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Data-driven Design of Energy-Shaping Controllers for Swing-Up
Control of Underactuated Robots

Wankun Sirichotiyakul and Aykut C. Satici

Abstract— We propose a novel data-driven procedure to train
a neural network for the swing-up control of underactuated
robotic systems. Our approach is inspired by several recent
developments ranging from nonlinear control theory to machine
learning. We embed a neural network indirectly into the
equations of motion of the robotic manipulator as its control
input. Using familiar results from passivity-based and energy-
shaping control literature, this control function is determined
by the appropriate gradients of a neural network, acting as
an energy-like (Lyapunov) function. We encode the task of
swinging-up robotic systems through the use of transverse
coordinates and goal sets; which drastically accelerates the
rate of learning by providing a concise target for the neural
network. We demonstrate the efficacy of the algorithm with
both numerical simulations and experiments.

I. INTRODUCTION

In this paper, we discuss the data-driven design of con-
trollers for a class of underactuated robotic mechanisms. The
quintessential control problem that we tackle is the swing-up
control of pendulum systems, such as the simple pendulum
and the inertia wheel pendulum.

The swing-up control problem is to move the pendula from
its stable downward position to its unstable inverted position
and balance it about the vertical. The motions considered in
this problem are large and therefore the swing-up problem
is highly nonlinear and challenging.

This problem has been the subject of innumerable research
papers until today. Control design approaches ranging from
bang-bang control, sliding mode control, energy-based ap-
proaches, and many others have been extensively studied [1]–
[4]. Passivity-based control [5], [6], which is a generalization
of energy-shaping approach can also be applied to swing up
the pendulum. These approaches require precise knowledge
of the mathematical model describing the system. For sys-
tems with high complexity, development of controllers using
these methods can be intractable.

The surge in popularity of machine learning has brought
with it many data-driven solutions to the problem of the con-
trol design. Data-driven approaches are flexible in the sense
that the same framework can be applied to many different
systems. In this category, the main idea is to use data to find
a control policy such that the closed-loop behavior of the
system optimizes a certain objective given by some notion
of accumulative reward/cost. One of the most commonly
used techniques in this area of research is reinforcement
learning [7], which seeks a direct mapping from the system
states to the control inputs. These approaches been used in
control tasks such as robot locomotion and manipulation [8],
[9] and control of underactuated systems [10]. Most of data-

driven approaches in the domain of control design treat
the closed-loop system as a black-box, i.e. containing no
predetermined structure from the governing laws of physics.
While this is a flexible solution to many control problems,
the vast amount of training data required for training is often
prohibitive.

Recent advances in machine learning research have shown
that it is advantageous to combine available knowledge of the
system with the learning framework. In [11], the dynamics is
first learned and then later incorporated into a policy search.
This addresses the poor sample complexity of model-free
reinforcement learning, but does not allow physical structures
of the system to be directly incorporated. The neural ordinary
differential equation (ODE) [12], is a recent framework that
connects deep neural networks to continuous-time dynamical
systems. This approach has provided researchers with a
modeling basis for incorporating physical structures into their
machine learning problems, e.g. using neural ODEs to learn
the Hamiltonian dynamics of physical systems [13].

Our aim in this paper is to combine the many of the clever
techniques researchers have used to successfully swing-up
pendulum systems with data-driven techniques to automat-
ically come up with clever control laws. To this end, we
develop a learning framework which incorporates the under-
lying physical model of the system. Our approach uses the
recent development of an extension to neural ODE [14] that
enables the direct incorporation of a neural network into the
differential equation governing the system. We combine this
neural-network-embedded ODE with passivity-based control
techniques to learn an energy-like function that imposes
desirable characteristics onto the closed-loop system. To train
the neural net, we construct the loss function using transverse
coordinates, which quantify the distance between system’s
trajectories and some desired orbit.

In this work, we provide novel results in the design of data-
driven control laws for a class of underactuated mechanical
systems. The contributions of this paper are summarized
below:

• Express the controller through a neural network and
incorporate it into the ODE governing the evolution of
the system,

• Design of loss functions that rely on a transverse
coordinate system, which speeds up training,

• Provide simulation and experimental support for the
framework.
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II. BACKGROUND

In this section, we summarize the technical background
that is used in the remainder of the paper. Further details
on the cursory exposition here, may be found in the refer-
ences [5], [6], [15], [16].

