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Abstract

Gold mining is a major driver of Amazonian forest loss and degradation. As min-

ing activity encroaches on primary forest in remote and inaccessible areas, satellite

imagery provides crucial data for monitoring mining-related deforestation. High-

resolution imagery, in particular, has shown promise for detecting artisanal gold

mining at the forest frontier. An important next step will be to establish relation-

ships between satellite-derived land cover change and biodiversity impacts of gold

mining. In this study, we set out to detect artisanal gold mining using high-

resolution imagery and relate mining land cover to insects, a taxonomic group

that accounts for the majority of faunal biodiversity in tropical forests. We

applied an object-based image analysis (OBIA) to classify mined areas in an

Indigenous territory in Guyana, using PlanetScope imagery with ~3.7 m resolu-

tion. We complemented our OBIA with field surveys of insect family presence or

absence in field plots (n = 105) that captured a wide range of mining distur-

bances. Our OBIA was able to identify mined objects with high accuracy (>90%
balanced accuracy). Field plots with a higher proportion of OBIA-derived mine

cover had significantly lower insect family richness. The effects of mine cover on

individual insect taxa were highly variable. Insect groups that respond strongly to

mining disturbance could potentially serve as bioindicators for monitoring

ecosystem health during and after gold mining. With the advent of global partner-

ships that provide universal access to PlanetScope imagery for tropical forest

monitoring, our approach represents a low-cost and rapid way to assess the biodi-

versity impacts of gold mining in remote landscapes.

Introduction

Gold mining represents a major threat to ecosystem

integrity, including tropical rainforests that harbor the

majority of global terrestrial biodiversity (Hammond

et al., 2007; Kalamandeen et al., 2020). Artisanal gold

mining, an increasingly prevalent land use across the

Amazon Basin, results in fine-scale forest fragmentation

that can metastasize to encompass large areas over time

(Caballero Espejo et al., 2018). This type of gold mining

spans the gamut of environmental degradation, including

the immediate loss of forest cover, toxic mercury pollu-

tion, and long-lasting topographic changes caused by river

channel diversion (Alvarez-Berr�ıos et al., 2016; Markham

& Sangermano, 2018).

Monitoring land cover change related to gold mining

enables land managers to respond to illegal mining and

identify areas needing restoration. Satellite imagery pro-

vides a solution for assessing mining-related land cover

changes in tropical rainforests. Freely available satellite

imagery such as the multi-decadal Landsat satellite

archive can quantify forest cover loss related to gold min-

ing, including the extent of mining in remote and inac-

cessible areas (Asner et al., 2013) and illicit mining

activity outside of legal concessions (Elmes et al., 2014).

While the Landsat archive’s open access and global cover-

age has enabled decadal tracking of landcover change

(Hansen et al., 2013; Vancutsem et al., 2021), the spatial

resolution of Landsat (30 m) is not always sufficient to

detect early stages of forest degradation (Asner
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et al., 2013). Higher resolution imagery, including aerial

lidar and commercial SmallSat platforms, can enable early

detection of environmental changes caused by gold min-

ing, such as the loss of aboveground carbon (Csillik

et al., 2019). Near real-time alert systems for deforestation

based on these remote sensing platforms are now feasible,

with the potential to aid policies that seek to limit mining

incursion in protected areas (Csillik & Asner, 2020).

Despite the utility of remote sensing for detecting

environmental threats, many crucial biodiversity vari-

ables are unmeasurable from spaceborne sensors. Insect

taxonomic richness exemplifies a biodiversity variable

that is central to ecosystem function and requires

labor-intensive field sampling (Wagner et al., 2021).

Consequently, community-level insect data are fre-

quently limited to a small spatial extent and the rela-

tionships between biodiversity and landscape-scale

mining degradation are not well understood (Sonter

et al., 2018). For example, understanding how insect

taxa respond to mining would have immediate practical

relevance. The abundance of anopheline mosquitoes in

areas impacted by gold mining drives malaria transmis-

sion in human communities (Moreno et al., 2007).

Aquatic invertebrates within polluted areas can bioaccu-

mulate toxins (Xie et al., 2009), harming people who

consume fish from local waterways (Alpers et al., 2016).

