb −2.29 1.68 −2.24 1.87
12–26 Feb CM −1.70 1.54 −1.53 1.86

VG

12–19 Feb −0.62 0.82 −0.59 0.88
19–26 Feb −1.34 1.18 −1.20 1.56
12–26 Feb −2.63 1.38 −2.53 1.54
12–26 Feb CM −1.92 1.43 −1.78 1.66

North-facing slopes

12–19 Feb −0.24 0.98 −0.23 1.04
19–26 Feb −0.75 1.26 −0.62 1.45
12–26 Feb −1.46 1.51 −1.58 1.78
12–26 Feb CM −0.97 1.27 −0.83 1.47

South-facing slopes

12–19 Feb −0.58 1.39 −0.58 1.74
19–26 Feb −1.45 1.37 −1.39 1.67
12–26 Feb −2.47 1.89 −2.42 2.33
12–26 Feb CM −1.97 1.67 −1.78 2.08

12–26 February) were combined, and we report a snow-free
1SWE mean value of −2.06 cm, an SD of 1.56 cm, and an
IQR of 2.14 cm.

3.2 InSAR vs. snow depth sensors, snow pits, and GPR
1SWE

The InSAR-derived SWE retrievals were compared to three
types of in situ SWE data: snow depth sensors, snow pits,
and GPR. Figure 11a is a plot of 1SWE values from the six
CZO snow depth sensors and the BA pit (∼ 3030 m) as well
as the HQ Met snow depth sensor and pit (2650 m) against
the InSAR 1SWE values. Due to many of the in situ mea-
surements being on or near the edge of a pixel, the InSAR
1SWE values are an average of the pixel in which the mea-
surement falls and the four closest pixels. The InSAR re-
trievals had a RMSE of 1.46 cm and an MAE of 1.16 cm
compared with the in situ measurements (n= 27, r2

= 0.34).
The small snowfall event noted in Sect. 2.3.3 is registered
in the higher-elevation CZO sensors and BA pit but not in
the HQ Met location (Fig. 5a). We see this same pattern for
InSAR-based returns in Fig. 9b (19–26 February), which is
also shown by the mostly positive values of the pink dots
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Figure 8. The snow-free ground surface in a portion of the VG meadow for (a) the lidar DEM and (b) the SRTM DEM. UAVSAR θ is
generated from (c) lidar and (d) the SRTM data. Gullies and small stream channels are easily discerned from the lidar DEM, while the SRTM
DEM shows a variable surface with large mounds.

in Fig. 11a. The study area shows mostly SWE loss, while
the higher-elevation area in the northwest corner of the plot
shows an increase, indicating general agreement in the abla-
tion and accumulation patterns.

We compared the InSAR and GPR1SWE between 12 and
26 February (Fig. 11b). No significant relationship was found
(r2
= 0.042), and the RMSE and MAE increased to 3.03 and

2.57 cm, respectively. The error metrics were calculated us-
ing the GPR data as validation, yet offsets in acquisition tim-
ing between UAVSAR and the GPR likely caused increased
uncertainty when comparing the two datasets. On 12 Febru-
ary, the GPR acquisition began ∼ 3 h after the 09:46 LT
UAVSAR flight, whereas the GPR data collection started
∼ 2 h after the 10:27 LT UAVSAR acquisition on 26 Febru-
ary. During these acquisition time offsets, both temperature
(Fig. 5b) and incoming solar radiation (Fig. 5d) were in-
creasing. These atmospheric conditions presumably led to
increases in snowpack LWC and εs, which would explain
why 44 % of the GPR 1SWE values showed increases when
no measurable snowfall occurred in VG during the study pe-
riod. We note that the presence of liquid water in the snow-
pack can cause a GPR signal delay that could be incorrectly
interpreted as an increase in SWE. However, it should be

