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Abstract
1. Interactions between neighbouring plants drive population and community

dynamics in terrestrial ecosystems. Understanding these interactions is criti-
cal for both fundamental and applied ecology. Spatial approaches to model
neighbour interactions are necessary, as interaction strength depends on the
distance between neighbouring plants. Recent Bayesian advancements, includ-
ing the Hamiltonian Monte Carlo algorithm, offer the flexibility and speed to
fit models of spatially explicit neighbour interactions. We present a guide for
parameterizing these models in the Stan programming language and demon-
strate how Bayesian computation can assist ecological inference on plant–plant
interactions.

2. Modelling plant neighbour interactions presents several challenges for ecologi-
cal modelling. First, nonlinear models for distance decay can be prone to identi-
fiability problems, resulting in lack of model convergence. Second, the pairwise
data structure of plant–plant interaction matrices often leads to large matrices
that demand high computational power. Third, hierarchical structure in plant–
plant interaction data is ubiquitous, including repeated measurements within
field plots, species and individuals. Hierarchical terms (e.g. ‘random effects’)
can result in model convergence problems caused by correlations between
coefficients. We explore modelling solutions for these challenges with exam-
ples representing spatial data on plant demographic rates: growth, survival and
recruitment.

3. We show that ragged matrices reduce computational challenges inherent to
pairwise matrices, resulting in higher efficiency across data types. We also dem-
onstrate how metrics for model convergence, including divergent transitions
and effective sample size, can help diagnose problems that result from complex
nonlinear structures. Finally, we explore when to use different model structures
for hierarchical terms, including centred and non-centred parameterizations. We
provide reproducible examples written in Stan to enable ecologists to fit and
troubleshoot a broad range of neighbourhood interaction models.
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1  |  INTRODUC TION

Interactions between neighbouring plants impact how plants grow, 
survive and reproduce. Although these interactions occur at the 
scale of individuals, their consequences shape population and com-
munity structure. Plants tend to do worse in single-species neigh-
bourhoods than in many-species neighbourhoods (Feng et al., 2022; 
Sortibrán et al.,  2014), an individual-level dynamic that helps ex-
plain how plant biodiversity is maintained across ecosystems, from 
montane deserts (Adler et al., 2010) to tropical rainforests (Comita 
& Stump, 2020). Plants can also facilitate the growth and survival 
of their neighbours, particularly in disturbed or stressful environ-
ments (Miriti et al.,  2001). Managing plant neighbourhoods, from 
thinning dense stands of trees (Lechuga et al., 2017) to planting spe-
cies that will facilitate their neighbours (Gómez-Aparicio, 2009), is 
a cornerstone of forestry, restoration and agriculture. The impor-
tance of neighbour interactions across basic and applied ecology 
underscores the need for statistical approaches that can quantify 
how plant neighbourhoods impact plant demography. Such analyses 
must account for space, as plants interact more with closer neigh-
bours than with neighbours further away (Figure 1).

As an approximation to spatially explicit models, many stud-
ies have used plant density in a fixed radius (LaManna et al., 2017), 
which assumes plant neighbours at varying distances have equiv-
alent interaction strength. Spatially explicit models enable a more 
realistic representation of individual plant relationships (Zambrano 
et al., 2020). However, fitting spatially explicit neighbourhood models 
requires accounting for the distance between all pairwise combina-
tions of neighbours, which can be computationally expensive. A com-
mon simplification is to assume that the effects of distant neighbours 
are zero, creating an effective neighbourhood radius (Muller-Landau 
et al.,  2004). Effective neighbourhood radii result in matrices with 
many zero elements, as most plant neighbours are distant enough 
to have negligible interactions. Matrices rich in zeros, known as 
sparse matrices, are found in a wide range of disciplines (Dokmanic 
et al., 2015). While there are existing methods to optimize computa-
tion on sparse matrices (Chalauri et al., 2018), these methods have not 
yet achieved wide use in ecology.

Another barrier to fitting spatially explicit neighbourhood 
models is that interaction strength is almost always nonlinear. 
There are a wide range of possible nonlinear response functions 
that can approximate spatial relationships between neighbouring 
individuals (Bolker,  2008). The downside of nonlinear models is 
that they are prone to identifiability problems, meaning it is dif-
ficult to define a single solution for the equation (Ogle, 2009). In 

4. Spatially explicit models are increasingly central to many ecological questions.
Our work illustrates how novel Bayesian tools can provide flexibility, speed and
diagnostic capacity for fitting plant neighbour models to large, complex data-
sets. The methods we demonstrate are applicable to any dataset that includes a
response variable and locations of observations, from forest inventory plots to
remotely sensed imagery. Further developments in statistical models for neigh-
bour interactions are likely to improve our understanding of plant population
and community ecology across systems and scales.

