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Lidar and deep learning reveal forest structural 
controls on snowpack
Ahmad Hojatimalekshah1, Joel Gongora1,2, Josh Enterkine1, Nancy F Glenn1*, T Trevor Caughlin3, Hans Peter Marshall1, and 
Christopher A Hiemstra4

Forest structure has a strong relationship with abiotic components of the environment. For example, canopy morphology controls 
snow depth through interception and modifies incoming thermal radiation. In turn, snow water availability affects forest growth, 
carbon sequestration, and nutrient cycling. We investigated how structural diversity and topography affect snow depth patterns 
across scales. The study site, Grand Mesa, Colorado, is representative of many areas worldwide where declining snowpack and its 
consequences for forest ecosystems are increasingly an environmental concern. On the basis of a convolution neural network 
model (R2 of 0.64; root mean squared error of 0.13 m), we found that forest structural and topographic metrics from airborne light 
detection and ranging (lidar) at fine scales significantly influence snow depth during the accumulation season. Moreover, com-
plex vertically arranged foliage intercepts more snow and results in shallower snow depths below the canopy. Assessing forest 
structural controls on snow distribution and depth will aid efforts to improve understanding of the ecological and hydrological 
impacts of changing snow patterns.

Front Ecol Environ 2023; 21(1): 49–54, doi:10.1002/fee.2584

Both globally and in the western US, at least 40–50% of the 
freshwater budget originates from snow in mountainous 

areas (Viviroli et al. 2003). Predicting the timing and amount of 
stream flow requires information on snowpack properties (depth 
and distribution patterns) in hydrologic models. Variation in 
snow depth and extent is tied to accelerating climate change and 
subsequent snow decline (Mote et al.  2018), forest stress and 
mortality (Gleason et al.  2021), and potential loss of habitat 
(Thompson et al. 2021). Forest structure, such as the density and 
vertical and horizontal arrangement of the canopy, is an impor-
tant control of snow depth and timing of snowmelt (Currier 
et al. 2022). In turn, ecosystem functions (such as mineral, nutri-
ent, and water cycling) in high-altitude mountainous forests are 
dependent on snow depth and melt (Johnson et al.  2009). 
Ecosystem functions indirectly connect forest structural diver-
sity and abiotic components of the environment. This is a mutual 
relationship, where canopy structural diversity influences snow 
depth and melt timing. Vegetation also modifies the impact of 
other controls (eg net radiation, topography, and wind) on snow. 
Recent estimates suggest that differences in vegetation may 
explain at least 50% of the variation in snow accumulation 
(Zheng et al. 2018), and that interception is a primary regulator 
of snow accumulation, with 60% of incoming precipitation inter-
cepted by coniferous trees (Dickerson-Lange et al. 2017).

Scale-dependent relationships complicate explanations for 
how vegetation alters snow depth, as snow–vegetation 

interactions vary from individual tree to canopy levels (Webb 
et al. 2020; Hojatimalekshah et al. 2021). At the canopy level, 
snow under dispersed canopies receives higher shortwave 
radiation than snow under closed canopies, and dense cano-
pies are dominated by longwave radiation. Ultimately, net radi-
ation provides most of the energy for snowmelt in a region 
(Ellis et al. 2011; Roth and Nolin 2017). In addition to density, 
canopy height influences shading properties, with snow linger-
ing longer in shaded areas (Pomeroy et al. 2009). Forests shel-
ter snow from the wind, and during accumulation, canopy 
interception can be the predominant control on snow depth 
variation (Storck et al. 2002). During the ablation season, for-
ests can control the energy balance under the canopy and delay 
or advance the melting process (Roth and Nolin 2017). A bet-
ter understanding of the dynamics between vegetation struc-
tural diversity and snow will therefore improve forest and 
hydrologic management responses to climate change.

