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Abstract

Population monitoring is essential to management and conservation efforts for

migratory birds, but traditional low-altitude aerial surveys with human obser-

vers are plagued by individual observer bias and risk to flight crews. Aerial sur-

veys that use remote sensing can reduce bias and risk, but manual counting of

wildlife in imagery is laborious and may be cost-prohibitive. Therefore, auto-

mated methods for counting are critical to cost-efficient application of remote

sensing for wildlife surveys covering large areas. We conducted nocturnal sur-

veys of sandhill cranes (Antigone canadensis) during spring migration in the

Central Platte River Valley of Nebraska, USA, using midwave thermal infrared

sensors. We developed a framework for automated counting of sandhill cranes

from thermal imagery using deep learning, assessed and compared the perfor-

mance of two automated counting models, and quantified the effect of spatial

resolution on counting accuracy. Aerial thermal imagery data were collected in

March 2018 and 2021; 40 images were analyzed. We applied two deep learning

models: an object detection approach, Faster R-CNN and a recently developed

pixel-density estimation approach, ASPDNet. Model performance was deter-

mined using data independent of the training imagery. The effect of spatial res-

olution was quantified with a beta regression on relative error. Our results

showed model accuracy of 9% mean percent error for ASPDNet and 18% for

Faster R-CNN. Most error was related to the undercounting of sandhill cranes.

ASPDNet had <50% of the error of Faster R-CNN as measured by mean per-

cent error, root-mean-squared error and mean absolute error. Spatial resolution

affected accuracy of both models, with error rate increasing with coarser resolu-

tion, particularly with Faster R-CNN. Deep learning models, particularly pixel-

density estimators, can accurately automate counting of migratory birds in a

dense, aggregate setting such as nocturnal roosting sites.

Introduction

Population monitoring is critical to inform management

and conservation of wildlife populations (Nichols & Wil-

liams, 2006). Count-based methods using human obser-

vers are often applied in wildlife monitoring, but observer

bias can be substantial, and adjusting for this bias often

requires auxiliary data collection, which can be laborious

and costly to collect (Pearse et al., 2008; Williams

et al., 2002). Counts from aircraft are often conducted

when the geographic region of interest has a broad spatial

extent or is inaccessible by ground. Although aerial sur-

veys using human observers can cover these extents, for

small-bodied wildlife such as birds, low-level flight is

required, which increases risk for flight crews

(Sasse, 2003).

Migratory birds are of international concern and their

migratory staging, or stopover, areas are critical to their

populations (Kirby et al., 2008; Rakhimberdiev

et al., 2018). An estimated 80–85% of the Mid-continent
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Population (MCP) of sandhill crane (Antigone canadensis)

stages in the Central Platte River Valley of Nebraska,

USA, during a 3–4 week period in spring (Caven,

Buckley, et al., 2020) (Figure 1). Low-level ocular surveys

have been conducted along the Central Platte River and

North Platte River each spring using consistent methodol-

ogy since 1982 (Benning & Johnson, 1987) to inform

recreational harvest and other population management

decisions (Central Flyway Webless Migratory Game Bird

Technical Committee, 2018). The current aerial survey is

conducted with human observers at a low altitude (60–75
meters above ground level (AGL)) on fixed strip transects;

the survey extent was established to include all sandhill

crane foraging areas in this important migratory staging

region. The survey incorporates the collection of oblique

photography by a third crew member in the aircraft rear

seat to correct for bias in primary-observer estimates of

crane flock sizes (Benning & Johnson, 1987).

Annual indices of sandhill crane abundance generated

from this methodology are highly variable (Pearse

et al., 2015), leading managers to re-assess the survey

design and methodology. Sandhill cranes are dispersed

while foraging diurnally when ocular surveys are con-

ducted and there is concern that the current survey cover-

age is inadequate due to changes in foraging distribution.

At night, sandhill cranes aggregate and roost on or near

the river channels, which may offer an opportunity for a

more efficient and complete survey of the crane popula-

tion using this area. Nocturnal surveys using thermal

infrared imagery have been identified as a priority need

for this population (Association of Fish and Wildlife

Agencies’ Migratory Shore and Upland Game Bird Sup-

port Task Force, 2016). Thermal imagery has the poten-

tial to be used for wildlife surveys when sufficient

disparity exists in the thermal response of the target and

background (Corcoran et al., 2019; Seymour et al., 2017).