K E Y W O R D S
big data, Hamiltonian Monte Carlo, hierarchical structures, neighbour interactions, 
optimization, pairwise matrix, plant–plant interactions, Stan

F I G U R E  1  Spatial structure of a plant neighbourhood. The 
seedling in the centre of the plot experiences a range of neighbour 
interactions, depending on the neighbour's species identity, size 
and physical distance.



2790  |   Methods in Ecology and Evolu
on BARBER et al.

some cases, assuming linearity may be an acceptable solution to fit 
neighbourhood models. For example, the sum of basal area within 
circular plots is widely used as a neighbourhood competition index 
in linear models (e.g. Yang et al., 2022). Nevertheless, the capacity 
to fit a wide range of interaction functions, including nonlinear 
functions that cannot be easily transformed into linear functions, 
will improve links between theoretical models that rely on nonlin-
ear functions (e.g. Bolker & Pacala, 1999) and enable better fore-
casting models for ecological processes (e.g. Clark et al.,  1999). 
The challenges of fitting nonlinear models point to the need for 
flexible methods for model parameterization, including diagnostic 
metrics to assess model fit.

Hierarchical structures that violate assumptions of indepen-
dence between observations can also complicate parameter esti-
mation in statistical models. Hierarchical structures are ubiquitous 
in ecological data, including individuals representing different gen-
otypes within species (Zaiats et al., 2020) or within sites (Caughlin 
et al., 2015; Schneider et al., 2006). Hierarchical models also present 
challenges for model estimation, for example, correlations between 
the variance and estimates of group-level (‘random’) effects are 
common. These correlations between group-level parameters mean 
that different parameter combinations have similar likelihood esti-
mates, limiting the ability of the sampler to efficiently explore the 
probability surface. Solutions to this pathology have not yet been 
explored in the context of nonlinear models for neighbour interac-
tions. Bayesian methods present a powerful tool for fitting spatially 
explicit plant interaction models with well-developed protocol for 
assessing divergences that may result from nonlinearity and hier-
archical structure (Gelman et al.,  2020). Nevertheless, guidance 
for fitting Bayesian models for large and sparse spatial datasets for 
neighbour interactions remains scarce.

In this paper, we provide a roadmap for how Bayesian method-
ology can expand opportunities to fit spatially explicit models for 
neighbour interactions. Our work builds off a recent advance in 
Bayesian inference, the Hamiltonian Monte Carlo (HMC) algorithm, 
which has improved sampling efficiency relative to older algorithms 
(Monnahan et al.,  2017). The Stan software package provides an 
interface to HMC, including model assessment tools, with high 
value for fitting neighbour interaction models (Stan Development 
Team, 2019a). Using examples of plant demographic rates, we ex-
plore computationally efficient strategies for sparse matrices and al-
ternative parameterizations that can help overcome computational 
time challenges when hierarchical structures are present in a statis-
tical model. Our guide to fitting a range of spatially explicit neigh-
bour interaction models will enable broader use of these powerful 
models in ecology.

2  |  MATERIAL S AND METHODS

We begin with the fundamental building block of a neighbourhood 
model, an interaction kernel. Following Canham and Uriarte (2006), 
we assume that the kernel alters the expected value (�) of a 

demographic rate measured at a target plant p, with individual-
specific covariates (e.g. crown area) described by the function g(p). 
For j = 1, …, n neighbouring plants (xj), the function 𝑓(xj) describes the 
relationship between neighbours and the target plant.

Equation (2) represents a simple example of an interaction kernel:

where Di is a pairwise matrix that contains the distance between plant 
i and the plants within its effective neighbourhood radius and a1 is a 
parameter representing the strength of distance decay as the distance 
between neighbouring plants increases.

