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ABSTRACT

Graph processing is at the heart of many modern applications where graphs are used
as the basic data structure to represent the entities of interest and the relationships
between them. Improving the performance of graph-based applications, especially
using parallelism techniques, has drawn significant interest both in academia and
industry. On the one hand, modern CPU architectures are able to provide massive
computational power by using sophisticated memory hierarchy and multi-level par-
allelism, including thread-level parallelism, data-level parallelism, etc. On the other
hand, graph processing workloads are notoriously challenging for achieving high
performance due to their irregular computation pattern and unpredictable control
flow. Therefore, how to accelerate the performance of graph-based applications us-
ing parallelism is still an open question.

This dissertation focuses on providing high performance for graph-based applica-
tions. To take full advantage of multi-level parallelism resources provided by CPUs,
this dissertation studies the characteristics of graph-based applications and matches
their parallel solutions with the underlying hardware via algorithm and system co-
design.

This dissertation divides graph-based applications into three categories: typical
graph algorithms, sequential graph-based applications, and applications with graph-
based solutions. The first category comprises typical graph algorithms with avail-
able parallel solutions. This dissertation proposes GraphPhi as a new approach to
graph processing on emerging Intel Xeon Phi-like architectures. The second cat-
egory includes specialized graph applications without nontrivial parallel solutions.
This dissertation studies a state-of-the-art 2-hop labeling approach named Pruned
Landmark Labeling (PLL). This dissertation proposes Batched Vertex-Centric PLL
(BVC-PLL), which breaks PLL’s inherent dependencies and parallelizes it in a scal-
able way. The third category includes applications that rely on graph-based solu-
tions. This dissertation studies the sequential search algorithm for the graph-based
indexing methods used for the Approximate Nearest Neighbor Search (ANNS) prob-
lem. This dissertation proposes Speed-ANN , a parallel similarity search algorithm
that reveals hidden intra-query parallelism to accelerate the search speed while ful-
filling the high accuracy requirement. Moreover, this dissertation further explores
the optimization opportunities for computational graph-based deep neural network
inference running on tiny devices, specifically microcontrollers (MCUs).

Altogether, this dissertation studies graph-based applications and improves their
performance by providing solutions of multi-level parallelism via algorithm and sys-
tem co-design to match them with the underlying multi-core CPU architectures.
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Chapter 1

Introduction

A graph is a fundamental structure to represent data in various real-world applications.

A graph consists of vertices and edges. A vertex represents an entity of interest, and

an edge between two vertices represents a relationship or interaction between the two

corresponding entities. As a result, graph processing is an important building block of

many modern applications, such as map services [209], social network analytics [30], rec-

ommendation engines [63], scientific computations [38], and even machine learning [203].

Currently, those applications usually need to process very large graphs (e.g., with millions

or even billions of vertices or edges) with strict latency requirements, which necessitates

high-performance parallel computing.

Modern CPU architecture is equipped with massive parallel computing resources, in-

cluding many-core processors [132], SIMD (Single Instruction, Multiple Data) processing

units [41], and high-bandwidth memory [32]. For example, Knights Landing (KNL) is

the second generation of Intel Xeon Phi processors [178]. It has up to 72 cores with four

threads per core. Each core has two 512-bit vector units and supports AVX-512 SIMD

instructions. It also has up to 16 GB of high-bandwidth memory providing about 400

GB/s bandwidth compared to 90 GB/s of normal memory. Meanwhile, Graphics Process-

ing Units (GPUs) have become increasingly popular for general-purpose computing [29].

GPUs have more computing power and memory bandwidth than CPUs and also exploit
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Figure 1.1: Typical performance challenges for graph-based applications.

data-level parallelism, which makes them well-suited to accelerate graph processing work-

loads. Compared to GPUs, CPUs have larger memories and caches, which enables larger

graphs to be handled, making CPUs more scalable to very large datasets.

Even though modern machines are able to provide considerable computing power,

graph-based applications are notoriously challenging to achieve high performance. A com-

mon issue of graph processing workload is its irregular computation pattern and unpre-

dictable control flow [191]. Take the example of a typical graph algorithm Breadth-First

Search (BFS). Even if there were only a small set of vertices active right now, all the rest

vertices could be potentially active in the next computing iteration. Due to the irregu-

larity, graph-based applications usually suffer from typical performance challenges such

as frequent irregular access, serious load imbalance, and heavy data race conditions, as

shown in Figure 1.1.

• Irregular access. When exploring the vertices in a graph via its edges, those

visited vertices in order are usually not stored in contiguous memory locations. This

misalignment results in pool data locality of memory accesses.

• Load imbalance. In practical applications, a graph is usually a scale-free network

in that vertices’ degree distribution follows a power law. When assigning vertices

with huge degree differences to multiple processors, they are likely to have an imbal-

anced workload because high-degree vertices require much more computation than

low-degree ones.
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• Data race. Data races are not uncommon in a graph processing scenario, as multiple

edges may connect to the same vertex. When multiple processors attempt to update

the same destination, a data race occurs. Guaranteeing the correctness after the

update usually requires extra synchronization overhead.

Moreover, some graph-based applications use well-designed sequential solutions. These

solutions are carefully composed to reduce algorithmic complexity or computation time.

However, many of them inevitably incur control dependency or data dependency that

impedes efficient parallelization. Consequently, how to optimize the performance of graph-

based applications remains an open question.

1.1 Problem Statement

This dissertation studies how to explore multi-level parallelism for graph-based applica-

tions via algorithm and system co-design. Modern CPU architectures can provide power-

ful computational resources for multi-level parallelism, including thread-level parallelism,

data-level parallelism, etc. The goal of this research is to provide high-performance solu-

tions for graph-based applications by considering and exploiting the underlying hardware.

On the one hand, for traditional graph algorithms, this dissertation presents the insight

that the whole graph processing system stack, including data representation, the execu-

tion model, and job scheduling, should match the features of the hardware. On the other

hand, for inherently sequential methods, it analyzes the characteristics of the applications

and then provides parallel algorithms to break their dependency. Meanwhile, through

algorithm and system co-design, the proposed optimizations aim to mitigate any poten-

tial issues of the introduced parallelism, such as extra computation and synchronization

overhead.

This dissertation divides graph-based applications into three categories. The first cat-

egory comprises typical graph algorithms with available parallel solutions. As mentioned

above, modern parallel architecture design has increasingly turned to throughput-oriented
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devices to address concerns about energy efficiency and power consumption. However,

graph applications cannot tap into the full potential of such architectures because of

highly unstructured computations and irregular memory accesses.

The second category includes specialized graph applications without nontrivial parallel

solutions. In this dissertation, we perform a case study on such an algorithm: the Pruned

Landmark Labeling (PLL) method, which is a state-of-the-art solution of the 2-hop label-

ing approach to solving the shortest path distance problem for large graphs. The original

PLL algorithm is inherently sequential. The algorithm operates on one vertex at a time to

label the entire graph, and the labeling of a vertex depends on the partial labeling results

from earlier processed vertices.