stated that many of these points remain within the known
uncertainty (±1 cm SWE) of L-band GPR observations for
a dry snowpack (McGrath et al., 2019), with higher uncer-
tainty expected under wet-snow conditions. Furthermore, the
mean GPR-derived1SWE product is∼ 0 cm, which matches
well with the pit-observed change of ∼ 0 cm (Table 3). The
InSAR-derived 1SWE product has a mean of −2.63 cm in
VG; this indicates that potential differences arise from using
the pit-observed εs measurements occurring later in the day
than the InSAR retrievals and at the same time as the GPR
survey. The potential change in snowpack properties that can
occur during this time, as previously mentioned, could fur-
ther explain these differences between the GPR- and InSAR-
derived products. However, it is important to note that these
differences of 2–3 cm remain small in the context of other re-
mote sensing techniques, especially when considering com-
plex spring snowmelt conditions.

3.3 1fSCA vs. InSAR 1SWE

We compared the InSAR 1SWE from 19 to 26 February
(Fig. 12a) to 1fSCA between 18 February and 5 March
(Fig. 12b). The InSAR data were aggregated up to the 30 m
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Figure 9. InSAR-derived 1SWE results for (a) 12–19 February, (b) 19–26 February, (c) 12–26 February, (d) and the cumulative change
between 12 and 26 February generated by adding the data from panels (a) and (b) together. The triangles represent the BA (red) and HQ
(black) snow pits.

Figure 10. The distribution of 1SWE values for the full study area, within VG, and for respective north-facing and south-facing slopes.
Panels (a–d) display the 12–19 and 12–26 February InSAR pairs, and panels (d–h) show the 12–26 and 12–26 February CM InSAR pairs.

Landsat resolution. While these datasets measure two differ-
ent variables (SWE vs. fSCA) during different acquisition
periods, the comparison of snow ablation (fSCA reductions)
patterns provides useful information when attempting to val-
idate the experimental InSAR results. Several landscape fea-
tures are prevalent in both datasets. The long gully that runs
from the northern central area of VG to the Jemez River is

shown clearly in both maps. Other smaller gullies are also
clearly visible. There are both SWE and fSCA losses on the
south-facing hillslopes surrounding the VG. Both of these
patterns are being driven by these areas receiving more di-
rect solar radiation. In the northwest corner of the image, the
InSAR-derived map shows a small area of SWE increase, and
the fSCA image shows no loss in this area.
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Figure 11. (a) Comparing in situ SWE changes from the six CZO
sensors (circles), HQ snow depth sensor (triangles), and the BA and
HQ pits (stars) to InSAR-derived SWE changes for the three InSAR
pairs. The depth sensor SWE error bars are derived from a 10 %
uncertainty from snow pit ρs measurements and± 1 cm uncertainty
from the ultrasonic depth sensors. (b) Comparing InSAR- and GPR-
derived 1SWE from 12 to 26 February.

Limited complete fSCA loss occurred in much of VG,
while a mean value of −1.34 cm SWE was recorded. For op-
tical images to show fSCA loss, bare ground must appear
in the pixel. For the majority of the snowmelt season, pix-
els lose SWE while still being completely snow covered. The
fSCA product also shows more areas of melt than the1SWE
product, which can be attributed to the 8 d difference in the
date of the last acquisition (26 February vs. 5 March). On
4 March, field teams reported widespread snowmelt through-
out VG and the emergence of bare ground. The optical data
also show areas of 100 % fSCA reduction and, therefore, bare

ground appearing. fSCA gains are recorded in the densely
forested hillslopes south of VG, which are shown by the
true-color imagery (Fig. 4g, h). Uncertainty arises in forested
areas from how the fSCA algorithm deals with subcanopy
snow estimation.