2.1  |  Optimization of sparse matrices using ragged 
matrices in a neighbour interaction model

A common simplifying assumption for pairwise matrices (e.g. 
distancei,j in Equation  (2)) is that neighbours beyond an effective 
neighbourhood radius do not interact. We set values beyond this 
radius to zero, thus transforming the pairwise matrix into a sparse 
matrix. In the example below, we explore how different sizes of 
the effective neighbourhood radius alter statistical results. Sparse 
matrices can be simplified further by representing them as ragged 
matrices (Chalauri et al.,  2018). Ragged matrices allow different 
numbers of elements in each row, which reduces computer process-
ing time but limits the use of linear algebra operations, such as matrix 
multiplication. By representing the position of non-zero elements in 
the original matrix with index vectors, which contain the row and 
column number of each element, the ragged matrix efficiently pre-
serves information on matrix structure. In Stan, the built-in function 
‘segment()’ creates a ragged matrix, representing elements in a vec-
tor and their position in the pairwise matrix using two index vectors 
(Figure 2; Stan Development team, 2022).

2.1.1  |  Example 1: Plant growth

To demonstrate how ragged matrices can improve computation time 
for neighbour models, we simulated a spatially explicit dataset repre-
senting plant growth. We model plant growth as a function of intrinsic 
growth (i.e. growth in isolation) and neighbourhood characteristics (i.e. 
neighbour size and proximity; Equation (3)). To evaluate how choosing 
an effective neighbourhood radius could introduce bias in parameter 
estimation, we fit six models with effective neighbourhood radii of 5, 
10, 15 and 20 m. The ‘true’ effective radius of this simulated data is 
10 m. With real data, the decision for radius size should be based on 
biological knowledge, for example, root zone area (Zaiats et al., 2020). 

(1)�(p) = g(p)

n∑
j=1

f
(
xj
)
.

(2)f
(
Di,j

)
=

∑
k = 1

1

a1 Di,k

,
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Additional spatial information, such as crown allometry, can also en-
able the construction of biologically meaningful plant neighbourhoods 
without the need for an arbitrary decision on the effective neighbour-
hood radius (Zambrano et al., 2019). Alternately, the effective neigh-
bourhood radius can be chosen by testing predictive performance of 
different sized radii (Zambrano et al., 2020). Beyond predictive perfor-
mance of models with different effective neighbourhood radii, infer-
ence on effects of neighbourhood radii on ecological processes can be 
highly sensitive to the choice of neighbourhood radii (see Zambrano 
et al., 2020 for a functional traits example).

Equation  (3) represents our generative model for neighbour-
dependent growth:

In Equation 4, St,i and St+1i are the sizes of plant i at time t = 0 and 1, 
respectively, Di are the distance between i and the plants within its 
effective neighbourhood radius, and SNi represents the size at time 
t = 0 of the plants located within the effective neighbourhood radius 
of plant i. For demographic rates that involve two censuses, such as 
our growth example, we assume that the size of the neighbour at the 
first census determines the demographic response measured as the 
difference between the first and second censuses. α is the intercept, 
and β is the effect of St0,i . In the interaction kernel, parameter a1 me-
diates the effect of neighbouring plant size, parameter a2 determines 
the scale of distance decay, and a3 represents the overall effect of the 
neighbourhood term.

We fit models in Stan using either a sparse or ragged matrix. 
These approaches share a large amount of code, with two main 

differences. For the sparse matrix code, the data block in Stan in-
cludes two sparse matrices containing the distances and sizes of the 
plants within the effective neighbourhood radius. A nested for-loop 
that iterates through every neighbouring individual then defines the 
interaction kernel (Stan Development Team,  2019a; for full code 
check the data availability statement): In contrast, the ragged ma-
trix code includes the three vectors required to use the segment()
function: neighbour size, distance and an index vector for non-zero 
entries of the matrix (Figure  2). By referencing only non-zero ele-
ments using index vectors, the ragged matrix approach reduces 
computationally expensive iterations of the nested for loop over 
zero-valued entries. In this example, we went from iterating through 
a matrix containing 250,000 elements to iterating through a ragged 
matrix containing 69,448 elements.

2.1.2  |  Example 2: Plant recruitment

To further explore the application of the ragged matrix as an opti-
mization strategy in neighbour interaction models, we parametrized 
a model using real data on seedling abundance of invasive strangler 
fig trees, Ficus macrocarpa, in Florida, USA. We analysed data from 
Caughlin et al. (2012), which includes the total number of strangler 
fig seedlings in 52 plots of 30 m at a single time point. Distances to 
adult fig trees within an effective neighbourhood radius of 300 m 
were recorded. We modelled seedling abundance for all plots i using 
a negative binomial distribution, with a mean (μ) and an over disper-
sion parameter (φ; Equation 4):

where a is the global intercept and b describes the strength of 
the interactions kernel, which decays as a function of c and the 
distance from plot i to the adult fig trees within its effective neigh-
bourhood radius for n total adult trees per plot. Similar to other 
strangler figs, F. microcarpa begins its life cycle by germinating in 
the canopy of a host tree. The number of potential host trees in 
the 30 m plots, CP, is multiplied by the kernel as an offset, assum-
ing that more host trees create more opportunities for fig tree 
seedlings to recruit.