After mining has ceased, ant species composition can

indicate the efficacy of mine rehabilitation efforts (Ribas

et al., 2012). We propose that remote sensing metrics

of land cover that correlate with insect bioindicators

could be used to infer ecological degradation and

recovery.

This study develops a protocol for linking satellite

remote sensing to insect taxonomic richness in a biodi-

versity hotspot threatened by gold mining. We first used

the Landsat satellite record to develop a spatial field sam-

pling scheme for insect collection based on deforestation

related to artisanal gold mining. We then sampled insect

communities from the core to the edge of mined sites

and determined the relationship between insect diversity

and mining degradation, quantified using high-resolution

SmallSat imagery. Our work demonstrates how earth

observation from high-resolution satellite imagery can

complement rapid biodiversity assessments based on field

data collection. We address the following questions:

1. How accurately does PlanetScope imagery detect min-

ing land cover degradation in an old-growth tropical

rainforest?

2. How does the presence or absence of insect taxa corre-

late with mining land cover classification derived from

high-resolution satellite imagery?

3. Is there a correlation between mining land cover and

insect taxonomic richness?

Materials and Methods

Regional context and study site

Our study site is within the Guiana Shield ecoregion, one

of the world’s most extensive remaining tracts of old-

growth tropical rainforests (Fig. 1). In addition to being

an important reservoir of forest carbon stocks, the Guiana

Shield’s continued intact state is crucial to the hydrologi-

cal cycle in the adjacent Amazon Basin (Bovolo

et al., 2018). The Guiana Shield is also a global hotspot

for biodiversity, including many endemic species (Hig-

gins, 2007). The main deforestation driver in these forests

is artisanal gold mining, accounting for 70–80% of all

forest loss in the three countries of Guyana, Suriname,

and French Guiana that are fully within the Guiana Shield

ecoregion (Dez�ecache et al., 2017; Hammond et al.,

2007).

Fieldwork for this study was conducted within the

boundaries of the Indigenous community of Campbell-

town located north of the mining outpost of Mahdia in

Guyana (Latitude: 5°16000″N, Longitude: 59°09000″W).

Campbelltown historically contained old-growth forests

characteristic of lateritic and quarzitic (white sand) soils

found across Guyana. Land cover now includes old-

growth forests, secondary forest regrowth, and cleared

forest patches associated with mining, shifting agriculture,

and infrastructure (roads and houses). Artisanal gold

mining is the primary source of household income but

has also led to conflicts within the community and with

miners from outside the community (Hilson &

Laing, 2017).

Landsat data and field sampling scheme

We developed a stratified sampling scheme for field data

collection using the Global Forest Change dataset (Hansen

et al., 2013). The Global Forest Change data are a

Landsat-derived remote sensing product that includes

annual maps of forest loss at 30 m resolution with a global

extent. These data have previously been applied to detect

deforestation events in the Guiana Shield region (Roop-

sind et al., 2019). We extracted the Global Forest Change

data for our study site, including the year of forest loss.

We then processed the raster data for field sampling by

polygonizing adjacent loss pixels from the same year into

a single forest loss unit (Fig. 2). Next, we used a stratified

sampling scheme to select 165 loss units for field sampling,

representing 15 units for each loss year between 2005 and

2015. We deliberately selected a higher number of loss

units than would be feasible to sample in the field, as we

anticipated that at least some Landsat-derived loss units

would be inaccessible or would represent forest loss from
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causes other than mining. We then designed field plots

centered around Landsat pixels based on each of these loss

units. Our field plots included a center plot, with a 15 m

radius based on the centroid of a Landsat pixel within the

selected loss unit, and four cardinal neighbor plots spaced

30 m apart from the center plot in the four cardinal

directions (Fig. 2). This plot design ensured sampling of

deforested plots and neighboring plots representing a

range of degradation, from nearly intact forest to sites

with a long-term history of mining activity (Fig. 3).