4 Discussion

4.1 Key findings

During the study period, there was one localized measur-
able precipitation event on Redondo Peak, and tempera-
tures were diurnally fluctuating below and above freezing
(Fig. 5b). With the snowpack going through daily partial
freeze–thaw cycles, creating large sintered grains, and aver-
age wind speeds of 2.4 m s−1 (Fig. 5c), there is a low prob-
ability of blowing snow being a significant driver of SWE
loss. Field team observations noted the hard surface of the
snowpack during this time. This means that incoming so-
lar radiation, causing surface melt and sublimation during
the day, was the likely primary driver of SWE loss. This is
further confirmed by south-facing slopes, which receive the
most direct incoming solar radiation, showing about double
the amount of SWE loss to that of north-facing slopes for all
InSAR pairs. These findings align with work by Musselman
et al. (2008), who also observed midwinter SWE loss driven
by incoming solar radiation in VCNP.

We hypothesize that the snowpack would become partially
isothermal during the day and start to melt and that the sur-
face would then refreeze at night. The three UAVSAR flights
occurred between 09:30 and 10:30 LT when the snowpack
was still mostly frozen, allowing the radar signal to hold co-
herence even though minimal LWC was still likely present in
the snowpack. For SWE loss to occur with this hypothesis,
melted snow needs to exit the snowpack or flow downslope.
If melted snow is moving through the entire snowpack, it will
not be entirely refrozen based on the meteorological data. It
is possible that lateral flow within the snowpack (Webb et al.,
2021a; Eiriksson et al., 2013; Evans et al., 2016) is moving
snowmelt downslope between acquisitions.

Both the spatial distribution and magnitude of the 1SWE
patterns make sense, assuming that insolation is the pri-
mary mechanism driving SWE change during this time pe-
riod. These patterns are confirmed by visually comparing the
1SWE to1fSCA (Fig. 12). There are noticeable similarities
in the areas of greatest loss between the two datasets. The
variation in acquisition time period and different parameters
being measured do not allow for a direct quantitative com-
parison. However, when Marshall et al. (2021) quantitatively
compared lidar snow depth changes to the UAVSAR phased-
based depth retrievals, they found an r2 of 0.76, an RMSE
of 4.7 cm for snow depth, and 0.9 cm for SWE. These re-
sults add confidence to the findings presented here and show
similar RMSE values to the point-based snow depth sensor
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Figure 12. (a) InSAR 1SWE between 19 and 26 February aggregated to the 30 m Landsat resolution. (b) The Landsat 1fSCA between
18 February and 5 March. The color scale for panel (a) was changed to −5 to 5 cm to exemplify the patterns.

and snow pit comparisons presented in Fig. 11a (RMSE of
1.54 cm for SWE).

The InSAR 1SWE retrievals showed a stronger correla-
tion to the snow pit and snow depth sensors 1SWE com-
pared with GPR. The depth sensors estimated SWE from
snow height at a single point location and a bulk ρs value
from the nearby BA snow pit. GPR is a spatial observation
that depends on the snow’s dielectric properties, similar to
InSAR retrievals. This makes the radar methods for deriving
SWE more sensitive to variability in snowpack properties,
such as ρs, LWC, and εs. The GPR survey was conducted
during midday when LWC can vary significantly as a result
of increased solar radiation, which in turn increased the un-
certainty in observations (e.g., 44 % of GPR pixels showed
increasing SWE). The GPR measured some slight SWE in-
creases, meaning there were increases in εs; this is a sign
that melt had begun during the afternoon acquisitions. Fu-
ture GPR analyses will benefit from validation data collected
over larger areas, synchronous timing with remote sensing,
and greater SWE variations between acquisitions. We believe
that GPR is a vital tool for future InSAR SWE validation ef-
forts.