The original study exponentiated a, b and c to keep the param-
eters positive. To replicate the previous results, fit with maximum 
likelihood estimation in Caughlin et al.  (2012), we ensured non-
negative values for the mean of the negative binomial distribution 
by constraining parameters a, b and j to positive values. However, 
we note that the log-link is the canonical link-function for the neg-
ative binomial distribution and is a better choice for future studies 
(for full code check the data availability statement). In this example, 
there are seedling plots that do not have any adult strangler fig trees 

(3)

St+1, i
∼normal

(
�i , �

)

�i =�+�St,i+a3

n∑
k=1

SN
a1

i,k
∙

1

exp
(
D

2

i,k
a2

) .

abundancei ∼ negative binomial
(
�i ,�

)

(4)𝜇i =

⎧⎪⎨⎪⎩

a+b

n�
k=1

1

c+Di,k

CP if n>0

a if n=0

,

F I G U R E  2  A demonstration of how the segment function 
creates a ragged matrix. The predictor_matrix above includes 
matrix elements labelled a:H, as well as zero elements. The nb_b 
vector contains the number of non-zero elements per row, the 
predictor_vector vector contains the non-zero elements and the 
pos_vector contains the position of non-zero elements.
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nearby, resulting in zeroes in the n_nb vector (second row of pre-
dictor matrix in Figure 2). In some interaction kernels, these zeroes 
cause the denominator to become zero and hence undefined. A solu-
tion is to use an ifelse statement, so if nb_b is zero then μ is equal to 
the equation without the interaction kernel (�i = a), and if nb_b is not 
zero then μ is as stated in Equation 4 (for full code, check the data 
availability statement). The consequence of the ifelse statement is 
that trees with no neighbours within the radius do not provide in-
formation on interactions with other trees but can still inform other 
parameters in the model.

2.2  |  Centred and non-centred parametrization for 
random effects in neighbour interaction models

2.2.1  |  Example 3: Seedling germination

To demonstrate how hierarchical models for plant neighbour in-
teractions can be fit in a Bayesian context, we analysed a dataset 
on seedling germination that includes multiple individuals nested 
within field plots. These data represent the outcome of a seed 
addition experiment, an experimental design commonly used to 
study density dependence during early plant life stages (Clark 
et al., 2007). The objective of this study was to quantify how the 
density of seedling and adult tree neighbours impacted the prob-
ability of seed germination (Caughlin et al., 2015). In this study, the 
effective neighbourhood radius was set at 10 m. Germination suc-
cess of all seeds in plot k was estimated by modelling the number 
of germination events, given the total number of added seeds (n), 
and probability of germination, (p). This study represents data at 
two time points, the initial number of seeds added and the pro-
portion of those seeds that germinated after several months. We 
model the germination probability of seeds using the binomial dis-
tribution (Equation (5)):

where the input to the binomial distribution includes the total 
number of seeds added to each plot (n) and the probability of suc-
cessful germination events (p). μ is the global intercept, b is the 
effect of seedling density, Seedlingsi is the number of conspecific 
seedlings to represent the crowding effect, a is the total effect of 
neighbouring adult trees size and distance on recruitment, g is the 
distance decay of the effect of neighbour size and distance, and � 
is the random effect of plot k, to account for non-independence 
between seeds in the same plot. SN is a matrix containing the size 
of the adult trees within the effective neighbourhood radius of 
germinating seed i, and D is the pairwise matrix containing the 

distance between the adults within the effective neighbourhood 
radius of germinating seed i.

Inclusion of group-level effects, such as the plot-level intercept 
� in Equation 6, often leads to correlations between the variance (σ)
and estimates of random effects (�k). These correlations can limit
the ability of samplers to explore probability surfaces thoroughly,
resulting in poor model convergence (Neal, 2011). One solution is to
reparametrize the model, creating a linear model structure to decou-
ple variance from random effect estimates (McElreath, 2020). This
solution is often referred to as the ‘non-centred parameterization’, in
contrast to the ‘centred parameterization’ in which the levels of the
random effects have a common prior, in this case with mean 0 and
standard deviation �.