The third category includes applications that rely on graph-based solutions. In this

dissertation, we study an example of such an application: the approximate nearest neigh-

bor search (ANNS), which searches for the nearest neighbors in high-dimensional datasets

given a query point. The interest is fueled by the success of neural embedding, where deep

learning models transform unstructured data into semantically correlated feature vectors

for data analysis, e.g., recommend popular items. Among several categories of methods for

fast ANNS, similarity graphs are a popular choice to base such solutions on. It employs

best-first traversal along the underlying graph indices to search for nearest neighbors.

Maximizing the performance of the search is essential for many tasks, especially at the

large-scale and high-recall regime. Compared to inter-query parallelism, intra-query par-

allelism is able to shorten the query latency. However, the sequential search algorithm

cannot efficiently leverage the full capabilities of multi-core processors.

Moreover, there are graph-based applications running on resource-constraint devices.

Specifically, deep neural network inference can be regarded as a graph-based application

because of its computational graph. In this graph, vertices correspond to operations, and

the edges correspond to the dependencies between individual operations. The inference

proceeds by evaluating operations in their topological order, which requires computational

resources to process and hold the data in a device’s memory. Meanwhile, tiny devices such
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as microcontrollers (MCUs) are widely used and integrated into daily life. They usually

have low clock speed processors and very small memory capacity in the order of hundreds

of kilobytes. How to enable and improve the inference on those tiny devices is still an

open question for both academia and industry.

1.2 Contributions

This dissertation aims to improve the performance of graph-based applications via algo-

rithm and system co-design.

First, this dissertation presents GraphPhi, a new approach to graph processing on

emerging Intel Xeon Phi-like architectures, by addressing the restrictions of migrating

existing graph processing frameworks on shared-memory multi-core CPUs to this new

architecture. Specifically, GraphPhi consists of 1) an optimized hierarchically blocked

graph representation to enhance the data locality for both edges and vertices within and

among threads, 2) a hybrid vertex-centric and edge-centric execution to efficiently find and

process active edges, and 3) a uniform MIMD-SIMD scheduler integrated with lock-free

update support to achieve both good thread-level load balance and SIMD-level utilization.

Moreover, our efficient MIMD-SIMD execution is capable of hiding memory latency by in-

creasing the number of concurrent memory access requests, thus benefiting more from the

latest High-Bandwidth Memory techniques. We evaluate our GraphPhi on six graph pro-

cessing applications. Compared to two state-of-the-art shared-memory graph processing

frameworks [148, 175], it results in speedups up to 4X and 35X, respectively.

Second, this dissertation demonstrates the first scalable parallel implementation of

the PLL algorithm that produces the same results as the sequential algorithm. Based

on theoretical analysis, it shows how computations on each vertex can be performed in

parallel while maintaining correctness, resulting in the Vertex-Centrix PLL (VC-PLL)

algorithm. It also shows a formulation of this algorithm based on linear algebra and

argues why the use of a library based on linear algebra operations will not produce an
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efficient implementation. Next, this dissertation introduces a batched VC-PLL (BVC-

PLL) algorithm to reduce the computational inefficiency in VC-PLL. This dissertation

has carried out a parallel implementation of this method for modern clusters, combining

shared memory and distributed memory parallelism, that can efficiently execute on graphs

with more than a billion edges. It also demonstrates how the BVC-PLL algorithm can be

extended to handle directed graphs and weighted graphs and how the version for weighted

graphs can benefit from SIMD parallelization. In the results, the sequential BVC-PLL

can run more than 2× faster than the original PLL (both using one single thread). And

the parallel BVC-PLL shows an average speedup of 6.6× over sequential BVC-PLL on a

20-core shared memory machine and up to 11.8× on a 16-node cluster.

Third, this dissertation provides an in-depth examination of the challenges of state-

of-the-art similarity search algorithms, revealing its challenges in leveraging multi-core

processors to speed up the search efficiency, i.e., the query latency. It also explores whether

similarity graph search is robust to deviation from maintaining strict order by allowing

multiple walkers to simultaneously advance the search frontier. Based on the insights,

this dissertation proposes Speed-ANN , a parallel similarity search algorithm that exploits

hidden intra-query parallelism and memory hierarchy that allows similarity search to take

advantage of multiple CPU cores to significantly accelerate search speed while achieving

high accuracy. The results show that Speed-ANN reduces query latency by 13× and

17.8× on average of million-scale datasets than two state-of-the-art graph-based solutions

at 0.999 recall target, respectively. It also offers up to 16.0× speedup on two billion-scale

datasets.

Fourth, this dissertation explores the optimization opportunities for deep neural net-

work inference on MCUs. First, for the neural network that can be fitted in the device

memory, it tests how lightweight quantization and loop unrolling influence the inference

latency. Preliminary results show about 1.30× total speedup on a small MobileNetV2

model. Second, for the larger neural network that can not reside in the on-chip memory,

it tests the effects of using off-chip memory, including Quad-SPI NOR Flash and SDRAM.
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It demonstrated the possibility of doing inference of some large models by taking full ad-

vantage of available hardware resources, although causing some degree of performance

declines.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents GraphPhi as a

new approach to graph processing on emerging Intel Xeon Phi-like architectures. Chap-

ter 3 demonstrates how BVC-PLL breaks the inherent dependence in the PLL algorithm

and provides the opportunity for parallelism to speed up the solution. Chapter 4 pro-

poses Speed-ANN which is a parallel similarity search algorithm that exploits intra-query

parallelism to accelerate query latency. Chapter 5 presents the ideas to optimize neural

network inference on MCUs and also shows some preliminary results. Finally, Chapter 6

concludes this dissertation and discusses future research directions.
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Chapter 2

GraphPhi: Efficient Parallel

Graph Processing on Emerging

Throughput-oriented

Architectures

2.1 Introduction

Throughput-oriented architectures equip many-core processors with wide SIMD (Single

Instruction, Multiple Data) processing units to provide massive parallelism and high en-

ergy efficiency. For instance, seven of the top ten supercomputers around the world as of

June 2018 1 rely on the tremendous throughput offered by either GPUs or Xeon Phis.

This trend is expected to continue through the whole post-Moore’s law era to build future

exascale systems.

Among the throughput-oriented architectures, Intel Xeon Phi is particularly attrac-

tive due to two reasons. First, the x86-compatible Xeon Phi-like processors allow running

operating systems natively, and support various parallelization tools, libraries, and pro-

1https://www.top500.org/lists/2018/06/

https://www.top500.org/lists/2018/06/
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gramming models, including OpenMP [50], MPI [81], CilkPlus [27] and Thread Building

Blocks [164], making them friendly to programmers [95]. Second, the latest Xeon Phi,

Knights Landing [178], can be used as the host processor, which automatically benefits

from a large host memory hierarchy and eliminates data communication overhead through

the PCIe bus.

It is promising to use the Intel Xeon Phi architecture to accelerate graph analytics,

which plays a critical role in various domains, including bioinformatics, social networks,

machine learning, and data mining. Unfortunately, it is not straightforward to map such

graph analysis applications onto throughput-oriented architectures due to the severe mis-

match between the significant irregularity shown by graph algorithms and the underlying

many-core and vector-based processing.