A. Transverse Coordinates

In this work, we will be concerned with learning structured
controllers, that renders some chosen orbits asypmtotically
stable. On the other hand, measuring the distance to a
feasible trajectory of a dynamical system is a computation-
ally difficult problem. This computational burden may be
alleviated by the use of transverse coordinates. [15], [16].

This method reparametrizes the states of the dynamical
system by assigning one state, τ , to be a parameter that
determines where along the specific trajectory the state
of the system is The remaining 2n − 1 states, x⊥, are
chosen transversal to the trajectory and are called transverse
coordinates. These coordinates may be thought of as a
parametrization of a local moving family of Poincaré sections
along the trajectory.

This family of Poincaré sections can be described as a
family of hyperplanes defined as follows

S (τ) =
{
y ∈ R2n : f(x?(τ))> (y − x?(τ)) = 0

}
,

where and x?(τ) is a specified orbit with ẋ?(t) 6= 0, ∀t ∈
[0,∞), and f(x?(τ)) is the system dynamics along this
specified orbit. We construct a coordinate system on S (τ)
by choosing a basis on this subspace. This procedure may be
found in detail in [16]. A projection operator Π(τ) onto this
space is then defined, which defines a change of coordinates
x 7→ (x⊥, τ), where τ represents which of the transversal
surfaces S (τ) the current state x inhabits, and the vector
x⊥ is the “transversal” state representing the location of x
within the hyperplane S (τ), with x⊥ = 0 implying that
x = x?(τ). The transverse coordinate under this construction
is determined by

(1)x⊥ = Π (y − x?(τ)), for any y ∈ S (τ).

B. Energy-Shaping Control

The form of the controllers we design in this paper us-
ing data-driven methods is based on passivity-based/energy-
shaping control. In this subsection , we will borrow from [5],
[6] to describe the general outline of this method.

We let x ∈ R2n denote the state of the robot. The state x
may be represented in terms of the generalized positions and
velocities x = (q, q̇) or positions and momenta x = (q, p). It
is known that for hyperregular Lagrangians, the Hamiltonian
and Lagrangian formulation of dynamics are equivalent [17].
We take the Hamiltonian point of view in the background
section; however, we go back and forth the two formulations
through the Legendre transformation, q̇ 7→ p = ∂H

∂q̇ = Mq̇,
where M is the symmetric, positive-definite mass matrix and
H is called the Hamiltonian of the robot, expressed as

H(q, p) =
1

2
p>M−1(q)p+ V (q),

where V (q) represents the potential energy. The system’s
equations of motion can then be expressed as[

q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0

G(q)

]
u.

The main idea of energy-shaping control, which is closely
tied to passivity-based control [6], is to use the control input
u ∈ U ⊆ Rm to impose a desired (closed-loop) energy-
like function: Hd : R2n → R. This energy-like function was
chosen to be a quadratic function of the system momenta
in [5] as follows

Hd(q, p) =
1

2
p>M−1d (q)p+ Vd(q),

however, in this work we do not constrain ourselves to
desired Hamiltonians of this particular form.

The controllers we choose in this work is comprised of
an energy-shaping term and a damping injection term, i.e.,
u(x) = ues(q, q̇) + udi(q, q̇), where

ues(q, q̇) = −(G>G)−1G>
∂Hd

∂q
,

udi(q, q̇) = −KdG
> ∂Hd

∂p
.

(2)

We invoke methods from machine learning, elaborated in
the next section, to come up with the energy-like function
Hd automatically. We then take this function and use it in
conjunction with equations (2) to determine the controller
that performs the swing-up of various underactuated robotic
systems. When we represent Hd by a neural network, we
will sometimes explicitly denote its dependence on various
parameters θ ∈ Rp by Hd(x; θ).

III. METHODS

In this section, we describe how to learn the function
Hd(x; θ), that is used to derive the controller that performs
the swing-up maneuver.

A. Main Learning Problem

In this subsection, we formulate the control design for
swinging-up robotic mechanisms as an optimization problem
of a neural network, which estimates a Lyapunov function
that is used to derive the controller.