To create the non-centred parameterization, we re-write the 
random effects as a deterministic sum of the mean and scaled 
group variances, �k[i] = c + �zk[i] and sample z from a unit nor-
mal prior (McElreath, 2020). This new parameterization causes z 
to be orthogonal to the variance, reducing correlation between 
coefficients.

2.3  |  Model performance across simulated datasets 
with varying sample size

As a final demonstration of the utility of our ragged matrix ap-
proach, we simulated a large dataset, including nonlinear inter-
actions, a large number of neighbours and hierarchical effects. 
Simulated sample sizes are derived from one of the world's most 
extensive tree demographic datasets, the 50 ha plot from Barro 
Colorado Island (BCI; Davies et al., 2021). As the large, long-term 
forest dynamics plot design has become more common worldwide 
(Davies et al., 2021), the need for scalable methods for spatially 
explicit analysis has also grown. We evaluated the ragged matrix 
approach using a range of realistic sample sizes of individual trees, 
from 466 to 235,338 (the yearly mean number of live trees >1 cm 
Diameter at Breast Height in the BCI plot). Given this range of 
sample sizes, we simulated survival, growth and recruitment data 
as a function of tree neighbours, using the following interaction 
kernel:

In Equation (6) above, Di is the distance between the target plant and 
the plants within its effective neighbourhood radius, and SNi rep-
resents the size of the plants within plant i effective neighbourhood 
radius at the beginning of the census interval. The parameter ρ rep-
resents distance decay of neighbourhood interaction, and a represents 
the overall strength of neighbourhood effects on demography. We as-
sumed a neighbourhood interaction radius of 50 m.

To simulate hierarchical structure in demographic rates, we sub-
divided our simulated 50 ha plot into ten 5-ha subplots and mod-
elled subplot identity as a normally distributed group-level effect. 

(5)

germination∼binomial(n, p)

logit
(
pi
)
=�+b Seedling si+a

n∑
k=1

SNi,k ∙
1

D
g

i,k

+�k[i]

�k ∼normal(0, �)

a∼normal(0, 1)

�∼normal(0, 1)

,

(6)a

n−1∑
k=1

SNi,k ∙
1

e
1

�2
D
2
i,k

.
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An interpretation of this group-level effect is that trees within the 
same subplot tend to experience similar environmental conditions. 
However, our model code is easily adaptable to other group-level 
effects, such as species identity or health status.

To simulate tree growth and survival data, we generated data 
from a normal distribution with an identity link (growth) and a bino-
mial distribution with a logit link (survival), incorporating tree size at 
the initial census, the subplot group-level effect, and the neighbour-
hood effect as additive terms within the link function. To simulate 
recruitment, we generated 100 m transects in the centre of each 
plot, divided into twenty 5 × 5 quadrats, resulting in 200 seedling 
monitoring plots. We simulated recruit counts using a negative bino-
mial distribution with a log-link. In contrast to the growth and sur-
vival simulations, the number of plots remained constant throughout 
simulation runs however, the number of potential neighbouring trees 
ranged from 466 to 235,338.

For all three demographic rates, we initialized simulations by 
randomly locating neighbouring trees across the plot. After simulat-
ing data, we fit statistical models using either the ragged or sparse 
matrix approach. We then quantified how run time changed as the 
number of trees increased as well as the ability of statistical models 
to recapture the ‘true’ parameter values from the simulation (for full 
code, check the data availability statement).

2.4  |  Models assessment

We estimated the model fitting efficiency by dividing the sum of 
the effective sample size (ESS) all the chains by the elapsed time 
to run 1000 iterations excluding the warmup time. ESS is an esti-
mate of how much the autocorrelation within the chains increases 
uncertainty in estimates. Higher ESS indicates lower autocorrelation 
(Stan Development Team,  2019b). We also checked whether esti-
mated parameter intervals recover the parameters used to generate 
the data. Lastly, we checked common diagnostic metrics to evaluate 

convergence, including R̂, ESS, divergences and Bayesian fraction of 
missing information. We considered convergence when the R̂ was 
lower than 1.01, all the chains mixed without any divergences and 
the ESS was over 10% (Gelman et al., 2020).

To compare the centred and non-centred parametrization, in ad-
dition to convergence metrics above, we graphically explored how 
well the model sampled the correlated area between the variance 
and group-level effects. We also assessed goodness-of-fit by calcu-
lating the mean absolute error (MAE) between the model predic-
tions and observed data.