In the field, we selected a subset of 21 loss units out of

the original 165 for field sampling. We adopted a

Figure 1. Map of study area. The upper right-hand map shows the location of the study area within the Guiana Shield. The shaded green color

represents forest cover across South America from MDA Systems Ltd. The color image is clipped to the Indigenous territory of Campbelltown in

Guyana and represents PlanetScope imagery acquired on 19 September 2019.
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haphazard sampling scheme, selecting a general area and

randomly selecting loss units within that area. We dis-

carded loss units where deforestation resulted from activi-

ties other than mining (e.g., clearing for shifting

agriculture and housing). We ensured that selected loss

units represented the full range of loss years, including at

least one sampled loss unit from all years between 2005

and 2015, with a maximum of four sampled loss units for

loss years 2012 and 2015. We then sampled a field plot

centered within each selected loss unit as well as neighbor

plots in the four cardinal directions, resulting in five field

plots per loss unit (Fig. 2). Altogether, field sampling

resulted in 21 center plots and 84 cardinal neighbor plots,

for a total of 105 plots.

PlanetScope imagery

We selected a PlanetScope image with multispectral ima-

gers, four spectral channels (blue, green, red, and near-

infrared) and ~3.7 m resolution from 19 September 2019.

This image had the least cloud cover out of all available

images 3 months prior to field sampling. We interpreted

the PlanetScope image in the field while conducting insect

surveys, including opportunistic collection of 186 ground

control points. During collection of ground control

points, we did not observe any major differences between

land cover in the image and in the field, suggesting that

minimal land cover change occurred during the 3-month

gap between image acquisition and insect surveys.

We georeferenced the PlanetScope image using ground

control points, achieving <4 m accuracy with a first-order

polynomial transformation, which provided superior

results compared to other transformations. We then pre-

pared the image for an object-based image analysis

(OBIA) using the Large-Scale Mean-Shift Algorithm

(LSMS) in ORFEO ToolBox, version 7.0, an open-source

software package for image analysis (Inglada &

Christophe, 2009). Relative to pixel-based classification,

OBIA often provides superior accuracy, in part due to the

ability to include object geometry and texture in classifi-

cation algorithms (Gao et al., 2009; Hussain et al., 2013;

Rittl et al., 2013). The object-based segmentation process

combines spatial scale (hs), range radius (hr), and the

minimum segmented size (M), employing four processes:

Figure 2. Land cover classification from PlanetScope imagery. The map on the left shows the location of Landsat-derived forest loss units

(n = 21), which each include five field plots (one center plot and four plots in the cardinal directions) where presence of insect families was

surveyed in January 2020. The map panels show the land cover classification in the vicinity of a cluster of field plots, including mine cover. The

bottom map panel displays the original PlanetScope imagery used to develop the classification.
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LSMS-smoothing, LSMS-segmentation, LSMS-merging,

and LSMS-vectorization (www.orfeo-toolbox.org). Based

on a visual inspection of segmentation output across 100

different parameter combinations, we selected the follow-

ing segmentation parameters: hs = 10, hr. = 85, and

M = 140. In total, LSMS-segmentation resulted in 26 861

objects with a mean (� SD) object area of 55 � 72 m2.

We manually removed objects with image distortion,

cloud cover, and shadow for a total area of 1160 ha

removed from the image (16.74%). We then randomly

selected 2769 objects for training data. After initial data

exploration, we realized that nonforest objects were

scarce, so we randomly subsampled within mined areas

for an additional 426 training objects. Based on our

ground control points and the goals of our study (to dif-

ferentiate between mined areas and natural vegetation),

we selected five land cover classes (Table 1).

Land cover classification

We developed our land cover classification using the sup-

port vector machine (SVM) algorithm in R version 3.5.3

with the e1071 package (Meyer et al., 2020). Input data

for the SVM included spectral information (the four

PlanetScope spectral bands and normalized difference veg-

etation index calculated from Planet Imagery) with the

average and standard deviation of pixel-level values within

each object. In addition, we included the following geo-

metric information from each object in the SVM: object

area, edge, and edge-to-area ratio. After testing various

kernels and tuning parameters, we found that a linear

kernel with a cost = 1 and gamma parameter = 0.08 pro-

vided the best overall accuracy. We assessed the accuracy

of our SVM by splitting our land cover data into training

and test datasets using 10-fold cross-validation. Code and

data to run the SVM are publicly available (Caugh-

lin, 2021). To extract data from the land cover classifica-

tion for use as a predictor variable in analyses of insect

biodiversity, we calculated the per cent cover of the mine

land cover class within 15 m of each field plot.