Specifically, efficient graph processing on modern throughput-oriented architectures

brings forward three challenges. First, different processing units may process uneven

amounts of workloads while traversing different portions of the graph. Second, the SIMD

unit cannot automatically resolve write conflicts (i.e., multiple SIMD lanes by executing

the same instruction write to the same memory location), but the compiler or program-

mer cannot efficiently eliminate write conflicts due to the irregular accesses. A typical

conservative approach which adds locks to synchronize the threads substantially degrades

program scalability. Finally, the random memory access significantly decreases cache per-

formance and memory throughput, hence underutilizing the tremendous computational

resources.

There exist several graph processing frameworks and libraries based on popular many-

core processors such as GPUs [109, 194] and early versions of Xeon Phis [42, 100, 135]. In

addition, many other graph processing frameworks [148, 175] designed for shared-memory

multi-core CPUs are also capable of running on Xeon Phis owing to their x86-compatibility.

However, merely applying these techniques to emerging Xeon Phi architectures directly

without any further optimization results in suboptimal performance. First, most of these

efforts target either MIMD (Multiple Instruction, Multiple Data) or SIMD executions but
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not both by assuming a uniform computation capability of different processing units. How-

ever, appropriately combining coarse-grained MIMD parallelism with fine-grained SIMD

parallelism is critical to achieving optimal performance for Xeon Phi-like architectures.

Second, the GPU-based frameworks assume hardware support to handle SIMD diver-

gence and SIMD level conflicts but lack global synchronization due to the limitation of

the hardware. However, Xeon Phi architectures have limited SIMD divergence support, no

SIMD level locking, but cheap global synchronization. Third, none of the previous work

has studied the interplay between optimized graph processing and the newly introduced

High-Bandwidth Memory (HBM).

This work presents the GraphPhi optimizing framework to bridge graph processing and

Intel Xeon Phi-like many-core processors. Our insight is that the whole graph processing

system stack, from data representation to the execution model to job scheduling, should

match the unique features of the hardware. Specifically, GraphPhi employs a hierarchical

data organization for improving locality and simplifying SIMD processing. It exploits

both coarse-grained MIMD and fine-grained SIMD parallelism in a cache-aware, lock-

free, load-balanced, and SIMD-efficient manner for irregular graph processing. Moreover,

since GraphPhi’s hybrid MIMD and SIMD execution significantly increases the number

of concurrent memory access requests, it changes latency-bound graph applications to

bandwidth-bound ones, hence benefiting more from the emerging HBM techniques.

Overall, this work has the following contributions:

• Describing an optimized hierarchical blocked graph representation (with tiles/stripes/-

groups) to enhance the edges’ spatial data locality, and the vertices’ temporal and

spatial data locality within and among threads;

• Presenting a hybrid graph processing to efficiently find active edges by a vertex-

centric approach and process edges in an edge-centric manner;

• Designing a uniform MIMD-SIMD scheduler to improve both thread-level load bal-

ance and SIMD-level utilization and lock-free update support on both thread and
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SIMD levels.

We implement GraphPhi and evaluate it on six graph applications with six input data

sets, achieving speedups up to 4X and 35X comparing to two state-of-the-art shared-

memory graph processing frameworks, respectively. Moreover, we empirically prove that

our efficient MIMD-SIMD execution is capable of benefiting more from the latest HBM

techniques.

2.2 Background and Motivation

Recently, many graph processing frameworks and libraries have been developed to im-

prove the performance of graph applications on various platforms. This section intro-

duces the basic graph processing models used in these efforts and describes our focused

architecture—latest Xeon Phi. Then it identifies the significant challenges that are rooted

in the mismatch between graph processing and the hardware features. It also explains the

difference between our work and previous work in GPU-based frameworks.

2.2.1 Graph Processing

Among the various proposed graph processing model, the two most relevant ones are

vertex-centric and edge-centric models. We hence discuss them in detail.

The Vertex-centric model, also known as the “think-like-a-vertex” model, has been

broadly adopted by many parallel graph processing frameworks [115, 175, 109]. Its original

implementation in Google Pregel [136] demonstrates the model’s simplicity, productivity,

and strong scalability. It models parallel graph processing as an iterative process, which in

each iteration traverses the active vertices in the frontier, processes their incoming and/or

out-going edges, and updates the frontier. The parallelization typically uses the Bulk

Synchronous Parallel (BSP) execution [190] and demands a global synchronization at the

end of each iteration. The whole process terminates once the frontier becomes empty.
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The edge-centricmodel was first proposed in X-Stream [166]. It keeps streaming edge

partitions, the processing of which involves a gather stage and a scatter stage. The gather

stage generates updates out of the active edges; the scatter stage applies the updates to

the corresponding vertices. Similar to the vertex-centric model, a global synchronization

is needed after each round of edge partition streaming to make sure that in the next round

the gather stage can see only the updates generated in the current round.

Vertex-centric and edge-centric models present different benefits. Edge-centric pro-

cessing avoids random accesses to edges by streaming on them sequentially, thus resulting

in better disk I/O and memory performance. However, when only a small portion of

the edges generate updates, streaming all the edges incurs substantial overhead. Such

problems can be resolved by vertex-centric execution, which only processes the edges of

active vertices but may degrade edge loading performance. Therefore, some systems like

Mosaic [135] adopt a hybrid model to take advantage of both worlds.

2.2.2 Intel Xeon Phi Architectures

The latest Xeon Phi, Knights Landing (KNL), leverages a new tile design, which consists

of two cores, two vector-processing units (VPUs) per core, and a 1M of shared L2 cache.

A KNL chip has 32 (active) tiles (i.e., 64 cores and 128 VPUs) connected by a 2-D

mesh interconnect. The cores are out-of-order and support all legacy x86 and x86-64

instructions. In addition, KNL has a High-Bandwidth Memory (MCDRAM) that can

offer up to 400+ GB/s bandwidth in addition to the normal DDR4 main memory with

> 90 GB/s bandwidth according to the test on Stream Triad benchmark2. We use the

KNL as the central processor, which directly connects to the main memory hierarchy

rather than the PCIe bus.

A Large Number of Concurrent Threads: Each KNL core runs up to 4 hyper-

threads, so the whole chip executes as many as 256 hardware threads that share the same

DDR4 and MCDRAM memory. On the one hand, the massive thread-level parallelism

2https://www.cs.virginia.edu/stream/

https://www.cs.virginia.edu/stream/
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has the potential to result in high processing throughput to take advantage of the HBM.

On the other hand, the architecture is highly sensitive to latency-bounded workloads.

Powerful Vector Processing Units (VPUs): The VPU on Knights Landing is even

more sophisticated than the one on Knights Corner (the previous version of the Xeon

Phis architecture). Besides the gather/scatter and mask operations support in AVX-512

Foundation instructions (AVX-512F), the VPU implements more kinds of operations. For

example, the Intel AVX-512 Conflict Detection Instructions (CDI) are able to detect the

existence of write conflicts efficiently during SIMD execution, thus offering us a good

opportunity of exploiting SIMD data parallelism to handle irregular memory write oper-

ations.