3  |  RESULTS

3.1  |  Comparison between sparse matrix and 
ragged matrix performance

3.1.1  |  Example 1: Plant growth

For the models assessing simulated growth data, the ragged matrix 
was more efficient than the sparse for all effective neighbourhood 
radii. Ragged matrices enable faster exploration of models with dif-
ferent neighbour effect radii (Figure 3). When the effective neigh-
bourhood radius was 10 m, both matrix types were able to recover 
the true parameters. For all other radii, the ragged matrix provided 
consistently tighter credibility intervals than the sparse matrix 
(Figure 4). There were no divergent transitions using either matrix 
approach for radii 10 m and 15 m. For the sparse matrix at 10 m ra-
dius and for the ragged matrix at 10 and 15 m radii, the R̂ for all the 
parameters was lower than 1.01 and the ESS was over 10%, indi-
cating convergence (Supplemental Tables S1–S3, and Supplemental 
Figure  S1). Models fit with other radii showed divergence transi-
tions, low ESS and high R̂, indicating poor convergence for the mod-
els using both the sparse and the ragged matrices (Supplemental 
Tables S4–S8, and Supplemental Figure S2).

F I G U R E  3  For the models fit using the simulated growth data, the ragged matrix is more efficient than the sparse matrix for models of all 
neighbour effects, especially for the 15 m. the dashed blue line shows the change in efficiency using the sparse matrix and the solid green 
line shows the change in efficiency using the ragged matrix. Greater values of ESS/time represent increased efficiency and lower values 
represent decreased efficiency.
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3.1.2  |  Example 2: Seedling abundance

For the strangler fig case study, model efficiency was greater when 
using the ragged matrix. The model fit with the ragged matrix was 
3.6 times more efficient than the model fit with the sparse matrix, 
with an efficiency of 3.32e07 ESS/Time(s) for the sparse matrix 
relative to an efficiency of 1.19e08 ESS/Time(s)for the ragged ma-
trix. However, parameter estimates were the same for both model 
parameterizations (Supplemental Figure S3 and Figure 5), and pro-
duced estimates similar to the frequentist maximum likelihood esti-
mation presented in the original analysis (Figure 5). Both Bayesian 
models converged well (Supplemental Tables S9 and S10).

3.2  |  Comparison between centred and non-
centred parametrization performance

3.2.1  |  Example 3: Seed germination with plot-level 
random effects

For the germination case study, the centred parametrization had an 
efficiency of 1.32e07 ESS/time, while the non-centred parametriza-
tion sampled nearly 1,12 times more efficiently, with 1.48e07 ESS/
time (Supplemental Figure  S4). Both parametrizations converged 
well, with no divergences, ESS over 10%, and R̂ lower than 1.01. This 
model had to run for 30,000 iterations to converge for both para-
metrizations, a number comparatively higher than the rest of the 
other models (Supplemental material, Appendices I–XII). The proba-
bility surface of the centred and non-centred parametrization shows 
that both parametrizations explored the probability surface and that 
there was no funnel shape (Supplemental material Figure S5).

The parameter estimates were similar for the centred and 
non-centred parametrizations (Supplemental Figure  S6). For both 

parameterizations, the models slightly underestimated germination 
(Supplemental Figure  S7). Overall error was comparable between 
the two parameterizations, with MAE = 1.196 (95% CI: 0.002–4.453) 
for the centred parametrization and MAE = 1.194 (95% CI: 0.000–
4.376) for the non-centred parametrization.

3.3  |  Model performance across simulated datasets 
with varying sample size

For all simulated datasets, the ragged matrix approach was more ef-
ficient than the sparse matrix approach. The difference in run time 
between the two approaches varied as sample size increased, from 
an initial difference of 0 ESS/Time(s), 9,22e5 ESS/Time(s)(survival), 
and 4.64e6 ESS/Time(s) (recruitment) at a sample size of 466 neigh-
bouring trees to a maximum difference of 4.61e4 ESS/Time(s) for 
a sample size of 189,560 trees (recruitment). Despite these differ-
ences, parameter estimates were indistinguishable between the two 
model fitting approaches (Supplemental Figures S8, S10, and S12). 
Nevertheless, for sample sizes of >200,000 trees, computational 
demands rendered the sparse matrix approach infeasible for spa-
tially explicit models with hierarchical structure, while the ragged 
matrix approach provides a scalable method even for large datasets 
(Figure 6 and Supplemental Figures S9 and S11).