The 19–26 February pair is of particular interest because
of the snowfall event (Fig. 5a) that occurred on 22 February
in the vicinity of Redondo Peak. This snow accumulation
event was detected by the InSAR data, in situ snow depth
sensors, and interval boards in the area of the BA snow pit.
The lower elevations showed no accumulation in the InSAR
retrievals, and this was confirmed by both the HQ Met snow
depth sensors and snow pit (Fig. 11a). These results illus-
trate the ability to track both snow ablation and accumulation
within the same radar swath, furthering our confidence in the
technique’s ability to measure 1SWE under a wide range of
conditions. It is important to note that these small changes
are within what can be an expected range of uncertainty for
1SWE estimation due to LWC variations impacting the spa-
tial variability in εs during spring snowmelt; capturing the
spatial patterns within this range indicates great promise for
future applications.

Leveraging morning acquisitions, we showed that the
UAVSAR L-band InSAR is able to maintain coherence over a
14 d baseline, even in the presence of diurnal melt cycles. The
12–26 February held coherence and provided quality snow-
phase information. This further supports the robustness of the
technique for NISAR’s 12 d repeating orbit. However, the bi-
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ases between the 12–26 February and 12–26 February CM
pairs, resulting from variations in their atmospheric correc-
tion, present additional complications. This is discussed in
further detail in Sect. 4.2.

Corresponding research by Webb et al. (2021b) investi-
gated the relationship between εs and LWC for both dry- and
wet-snow conditions in the Jemez Mountains. With ρs rang-
ing between 261 and 309 kg m−3 and εs ranging between
1.26 and 1.39, snowpack LWC would range approximately
between 3 % and 5 %. This validates figures presented in
Leinss et al. (2015), who state that the radar signal can pene-
trate between about 10 m at 1 % LWC and 1 m at 10 % LWC
at L-band (1.26 GHz) and a ρs of 300 kg m−3. The high qual-
ity of the phase signal despite some snowpack LWC shows
promise for the overall performance of NISAR and its 06:00
and 18:00 LT sun-synchronous orbit (Webb et al., 2021b;
Bonnell et al., 2021).

4.2 Errors and uncertainty

Our results provide an initial evaluation of InSAR-derived
SWE uncertainty by reporting the mean (−2.06 cm) and SD
(1.56 cm) 1SWE values of snow-free pixels. We note that
these pixels only represent about 5 % of the study area, and
much of the snow-free area exists in densely forested regions
where the fSCA uncertainty is greatest (Selkowitz et al.,
2017). Section 4.3 outlines the continued work needed to bet-
ter understand uncertainty within the InSAR SWE retrieval
technique. In context with other SWE estimation techniques,
airborne lidar has been shown to have uncertainty on the
order of 7–8 cm for snow depth (Currier et al., 2019) and
∼ 50 kg m−3 for modeled ρs (Raleigh and Small, 2017). This
results in a similar magnitude of SWE uncertainty for the rel-
atively shallow snowpack that develops in the VCNP.

The atmospheric correction developed in this study is spe-
cific to the UAVSAR data that we used. It assumes a homoge-
neous delay related to the LKV. This delay is most likely due
to pressure and temperature differences between radar acqui-
sitions but does not account for smaller-spatial-scale water
vapor variations in the atmospheric delay signal within the
radar swath. While we are confident in the correction re-
sults from this method for the 12–19 and 12–26 February
pairs, the consistency of near to far range phase ramp in these
data is unique within the SnowEx UAVSAR dataset, and this
method will not be directly applicable to all situations.

We held the εs values constant for the entire scene. While
a single value may be sufficient for the VG meadow, the en-
tire processed scene has more topographic and climatic varia-
tion and, therefore, εs and ρs variability within the snowpack.
We used in situ measured εs values for this study to account
for snowpack LWC, instead of estimating it from density as
done in past studies (Rott et al., 2003; Deeb et al., 2011;
Guneriussen et al., 2001). Eppler et al. (2022) and Leinss
et al. (2015) attributed <∼ 5 %1SWE error to ρs estimates.
However, due to the known presence of LWC in the snow-