Insect collection

Insect samples were collected by a single recorder over

3 weeks, from 7 January 2020 to 30 January 2020, at each

of the 105 plots. Using a field tablet with a GPS receiver

(Bad Elf GNSS Surveyor BE-GPS-3300, accuracy <1 m),

we identified the center of each Landsat sample pixel

where a circular plot with a radius of 15 m was estab-

lished, with the procedure repeated for neighboring Land-

sat pixels (Fig. 2). We used active visual surveys with area

counts to detect insect occurrence in field plots. Active

visual surveys are most accurate for easily detectable

insect groups (e.g., butterflies, dragonflies, and bees) and

less reliable for cryptic ground-dwelling or nocturnal

Figure 3. Landscape context of field plots. These photographs were

taken in sampled field plots and illustrate range of mining-related

degradation from severely degraded mining pits (foreground, panel

A), to forest regrowth on abandoned mine (panel B), to a fragment

of old-growth forest (background, panel A). Photographs by Trevor

Caughlin.

Table 1. Training dataset of manually identified objects for use in

land cover classification.

Land cover

class

Sample size

(number of

objects) Description

Forest 1195 Primary rainforest with closed canopy

Regrowth 228 Vegetation in sites recovering from

disturbance, including secondary

forest, grass, and herbaceous

ground cover

Mine 110 Active or recently used mining areas

Bare ground 65 Recently cleared land with no mining

activity or vegetation

Open water 51 Riparian and pond areas
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insects (Montgomery et al., 2021). Alternate methods

suitable for ground-dwelling insects (e.g., pitfall trapping)

are more labor-intensive and may require disturbing soil

and vegetation (Gist & Crossley, 1973; Ward et al., 2001).

Similarly, collection methods that rely on trapping insects,

such as malaise traps and pan traps, require additional

labor for placement and extensive post-field efforts to

identify and count specimens (Montgomery et al., 2021;

Skvarla et al., 2020). An additional advantage of active

visual surveys is that this method minimizes the number

of specimens that must be killed, as insects can be caught,

identified, and released, or, if a specimen must be col-

lected, only one example is required for further identifica-

tion. For the purposes of our study, active visual surveys

enabled rapid sampling of many insect taxa across a large

spatial extent.

Insect sampling took place between 8:00 and 16:00 h

Insects were collected using aerial nets (for flying insects

and insects on terrestrial vegetation), dip nets (for aquatic

insects), and direct observation, including evidence of

insect activities, such as termite mounds and entrances to

underground burrows. For each insect specimen collected,

we identified insects to order and family. When possible,

we identified specimens to families in the field and

released them unharmed at the point of collection. Insects

that could not be accurately identified in the field were

collected and placed in a freezer to be killed, labeled, and

stored in 90% alcohol. These samples were brought back

to the Center for the Study of Biological Diversity at the

University of Guyana and identified. Insect data are avail-

able in Data S1.

Presence or absence of insect families

We coded each insect family represented in the study as

present or absent for each plot, generating a binary

response variable in our statistical models. To address

question (2), whether PlanetScope-derived mine cover

correlates with insect families’ presence or absence, we

developed generalized linear mixed effect models

(GLMMs) in a Bayesian framework. GLMMs are capable

of modeling nonnormal response variables in nested sam-

pling units, thus avoiding the need to average or trans-

form data (Bolker et al., 2009; McElreath, 2020). Our

binomial models included plot-level presence or absence

of insect families as a response variable and proportion

mine cover within a plot as a predictor variable. To

account for nonindependence between plots within the

same loss units (Fig. 1), we included a random intercept

for each of the 21 loss units. To model variability at the

insect family level, we accounted for family membership

with a random intercept, representing baseline abundance

of insect families when mine cover is zero, and a random

slope for the effect of mining, representing different

responses to mine cover depending on insect family.

To answer question (3), whether PlanetScope-derived

mine cover was correlated with insect taxonomic richness,

we summed the presence of insect families for each plot.