4  |  DISCUSSION

We have demonstrated how to leverage contemporary Bayesian 
methods to estimate spatially explicit plant neighbour interactions. 
The pairwise data structure of matrices representing neighbour in-
teractions often leads to large datasets that present computational 
challenges. Our work shows that ragged matrices greatly increase 

F I G U R E  4  This figure shows 
parameter estimates for a2 (Equation (3)), 
which estimates distance decay in the 
interaction strength between growth and 
distance. The green shapes are the ragged 
matrix parameter estimates. The blue 
shapes are the sparse matrix parameter 
estimates. Each of the shapes corresponds 
to a different effective neighbourhood 
radius. The red line is the true parameter 
used in the simulation, and horizontal 
lines represent 95% credibility intervals 
(CI). Note that the CIs for the 10, and 15 m 
radii are not visible.
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computational efficiency, relative to full, yet sparse pairwise matri-
ces without changing the posterior estimates. We have also dem-
onstrated how Bayesian models can include hierarchical structures 
in models of neighbour interactions, such as pseudoreplication be-
tween individuals of the same species or in the same plot (Schneider 
et al.,  2006). Correlations between random effect parameters are 
inherent to many hierarchical models, and our work illustrates how 
HMC provides the means to efficiently parametrize complex statis-
tical models, including diagnostic tools sensitive to detect sampling 
pathologies. As big data become more common in ecology, compu-
tational limits are expected to become an increasing bottleneck for 
analyses (Farley et al., 2018). We have demonstrated an algorithmic 
solution, ragged matrices, that increases the efficiency of spatially 
explicit analyses. Altogether, we expect that fitting neighbour mod-
els with contemporary Bayesian software packages, such as the Stan 
programming language, will open up new opportunities for ecologi-
cal inference involving large, spatial datasets.

Spatially explicit neighbour matrices are frequently simplified 
using an effective neighbour radius that sets effects of neigh-
bours beyond the radius to zero (Muller-Landau et al., 2004). This 

simplifying assumption creates a sparse matrix structure, with many 
zeros for non-interacting plant neighbours, that can be computa-
tionally inefficient. Models using ragged matrices were more com-
putationally efficient relative to those using entire sparse matrices 
for a range of neighbourhood effect radii Built-in functions in the 
Stan programming language enable sparse representations of a ma-
trix that improve storage efficiency but are limited in improving the 
sampling speed (Stan Development Team, 2019b). Our results show 
that ragged matrices can significantly improve computational speed 
in addition to storage requirements. Beyond plant neighbourhood 
analyses, ragged matrices present a solution for big data that can be 
generally applied to spatial ecological questions, ranging from land-
scape graph-theoretic connectivity (Urban & Keitt,  2001) to pair-
wise relatedness analysis between individuals (Hardy, 2003).

Parameter estimation depended on the size of effective neigh-
bourhood radius for the ragged and the sparse matrices. A model fit 
to simulated data revealed that (1) the most accurate parameter esti-
mates corresponded to the ‘true’ effective neighbourhood radius, (2) 
accuracy decreased minimally for slightly bigger radii than the ‘true’ 
radius and (3) accuracy decreased more for radii smaller than the 

F I G U R E  5  The ragged matrix and the 
sparse matrix approaches obtained similar 
estimates of the relationship between 
recruitment and the distance from a single 
parent tree. Curves show the relationship 
between recruitment and distance from 
parent tree parametrized using the sparse 
matrix, the segment function, and a 
frequentist maximum likelihood model. 
Shaded areas represent 95% credibility 
intervals (CI). The sparse matrix CI is the 
shaded orange and the ragged matrix is 
shaded blue.
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‘true’ radius. This result is similar to previous frequentist models, in 
which larger radii provided estimates with lower biases than smaller 
radii (Canham & Uriarte, 2006). However, we found that neighbour 
effect radii that were much larger than the true radius resulted in 
poor model convergence, which was straightforward to identify 
using Stan's built-in diagnostic metrics. An alternate approach could 
include estimating the neighbour effect radius as a parameter in 
the model. Such an approach would enable propagation of uncer-
tainty from leaving some plants left out into model output (Uriarte 
et al., 2004).