We assume that the equations that govern the motion of the
robotic mechanism takes the nonlinear, control-affine form

(3)
ẋ = f(x) + g(x)u(x; θ),

x(t0) = x0

where x ∈ R2n is the state vector, u ∈ Rm is the vector
of control inputs, determined by equations (2), and x0 ∈
R2n is the initial condition. Note that u is a function of
the parameters of the neural network as it is found by
differentiating Hd. We assume that the system dynamics
f, g are known and are sufficiently smooth vector fields.
As the control input u is determined from equation (2), we
can integrate the initial value problem (IVP) (3) to obtain
a trajectory γ : t 7→ φ(t;x0, θ). We refer to each γ as
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a prediction from the initial condition x0 with the current
control law u(x; θ).

Our goal is to learn the parameters for Hd, which will be
used to form the controller, so that a performance functional
J : Rp → R is minimized. In other words, we formulate the
following optimization problem, to be solved over the neural
network parameters, θ ∈ Rp.

(4)

minimize
θ∈Rp

J(θ) =

∫ τ

t0

r(φ, u(φ; θ)) dt,

subject to ẋ = f(x) + g(x)u(x; θ),

x(t0) = x0.

where φ = φ(t;x0, θ) is the flow of the equations of motion,
the time horizon τ ∈ (0,∞) is a hyperparameter and r :
R2n×Rm → R is a running cost function, whose design we
elaborate in the following subsection.

B. Loss Function
The running cost function r(x, u) that yields the loss

function J(θ) consists of four main parts: 1) distance, r⊥,
to a preferred orbit, γ?, 2) set distance, rset, between the
current prediction and the goal set, 3) Double-hinge loss,
rhinge, to penalize multiple swings of the first link, and 4)
the regularization term, rreg, to avoid overtraining the neural
network parameters. Since the regularization term is so well-
known in machine learning literature, it will not be further
delineated.

The running loss is found by suming of these components:

r(θ) := r⊥(x, u) + rset(x) + rhinge(x) + rreg(θ),

where each term depends on θ through the dependence of
the whole system trajectory on θ.

1) Distance to a preferred orbit: The first term that makes
up the running loss is the distance to a preferred orbit, γ?.
In Section IV, where we apply this framework to the simple
pendulum and inertial wheel pendulum, this preferred orbit
was chosen to be the homoclinic orbit of the pendulum.

In general, such a homoclinic orbit may not be available.
In this case, the preferred orbit may be computed using
one of several methods that are available in the literature,
such as, trajectory optimization [18], virtual holonomic con-
straints [19], etc.

Once the preferred orbit has been chosen, the next step is
to compute the transverse coordinates along this orbit, using
the ideas outlined in Section II-A. These coordinates allow us
to compute the distance from a prediction γ to γ? efficiently.

This computation is performed as follows. We randomly
sample N points from the current prediction γ. The distance
of each of these N points to γ? is then computed by the
norm of its transverse coordinate x⊥.

Notice that the prediction converges to γ? if and only if
x⊥ → 0 as t → ∞. In order to encourage this behavior, it
makes sense to set the first term in our running cost as a
quadratic loss on x⊥. Since we also want to use reasonable
control effort while having γ converge to γ?, we append a
cost for control effort usage:

(5)r⊥(x, u) =
1

2N
x>⊥Qx⊥ +

1

2
u>Ru

2) Set Distance Loss: The ultimage goal of the framework
is to swing-up the robotic system to an upward (unstable)
equilibrium point. We encourage the controller to move the
system states to a set around the upward equilibrium point
by penalizing whenever the prediction trajectory spends time
away from this set.

The penalty, rset is constructed by definining a convex
open neighborhood S of the upward equilibrium point and
computing the set distance of γ(t) to S

rset(x) = dist(γ, S)

= inf {‖x− y‖ : x ∈ γ(t), t ∈ (t0, τ), y ∈ S}
For instance, we can choose the set S to be a ball around
the upward equilibrium point of radius r > 0 in the standard
norm topology. In this case, r becomes a hyperparameter to
be selected by the user before the training. With this choice,
if any point along the prediction γ gets closer than r to the
upward equilibrium point, no additional loss is incurred.

3) Double-hinge loss: We want penalize those prediction
trajectories γ which overshoot the upward equilibrium point
and require the first link to swing multiple times before
reaching the set S using a double-hinge loss term, rhinge.

(6)rhinge(x) =

{
0, |x| ≤ 2π,

|x| − 2π, otherwise.

where x is the angle of the first link.