2.2.3 Our Challenges

Although there exist many GPU-based optimization techniques for irregular workloads [205,

198, 109], we notice significant architectural differences between Xeon Phi and GPUs,

which make graph processing on Xeon Phi architectures uniquely challenging.

Xeon Phi vs. GPU: First, their memory hierarchies are different, e.g., GPU shared mem-

ory is a software-managed cache designed to reduce memory latency, while Xeon Phis are

equipped with larger hardware-controlled caches and a separate High-Bandwidth Memory

to increase memory bandwidth. Second, different from GPU’s SIMT (Single Instruction,

Multiple Threads) execution that assumes all threads have the same computation capa-

bility, in Xeon Phi’s hybrid MIMD and SIMD execution, CPU and SIMD threads have

different computation powers. Very importantly, Xeon Phi supports efficient global syn-

chronization, but GPU programs have to be implemented in a particular format to enable

global synchronization [83]. Third, although Knights Landing is more flexible compared

to previous Xeon Phis, many lock-step features of original SIMD intrinsics (SSE) remain,

e.g., lack of atomic support within and among SIMD operations, and limited hardware

support of SIMD divergences.

Considering the hardware differences introduced above, we highlight the following
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challenges of optimizing graph processing on Xeon Phi architectures:

Data Locality: Due to the irregular data structure, it is notoriously challenging to

layout graphs in modern memory hierarchy for good data locality, especially in the Xeon

Phi architectures that have a small cache size per core. The memory access pattern to refer

to active vertices and edges depends on the graph topology, algorithms, and processing

models, which is hence unpredictable and leads to substantial cache misses. Therefore,

many graph applications are latency bounded [196].

MIMD-SIMD Load Balance: Vertex-centric processing does not naturally match

SIMD execution, because the workload assigned to the SIMD lanes vary substantially due

to the skewed degree distribution. Since the SIMD lanes execute instructions in lock-step,

the ones that process low-degree vertices may experience significant idleness. Edge-centric

processing mitigates this problem but cannot eliminate it, as the same SIMD unit may

process a hybrid workload of active and inactive edges.

Update Conflict: Graph processing usually involves reading attributes in the source

vertices and writing attributes in the destination vertices. An update conflict happens

if multiple SIMD lanes in the same unit update the same destination vertex. As afore-

mentioned, the SIMD unit (i.e., the VPU) does not support atomic operations. Hence,

when an update conflict happens, only the value produced by one SIMD lane can be suc-

cessfully stored. One approach is to carefully map data to SIMD lanes to avoid write

conflicts in the first place, which requires the knowledge of the whole access sequence at

the very beginning of the execution. Another possible approach is to detect conflicts once

the mapping is established, which requires careful overhead control.

2.3 Overview of Our Approach

In this section, we present the overview of the GraphPhi framework as shown in Figure 2.1.

It consists of four major components (❶ to ❹) as follows:

The preprocessing (❶) transforms the input graph into a hierarchically tiled format
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Figure 2.1: Overview of our approach.

based on the well-known COO representation, including tiles, stripes, and groups from

small to large. This format is able to achieve multiple objectives, including improving tem-

poral data locality by reducing reuse distance within the same thread and across threads,

supporting later optimized hybrid vertex-centric and edge-centric graph processing, and

enabling co-schedule of MIMD and SIMD tasks.

The graph processing model (❷) is a hybrid vertex-centric and edge-centric graph pro-

cessing model to take advantage of their appealing features. GraphPhi leverages vertex-

centric processing to identify which tiles to process but computes updates and explores

new active vertices within a tile in an edge-centric way. There are several specific con-

siderations in this design. First, an active tile that contains active source vertices should

be processed. Vertex-centric processing in GraphPhi records which vertex tiles are active

and only processes those tiles, hence reducing wasted computation; Second, compared to

vertex-centric data storage (e.g., Compressed Sparse Row, or CSR for short), edge-centric

in-tile storage has potential to substantially save storage space, especially for sparse graphs

(details in Section 2.4). Finally, edge-centric in-tile storage is more friendly for SIMD pro-

cessing because it leads to sequential memory accesses to edge data.
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The MIMD/SIMD-aware scheduler (❸) addresses load imbalance through dynamic

task conversion, i.e., if the SIMD utilization is low while extra tasks exist in MIMD level,

it merges these tasks and explores better SIMD parallelism; if some threads are idle in

the MIMD level while there are too many tasks for others, these tasks will be split and

assigned to the idle threads. Moreover, the scheduler takes care of possible update-conflict

complications caused by the conversions.

The final component (❹) represents several extra optimizations to improve further the

overall performance, including the hybrid pull and push execution and the use of HBM

offered by the latest Xeon Phi architectures.

2.4 Data Format and Execution Design

This section introduces the design of our GraphPhi framework and explains the design

basis and more details of our hierarchical blocked graph representation, hybrid graph

processing, and uniform MIMD-SIMD task scheduler. These designs aim at achieving

improved intra- and inter-thread data locality, efficient lock-free graph processing, and

both good MIMD load balance and high SIMD utilization.

2.4.1 Hierarchical-blocked Organization

GraphPhi decomposes the adjacency matrix into 2-D disjoint edge tiles. A certain number

of rows of tiles compose a group, which consists of many columns of tiles, and each called

a stripe. The edges in a tile are stored in COO (coordinate list) format, i.e., each edge is

in the form of (row, column, value). The edges in the same tile are stored continuously in

row major, achieved by sorting the edges by column IDs (destination vertices), and then

by row ids (source vertices). All tiles in the same stripe are stored contiguously in column

major order, which share the same subset of destination vertices. All stripes in the same

group are stored contiguously.

Figure 2.2 shows an example of this hierarchical-blocked graph data format. On the
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Figure 2.2: A hierarchical-blocked format example.

left-hand side, we show the topology of a graph that consists of 16 vertices and 24 edges;

while on the right-hand side, we represent this graph in our hierarchical-blocked format.

The representation has 16 tiles in total with 7 non-empty tiles with edges (t0 to t6), 6

stripes (marked with red-dot rectangles) and 2 groups (marked with blue-dot rectangles).

Each edge is in COO format, i.e., the row ID is the source vertex ID while the column ID

is the destination vertex ID, and the edge value is omitted. This example shows a directed

graph, while for undirected graphs, each edge is treated as a pair of directed edges, one in

each direction.

This hierarchical-block data format serves as the foundation of GraphPhi, supporting

all the other optimizations. To help to understand this format design, we explain it from

the following aspects: the COO format basis and the hierarchical design advantages.

2.4.1.1 Tile COO format design basis

The use of the COO data format for in-tile edges is an important design choice, which

affects the other parts of GraphPhi. We adopt this design mainly from two considerations.

On the one hand, although CSR usually results in compressed data storage, it does not

satisfy our requirement well. We explain the reason by an example in Figure 2.3. In this
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example, we convert a tile (t0) from Figure 2.2 to a standard CSR format. Although we

have only two edges, we still need to maintain a row pointers array of length widthtile+1.

Assuming there is no empty tile, we need up to (#vertices/widthtile)
2 × (widthtile + 1),

i.e., O(#vertices2/widthtile) space to store the row pointers arrays for the whole graph

which is unacceptably large. An alternative solution is to change the row pointers array

into another indirection array or a hash table structure, however, with the increased

irregularity of the computation.