The mathematical concept of scale breaks – where transi-
tions between scales occur – could help in identifying the 
appropriate horizontal and vertical scales for quantifying how 
vegetation structure controls snow distribution patterns and 
depth (White et al. 2008). When considering snow depth pro-
files (distance versus snow depth), scale breaks represent the 
separation between low and high frequency variations in snow 
depth and controlling factors. For instance, the snow surface is 
typically more homogeneous in treeless, open sites than in 
treed sites, indicating a low frequency control on snow depth. 
Conversely, high frequency variations in snow depth and cor-
responding controls (eg individual trees) may be relevant and 
thus mapped at smaller scales. Scale breaks separate the fre-
quencies related to heterogeneity and homogeneity in snow 
depth patterns (Deems et al. 2006; Webb et al. 2020), and can 

1Department of Geosciences, Boise State University, Boise, ID  
*(nancyglenn@boisestate.edu); 2DataRobot, Inc, Boston, MA;  
3Department of Biology, Boise State University, Boise, ID;  
4Geospatial Management Office, US Department of Agriculture  
Forest Service, Salt Lake City, UT

mailto:﻿
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffee.2584&domain=pdf&date_stamp=2023-02-01


Front Ecol Environ doi:10.1002/fee.2584

A Hojatimalekshah et al.50    ECOSYSTEM STRUCTURAL DIVERSITY

be used to identify scales where statistical relationships 
between snow depth and biophysical processes are relatively 
constant (details in WebPanel 1).

Machine learning and specifically deep learning algorithms, 
coupled with high-resolution remotely sensed data, provide 
information to map and model snow distribution in heteroge-
neous landscapes. Here, we designed a study based on varying 
vertical and horizontal resolutions of vegetation and topo-
graphic features to examine their effects on snow distribution 
patterns and depth in the accumulation season. We examined 
foliage height diversity (FHD) (a metric to quantify the vertical 
arrangement of foliage; Hojatimalekshah et al. 2021), canopy 
height, canopy percent cover, and topography as controls on 
snow. We also used light detection and ranging (lidar) data to 
analyze the data at fine scales, classifying controls of snow 
depth according to their scale of influence and linking the pro-
cesses with the appropriate scale. We resampled to coarser 
horizontal scales using the scale breaks of the features, and 
then trained a deep learning model to explore the sensitivity of 
snow depth as an abiotic component of the environment as 
related to forest structural diversity. Our novel approach 
demonstrates the usefulness of scale breaks in disentangling 
complex drivers of snow depth variation in forest ecosystems, 
with the potential to inform forecasts of snow depth in an era 
of rapid climate change.

Methods

Our study area consisted of a 17-km × 3.5-km region on 
Grand Mesa, an extensive plateau environment in western 
Colorado, representing a data collection effort by the US 
National Aeronautics and Space Administration (NASA) 
SnowEx (https://snow.nasa.gov/campa​igns/snowex) cam-
paign in 2020 (Figure  1a). Although topography was con-
sidered in our analysis, the small range in elevation 
(2922–3336 m, increasing from west to east) of this region 
was ideal for investigating the role of vegetation structure 
on snow depth. Engelmann spruce (Picea engelmannii), the 
predominant tree species in the western part of the mesa, 
forms mixed assemblages with subalpine fir (Abies lasiocarpa) 
and aspen (Populus tremuloides) in the eastern section. Wind 
speeds generally decrease from west to east; a northeast 
wind is dominant in the west, whereas wind originates from 
the northwest in the center and eastern portions of Grand 
Mesa (Hojatimalekshah et al.  2021). Snowfall in the region 
from January to March 2020 was about 82 cm (www.world​
weath​eronl​ine.com/grand-mesa-weath​er-avera​ges/color​ado/
us.aspx). From late January to mid-February 2020, the mean, 
standard deviation, and range of snow depth was 95 cm, 
17 cm, and 17–260 cm, respectively (Hiemstra et al.  2020).