However, the spatial resolution offered by thermal sensors

is coarser as compared to other airborne remote sensing

approaches (McKellar et al., 2021), which may hinder

detection or differentiation of small targets (Santangeli

et al., 2020). The dense aggregation patterns of roosting

cranes can exacerbate challenges posed by the lower spa-

tial resolution of thermal sensors due to target merging

and occlusion (i.e. Figure 2).

Application of remote sensing methods to survey wild-

life populations over broad geographic areas can produce

large volumes of data. The requirement for manually pro-

cessing large image datasets may be cost and staff pro-

hibitive for natural resource agencies and may delay the

availability of survey results supporting time-sensitive

management decisions. Machine learning, particularly

deep learning (DL), methods show promise in automating

some data processing steps to reduce barriers to imple-

mentation of remote sensing survey methods (Corcoran

et al., 2021; Weinstein, 2018). DL represents a class of

machine learning models based on artificial neural net-

works, which loosely mimic the structure of a brain by

using multiple layers of neurons to make predictions

(LeCun et al., 2015). These neural networks learn compli-

cated nonlinear representations of high-dimensional data

such as images. Computer vision (CV), defined as DL

using images or videos as input, is one of the most active

areas of research in DL. The capacity to process and pre-

dict from imagery has improved tremendously in the past

few years, mainly due to advancements in convolutional

neural networks (CNNs) (LeCun et al., 2015).

Recently, success with CNNs has motivated more diffi-

cult prediction tasks like object detection (i.e. Ren

et al. (2015), Lin et al. (2017), Redmon and Far-

hadi (2018)), where objects of interest within an image

are identified with a bounding box and classified into a

category (i.e. bird species). Extracting an object count

from a trained object detector can be as simple as count-

ing the number of predicted bounding boxes in an image.

Therefore, object detectors could also be considered an

approach for the task of object counting within an image

(Gao et al., 2020). However, counting via object detection

requires precise localization of each object within an

image and has been shown to perform poorly compared

to other methods, such as direct DL-based count regres-

sion (Chattopadhyay et al., 2017). Object detection mod-

els are also known to struggle with small, densely-packed

Figure 1. Study area near the Platte River in Nebraska, USA, where

sandhill cranes stage on their spring migration northward. The study

area indicated is the centroid of data collected in 2021, which is

roughly indicative of the region surveyed in this study.
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objects, especially when image resolution is coarse with

respect to object size (Gao et al., 2021; Pang et al., 2019;

Pham et al., 2020). As summarized by Gao et al. (2020),

density estimation was developed to address the task of

counting densely aggregated objects in images. Density

estimators indirectly generate an object count for an

image by predicting a density map—a count for each

pixel or for blocks of pixels in the input image—which

avoids the need for localization of each discrete object

within an image (Lempitsky & Zisserman, 2010).

A variety of studies have found it advantageous to

apply DL models to quickly detect or count birds in very

high resolution (i.e. <4 cm) diurnal aerial imagery

(Akc�ay et al., 2020; Corcoran et al., 2021; Hong

et al., 2019; Kellenberger et al., 2021). Hong et al. (2019)

experimented with several different DL object detection

models for bird species and found that Faster R-CNN

(Ren et al., 2015) consistently performed well. To address

situations with very dense aggregations of bird targets,

several studies have proposed novel DL-based counting

architectures (Arteta et al., 2016; Kellenberger et al., 2021;

Kim & Kim, 2020). In particular, Kim and Kim (2020)

integrated density estimation into their architecture, with

strong counting performance on images of crowded birds

from a variety of perspectives. Even with these advance-

ments, factors that affect model performance, such as spa-

tial resolution, are generally unexplored. Additionally,

studies predominantly focus on RGB imagery, with little

exploration of thermal imagery.