On the other hand, the COO format results in better storage efficiency when there

exist many empty rows as shown in the above example. Moreover, it stores edge data

continuously, leading to sequential memory load operations, so it is more suitable for

streaming SIMD processing.

0""1""2""3"

3"
"2
""1
""0
" """"""""x"

""""""""x"

0" 1" 1" 2"row"pointers"

2" 1"column"indices"

x" x"data"values"

2"

Tile"data" CSR"
Figure 2.3: An example to show CSR problem.

2.4.1.2 Hierarchical design basis and advantages

We partition and hierarchically organize the whole graph into three levels due to the

following reasons.

Why tile—intra-thread data locality: First, there is potential to improve the temporal

data locality of memory accesses to destination vertices by organizing and processing

the edges in the unit of a tile because the reuse distance of the same destination vertex

is significantly reduced. For example, in tile t1 of Figure 2.2, before tiling, the reuse

distance of the destination vertex 6 is 5; while after tiling, it is 2. In addition, for sparse

computation like our graph processing, tiling is also capable of improving the spatial data
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locality by restricting updates within a specific range of destination vertices even when

there is no data reuse. Because an individual thread processes a tile, these data locality

enhancements are treated as intra-thread.

Why stripe—inter-thread update conflict: We design stripes for thread-level task schedul-

ing. By default, a stripe is mapped to a distinct thread. Because stripes in the same group

correspond disjoint sets of destination vertices, inter-thread update conflicts are naturally

avoided. Such a design is similar to the design of Shards in GraphChi [115], and G-Shards

in CuSha [109]. However, in contrast with Shards or G-Shards, our stripes contain only a

subset of edges that share the same destination vertices, i.e., we further partition Shards

or G-Shards by their source vertices as shown in Figure 2.2.

Why group—inter-thread data locality: Stripes that share the same source vertices are

organized into the same group. Between the execution of two groups, there exists a global

synchronization barrier. This design aims to improve inter-thread data locality for accesses

to the source vertices due to two reasons. First, due to the global synchronization, the

aggregate working set in terms of source vertices is limited and thus may fit in the cache.

Second, the threads that process different stripes may prefetch source vertices to the cache

for each other.

In addition, our graph preprocessing cost is low because it is convenient to convert be-

tween our hierarchical blocked representation and traditional COO/CSR (or CSC, Com-

pressed Sparse Column) formats.

2.4.2 Hybrid Graph Processing

Based on our hierarchical blocked graph representation, we design a hybrid vertex-centric

and edge-centric processing model. The basic idea is as follows: we use vertex-centric

processing to find all tiles containing active source vertices for the current frontier, and

use edge-centric processing to work through these active tiles, updating destination vertices

and generating new active frontier for the next iteration.

Algorithm 1 shows more details of the hybrid processing. For each iteration, we main-
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tain an active vertex map (frontier), indicating which source vertices are active in the

current iteration. If it is not empty (line 1), we iterate through the graph hierarchically

from group to stripe to tile (line 2 to line 4), in which multiple threads process stripes in

parallel in a lock-free manner. If there exists a tile that contains at least one active source

vertex (line 5), we work through all edges in this tile by finding active edges, computing

destination vertices with source vertices, and generating an active vertex map for next

iteration (line 6 to line 9). We place a global barrier between two groups’ processing,

aiming to further improve the inter-thread data locality as aforementioned (line 10). In

the end, we prepare the active vertex map for the next iteration (line 11).

Algorithm 1: Hyb Process (block graph, active map)

1 while active map is not empty do
2 forall group ∈ block graph do

/* parallel processed by threads */

3 forall stripe ∈ group in parallel do
4 forall tile ∈ stripe do
5 if ∃ vertex ∈ tile.src vertices is active then

/* parallel processed by SIMD */

6 forall edge ∈ tile in parallel do
7 if edge.src is active then
8 update vertex(edge.dest, edge.src)
9 next active map.add(edge.dest)

/* global barrier between two groups processing */

10 synchthreads ()

11 swap(active map, next active map)

Figure 2.2 illustrates the hybrid processing of Breadth-First Search (BFS) by marking

the active edges in different iterations with different colors. In the first iteration, the

active vertex map contains only one vertex (v0) and activates three tiles (t0, t1, and t3)

in three stripes that belong to the same group. All edges in these tiles are processed, and

active ones are colored purple. After such processing, seven vertices (v2, v4, v5, v6, v7, vC ,

and vD) are marked with active and processed in the second iteration. Four active tiles

are belonging to three stripes in two groups in the second iteration (t0, t1, t2, and t5),
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in which, active edges are colored green. We keep such processing until all vertices are

processed.

Our hybrid graph processing is able to take advantages of both vertex-centric and

edge-centric models, i.e., on the one hand, we avoid processing inactive edges by skipping

those tiles efficiently (benefits from vertex-centric); on the other hand, we decrease the

difficulty of performing a lock-free and load-balanced execution and increase the SIMD

efficiency (benefits from edge-centric).

Discussion—mixed-tile problem and related optimization: For graph traversal applica-

tions, we notice an important performance issue that we may have to unnecessarily run

through many inactive edges due to the edge-centric tile processing. For instance, in our

BFS example in Figure 2.2, we need to access two edges when we process t0 in the first

iteration— the active purple one and the inactive green one respectively, although the in-

active edge only requires checking its source vertex status. This problem causes duplicated

checking for the same edge, incurring non-neglectable overheads. We call it the mixed-tile

problem.

We identify a significant source of this problem, i.e., there are too few active vertices

in a frontier for some iterations. Correspondingly, we leverage an existing optimization

to mitigate this problem, i.e., incorporating a push-based execution to our hybrid graph

processing similar to Ligra [175]. More details of this optimization will be elaborated in

Section 2.5. To the end, we would like to achieve that when a tile is active, most of its

edges are active; otherwise, this tile is inactive.

2.4.3 Uniform MIMD-SIMD Scheduler

Based on basic hybrid graph processing, we establish a uniform MIMD-SIMD task sched-

uler to achieve both good thread load balance and SIMD utilization.
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Figure 2.4: A MIMD-SIMD schedule example.

2.4.3.1 Dynamic Conversion of MIMD and SIMD Tasks

Our uniform MIMD-SIMD task scheduler is able to selectively execute stripes either in

MIMD+SIMD or MIMD-only to dynamically maintain a high SIMD utilization and MIMD

load balance. In particular, we have three execution modes as follows:

• Basic Execution: By default, each stripe is assigned to an individual thread with

each tile executed in a SIMD manner. Meanwhile, we explore coarse-grained MIMD

parallelism among multiple stripes with dynamic scheduling.

• Stripe Merging: To maintain a high SIMD utilization, we design two levels of

stripe merging—intra-stripe and inter-stripe. If a tile in a stripe contains too few

tasks (< merging threshold), resulting in a low SIMD utilization, an intra-stripe

(inter-tile) merging operation happens. Similarly, if a stripe contains too few tasks,

an inter-stripe merging is activated to consolidate current stripe with next one,

guaranteeing a certain SIMD utilization.