Airborne lidar data were collected during two SnowEx 
campaigns in September 2016 (snow-off) and prior to melt 
(and during the accumulation season) in February 2020 
(snow-on). We computed snow depth by applying the M3C2 
method described in Hojatimalekshah et al.  (2021), 

achieving a relative vertical accuracy of 7 cm based on the 
maximum standard deviation. Currier et al.  (2019) found 
airborne-measured snow depths in Grand Mesa to be within 
5 cm of terrestrial laser scanning data using the same 2016 
(snow-off ) and a similar snow-on (2017) dataset. 
Computations were made for the following topographic and 
vegetation metrics from the snow-off lidar data: bare earth 
elevation, slope, aspect, canopy height, canopy percent cover, 
and FHD. We calculated the FHD in three different voxel 
sizes (0.5 m, 1 m, and 2 m) to investigate the influence of dif-
ferent vertical scales on snow depth estimation. Wind was 
not considered because of the paucity of meteorological data 
(three stations across Grand Mesa) relative to the modeling 
requirements.

Convolutional neural networks (CNN), a machine learning 
approach, are increasingly being used in ecology for a range of 
applications relating to image classification and object detec-
tion (Brodrick et al.  2019). “Deep CNN” is a deep learning 
technique that searches for a shape through input image fea-
tures and learns texture and content by extracting different 
arrangements of edges. Each edge is restored in a layer from 
general patterns to progressively more detailed ones. The 
algorithm learns the link between edges and combines those 
to construct the output pattern and the content. We trained a 
deep CNN (Figure 1b) to predict snow depth as a function of 
topography and canopy structural metrics (WebPanel 2), with 
the resulting prediction used as a tool to understand the con-
trol of vegetation and topography on snow depth. We tiled the 
data into 250-m × 250-m areas (n  =  952 images), selecting 
70% for training and 30% for testing. We reserved 20% of the 
training data for optimizing model parameters, and used the 
test data for the final model evaluation. To evaluate CNN’s 
capacity for generalization, we relied on the test data, because 
doing so would illustrate a realistic perspective of the controls’ 
effect on the spatial variation of snow depth (rather than a 
predictive capability for snow depths). We contrasted the fine-
scale dataset (1-m images) with a coarse scale dataset by resa-
mpling the 1-m data based on the scale breaks of each 
feature.

Scale breaks

To investigate the influence of scale on snow depth predic-
tion, we computed scale breaks for each image and individual 
feature (Figure  1c). For example, the median scale break for 
canopy height is about 10 m, indicating higher tree height 
variation when spaced less than 10-m apart and lower tree 
height variation above 10-m spacing (WebFigure  2). We 
selected the smaller scale break value for analysis between 
those calculated in north–south and east–west directions. 
Individual features were filtered with a median filter using 
window sizes equal to scale breaks. We used each feature’s 
scale break to determine the coarse resolution analysis and 
applied the same deep learning network architecture 
(Figure  1b) for fine and coarse resolution data analyses (see 
WebPanel 2 for details about the network architecture).

https://snow.nasa.gov/campaigns/snowex
http://www.worldweatheronline.com/grand-mesa-weather-averages/colorado/us.aspx
http://www.worldweatheronline.com/grand-mesa-weather-averages/colorado/us.aspx
http://www.worldweatheronline.com/grand-mesa-weather-averages/colorado/us.aspx
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Results

The minimum and maximum scale breaks 
were 3 m and 123 m, respectively (Figure 1c). 
The median scale break calculated for snow 
depth was greater than the breaks of all other 
features. Using the deep CNN network, the 
training, validation, and test R2 for snow 
depths reached 0.65, 0.63, and 0.64 for fine 
resolution and 0.48, 0.48, and 0.44 for coarse 
resolution data analysis, respectively. Note 
that the fine resolution data analysis was at 
1-m horizontal resolution, whereas the coarse
resolution data analysis was dependent on
the scale break for each feature (ranging from
3 to 123 m) for each of the 952 images.
The mean squared error of the whole model
reached 0.017 m2 (root mean squared error
of 0.13 m) and 0.019 m2 (root mean squared
error of 0.14 m) using fine and coarse res-
olution inputs, respectively. The R2 values
for the test and training datasets were close
in value, indicating that the models did not
overfit.