Our study objectives were to: (1) develop and test a DL

framework for automated counting of sandhill cranes

from nocturnally acquired thermal imagery, (2) compare

the performance of two automated counting approaches

and (3) quantify the effect of spatial resolution on count-

ing performance.1

Materials and Methods

Study area, survey design and imagery
collection

Thermal imagery was obtained over the Platte River in

central Nebraska, USA on March 20 and 21, 2018 and

March 21, 2021 (Fig. 1). We used a FLIR A8303sc mid-

wave thermal sensor (FLIR Systems, Inc., Nashua, New

Hampshire) with a 50-mm diameter lens to obtain imagery

in 2018 and the same sensor was used in 2021 with a 100-

mm diameter lens. In the 2018 survey, the thermal sensor

was mounted to a Partenavia P-68 Observer 2 aircraft; in

the 2021 survey, a Quest Kodiak 100 model aircraft was

used. Surveys were conducted at a flying speed of approxi-

mately 100 to 130 knots (50 to 65 meters/second) and

imagery was obtained at even intervals of one frame per

second. The surveys from both years were obtained near

the peak levels of crane abundance (Caven, Varner, et al.,

2020). The surveys were flown at various altitudes, which

resulted in differing spatial resolutions. We measure spatial

resolution in terms of ground sample distance (GSD) in

centimeters (cm). Flights in 2018 were flown at 610 m and

762 m AGL and flights in 2021 were flown at even inter-

vals between 610 m and 1067 m AGL. The thermal sensors

used produced single-band imagery (Fig. 2).

Figure 2. Example images (A-D) from our dataset obtained in March 2018 and March 2021 using a FLIR A8303sc midwave thermal sensor (FLIR

Systems, Inc., Nashua, New Hampshire) with a 50-mm lens in 2018 and a 100-mm lens in 2021. Darker areas are characterized as land and vege-

tation while lighter areas are water or sediments, with zoomed-in areas revealing representative sandhill crane thermal signatures. In particular, B

and D contain dense clusters of sandhill crane individuals, and the blue zoomed-in area in D shows issues with resolution, with crane signatures

only occupying a few pixels.
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Staging sandhill cranes concentrate each evening on

roosting sites within or near the Platte and North Platte

River channels. Imagery was obtained at night to exploit

a known distribution of cranes and minimize sampling

variation associated with crane distributions falling out-

side the diurnal survey area. In addition, movement of

roosting cranes is limited at night, which minimizes

double-counting of individuals over multiple images.

Imagery collection in 2018 occurred over a large portion

of the Central Platte River. Imaging in 2021 targeted sev-

eral areas that have historically had large aggregations of

roosting cranes; at three key areas, ground observers in

observation blinds used thermal scopes to identify non-

target waterbird species to potentially support species

classification, but only three non-target individuals were

identified overall (compared to 7500+ estimated sandhill

crane individuals).

From the imagery collected in 2018 and 2021, 40

images were selected (10 from 2018 data and 30 from

2021) focusing on frames containing sandhill cranes (i.e.

Fig. 2). This served to increase the variety of sandhill

crane thermal signatures available for training the models

and reduced the number of images lacking sandhill

cranes, mitigating the overwhelming quantity of back-

ground examples during model training (Kellenberger

et al., 2018). We also ensured a variety of resolutions

were represented in the dataset by selecting imagery from

8.5 cm to 21.2 cm GSD. These 40 images were split into

training (24 images), validation (4 images) and testing

datasets (12 images). Training data were used only to

train the model, validation data were used for model

selection and the test data were used to quantify model

performance on independent imagery. We will refer to

the initial images as ‘parent images’, which are all

1280 × 720 pixels. These parent images were split among

three annotators, and all sandhill crane signatures were

identified in each image via bounding box annotation

using the software labelImg2 1.8.5. We collected thermal

imagery during the time of year when sandhill crane

abundance dominates the Platte River ecological land-

scape (>1 million individuals as per the estimates of

Caven, Buckley, et al. (2020)). Additionally, extensive

ground observations during our 2021 survey revealed

great difficulty in finding non-target species; relatively few

were likely to be present. The large body size of sandhill

cranes relative to other species commonly present on the

Platte River and the characteristic roosting patterns of

staging sandhill cranes further ensured the images chosen

contained primarily sandhill crane signatures. Therefore,

we assumed all thermal signatures in the selected imagery

were sandhill cranes. One set of annotations was gener-

ated for each image, which was completed entirely by the

same annotator. Annotators communicated only to

evaluate rare ambiguous signatures, with annotation deci-

sions made unanimously in these cases.

Automated counting with deep learning

Object detection with faster R-CNN

Faster R-CNN (Ren et al., 2015) is a two-stage object

detection architecture that has performed well in conser-

vation monitoring tasks (Corcoran et al., 2019; Duporge

et al., 2021; Guirado et al., 2019; Hong et al., 2019). Fas-

ter R-CNN splits the object detection process into three

main components: initial feature extraction using many

convolutional layers, a region proposal network (first

stage) that predicts regions that are deemed ‘most likely’

to contain objects, and a refinement step (second stage)

using Fast R-CNN to regress final bounding boxes and

generate predicted classes for each bounding box (Akc�ay
et al., 2020; Ren et al., 2015). The input to Faster R-CNN

is an image of size H × W × C, where H is the height of

the image in pixels, W the width in pixels and C the

number of channels. Faster R-CNN predicts bounding

boxes in the form (xmin,ymin,xmax,ymax), which aims to

cover the spatial extent of a particular target, each with a

predicted class--in our case, the two classes are sandhill

crane and background.