• Stripe Splitting: To enhance MIMD load balance, we design a stripe splitting

mode as follows. If a stripe has too many tasks (>> merging threshold) while there

exist more than one idle threads, this stripe will be assigned to multiple threads,

with a tile as the minimal assignment unit. After stripe splitting, there may exist
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update conflicts among threads, so we have to process these tasks in a MIMD-only

way with atomic update support. Because such execution is inefficient, we restrict

our stripe splitting to a condition that more than half threads are idle. This case

may only happen if there are any highly skewed inputs and at the end of a group

processing.

We show an execution example with all three scheduling modes in Figure 2.4. It con-

tains four stripes (stripe0 to stripe3) in the same group and two MIMD threads (thread0

and thread1). We set the merging threshold as 8, i.e., when the number of edges is less

than 8, a merging operation will happen to guarantee a good SIMD utilization. In this

example, thread0 performs an intra-stripe merging while thread1 performs an inter-stripe

merging. Assume after completing stripe0, thread0 gets stripe3 and finds it has too many

edges, a stripe splitting operation will happen, in which t5 is assigned to (stolen by) thread1

to achieve a better thread load balance.

In summary, our uniform MIMD-SIMD execution dynamically toggles among these

modes. If we treat a group as a 2-D space with the row representing the number of stripes

and the column representing the length of stripes, our MIMD execution is a row-major

(or row-preferred) task schedule, i.e., an idle thread seeks for unprocessed tasks in the row

direction preferentially. Such design is aimed to maximize the benefit of SIMD execution

while minimizing the performance degradation caused by the atomic operation involved

execution, and also to achieve a MIMD load balance in case the input is highly skewed.

2.4.3.2 Update Conflict Resolving

Our MIMD-SIMD scheduler requires resolving possible update conflicts. In MIMD-level,

for basic execution and stripe merging modes, the update conflicts have been handled by

the stripe data organization. For stripe splitting mode, we need to run a lock-based code

for tiles in the same stripe as we mentioned before. In SIMD-level, as opposed to previous

efforts based on a heavy data reorganization preprocessing [42], we rely on the built-in
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conflicts detection intrinsics provided by Xeon Phi to dynamically address the possible

update conflicts.

2.5 Implementation

GraphPhi includes several optimizations in its implementation to support efficient MIMD-

SIMD execution.

2.5.1 Dynamic Write-conflicts Processing

0 1 2 3 40 1 2 3 4

Active Nodes

Destinations

(a) Connection.

Dest IDs

Edge Vals

Old Vertex Values New Vertex Values

[0][1][2][3][4] [0][1][2][3][4] 

0 0 0 0 00 0 0 0 0 2 3 4 4 32 3 4 4 3

0 1 2 1 1 3 2 3 2 0 3 2 4 3 4 40 1 2 1 1 3 2 3 2 0 3 2 4 3 4 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Update vertex by sum edge vals.

Figure 2.5: A write-conflict example.

Our hierarchical blocked data representation naturally resolves the coarse-grained

thread-level write conflicts. However, write conflicts still happen in SIMD level when

multiple lanes of a SIMD instruction attempt to update the same memory location, Fig-

ure 2.5 shows an example, in which multiple edges update the same destination vertices. If

one SIMD write performs these updates, write conflicts occur. In particular, every vertex

sums up its in-edges’ values in this example. If any conflicts happen, the sum result will

not be guaranteed.

We handle SIMD-level update conflicts by a dynamic fine-grained solution based on

emerging SIMD conflict detection intrinsics. In a SIMD operation, the conflict lanes with

the same destination can be grouped. We call it a conflict group. For example, we mark

such conflict groups by different colors in Figure 2.5b. On the latest Xeon Phi, only the

last value in a conflict group will be stored into the memory in a SIMD write. Hence,

we accumulate all edge values in a conflict group to its last element and then perform a
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scatter operation on all conflict groups to update destinations.

We show our implementation in Algorithm 2. At first, it uses AVX-512 conflict de-

tection (CD) intrinsic to detect update conflicts (line 1). If any conflicts exist, we get the

position of the immediately previous conflict for each conflict starting from the second one

in each group (line 3 to line 4). For example, in Figure 2.5b, for conflicts in the yellow

group with the common destination index of 1, the second yellow 1’s immediately previous

conflict position is the position of the first yellow 1. We maintain an array (pIDs) holding

such immediately previous conflict positions for all conflicts. With this information, it is

possible for us to accumulate the update values with common destinations from the first to

the last iteratively, beginning with adding the first value to the second (in the position of

pos2) (line 6 to line 9). Such accumulations among different conflict groups are performed

in parallel, and the largest group decides the number of repeated iterations. Eventually,

the element at the end of each conflict group holds the cumulative sum of all conflicted

updates of that group, to be stored into memory by a SIMD scatter operation (omitted

in our algorithm). The conflict detection at line 1, the for-loop at line 3 and line 6 are

all implemented in AVX-512 intrinsics. Moreover, we may also apply this algorithm to

other update scenarios besides cumulative addition by changing the operation at line 8

accordingly.

2.5.2 Push/Pull Execution

This technique was first proposed by Beamer et al. [155] as a direction-optimization for

accelerating BFS, and generalized in Ligra [175] and a later study [26]. Its basic idea is a

hybrid execution consisting of a push (top-down) stage, where the vertices in the current

frontier explore their neighbors, pushing updates to them and adding unvisited neighbors

to the next frontier, and a pull (bottom-up) stage, where the unvisited vertices search for

their parents in the active frontier, pulling updates from their active parents and adding

themselves to the next frontier.

These two stages show different strengths. The push stage works better when the
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Algorithm 2: cumulative sum (data, indices)

/* detect if there exist conflicts in indices */

1 cd mask = conflict detect(indices)
2 if cd mask not all false then

/* get the immediately-before conflict position in the same group for

all conflicts starting from the second one in each conflict group */

3 forall conflict index i ∈ cd mask do
4 pIDs[i] = indx immediate before i in conflict group

/* in each group, keep merging the value in the first conflict position

to the value in the second, and set the first conflict position as

false until all conflict values merged to the value in the last

position */

5 repeat
6 forall conflict group do
7 pos2 = the index of 2nd conflict in this group
8 data[pos2] += data[pIDs[pos2]]
9 cd mask[pos2] = false

10 until cd mask all false

current frontier is small, while the pull stage works better when the current frontier is

large. This is because as the frontier gets larger, there exist too many edges connected

to the same unvisited vertex, causing redundant checking or update conflicts when push

is used. Usually, such redundancy and conflicts can be avoided from another direction

by asking the unvisited vertices to pull the updates. However, the pull approach requires

visiting all vertices, which is too expensive when the frontier is small.

Our Mixed-tile problem makes our hybrid processing prefer large active frontiers, sim-

ilar to the bottom-up pull stage. Therefore, to accelerate the small frontier situation for

applications like BFS, we combine our approach with a top-down push execution like Ligra.

Correspondingly, we keep an untiled CSR format of graph data in addition to our hierar-

chical blocked graph. As shown in section 2.6, we can significantly reduce the unnecessary

edge checking with this solution.