pack and the difference in timing between εs observations
and UAVSAR flights, uncertainty is likely larger in our anal-
ysis. We showed that L-band InSAR could hold coherence
with low (∼ 1 %–5 %) levels of snowpack LWC. This adds
complexity to the retrievals and should be the topic of fu-
ture investigations. A variation in LWC between acquisitions
will impact radar wave propagation speed and refraction an-
gle in the snowpack, causing a phase shift that resembles
a fluctuation in SWE, which could be either a gain or loss.
The ambiguity between LWC and SWE variations affecting
φsnow is resolved by using in situ data to understand the at-
mospheric and snowpack dynamics between the flights. For
this reason, we limited the geographic scope of this study to
areas in which field teams evaluated snowpack conditions,
motivated by our goal to confidently validate the 1SWE re-
trievals.

The phase returns in this study were tied to a known
change point using the in situ snow pit data. This method
assumes that there was no variation in SWE nor εs at this
point between the three radar acquisitions. For future NISAR
data, a time series could be initiated starting with a snow-free
scene. In such a scenario, any phase delay will be related to
the new snow accumulated on the ground. The lack of tem-
poral consistency of the suborbital UAVSAR measurements
did not allow for the implementation of this methodology.

We created new θ data using a high-resolution lidar DEM
because of errors within the SRTM DEM. NISAR will use
the TanDEM-X-derived 30 m Copernicus DEM, which does
not show the same inaccuracies as SRTM for non-vegetated
areas (Rizzoli et al., 2017), and therefore will not be of signif-
icant concern. However, all further studies utilizing SnowEx
UAVSAR data should inspect the θ raster provided before
employing it in the SWE change inversion equation. If errors
are found, new θ data should be generated using the Coper-
nicus DEM or other methods (e.g., lidar) to minimize param-
eter uncertainty.

4.3 Future work

The SnowEx 2020 and 2021 campaigns collected UAVSAR
time series data at 14 different research sites across the WUS.
While we reported a first-order estimate of uncertainty of
± 1.56 cm, future analysis of this large dataset should con-
tinue to quantify the uncertainties within the SWE retrieval
technique. This includes but is not limited to (1) the impacts
of θ , slope, and aspect on the SWE returns; (2) considering
the effect of snow wetness on Eq. (2); (3) the influence vari-
ous forest cover metrics; (4) constructing a consistent1SWE
time series to prepare for NISAR’s 12 d temporal repeat; and
(5) implementation of spatially distributed ρs and εs data into
the SWE change equation. This could be derived from snow-
pack energy balance models (Marks et al., 1999; Liston and
Elder, 2006) or through polarimetric radar retrievals (Shi and
Dozier, 2000). Future NISAR InSAR SWE validation efforts
would greatly benefit from synchronous airborne lidar snow
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depth acquisitions with concurrent in situ measurements of
εs, ρs, and snow depth. These efforts should focus on com-
plex mountain watersheds.

Previously, InSAR data have been used to measure geo-
logic processes that vary at slower spatiotemporal scales than
mountain SWE, and therefore image pairs could be selec-
tively chosen to have minimal decorrelation and atmospheric
effects. However, this is not the case for InSAR-based SWE
monitoring; it requires a complete time series of snow accu-
mulation and ablation throughout the winter season due to
rapid decorrelation in snow-covered regions.

The ability to confidently identify and correct for spatially
and temporally varying atmospheric signals over mountain
range scales is one of the main challenges facing this tech-
nique. To address this atmospheric limitation, additional or-
bital snow-specific correction methods must be developed.
Future work should leverage past studies utilizing MODIS
and other imaging spectrometers (Li et al., 2009), high-
resolution weather models (Liu et al., 2009), GPS measure-
ments (Li et al., 2006), and combinations of these techniques
in tandem (Bekaert et al., 2015). While NISAR data products
will include ionospheric and tropospheric correction layers
at an 80 m spatial resolution, these corrections are automated
and may not be temporally consistent enough for snow mea-
surement purposes.