Density estimation with ASPDNet

ASPDNet (Gao et al., 2021) counts objects by training to

match a kernel density estimate derived from point anno-

tations for the imagery (Lempitsky & Zisserman, 2010).

Because our ground truth values were initially in the form

of annotated bounding boxes, we translated bounding

boxes to density maps, following Lempitsky and Zisser-

man (2010). We extracted the centroid of each bounding

box to obtain point annotations for each image. We then

let PI = {P1,P2,. . .,PCI} denote the set of two-dimensional

(2D) coordinates for point annotations in image I, with a

total count of CI. We define the ground truth density

map, DI, as a sum of a normalized 2D Gaussian kernel

evaluated at each pixel, so that at any pixel p in image I,

the density is defined as:

DI pð Þ ¼ ∑
P∈ Pi

N p; P, σ212�2

� �
(1)

where N p; P, σ212�2ð Þ is the evaluation of a Gaussian ker-

nel with a mean of point annotation P.

An appealing aspect of the produced density map is

that it preserves the total annotated count for the image

in question: we simply integrate over the entire image (or

sum, in the finite case) to produce our count. Thus, this

density map encourages rough localization while also

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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providing more ‘continuous’ supervision than simple

point annotations. We used a fixed value for σ and found

σ = 3 to work well based on initial experiments.

ASPDNet (Gao et al., 2021) is a recently developed

density estimation DL model specifically designed for

application to remote sensing imagery with dense objects

(i.e. ships, cars, buildings). ASPDNet is an architecture

consisting of multiple modules: a truncated version of

VGG-16 (Simonyan & Zisserman, 2015) for initial feature

extraction, channel- and spatial-attention modules to

highlight important features, a scale pyramid module to

extract patterns at multiple scales and a deformable con-

volution module to make the model robust to variations

in object orientation. ASPDNet predictions are in the

form of a density map of size 1
8 the spatial dimension of

the given input. To ensure that the sizes of the ground

truth and predicted densities match, we downsized the

ground truth density map using bicubic interpolation, fol-

lowing Gao et al. (2021), to create the final ground truth

density map.

Data processing pipeline

To integrate the DL counting component with other key

elements, we designed a basic data pipeline (Fig. 3). This

pipeline was used for all steps of model development

(training, validation and testing).

Model training and testing protocols

Imagery was split into train, validation and test sets at the

parent-image level, so that testing and validation tiles

were entirely independent of training tiles. Both models

were trained and evaluated on the same images, split into

the same train/validation/test subsets. As a whole, the

imagery included in the dataset ranged from an estimated

spatial resolution of 8.5 cm to 21.2 cm GSD, with an

imbalance toward lower GSDs. The test set was balanced

to evenly represent all available spatial resolutions. This

resulted in two images at each spatial resolution.

For both models, we trained and predicted on smaller

200 × 200 pixel patches of the parent images, which we

will refer to as ‘tiles’ (Fig. 3B). Tiling is an important

pre-processing step to avoid excessive computational cost

and has been applied previously for training object detec-

tors to identify small bird targets in aerial imagery (Hong

et al., 2019); the tile size was chosen through experimen-

tation. Because large portions of each image in the dataset

included no sandhill cranes, we limited the number of

tiles that lacked sandhill cranes to ensure the networks

were not inundated with background examples. During

training, each batch consisted of five tiles chosen at ran-

dom from a single parent image in the training set, with

at most one tile where no sandhill cranes were present

included per batch. During evaluation and testing, each

parent image was zero-padded, meaning black pixels were

added to the border of the image to ensure that an inte-

ger number of tiles could be extracted. Parent images

were then tiled into 28 non-overlapping 200 × 200 pixel

tiles. Training was performed only on portions of each

parent image, but testing and validation were performed

on the full parent image.