2.5.3 High-Bandwidth Memory

Our efficient MIMD-SIMD execution thoroughly explores the massive system parallelism,

thus naturally increasing the number of concurrent memory access requests. In many
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cases, GraphPhi becomes memory bandwidth bound. As we mentioned before, KNL is

equipped with a High-Bandwidth Memory (HBM) with more than 4X bandwidth than

traditional DDR4. Our GraphPhi is capable of taking advantage of this feature, i.e.,

allowing users to place the graph (or a portion of the graph) on HBM. This is important

because modern memory hierarchies are becoming increasingly heterogeneous.

In our implementation, we configure our machine into a flat mode with DRAM as node

0 and HBM as node 1. We use numactl (NUMA control utility) with “-m 1” option to

bind our application to HBM. However, for some large graphs, 16 GB HBM is not big

enough to hold the whole graph. Thus, we also specify a “-p 1” option that states a

preference for HBM, i.e., part of it will be stored in regular DRAM if the graph is too big.

Table 2.1: User APIs and Pre-defined Functions.

User Defined Functions Description

bool compute cond (Edge e, Frontier f) Decide if the edge is active in this iteration.

void compute (Edge e) Perform computation for active edges.

bool update cond (Vertex v) Decide if the vertex is active in next iteration.

Pre-defined Functions Description

void scheduler (Frontier f, Group g) Traverse a group and process its stripes in par-
allel; run kernel for every tile.

void kernel (Frontier f, Tile t) Process edges in a tile according to user-
defined compute cond and compute

Frontier update() Traverse vertices and mark active vertices
for next iteration according to user-defined
update cond.

2.5.4 Application Programming Interface

Our GraphPhi framework provides a set of user APIs and pre-defined functions (Ta-

ble 2.1) to assist users in developing new applications. The pre-defined functions, including

scheduler, kernel, and update, are aimed to offer a basic execution skeleton for graph

processing, while the user APIs, including compute cond, compute, and update cond, are

designed for users to specify the applications’ computation logic.

In general, the scheduler function traverses groups of the input graph. For each group,
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it assigns stripes to threads, and each thread calls the kernel function to process all the

tiles in its assigned stripe. The stripes in a group are processed in parallel. In the kernel

function, the user needs to specify the user-defined functions compute cond and compute

to perform specific computations according to the application’s requirement. Specifically,

the kernel function traverses all edges in each tile and runs the compute function upon

those edges whose return values from compute cond function are true. After the whole

graph is processed, the update function traverses all vertices and marks them as active

for the next iteration if their return values from update cond function are true. It also

resets the update condition for all vertices. The iterative process stops if there are no

active vertices anymore.

2.6 Experimental Evaluation

In this section, we evaluate the performance of our GraphPhi approach by comparing it

with the other two popular graph processing frameworks for shared-memory CPUs, Ga-

lois3 and Ligra4 on six graph applications and six graph datasets. There are four objectives

in our evaluation: first, demonstrating that our GraphPhi outperforms other graph pro-

cessing systems that are not optimized specifically for Xeon Phi; second, confirming that

our uniform MIMD-SIMD execution results in good scalability and SIMD speedup; third,

studying some key underlying reasons for our performance benefits, such as the effect of

our hierarchical blocking, push and pull optimization, and SIMD utilization improved with

stripe merging; and finally, empirically proving that GraphPhi can perform even better

by leveraging the High-Bandwidth Memory.

2.6.1 Platform and Benchmarks

Platform: We evaluate our GraphPhi approach on the latest version of Intel Xeon Phi,

Knights Landing. It is a 64-core Xeon Phi 7210 processor with up to 256 hyper-threads,

3http://iss.ices.utexas.edu/?p=projects/galois
4https://github.com/jshun/ligra

http://iss.ices.utexas.edu/?p=projects/galois
https://github.com/jshun/ligra
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running at 1.30 GHz, supporting efficient 512-bit AVX-512 intrinsics, with 1M L2 cache

shared between every two cores. We use it as a CPU host with 96 GB DRAM and 16 GB

HBM (MCDRAM) as main memory. We configure the DRAM and HBM in a flat mode.

Benchmark Applications: We evaluate our GraphPhi on six graph applications. These

benchmark applications are written in C++ and compiled with the icc-17.0.1 compiler with

-O3. We use the default setting for prefetching because the -qopt-prefetch=5 option does

not yield noticeable performance difference. Here are more details:

• Breadth-First Search (bfs) traverses graphs in frontiers and calculates the min-

imal hop distance from the source to all other vertices. Ligra adopts a push/pull

hybrid execution to switch between sparse and dense frontiers. Our implementation

follows Ligra and uses the same threshold for the switch. We choose barrierWithCas

as Galois’ algorithm option.

• PageRank (pagerank) approximates the impact of every vertex by calculating its

rank based on its neighbors’ ranks. Our implementation accesses all edges in a data-

driven manner. All implementations run 1 iteration. Galois uses a pull model and

requires a weighted graph. We use its graph conversion tool to add weights randomly

to edges for our graphs. Ligra and GraphPhi use unweighted graphs.

• Single-Source Shortest Path (sssp) computes the shortest distance from a source

vertex to others. Ligra and Galois implement a frontier-based modified Bellman-

Ford algorithm. Our implementation follows Ligra’s algorithm. All Ligra, Galois,

and GraphPhi require a weighted graph as input. We choose asyncPP as Galois’

algorithm option.

• Connected Components (cc) finds a maximal set of vertices reachable from each

other. We implement it based on label propagation in GraphChi5. We choose async

as Galois’ algorithm option.

5https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/connectedcomponents.

cpp

https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/connectedcomponents.cpp
https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/connectedcomponents.cpp
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Table 2.2: Character and configuration of graphs.

Datasets # Vertices # Edges Tile Width Stripe Length

Pokec [4] 1.6M 30.6M 8192 (4096) 64 (16)
LiveJournal [3] 4.8M 68.5M 16384 (16384) 64 (128)
RMAT24 16.8M 268.4M 16384 (32768) 128 (256)
RMAT27 134.2M 2.1B 16384 (16384) 4096 (2048)
Twitter [5] 41.7M 1.5B 16384 (32768) 1024 (512)
Friendster [1] 68.3M 2.1B 65536 (131072) 512 (128)

• Betweenness Centrality (bc) calculates the betweenness centrality index for every

vertex. It contains two phases where the first phase is very similar to bfs and the

second is a reversed traversal of the first phase. Our implementation follows Ligra

that the estimated betweenness centrality value is based on only one traverse of BFS.

We choose async as Galois’ algorithm option and set -t=1.

• Maximal Independent Set (mis) finds a maximal set of vertices that form an in-

dependent set (and not a subset of any other independent set). Our implementation

follows Ligra. We choose nondet as Galois’ algorithm option.

Input Graph Datasets: We evaluate GraphPhi on six graphs as shown in Table 2.2.

They are all downloaded from their website. The synthetic scale-free graphs RMAT24

and RMAT27 were generated from the RMAT generator in Ligra, following the same

configuration used by the Graph500 benchmark [2]. The RMAT24 has parameters a =

0.5, b = c = 0.1, d = 0.3. The RMAT27 has parameters a = 0.57, b = c = 0.19, d = 0.05.

