Boise State University

ScholarWorks

Research Computing Days 2023 Research Computing Days

3-28-2023

GPU Accelerated Adaptive Wave Propagation Algorithm

Brian Kyanjo
Boise State University

Donna Calhoun
Boise State University

C. Burstedde
University of Bonn

S. Aiton
Boise State University

J. Snively
Embry-Riddle Aeronautical University

See next page for additional authors

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/rcd_2023
https://scholarworks.boisestate.edu/rcd

GPU Accelerated Adaptive Wave Propagation Algorithm

Abstract

The GPU performance of the adaptive wave propagation algorithm is critical to its effectiveness in
simulating wave propagation in complex media. This algorithm employs adaptive mesh refinement to
improve resolution in areas where the wavefield is changing rapidly. The algorithm's performance is
significantly improved by the use of graphics processing units (GPUs), which offer faster computation
times than traditional central processing units (CPUs). According to the studies in this poster, GPU
acceleration of the adaptive wave propagation algorithm provides significant improvements in simulation
speed and scalability, as seen in the simulated examples: scalar advection, shallow water equations,
euler, and acoustics. When compared to traditional CPU-based algorithms, the algorithm can handle
larger models and produce higher resolution results at a faster rate. The algorithm's efficiency and
effectiveness are determined by the specific hardware and software configuration of the GPU used; for
this study, we used INL Borah.

Authors
Brian Kyanjo, Donna Calhoun, C. Burstedde, S. Aiton, J. Snively, and M. Shih

This student presentation is available at ScholarWorks: https://scholarworks.boisestate.edu/rcd_2023/13

https://scholarworks.boisestate.edu/rcd_2023/13

GPU accelerated adaptive wave propagation algorithm

Brian Kyanjo (PhD in Computing, Boise State Univ.)
Donna Calhoun (Dept. Math, BSU)
Collaborators : C. Burstedde (Univ. of Bonn); S. Aiton (BSU); J.
Snively (ERAU); M. Shih (NYU)

Key features of ForestClaw

ForestClaw is a parallel, multi-block library for solving
PDEs on adaptively refined logically Cartesian meshes.

Some of the features of ForestClaw are :

1. Based on the highly scalable grid management
library p4est (www.p4est.org)

2. Multi-block capabilities extends the usefulness of
Cartesian mesh methods to many important
domains, including the cubed sphere, and non-
square rectangular regions.

3. Quad-tree adaptive meshing means that less meta-
data is stored on each processor, and nearest-

neighbors are easy to find.

4. Cartesian grid layout of each patch and regular
neighbor patterns greatly simplifies the ForestClaw PatCheS
development of novel numerical methods. with ghOSt cells

5. ForestClaw has been extended by several popular
libraries, such as Clawpack and GeoClaw

(www.clawpack.org).

GPU : Explicit single time step done in parallel via GPU threads

block size = 128; batch size = 4000;

mwork = 9*meqn + 9*maux + mwaves + megn*mwaves;
bytes per thread = sizeof (double) *mwork;

bytes = bytes per thread*block size;

dim3 block(block size,1l,1);
dim3 grid(1l,1,batch size);
claw_ flux2<<<grid,block,bytes>>>(mx,my,meqn, . .)

—

<o

S

o“'.“ :’1?‘:.“

e e

e o

‘0’:':0:""%’“. o

3 ‘:‘:‘-—"
eSS

CICICICCACICICAC D
NN

.
14

dim3 grid(1l,1,batch size)

Single thread block reused per patch.
Warp of 32 threads run simultaneously

—_

CPU : Hierarchy of equal size patches managed by p4est mesh

Filling fine grid patches

Quadtree of patches by interpolation

Results : Four examples
Scalar advection, SWE, Euler, Acoustics

procs

example device

bump CPU 7469620 3734810 1867400 933702 466851

GPU 7469620 3734810 1867400 933702 466851

CcPU 1058390 529196 264598 132299 66150

GPU 1058390 529196 264598 132299 66150

shockbubble CPU 2411600 1205800 602900 301450 150725

GPU 2411605 1205805 602900 301450 150725

CPU 10127600 5063800 2531900 1265950 632975

GPU 10127600 5063800 2531900 1265950 632975

Advance steps counter

Timing (Bump; CPU and GPU comparisons)

Filling coarse grid ghost
cells by averaging

Timing (Radial; CPU and GPU comparisons)

¥ |
T T T T T

Emm Advance

Ghostfill
Regrid
Patch_comm
Adavance (GPU)
I Ghostfill (GPU)

Regrid (GPU)
Patch_comm (GPU)

i - -

[]
1 2

2]
1
inutes)

Time (minutes)
2

Time (mi

mmm Advance

Ghostfill

Regrid

Patch_comm
Adavance (GPU)
Ghostfill (GPU)
Regrid (GPU)
Patch_comm (GPU)

4

Timing (Shockbubble; CPU and GPU comparisons)

Timing (Swirl; CPU and GPU comparisons)

BN Advance
Ghostfill
Regrid
Patch_comm
Adavance (GPU)
Ghostfill (GPU)
Regrid (GPU)
Patch_comm (GPU)

e
o
1

me (minutes)

Time (minutes)

B Advance

Ghostfill

Regrid

Patch_comm
Adavance (GPU)
Ghostfill (GPU)
Regrid (GPU)
Patch_comm (GPU)

www.forestclaw.org -

This worked is supported by NASA grant #80NSSC20K0495 (J. Snively, M. Zettergren (Embry-Riddle Aeronautic University, FL); D. Calhoun (BSU)

http://www.forestclaw.org/

	GPU Accelerated Adaptive Wave Propagation Algorithm
	GPU Accelerated Adaptive Wave Propagation Algorithm
	Abstract
	Authors

	GPU Accelerated Adaptive Wave Propagation Algorithm