We implemented Faster R-CNN in PyTorch3 1.8.1 and

used a ResNet50 architecture (He et al., 2016) as the ini-

tial feature extractor, with weights pre-trained on Ima-

geNet (Russakovsky et al., 2015). The pre-trained

Figure 3. An overview of our process for counting sandhill cranes (Antigone canadensis) on the Platte River Valley of Nebraska, USA. We begin

in A with a thermal aerial parent image, which is split into non-overlapping tiles in B. These tiles pass through either a Faster R-CNN or ASPDNet

convolutional neural network to produce predicted sandhill crane bounding boxes in C or a predicted density map in D, respectively. Finally,

detections in C are counted or the density map in D is summed over for all tiles, resulting in a final crane count for the image depicted in A.

186 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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ResNet50 weights were frozen for the duration of model

training, whereas the rest of the network was randomly

initialized and fully trainable. We tuned several key

hyperparameters through experimentation: the maximum

number of allowable bounding box detections per image

was set to 500 (greater than the maximum number of

birds observed in tiles from our dataset), the bounding

box non-maximum suppression threshold was set to 0.3

(partially motivated by tests carried out by Hong

et al. (2019)), and the bounding box score threshold was

set to 0.4. Adjusting the score threshold reduced false

positives (i.e. detecting a crane where there were none),

and adjusting the maximum number of box detections

reduced false negatives (i.e. failing to detect a crane that

was present). We also applied random brightness and

contrast shifts using the Python data augmentation library

Albumentations4 1.0.0 to simulate future imagery

obtained using alternate thermal sensors or under varying

weather conditions, to support model generalization. We

trained for 40 epochs using stochastic gradient descent

(SGD) with an initial learning rate of 1e-3, a momentum

value of 0.9 and weight decay (L2 regularization term) of

5e-3 (Ren et al., 2015). We halved the learning rate when-

ever the validation metrics plateaued for five epochs. To

determine whether each bounding box predicted by Faster

R-CNN was a true or false positive, the intersection-over-

union (IoU) was used; only bounding box predictions

with IoUs above a selected threshold (between 0 and 1)

were deemed true positives (see Hong et al. (2019)).

We implemented ASPDNet in PyTorch 1.8.1, slightly

modified from Gao et al. (2021). Because it is impossible

for tiles to have a negative number of targets, we thresh-

olded all final density values in the output density map to

zero by appending a rectified linear unit (ReLU) to the

model. We froze the weights in the initial VGG-16 feature

extractor, which were obtained through pre-training on

ImageNet (Russakovsky et al., 2015), because this

improved results during experimentation. Following Gao

et al. (2021), we trained using SGD with an initial learn-

ing rate of 1e-7, a momentum value of 0.95, a weight

decay of 5e-4 and applied random horizontal/vertical flips

using Albumentations 1.0.0 in addition to the augmenta-

tions for Faster R-CNN. Every 30 epochs we reduced the

learning rate by a factor of 10. We trained for 200 epochs

in total, saving the best model based on performance on

the validation set.

Evaluating automated crane counts

To evaluate the performance of the two models on indi-

vidual parent images, we used four metrics. For sandhill

crane detection (i.e. Faster R-CNN), average precision

(AP) was used. AP varies between 0 and 100, with 100

implying high detection ability at a selected IoU thresh-

old. We used implementations provided by Padilla

et al. (2021) to calculate AP and chose a relatively low

IoU threshold of 0.3 to avoid mislabeling correct detec-

tions as false positives, a potential issue when the target

size is very small relative to the image size (see Hong

et al. (2019)). AP is useful in determining the perfor-

mance of an object detector in localizing a target instance

and correctly regressing a bounding box around said

instance; however, it does not inform us of counting

accuracy.

To determine the counting accuracy of each trained

model, we use three counting metrics: mean absolute

error (MAE), root mean squared error (RMSE) and mean

percent error (MPE). Assume we have an evaluation data-

set with N images, with bCi predicted sandhill cranes and

Ci annotated sandhill cranes in image i. Then, these three

metrics are defined as follows:

MAE ¼ 1

N
∑
N

i¼1

Ĉi�Ci

�� �� (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1

Ĉi�Ci

� �2s
(3)

MPE ¼ 1

N
∑
N

i¼1

100� Ĉi�Ci

Ci

���� ���� (4)

MAE is a measure of absolute, or raw, counting error,

and is commonly used in object counting contexts (Gao

et al., 2020). RMSE provides additional insight into the

counting accuracy of the models, with higher absolute

errors penalized more heavily than in MAE. MPE

describes relative error, enabling comparison of counting

performance across models and studies. MPE explicitly

accounts for the magnitude of the annotated count Ci.