C. Gradient Computation through ODEs

We want to find a solution to the optimization problem
in (4) using gradient-based search, as any other optimization
method would be excruciatingly slow. In this paper, we make
use of ADAM [20] as the underlying gradient-based descent
algorithm for updating the parameters.

However, any gradient-based optimization algorithm
clearly requires that the gradient of the loss function J(θ)
be available to carry out parameter update. Since in formu-
lation (4), the loss depends on the parameters through the
solution φ(t;x0, θ) of an ODE, it is not immediately clear
how the gradients ∇θJ(θ) will be computed.

Employing the chain rule of differentiation yields that the
gradient we are looking to compute depends on the gradient
∂φ
∂θ of the solution with respect to the parameters and the
gradient ∂J

∂x of the loss function with respect to the system
state.

In the recent literature [12], adjoint sensitivity methods
have been used to compute this derivative by first solving a
backwards ODE, known as the adjoint problem

dλ

dt
= −λ∂ (f(x) + g(x)u)

∂x
.

Then, the desired gradient of the loss function may be
computed through the expression

∂J

∂θ
= λ(t0)

∂ (f(x) + g(x)u)

∂x
.

This approach is based on Pontryagin’s maximum prin-
ciple [21] and is quite mathematically elegant. However, it
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requires multiple forward solutions of the ODE to imple-
ment; hence, it quickly becomes quite costly to execute.

Recent advances in automatic differentiation (AD) and
differentiable programming has allowed more efficient com-
putations of the desired gradients on a solver implemented
entirely in a language with pervasive AD. In [14], a number
of existing AD schemes and adjoint methods are generalized
to enable gradient computation of solutions to ODEs with
neural-net architectures embedded in them. We use this
very recent framework to compute the gradients of the loss
function J(θ) and use it in conjunction with ADAM to solve
our optimization problem (4).

D. Sampling the State Space

The initial conditions from which the predictions γ are
generated must be sampled finely enough for sufficient
training. Rather than sampling randomly across the state
space, we follow the DAGGER approach proposed in [22].
In summary, DAGGER simulates the system forward using
the learned policy, which is initially poorly-trained. We then
select M points along the generated trajectory to use as initial
conditions for creating new prediction-data pairs. As learning
progresses, it iteratively collects new training samples from
the regions of state-space visited by the learned policy.

E. Training the Neural Network

The parameters θ are trained using ADAM with the default
settings. We summarize the training process in Algorithm 1.
The parameters N,K,M,P are hyperparameters to be cho-
sen by the user. N is the number of sampled states along
γ used to compute the loss in eq. (5). K is the number of
trainings repeated on a single prediction γ. M is the number
of training samples randomly selected from γ0, which is the
initial trajectory generated according to DAGGER. P is the
number of repetitions of the sample collection process. This
corresponds to the total number of γ0 to be generated and
sampled from. In total, this algorithm creates MP training
samples.

Algorithm 1: Training Process
Input: Initial parameters θ0

1 Initialize D ← ∅, a container for storing initial states x(t0)
2 for i = 1, . . . , P do
3 γ0 ← integrate eq. (3) w/ current θ and random x(t0)

4 γ
(m)
0 ← pick M states randomly sampled from γ0

5 D ← D ∪ γ(m)
0

6 for each d ∈ D do
7 for j = 1, . . . ,K do
8 γ ← integrate eq. (3) w/ current θ and

x(t0) = d
9 Compute J(γ; θ) and ∂J/∂θ (for N sample

states along γ)
10 θ ← update θ according to ADAM

Output: Solution of optimization problem (4)

Fig. 1: Schematic of the pendulum. The actuated revolute
joint is torque-limited and is modeled with viscous friction.

TABLE I: Physical parameters for the pendulum

Parameter Symbol Value Units
Combined mass m 0.377 kg
Length to CoM l 0.232 m

Total length ltot 0.420 m
Moment of inertia I 0.02583 kg-m2

Friction coefficient b 0.005 Nm-s
Max torque umax 0.1313 Nm
Gear ratio η 13/3 -

IV. RESULTS

We apply our approach to two robots commonly used as
benchmarks: the physical pendulum and the inertia wheel
pendulum. We train two neural networks to find swing-up
controllers for each system. Results from simulation studies
are provided for both systems. Additionally, results from
physical experiments are provided for the physical pendulum.