We then modeled insect family richness using a negative

binomial model, with mine cover as a response variable

and loss unit as a random intercept. This approach

enabled us to use the counts of insect families in each

field plot as a response variable while accounting for

shared variance between forest loss units.

We fitted our statistical models using the Hamiltonian

Monte Carlo algorithm in the Stan programming lan-

guage (Stan Development Team, 2020). The statistical

model was implemented using the rstanarm package in

the R programming language (Goodrich et al., 2018). We

ran each model with four chains, each with 2000 total

iterations, discarding the first 1000 as warm-up and

assessed model diagnostics by visually inspecting output

and assessing the Gelman–Rubin statistic and number of

divergent transitions (Gelman & Rubin, 1992).

Results

Classification accuracy

Our land cover model achieved an overall out-of-sample

accuracy of 89.4%. The class with the highest balanced

accuracy of 93% was the mine cover class, and the class

with the lowest balanced accuracy of 72.4% was the bare

ground class, with some bare ground observations mis-

classified as forest or mined areas (Table 2).

Insect family occurrence

There were a total of 1187 observations of insects in this

survey. We recorded a total of 10 different insect orders

and 69 insect families. The two most dominant and

diverse orders were Diptera (20 families) and Hemiptera

(16 families), which accounted for 51% of all insect fami-

lies recorded. The two rarest families were Mantidae (two

observations) and Phasmatidae (one observation).

Mine cover had an overall negative effect on the proba-

bility of insect family occurrence (Fig. 4). For an average

insect family, our model estimates that when comparing a

site with zero mine cover to a site with 100% mine cover,

the probability of insect family occurrence declines by a

median of 2.69% (95% CI: 0–5.6% decline). The effect of

mining was highly certain, including a 97.6% probability

that mining had a negative effect on community-level

insect family occurrence.

There were a wide range of detected effects of mining

on the probability of family presence (Fig. 5). A total
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of eight families within four orders (Odonata: Coena-

grionidae and Libellulidae; Orthoptera: Acrididae and

Tettigoniidae; Diptera: Ceratopogonidae; Hymenoptera:

Crabronidae, Formicidae, and Sphecidae) had a median

effect of mining >10 times that of an average family, cor-

responding to an increase in the probability of presence

of at least 4.5% in a mined site versus a site with zero

mine cover. In contrast, six families were particularly neg-

atively impacted by mine cover, including Culicidae,

Limoniidae (Diptera), Vespidae (Hymenoptera), Chrysop-

idae (Neuroptera), Gryllidae (Orthoptera), and Nymphali-

dae (Lepidoptera), with a decrease in the probability of

family presence for these families of at least 6% in a site

with 100% mine cover, relative to a site with zero mine

cover. Overall, mine cover had a negative impact on

insect family richness (Fig. 6). For an average mined site

compared to a site with zero mine cover, mining reduced

the number of predicted insect families by 2.21 families

(95% CI: �4.23 to 0.11) with a high probability (>97%)

Figure 4. Negative effect of mine cover on probability of insect

family occurrence for the average insect family at an average site. The

thick black line shows predicted mean response of an average insect

family in an average site to mine cover. The dashed lines represent

95% credibility intervals.

Table 2. Confusion matrix for land cover classification.

Observed data

Regrowth Forest Mine Bare ground Open water User accuracy (%)

Classified data Regrowth 107 23 5 3 1 77

Forest 53 875 1 10 0 93

Mine 3 3 71 11 3 78

Bare ground 1 3 2 21 4 68

Open water 1 1 2 1 31 86

Producer accuracy (%) 64 97 88 46 79

Shaded regions indicate objects that were classified correctly.

Figure 5. Range of effects of mining cover on insect family

occurrence. Effect size represents posterior draws from the random

slope parameters of the binomial generalized linear mixed model.

Positive effects indicate species with increased presence in sites with

high mine cover. Overlap with zero indicates uncertainty in effect size

estimates, while negative effects indicate decreased presence in sites

with high mine cover. The 28 families represented are those with

50% CI (credibility intervals) that did not overlap zero. Dots reveal

posterior medians for each insect family, while thick gray lines

indicate 50% CI and thin lines indicate 95% CI. Different colored

dots indicate different insect orders, as shown in the legend.
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that mine cover had a negative impact on insect family

richness.