For Faster R-CNN, performance as measured by these

three metrics depends strongly on choices for key hyper-

parameters, such as the IoU threshold and score threshold

used during inference.

To determine if counting errors in test data were asso-

ciated with spatial resolution when applying both the

ASPDNet and Faster R-CNN models, we evaluated model

performance on the test dataset. Relative error per obser-

vation (i.e. percent error divided by 100) for each pre-

dicted count was used as the response variable, and

spatial resolution, measured in GSD (cm), was the single

covariate. We used a beta regression with a logit link

because our dependent variable was a continuous propor-

tion (Douma & Weedon, 2019; Ferrari & Cribari-

Neto, 2004). Beta regression is similar to a Generalized

Linear Model, but the beta regression is suited for data

bounded by 0 and 1 and is flexible in terms of the shape

of data distribution (Douma & Weedon, 2019). Because
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beta regression cannot contain zeros as a proportion, we

adjusted one value that had 0.0000 relative error to a

near-equivalent value of 0.0001 relative error. Wald tests

were used to determine statistical differences (α = 0.05),

and beta regressions were conducted in R (R Core

Team, 2020) using the ‘betareg’ package (Cribari-Neto &

Zeileis, 2010).

Results

Final image dataset and annotations

In total, 63,539 sandhill cranes were identified across the

40 images (Table 1 and Fig. 4). Annotated bounding

boxes were between 2 and 176 pixels in area, with the

average sandhill crane occupying 29 pixels. Variation in

bounding box size was largely a function of spatial resolu-

tion, with the largest bounding boxes being rare instances

of sandhill cranes in flight. On average, each parent image

had 1,589 sandhill cranes, ranging between 116 and 4,292

(Fig. 5). Annotation time for each parent image varied

based on annotator and number of sandhill cranes in the

image, but was generally between 1 and 3 hours per par-

ent image. Ambiguous signatures requiring inter-

annotator communication were identified in only two

images.

Model inference and evaluation

Overall, the two DL models showed reasonable accuracy

in predicted counts (Table 1), with MPE 9–18% (Table 2).

Most errors were due to models undercounting the actual

number of sandhill cranes present (Fig. 6). When

accounting for the various spatial resolutions in the test

set, ASPDNet had <50% of the error of Faster R-CNN, as

measured by RMSE, MAE and MPE (Table 2).

Relative error differed significantly across spatial resolu-

tions for both ASPDNet (beta regression, 3 degrees of

freedom, z = 2.33, P = 0.02, β = 0.13 � 0.06 standard

error, pseudo r-squared = 0.23) and Faster R-CNN (beta

regression, 3 degrees of freedom, z = 3.52, P < 0.001,

β = 0.21 � 0.06 standard error, pseudo r-

squared = 0.27). In both cases, error in counts increased

when spatial resolution was more coarse, and the associa-

tion was stronger for Faster R-CNN than for ASPDNet

(Figs. 6 and 7).

Discussion

Overview

We faced several challenges in applying DL methods to

automate counting of roosting sandhill cranes: target

objects were relatively small with respect to image GSD,

some occupying only a few pixels and targets were very

dense, which are known challenges for DL-based object

counting approaches (Gao et al., 2021; Pang et al., 2019;

Pham et al., 2020). Despite these challenges, both DL

models demonstrated reasonably high counting accuracy.

For context, Johnson et al. (2010) compared sandhill

crane aerial observer counts with manual counts from

aerial photos; they found aerial observers underestimated

abundance by 21.3% on average, with a range in observer

flock counts differing from photography by −56.9% to

+25%.5 The framework we developed could be applied to

other broad-scale surveys of medium to small-bodied

birds where image resolution and bird aggregation density

are of concern. We recognize, however, that our specific

results are conditioned on the characteristics and capabili-

ties of the midwave thermal sensors we used, the environ-

mental conditions experienced during image acquisition

and the thermal response of sandhill crane targets in rela-

tion to complexity and emissivity of the background.