A. The Physical Pendulum

The pendulum consists of a bob and an arm of length ltot.
Their combined mass is denoted by m. The arm is connected
to ground through a revolute joint, whose position is denoted
by the angle θ between the centerline of the arm and the
downward vertical line. The center of mass (CoM) is located
at a distance l from the center of the revolute joint. The
revolute joint is actuated and is modeled with viscous friction
with the coefficient b. Figure 1 shows a schematic of the
pendulum.

The dynamics of the pendulum is given as

(7)Iθ̈ = −mgl sin(θ)− bθ̇ + ηu

where I is the moment of inertia of the whole mechanism, g
is the gravitational constant, u is the torque generated by the
actuator, and η is the gear ratio of the actuator. The torque
u is limited by |u| ≤ umax. The physical parameters used in
the experiments are summarized in Table I.

It is important to note that the maximum torque umax
available in both our simulation and experimental setup is
such that the upward equilibrium point cannot be reached
by just rotating in one direction as the gravitational force
overcomes the motor torque eventually. As a result, the
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Fig. 2: Convergence to the homoclinic orbit (dashed line) of
the learned controller for the physical pendulum. The hori-
zontal and vertical axes are the pendulum angle and angular
velocity, respectively. The overall training process only needs
the homoclinic orbit as the training data, demonstrating the
data-efficiency of our approach.

controller has to be clever enough to successfully overcome
gravitational forcing with a combination of built-up momen-
tum and available motor torque.

We use a simple fully-connected neural network with
(ELU) activations [23] to learn the swing-up control. The
neural net has two hidden layers with 48 nodes in the first and
36 nodes in the second. There are a total of 1,945 parameters
to train with this architecture. We train this neural net to find
Hd in eq. (II-B). The training data is generated using the
homoclinic orbit, which is characterized by

(8)θ̇?(θ) =

√
2

I
(E0 −mgl(1− cos θ)),

where E0 = 2mgl is the potential energy of the pendulum
at the unstable equilibrium. With this orbit, the transverse
coordinate is x⊥ = min(|θ̇ ± θ̇?|2). The goal set S used to
compute the set distance loss rset described in Section III-B
is defined as

S =
{
x ∈ R2 : ‖x− x?‖≤ 0.1

}
,

where x? =
[
kπ 0

]>
, with k an odd integer, is the

upward equilibrium point. We train the neural network with
the hyperparameters P,M,K,N in Algorithm 1 chosen as
25, 8, 12, 64, respectively.

With this set of parameters and loss function, the training
required approximately ten hours on a single CPU. The
training progress for a single initial condition is demon-
strated in Figure 2. We use the programming language
Julia with the packages Flux.jl [24], DiffEqFlux.jl,
and DifferentialEquations.jl to perform the train-
ing. Automatic differentiation is handled by the packages
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Fig. 3: Simulation results for the pendulum. The learned
controller takes the pendulum to the homoclinic orbit. When
the state comes close to the unstable equilibrium, the linear
controller takes over.
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Fig. 4: Accumulated control input demanded by the learned
policy (left) and the energy shaping controller (right) to
swing up the pendulum. The horizontal and vertical axes
are the pendulum angle and angular velocity, respectively.
The demanded control effort by learned policy mimics that
of the energy-shaping control.

Tracker.jl and Zygote.jl. The source code for our
learning framework is available at https://bitbucket.
org/bsurobotics/ml_based_esc_iros_2020.

The learned controller is evaluated by simulating the
pendulum for 15 seconds from a range of initial states. Each
initial angle is in the interval [−0.9π, 0.9π] rad, and each
initial velocity is in the interval [−10, 10] rad/s. Fifty samples
of each initial position and velocity are collected, for a total
of 2,500 simulations. We employ a switching scheme where
the learned controller is used for swinging up, and LQR is
used near the upright position. If the linear controller catches
the swing and stabilizes the upward equilibrium point x?,
then the simulation is considered successful. Performance
of the swing-up controller is evaluated by the number of
successful simulations.