Discussion

The urgency of the biodiversity extinction crisis demands

improved monitoring tools to rapidly assess and respond

to environmental threats (Proenc�a et al., 2017). We quan-

tified the impacts of one such threat to insect biodiver-

sity, gold mining, by integrating remotely sensed imagery

with field sampling. The multi-decadal temporal extent of

the Landsat satellite archive enabled us to stratify sam-

pling to capture a wide range of land-use histories, while

high-resolution PlanetScope data enabled us to detect

small-scale artisanal gold mines. Rapid assessments of

insect family occurrence at field sites provided a diversity

metric with relevance to a wide range of critical ecosys-

tem services. We found that increased mining cover

derived from SmallSat imagery was associated with decli-

nes in insect taxonomic richness. Our research demon-

strates how satellite imagery’s ever-increasing resolution

and extent can complement rapid field assessments of

biodiversity.

High-resolution imagery from the PlanetScope platform

was essential for detecting environmental degradation at

our study site. The ~3.7 m resolution of the imagery

enabled us to segment pixels into objects with different

shapes and textures and distinguish artisanal mines from

spectrally similar land cover types, including bare ground

and water. In addition to the relatively high spatial reso-

lution of PlanetScope imagery, the high temporal resolu-

tion enabled us to select a relatively cloud-free image over

a tropical rainforest where high cloud cover is a barrier to

satellite remote sensing year-round. While we related

insect biodiversity to discrete land cover classes, SmallSat

imagery also presents novel opportunities for detecting

continuous changes in vegetation, including seasonal vari-

ation that could be related to on-the-ground metrics of

biodiversity (e.g., Curnick et al., in press). Our work adds

to a growing body of research that demonstrates the

power of OBIA applied to high spatial resolution satellite

data, including PlanetScope imagery, for ecological moni-

toring (Kalacska et al., 2020; Li et al., 2019). An agree-

ment with Norway’s International Climate & Forests

Initiative has led to public access to PlanetScope imagery

across the tropics, further opening up low-cost opportu-

nities to rapidly monitor environmental degradation

(Gewin, 2021),

While high-accuracy classification is an important goal

for land cover mapping, the ultimate test of real-world

utility is whether remote sensing products can predict

ecological dynamics. We found that higher OBIA-derived

mine cover resulted in declines in insect family richness.

This result parallels other studies on the impact of arti-

sanal gold mining that have shown near-term impacts of

mining on the biodiversity of birds and anurans (Alvarez-

Berr�ıos et al., 2016), diatoms (Tudesque et al., 2012), and

stream fishes (Brosse et al., 2011). The addition of insect

communities to the list of taxa impacted by gold mining

in primary forests is important as the loss of insect diver-

sity has the potential to impact many ecosystem func-

tions, from pollination to decomposition (Barton &

Evans, 2017; Cardoso et al., 2020; Winfree et al., 2011).

We expect biodiversity loss caused by mining to increase

over time as the land area occupied by mines grows, and

as many detrimental impacts of gold mines (e.g., accumu-

lation of toxicants) bioaccumulate in the ecosystem. In

the context of ever-growing increases in mine cover, with

impacts that cross scales from individual sites to regions

(Sonter et al., 2018), the ability to predict biodiversity

loss from satellite remote sensing layers will be central to

forecasting ecological changes.

Despite an overall decrease in taxonomic richness in

sites with higher mining land cover, family-level impacts

were highly variable, including the increased occurrence

of some insect families in mined sites. Insect response to

mine cover is dependent on taxa-specific feeding guilds

and physical habitat requirements. For example, the fam-

ily with the greatest increase in the probability of occur-

rence under mining was Sphecidae, mud-daubing wasps,

which typically prefer open areas with little vegetation

and exposed soil which they burrow to nest

Figure 6. Negative effect of mine cover on insect family richness.

Each gray dot represents the observed level of insect family richness

at a given site. The thick black line represents mean predicted effect

of mine cover on insect family richness, while dashed lines represent

95% CI.
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(Giovanetti, 2005). The occurrence of ants, Formicidae,

also responded positively to increased mine cover, likely

because many genera of ants prefer disturbed and open

sandy areas for nest building sites (Graham et al., 2004).