Developing a framework for automating
sandhill crane counts

Methodologies for application of thermal imagery for

large mammal monitoring are relatively well established,

but application of this technology to bird monitoring

over large areas has been considered problematic because

of the coarse resolution of thermal sensors and the small

body size of birds (Chabot & Francis, 2016). More recent

studies with state-of-the-art sensors have utilized thermal

imagery to count penguins (Bird et al., 2020) and identify

individual nesting birds (McKellar et al., 2021; Santangeli

et al., 2020) over relatively limited areas (i.e. tens to hun-

dreds of meters). Sandhill cranes have been surveyed

using thermal aerial sensors in the past, but the low spa-

tial resolution of the thermal sensors used resulted in dif-

ficulty discriminating crane signatures when they were

located on less emissive overland backgrounds and in dif-

ficulty distinguishing individuals within a group from

Table 1. The number of images, number of annotated sandhill crane

signatures and total counts produced by both convolutional neural

network models (ASPDNet and Faster R-CNN) for the train, validation

and test splits as well as the full dataset.

Dataset

split

Number

of images

Number of

annotations

ASPDNet

total count

Faster R-CNN

total count

Train 24 36,835 37,766 28,988

Validation 4 6,682 6,425 5,905

Test 12 20,022 19,473 15,713

Full Dataset 40 63,539 63,664 50,606
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higher acquisition altitudes (Kinzel et al., 2006). The mid-

wave sensors and lenses we used enabled discrimination

of individual cranes in dense roosting aggregations from

higher acquisition altitudes and over a wider range of

background emissivity.

Commonly, a spectral threshold approach is taken to

distinguish and count individual animals in imagery (Bird

et al., 2020; Chabot & Francis, 2016). However, this tech-

nique requires substantial manual calibration to account

for diverse thermal signatures and spectral variation,

potentially limiting applicability of the resulting algo-

rithm. In our study, DL using CNNs has the advantage of

automatically learning complex relationships among the

thermal response, shape and size of features without the

Figure 4. A sampling of 200 × 200 pixel input tiles derived from our test imagery with each column also containing the annotated count and

predictions for both deep learning models. Counts are included in the top left corner for each cell of the grid. Depicted are both high-quality pre-

dictions (predicted count is very close to annotated count) and tiles with high prediction error (large difference between predicted and annotated).

In predicted density maps, densities range from low (dark blue) to high (dark red), but the scale differs between tiles.

Figure 5. The frequency distribution of sandhill crane bounding boxes annotated per image for all 40 parent images in the dataset.
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need for manual and explicit understanding of feature

characteristics as needed for a threshold approach. In

addition, CNNs can be completely automated after model

training. Although we do not address it here, operational

implementation of our methods would require that ima-

gery be mosaicked before tiling (see Fig. 3) to avoid

double-counting individuals in the overlapping regions of

contiguous imagery. This can be readily integrated using

existing mosaicking implementations; see, for example,

Borowicz et al. (2018) or Kellenberger et al. (2021).

Comparison of two deep learning
approaches: Faster R-CNN and ASPDNet

The accuracy of the two DL models appeared to differ

according to counting metrics with the density estimator,

ASPDNet, having <50% of the error estimated for the

object detector, Faster R-CNN, as measured with RMSE,

MAE and MPE. The MPE of 9% for ASPDNet is similar

to previous bird monitoring studies using DL with very

high resolution visible spectrum imagery. Hong

et al. (2019) tested a variety of models and reported MPE

on counts ranging from 3.5–10.5%. The undercounting of

sandhill cranes was the primary source of inaccuracy for

both our models, which can be partially explained by

image spatial resolution (see below). Our study is the first

to incorporate ASPDNet in a wildlife application, and our

results indicate ASPDNet can provide more accurate

counts (compared to Faster R-CNN) in images with high

densities of roosting sandhill cranes. In addition, the per-

formance of ASPDNet was less affected by image spatial

resolution over the range of GSDs we examined. Given

the low MPE for both models, future application of these

methods as a replacement for manual counting seems

promising, as long as future imagery remains consistent

with the context, or domain, of the training imagery (see

Kellenberger et al. (2019)). Additionally, careful inspec-

tion of model performance when applied to a full imagery

dataset, composed of thousands of images, is important

to ensure models do not generate excessive false positives,

as has been observed in previous monitoring studies (Kel-

lenberger et al., 2018). Future modeling efforts may bene-

fit from experimentation with recent object detection

algorithms designed for small, dense targets in remote

Table 2. The performance of two convolutional neural network mod-

els, ASPDNet and Faster R-CNN, for predicting counts of sandhill

cranes in thermal imagery. RMSE is root mean squared error, MPE is

mean percent error, MAE is mean absolute error and AP is average

precision. AP was calculated at an intersection-over-union threshold

of 0.3. To contextualize MAE: the test imagery had on average 1,665

sandhill cranes per image (standard deviation = 1,242).