4.1  |  Hierarchical modelling

We assessed the centred and non-centred parametrization of 
random effects by checking model convergence and uncertainty 
(Gelman et al., 2020). Our results suggest that the advantages of one 
parametrization over another are highly case specific and depend on 
the properties of the dataset. Although the centred parametrization 
converged and the metrics did not show any sampling problem that 
indicated the correlation problems, we observed lower efficiency 
exploring the probability surface. In models that present stronger 
correlation problems in the hierarchical structures, we would expect 
less reliable parameter estimates and convergence problems. The di-
agnostic metrics provided by Stan can help to decide the appropriate 
parametrization, and we would recommend comparing ESS/time for 
both parametrizations to decide on the appropriate parametrization. 
The diagnostic metrics also allowed us to decide for how long to run 
the model to obtain reliable estimates. An interesting question for 
future research will be to explore how the choice of effective neigh-
bourhood radius (e.g. Zambrano et al., 2020) potentially impacts the 
performance of different parametrizations for hierarchical models.

Further research across a range of data structure and study sys-
tems will be necessary to develop concrete recommendations for 
when the non-centred parameterization should be used (Gorinova 
et al.,  2020). As the range of potential hierarchical data structure 
for neighbour interactions increases, including temporal (Valenta 
et al., 2020), spatial (Pu et al., 2020) and phylogenetic autocorrela-
tion (Zaiats et al., 2020; Zambrano et al., 2017), developing efficient 
ways to fit these models should be a research priority. Automatic 
parametrization algorithms that build efficient sampling schemes 
from the data are a promising research avenue that could be used 
to parametrize neighbour interaction models (Gorinova et al., 2020).

4.2  |  Research perspectives

An ever-growing body of literature seeks to understand population, 
community and ecosystem dynamics through individual-based mod-
els (Deangelis et al., 2020; Hardy, 2003; Romero-Mujalli et al., 2019; 
Seidl et al., 2012). Statistical models that incorporate spatial informa-
tion are critical for developing individual-based models (Canham & 
Uriarte, 2006; Zhang & DeAngelis, 2020). Fortunately, the number of 

datasets that include data on plant locations is growing. Any dataset 
with location coordinates of plant individuals has potential to ben-
efit from neighbourhood interaction models, and many are publicly 
available. As data sharing becomes the cultural norm, an increasing 
number of existing experimental and observational datasets could 
be used to fit neighbour interaction models (Soranno et al., 2015). 
Some examples include common garden experiments (Madsen 
et al., 2020; Zaiats et al., 2020) and forest inventories on permanent 
plots (Gillerot et al., 2021; Lieberman & Lieberman, 2007). Our case 
studies represent a limited time frame, with measurements at one 
(seedling abundance) or two time points (growth and seedling ger-
mination). Understanding the demographic impacts of plant–plant 
interactions and resultant consequences for population and commu-
nity dynamics will require measurements over longer time periods 
(Butterfield et al.,  2010; Caughlin et al.,  2015; Miriti et al.,  2001). 
As time-series data on plant–plant interactions continue to increase 
(Davies et al., 2021), we anticipate that sparse matrices will play an 
even more important role in computationally efficient analyses of 
these growing data.

The increasing volume of remote sensing data at the resolution 
of individual plant canopies also represents novel opportunities 
to fit neighbour interaction models. Individual plant canopies may 
be identified using remote sensing data from aerial lidar, unoccu-
pied aerial systems, and high-resolution satellite imagery (Caughlin 
et al., 2016; Shen et al., 2020). High-resolution remotely sensed data 
offer opportunities to parameterize individual-based models for 
vegetation at unprecedented scales. However, we expect that in-
creased uncertainty in identifying individual plants from air or space 
may require statistical models that can disentangle measurement 
from process error (Brack et al., 2018).

We have demonstrated how contemporary Bayesian algorithms, 
such as HMC sampling implemented in Stan, provide a flexible and 
efficient way to fit plant neighbourhood models. The flexibility of 
the Stan programming language provides new opportunities to apply 
Bayesian methods to large datasets, including optimization of sparse 
matrices. In addition, uncertainty and model assessment metrics 
provided in the Bayesian framework allow a more intuitive imple-
mentation of hierarchical structures (e.g. random effects; Monnahan 
et al.,  2017, Ogle & Barber,  2020) in nonlinear models with non-
normal error structures. We hope that these guidelines, together 
with new ongoing improvements in model parametrizations and the 
increasing availability of spatially explicit data, will help to advance 
the study of population, community and ecosystem dynamics.
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