However, overall increases at the family level may mask

shifts in relative abundance at finer taxonomic scales

(Stoll, 2020). Over the long term, shifts in taxonomic

composition generated by mining disturbance may have

major ecological consequences as insect communities are

foundational to food webs in tropical rainforests (Lister &

Garcia, 2018).

Identifying taxonomic groups that exhibit a strong

response to gold mining can serve as bioindicators for

rapid assessment of habitat degradation and post-mining

recovery trajectories (Tudesque et al., 2012). Out of the

eight families with a significant effect, either positive or

negative of mining, four of these families belonged to the

order Hymenoptera. Studies from other regions have sug-

gested that this group, and ants in particular, is well-

suited as bioindicators for ecosystem recovery after min-

ing (Majer & Nichols, 1998; Ottonetti et al., 2006). Our

results affirm the utility of hymenopteran insects as

potential bioindicators for ecological change after mining

in tropical rainforests.

Rapid biodiversity assessments that pair field surveys

with remotely sensed data can generate new hypotheses

for future studies. For example, an unexpected finding

from our work was that mosquitoes (Diptera: Culicidae)

were negatively affected by mine cover. This result was

somewhat surprising given that mining disturbance gener-

ates aquatic habitats needed for reproduction in mosquito

species (Moreno et al., 2007). Conversely, several dragon-

fly families, including Libellulidae (skimmers) and Coena-

grionidae (narrow-winged damselflies), were among the

taxonomic groups with the highest increase in the proba-

bility of occurrence with increased mine cover. One

hypothesis for decreased mosquito occurrence in mined

areas is that mining activity promotes habitat for mos-

quito predators, including odonate species which benefit

from ponds created by mining, potentially enabling these

species to control mosquito populations (Saha

et al., 2012). An alternate hypothesis is that mosquito

adults rely on vegetated microhabitats to rest during the

day (Hutchings et al., 2011), and mining disturbance

decreases the availability of these resting spots. Disentan-

gling these hypotheses could inform malaria control

efforts in human communities near gold mines.

We assessed the presence or absence of insect families

with active visual surveys (Montgomery et al., 2021).

While this method enabled rapid field measurements over

a large area, our taxonomic resolution was limited to the

family level and likely biased toward the detection of con-

spicuous taxa. Some studies have shown that family-level

diversity in invertebrate taxa can be an acceptable proxy

for more intensive species-level identification (Heino,

2010; Rohde et al., 2019). However, we anticipate that

finer taxonomic resolution, analogous to higher spatial

resolution from satellite imagery, will improve biological

insights from rapid assessments. For example, overall

abundance within a family can mask considerable varia-

tion in how insect species respond to disturbance, with

consequences for selecting bioindicator species (Ottonetti

et al., 2006). Identifying insects down to generic- or

species-level requires specialist skills, particularly in the

tropics where insect taxa are understudied, with many

unclassified species (Stork, 2018). Emerging DNA-based

species identification methods may present a solution to

detect rapid changes in insect communities with lower

cost and greater efficiency than manual identification

(Beng et al., 2016). In particular, DNA metabarcoding

with high-throughput sequencing enables biodiversity

assessment from environmental samples, including high-

capacity analysis of hundreds of thousands of sequences

(Fernandes et al., 2019). Developing generalized work-

flows to pair metabarcoding with satellite remote sensing

data, such as PlanetScope imagery, will be a key next step

for biodiversity monitoring in the 21st century (Yamasaki

et al., 2017).

Conclusion

We have demonstrated that high-resolution PlanetScope

imagery can produce land cover classifications relevant to

biodiversity change. Our results emphasize the impor-

tance of landscape context for biodiversity of insects, a

crucial yet understudied, taxonomic group. Because

insects sustain subsequent links in tropical forest food

webs, we anticipate wide-ranging impacts of gold mining

on other taxonomic groups. As gold mining continues to

encroach into tropical rainforests that harbor the majority

of terrestrial species on earth, our approach provides a

method to rapidly detect environmental degradation.
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