In only 2 out of 2,500 simulations, the learned controller
failed bring the pendulum close enough to the unstable
equilibrium for the linear controller to take over. This result
gives us a success rate of 99.92% for the learned policy.
A comparison of the control effort needed to swing up by
the learned controller and traditional energy-shaping control
is given in Figure 4. We see that the demanded effort by
the learned policy resembles that of the traditional energy
shaping controller.

https://bitbucket.org/bsurobotics/ml_based_esc_iros_2020
https://bitbucket.org/bsurobotics/ml_based_esc_iros_2020
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Fig. 5: Experimental results for the physical pendulum.
The angle measurement contains a small amount of noise,
and the velocity measurement is approximated. The learned
controller is able to swing up despite these inaccuracies.

We further bolster the efficacy of our approach by imple-
menting the learned controller on an experimental system.
The parameters for our experimental setup are the same ones
used in simulation and are listed in Table I. The viscous
friction model is an approximation of the true friction in the
bearings of our system. We start the pendulum at a random
initial condition close the origin and record the angle and the
commanded torque. Velocity measurements are not directly
available in the experimental setup. They are estimated
through the use of a digital low-pass filter. Figure 5 shows
the results of the experiment. Note that the learned controller
is robust against the inaccuracies in velocity approximation,
system parameters, and friction model.

B. The Inertia Wheel Pendulum

The inertia wheel pendulum (IWP) is a simple pendulum
with an actuated wheel instead of a static bob. The wheel
has mass m, which is connected to a massless rod of length
l. The position θ2 of the wheel is measured with respect to
the vertical line through the center of the wheel. The rod is
connected to ground by an unactuated revolute joint, whose
position is denoted by the angle θ1 measured with respect to
the downward vertical position. A schematic of the inertia
wheel pendulum is shown in Figure 7.

The dynamics of the inertia wheel pendulum is

(9)
I1θ̈1 = −mgl sin(θ1)− u,
I2θ̈2 = u

where I1 is the moment of inertia of the pendulum, I2 is the
moment of inertia of the rotating wheel, g is the gravitational
constant, and u is the torque generated by the actuator. The
torque is limited by |u| ≤ umax. In the simulation studies,

Fig. 6: Schematic of the inertia wheel pendulum. The rotating
wheel θ2 is actuated.
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Fig. 7: Simulation results for the IWP starting from a random
initial state. (Upper left): The state evolution projected onto
the θ1-θ̇1 plane. (Lower left): The control input using a
switching scheme. The large spikes are commanded by the
linear controller. (Right): The wheel position and velocity.

the following values are used for system parameters: I1 =
0.1, I2 = 0.2, mgl = 10, and umax = 1.5.

For this experiment, we use a neural network with the
following dimensions in each layer: (4, 64, 64, 1). There are
a total of 4,545 parameters to train with this architecture. We
perform the training with the hyperparameters P,M,K,N
chosen as 30, 8, 4, 64, respectively. As the pendulum subsys-
tem of the IWP is passive, the homoclinic orbit of the IWP
is the same as eq. (8), with θ replaced by θ1 and the inertia
parameter is replaced with I = I1 + I2. We select the goal
set S in the computation of the set distance loss, rset, to be

S =

{(
θ1, θ̇1, θ2, θ̇2

)
:

√
(θ1 − π)2 + θ̇21 + θ̇22 ≤ 0.1

}
.

The learned controller is evaluated by simulating the
inertia wheel pendulum for 20 seconds from a range of
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initial states with θ1 ∈ [−0.9π, 0.9π] rad, and θ̇1 ∈ [−10, 10]
rad/s. The initial wheel position and velocity are zero. Fifty
samples of each initial (θ1, θ̇1) are collected, for a total
of 2,500 simulations. We evaluate the performance of the
trained controller using the same method as the pendulum,
i.e. catching the swing with LQR controller. There are 2,495
successful simulations, resulting in a success rate of 99.80%.

V. CONCLUSION

We demonstrate a novel approach to the swing-up control
of underactuated robots by embedding a neural network
into the physical model through the control function and
using techniques from dynamics and control theory, such
as transverse dynamics and energy-shaping controllers. We
encode a term in the loss function for the neural network,
which learns and energy-like function for the closed-loop
dynamics, using the transverse coordinates from a desired
orbit. This term encourages the the controller, derived from
the energy-like function, to pull the trajectories towards the
orbit. Additional terms in the loss function that encourage
convergence to a desired equilibrium help overcome getting
stuck in local optimal solutions. We demonstrate the success
of the proposed framework in two benchmark problems in
control both in simulation and experiment.
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