Model RMSE MAE MPE AP

ASPDNet 212.14 138.18 9% -

Faster R-CNN 562.49 367.92 18% 76.03

Figure 6. Sandhill crane actual versus predicted counts based on thermal imagery and convolutional neural network (CNN) models. Counting

errors are depicted as distance from the 1:1 line with the ASPDNet architecture (left) and Faster R-CNN architecture (right) for each parent image

in the test set. The dashed line shows where predicted counts match actual counts.
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sensing imagery (i.e. Pham et al. (2020) or Pang

et al. (2019)) alongside further exploration of density esti-

mation models (i.e. Liu et al. (2020) or Wen

et al. (2021)).

The effect of spatial resolution on counting
error

We found that image GSD was positively, and linearly,

associated with counting error in imagery ranging from

8.5 to 21.2 cm GSD. To our knowledge, only one other

study has examined the effects of image spatial resolution

on the performance of DL models applied to wildlife sur-

vey: Santangeli et al. (2020) found that false negatives in

detections of bird nests from thermal imagery collected

using an unoccupied aerial vehicle increased significantly

from a 25 m to 50 m flight altitude. Spatial resolution in

aerial sensors is determined by a combination of hard-

ware and the distance AGL when imagery is obtained.

Although imagery could be obtained at a finer resolution

closer to ground level, this is balanced against a narrower

field-of-view, the safety of the aircraft, and potential dis-

turbances to the wildlife targets. For example, Kinzel

et al. (2006) obtained infrared thermal imagery of sandhill

cranes at 1,200 m during a first pass to ensure a broad

field-of-view, but their methodology required a second

imaging pass at a 300 m altitude to produce image reso-

lutions suitable for identification of individuals. Our

study indicates for thermal imaging of sandhill cranes at

night, an image GSD of ≤14.8 cm is necessary to obtain

accurate counts and imagery of ≤10.6 cm is ideal.

However, a larger sample size would be helpful to refine

recommendations and to identify any specific thresholds

that affect the accuracy of DL models. Given the ubiqui-

tous importance of the effect of spatial resolution on DL

model performance in wildlife survey applications, further

study on an array of species and contexts would be bene-

ficial. In addition, land and water temperature, cloud

cover, time of survey, substrate type and other factors

likely affect model counting accuracy (Kinzel et al., 2006;

Santangeli et al., 2020), and additional research to sup-

port more general conclusions would be helpful.

Conclusions and Future Directions

We developed an approach to automate counts of roost-

ing sandhill cranes at night at a key staging area during

spring migration. Through application of two DL models

to thermal imagery, we found that the density estimator,

ASPDNet, exhibited substantially lower counting error

compared to the object detector, Faster R-CNN. Both

models performed particularly well when data were col-

lected at a relatively fine spatial resolution (≤14.8 cm

GSD). Our methods have the potential for broader appli-

cation to improve the efficiency of surveys of densely

aggregated birds. This could include cranes (family: Grui-

dae), which spend considerable time aggregated at migra-

tory staging areas around the world (Archibald &

Meine, 1996), or waterbird aggregations, such as shore-

birds, swans, or waterfowl, at their staging areas. How-

ever, bird species identity may be difficult to discern from

coarse resolution thermal imagery. Coincident ground

Figure 7. Mean percent error (MPE) of sandhill crane counts in thermal imagery surveys. Bars represent predictions from two deep learning

models, ASPDNet (green) and Faster R-CNN (orange). Two samples were available at each available ground sample distance (GSD), and error bars

show �1 standard deviation.
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observations may be necessary to positively identify bird

species in thermal imagery and to evaluate image charac-

teristics necessary for species determination, and is an

important area for further research.
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Endnotes

1 All data and metadata used in this study is publicly

available at https://doi.org/10.5066/P9DZKFQ3 (Lubinski

et al., 2022). All code used to produce models and analy-

ses is available in the following public GitHub repository:

https://github.com/emiliolr/counting-cranes.
2 https://github.com/tzutalin/labelImg.
3 https://pytorch.org/.
4 https://albumentations.ai/.
5 Observer error in Johnson et al. (2010) is expressed as a

ratio of the flock count from imagery (equivalent to the

annotated image count in our study) to the observer’s

estimated flock count. Formally, this is R ¼ Ci= bCi, which

we convert to a percent error as PE ¼ 100 � R�1�1ð Þ to

facilitate comparison of results.
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