The predicted snow depth (median R2 of 
0.64; WebFigure 1) in the fine resolution ana
lysis preserved the original snow depth pattern 
(Figure  2). The elevation (digital elevation 
model, DEM) and FHD using a 2-m voxel size 
were the most important features for the fine 
resolution dataset (Figure  3). When we 
replaced elevation and FHD (at 2-m voxel 
size) with noise, the R2 dropped to <0.1 
and < 0.4, respectively. Replacing other features 
with noise did not yield similar drops in R2 
values, further indicating the importance of 
elevation and FHD. In contrast, at coarser 
scales, canopy height became the most impor-
tant feature (Figure  3) for predicting snow 
depth, followed by FHD at 2-m voxel size. The 
coefficient of variation indicated that topo-
graphic and vegetation metrics together pre-
dicted 40% and 64% of snow depth variation 
in coarse and fine resolution data, respectively.

Discussion

The results of our analysis demonstrate the importance of 
accounting for complex scale-dependence of the predominant 
controls of snow depth. Snow depth variation at fine scales 
is driven by the interception of snow by individual trees 
and their vertical structure. At coarser resolutions and in 
the absence of elevation variation, canopy height strongly 
controls snow distribution, likely because canopy height 
affects snow sheltering and shading. While FHD influences 

snow depth at both fine and coarse spatial scales, elevation 
is an influential control at fine scales. However, coarsening 
the resolution reduced the importance of elevation relative 
to vegetation metrics. In this instance, the importance of 
canopy height increased but not enough to compensate for 
the reduced importance of elevation, diminishing the model’s 
predictive capacity. The elevation gradient across Grand Mesa 
is minimal and the coarser dataset represents a smoother 
elevation gradient, which reduces its effect on snow depth 

Figure 1. (a) Grand Mesa, Colorado, with inset of the western US. Image credit: © Google 
Earth Pro. (b) Deep learning network for estimating snow depths; passing the input image fea-
tures through the network results in the predicted snow depth of the region. (c) Boxplot of 
scale breaks for snow depth, elevation, aspect, slope, canopy percent cover, canopy height, 
and foliar height diversity (FHD) with voxel sizes of 0.5 m, 1.0 m, and 2.0 m. Horizontal lines 
within boxes depict median values, boxes represent the interquartile range (25th–75th percen-
tiles), whiskers (vertical lines) represent 1.5 × interquartile range, and solid diamonds depict 
outliers.

(a)

(b)

(c)
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(in contrast, the heterogeneous nature of the surface and 
its effect on snow distribution is apparent in the fine scale 
analysis).

Overall, the lower predictive ability of the coarser dataset is 
due to the median scale breaks for topography and vegetation, 
which are smaller than the snow depth scale breaks (Figure 1c). 
The spatial variation in snow depth is smoother than the vari-
ation in topography and vegetation structure at coarser scales, 
indicating that other controls with larger breaks (eg wind) are 
required for accurate snow depth estimates at coarser scales 
(Trujillo et al.  2009). This is likely the case for open, non-
forested areas; whereas in forested regions, canopies (eg can-
opy height) control snow depth variation. Disparities between 
surface roughness lengths at the windward and leeward aspects 
of forest canopies, as well as variable fluid dynamics between 
the two sides, could cause different scale breaks and snow 
accumulation in clearings close to the forest boundary and 
within the forest (Webb et al. 2020). Although 1-m resolution 
wind vectors were unavailable for our study area, future 

research incorporating high-resolution wind 
direction and speed data as inputs in the CNN 
will help elucidate the relative controls of wind 
to vegetation features across scales.

Energy fluxes also affect snow depth distri-
bution within the canopies at different scales 
(for example, longwave radiation observed at 
smaller scales, and shortwave radiation as well 
as shading effects at larger scales) (Pomeroy 
et al. 2009). Although our method of comput-
ing scales for individual features of influence 
helps ascertain the maximum variations in 
snow depth, the results show that coarsened 
data captures lower snow depth variation in 
such ecosystems, which could ultimately lead 
to lower snow water equivalent (SWE) and 
therefore underestimation in stream flow and 
river basin modeling.