Furthermore, while the1SWE results are InSAR-derived,
this technique requires a multi-sensor approach for correct
implementation. Optical fSCA data are needed to identify
snow-covered pixels as part of the correction for atmospheric
delay and to apply the SWE inversion equation over only
snow-covered pixels. The Landsat 8 image data used in
this study represented 2 of the very few cloud-free days
throughout the winter time series over the entire UAVSAR
swath. To account for the significant issue of cloud cover, fu-
ture investigations should leverage multiple optical sensors
(e.g., Sentinel-2, MODIS, and commercial high-resolution
imagery) and optical sensor fusion and interpolation meth-
ods (Rittger et al., 2021; Dozier et al., 2008), and they
should focus on how to best combine SAR and optical data
for SWE change monitoring. Any future SAR-derived SWE
product, such as the Ku- and X-band approach (Tsang et al.,
2022) or the P-band signals of opportunity (SoOp) (Yueh
et al., 2021), will require optical data to delineate snow-
covered pixels in midlatitude mountain environments, mak-
ing this multi-sensor approach applicable for radars other
than NISAR. Continued work on how to best fuse disparate
sensors through cloud computing and machine learning will
be key to progressing our knowledge of mountain snowpack
monitoring (Durand et al., 2021).

5 Conclusions

This work leveraged high-resolution (6 m) UAVSAR inter-
ferometric data products to estimate 1SWE at scales rele-

vant to basin-scale water resource management. We devel-
oped and applied a workflow utilizing UAVSAR data to de-
tect both positive and negative changes in SWE. We then
used in situ snow depth, ρs, 1fSCA, and GPR data to val-
idate the InSAR-based returns. These results show the robust
ability of L-band InSAR to hold coherence and provide qual-
ity 1SWE information, even under relatively adverse condi-
tions for radar remote sensing. This research is the first in a
series of studies analyzing the SnowEx UAVSAR dataset in
preparation for the launch of NISAR in early 2024.

NISAR’s low-latency (∼ 2 d) cloud-based data products
will provide the opportunity to implement this L-band In-
SAR SWE monitoring technique at continental scales. While
there is significant progress needed to better understand un-
certainties associated with the retrievals, NISAR’s L-band
InSAR will have the ability to estimate SWE in mountain re-
gions globally. Spatiotemporally complete data will require a
multi-sensor approach with optical data and assimilation into
land surface models. We believe that NISAR has the potential
to revolutionize the way SWE is measured from spaceborne
remote sensing.

Code and data availability. The code and data used to
perform this analysis and create the figures are publicly
available at https://doi.org/10.5281/zenodo.7754560 (Tar-
ricone, 2023). The uavsar_pytools package is archived at
https://doi.org/10.5281/zenodo.6578192 (Keskinen et al., 2022).
UAVSAR data are freely available courtesy of NASA/JPL-
Caltech (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl, last access:
6 March 2023; NASA/JPL-Caltech, 2023). Landsat fSCA
data are publicly available through the United States Geologic
Survey (USGS) (U.S. Geological Survey and Center, 2018,
https://doi.org/10.5066/F7XK8DS5). The Western Regional Cli-
mate Center (WRCC) climate station data are publicly available
(https://wrcc.dri.edu/vallescaldera/, last access: 8 July 2022;
Western Regional Climate Center, 2022). SnowEx20 Jemez
UNM 800MHz MALA GPR, Version 1 (SNEX20_J_UNM_GPR)
data are publicly available at the NASA National Snow and
Ice Data Center Distributed Active Archive Center (NSIDC)
(Webb, 2021, https://doi.org/10.5067/H38Q5FTBPZ8K).
Information on the SnowEx database is available at
https://doi.org/10.5281/zenodo.7618107 Johnson and Sandusky,
2023. Jemez Lidar data are openly available (OpenTopography,
2012, https://doi.org/10.5069/G9RB72JV). The reader is referred
to the Supplement for information on the specific data products
used.
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