Snow depth variation under the canopy 
differs between the accumulation and abla-
tion seasons (Roth and Nolin  2017). Tree 
structure affects snow depth through inter-
ception during the accumulation season and 
by sheltering/shading during the ablation 
season. Because our input data were from the 
accumulation season, we describe the role of 
the forest structure in the context of the 
interception process. We expect the same 
structural effects on snow depth throughout 
the accumulation season, across the range of 
forest composition in our study area. The use 
of multiple images in training the model 
simulates different vegetation covers and 
their effect on snow depth patterns. For 
example, we used 952 images representing a 
range in spruce, fir, and aspen vegetation 

structure. In this regard, our model may be applied to envi-
ronments with similar vegetation structure and in areas with 
minimal elevation ranges. However, further tuning is 
required to account for different seasons (eg ablation), land-
scapes with different vegetation structure (eg deciduous and 
burned or other disturbance), and elevation ranges.

Our results imply that to predict snow depth under trees, we 
do not necessarily need to describe structural diversity using 
voxel sizes finer than 2 m. Quantifying structural complexity 
within the trees at scales below 2-m voxels does not have a 
major effect on predictions of snow–vegetation interactions. 
Based on this information, hydrologic models may improve 
snow depth and SWE estimates by adding a less complex verti-
cal distribution of trees. For example, in the Distributed 
Hydrology–Soil–Vegetation Model (DHSVM) (Sun 
et al. 2022), it may be possible to replace generalized leaf area 
index values with 2-m voxel size FHD to provide more detailed 
energy balance information, where lidar is available. Moreover, 
a 2-m voxel size is larger than the uncertainty in the vertical 

Figure 2. Satellite imagery (first column), original snow depth (second column), predicted 
snow depth (third column), and the difference between the original and predicted snow depths 
(fourth column) for five random images of the test data. Each image is 250 m × 250 m. Image 
credits: © Google Earth Pro.
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resolution of spaceborne laser altimeters such 
as NASA’s ICESat-2 and GEDI, which may be 
used for examining snow–vegetation relation-
ships over greater areal extents. Although our 
results indicate that, at fine scales, FHD pro-
vides a superior model of snow depth, the 
relationship remained significant at coarser 
scales and may remain so for studies using 
such spaceborne platforms.

In a warming climate, spatial predictions of 
snow depth have management relevance for 
identifying areas where changing snow depth 
may severely impact ecosystems, hydrology, 
and microclimates. Our methods can be 
extended to coarser resolution satellite images 
that cover larger ecosystems (eg entire biomes) 
and improve our understanding of direct and 
indirect mediators between forest and differ-
ent environmental components (eg biodiver-
sity, functional richness, soil water availability, 
carbon fluxes). Our study shows upscaling 
forest structural information (canopy height 
and FHD) preserves the important diversity 
information that influences snow depth, and 
ultimately benefits our understanding of eco-
system functioning.

Using the approach demonstrated here, 
CNN may also be used in SWE calculations 
(the multiplication of snow density by depth). 
Typically, SWE maps use a constant snow 
density in their models. Ideally, to improve 
SWE modeling estimates, the use of a CNN 
should consider climate-related features spe-
cific to the study area. For example, dry and 
cold regions experience higher SWE peaks 
under sparse canopies (Sun et al.  2022). 
Because CNN is a supervised model, information about the 
relationship between snow density and vegetation will be 
helpful. Deep learning algorithms can represent snow den-
sity variations from the surface to the bottom of the snow-
pack as multilayer (bands) inputs, ultimately modeling 
multilayer density maps. In addition, different structures of 
tree species explain up to 75% of peak SWE changes (Faria 
et al. 2000). The FHD used in our model represents vertical 
canopy complexity and quantifies the interception effect 
regardless of species. Therefore, incorporating FHD in snow 
depth and density estimates may also enhance future CNN 
models of SWE.
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