We also show graphs’ hierarchical block configuration in Table 2.2 where the number in

parenthesis is for pagerank and another one is for all other applications. Particularly, for

sssp, we use randomly weighted edges, a tile width of 65536, and a stripe length of 128.

2.6.2 Overall Performance

Figure 2.6 shows the overall performance of GraphPhi compared to Galois and Ligra on

all benchmarks and input graphs. We run all tests for 10 times with 64 threads in parallel.

We report minimum, maximum, and average execution time. We also report the geometric
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Figure 2.6: Overall performance. x-axis: graph datasets; y-axis: execution time (s).
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Figure 2.7: Scalability. x-axis: number of threads; y-axis: speedup over 1-thread.

mean (gmean) of the average execution time for each benchmark on all input graphs. In

addition, to ensure a fair comparison, all tests are performed on DRAM only. We will

perform an extra performance study for HBM later.

GraphPhi outperforms Galois and Ligra for most cases, except mis on R24 (an ab-

breviation for RMAT24) and Friend (an abbreviation for Friendster), when Galois works

better than GraphPhi. For pagerank, GraphPhi shows the best geometric mean speedup

over Galois and Ligra (35.4X and 4.0X, respectively), because our pagerank implementa-

tion traverses all edges tile by tile without any redundant accesses, benefiting most from

both data locality improvement and SIMD execution. For other applications, GraphPhi’s

geometric mean speedups over Galois range from 1.2X to 16.5X, and over Ligra range

from 1.2X to 3.4X. In terms of different datasets, GraphPhi obtains average speedups

over Galois from 5.8X to 19.3X, and over Ligra from 1.6X to 4.3X.
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Figure 2.8: Performance: non-SIMD vs SIMD.

2.6.3 MIMD-SIMD Scheduler Efficacy

To further study the efficacy of our MIMD-SIMD scheduler, we report our scalability and

SIMD speedup results in Figure 2.7 and Figure 2.8, respectively. Constraint by our space,

we only show results on two representative graphs; one is small (Pokec), and another one

is large (Twitter). All tests were run 10 times, too; however, we only show the average

execution time to make the figures more readable.

2.6.3.1 Scalability

Figure 2.7 illustrates that all our six benchmarks scale well on both Pokec and Twitter.

Particularly, tests on Twitter exhibit better scalability than on Pokec, because Pokec has

fewer workloads, rendering the parallel execution overhead more noticeable. Moreover,

some benchmarks cannot scale perfectly from 32 threads to 64, e.g., pagerank and bc. This

is because they are increasingly memory bandwidth bound as the concurrency increases

since these tests are on DRAM. Later tests further prove that these applications are more

likely to benefit from the High-Bandwidth Memory.
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2.6.3.2 SIMD Speedup

Figure 2.8 compares the performance of SIMD codes and non-SIMD codes with 64 threads

and reports the speedup of SIMD over non-SIMD. For all six benchmarks, SIMD execution

results in an average speedup of 2.3 and 1.7 on Pokec and Twitter, respectively. We do

notice that the execution time fluctuates more for the relatively small graphs like Pokec,

while running large graphs like Twitter produces more stable speedups. For different kinds

of applications, the speedup stems from different reasons. On the one hand, most topology-

driven graph applications like bfs and bc are memory latency bound with MIMD-only

execution, and an extra SIMD execution is able to increase the number of concurrent

memory access requests, thus hiding memory latency. We confirm this with a memory

throughput comparison test that is omitted due to our space constraint. The later HBM

study can prove this from another perspective. On the other hand, data-driven graph

applications like pagerank are computation bound with MIMD-only execution, and SIMD

execution can accelerate their kernel computations.

2.6.4 Understanding the Performance

We now explore several important optimizations that significantly affect our performance.

2.6.4.1 Effect of Hierarchical Blocking

Our hierarchical blocking, specifically, the design of partitioning a graph into multiple

groups, is aimed to improve both intra- and inter-thread data locality. However, the

introduction of groups also requires additional global barriers, thus incurring synchro-

nization overhead. Therefore, the overall performance stems from a combination of both

data locality and synchronization overhead. We show the study on pagerank application

running on the Twitter graph (tile width 4096) with 64 threads and report the results

in Figure 2.9. This study shows that as we increase the group size (stripe length), the

L2 miss rate will increase while the synchronization overhead will decrease. The former is
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because of the increasingly worse data locality, while the latter is owing to the decrease of

global barrier counts. Eventually, our best performance is a trade-off between these two

factors and achieved with the tile width of 64.
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2.6.4.2 Effect of Push-based Execution

The aforementionedmixed-tile issue significantly affects our overall performance for topology-

driven applications like bfs, thus we also evaluate the efficacy of our push-based execution.

Our evaluation is performed on bfs application with both Pokec and Twitter graphs, run-

ning with 64 threads. We compare both the number of accessed edges and the execution

time between a pull-only version (Only Pull) and a hybrid push/pull version (GraphPhi)

of GraphPhi, and report the results in Figure 2.10. The results demonstrate that with

push-based execution, GraphPhi is able to reduce around 43% and 40% total edge pro-

cessing, resulting in 1.7X and 1.9X speedup, respectively.
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Figure 2.11: SIMD utilization: merge vs w/o merge.

2.6.4.3 SIMD Utilization Study

We also perform a SIMD utilization6 study to help our understanding of the efficacy of the

stripe merging execution in our scheduler. We evaluate two representative applications,

bfs and pagerank with Pokec and Twitter graphs, and compare the SIMD utilization

before and after this optimization. The result in Figure 2.11 shows that stripe merging

optimization is able to improve the SIMD utilization by up to 25% and provide a speedup

up to 1.3X.
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Figure 2.12: HBM speedup for GraphPhi and Ligra.

6SIMD utilization is defined as the ratio of SIMD executed workloads over all workloads.
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2.6.5 Extra HBM Benefit

Previous studies are all performed on DRAM. We also test GraphPhi on HBM and com-

pare the performance with Ligra. This evaluation is conducted on all benchmarks with

Pokec and Twitter graphs. We use 128 threads (i.e., 2 hyper threads per core) because

each KNL core has 2 VPUs, and 128 threads result in the best performance for both

Ligra and GraphPhi. We calculate the speedups of GraphPhi and Ligra with HBM con-

figuration over without HBM and report them in Figure 2.12. While the execution time

fluctuates for Pokec, a relatively small graph, the running on Twitter produces a more

stable performance. For GraphPhi, the use of HBM yields additional 1.2X and 1.45X

geometric mean speedups on these two graphs, respectively; while for Ligra, it results is

either slightly slowdown or unnoticeable speedup. The reason is as follows. Ligra imple-

mentation does not seek the help of SIMD. Thus, the memory stall still dominates the

overall execution time for these applications. However, Xeon Phi HBM only optimizes

the memory bandwidth, and its memory latency is similar to or even worse than DRAM.

Alternatively, our GraphPhi leverages extra SIMD parallelism to hide memory latency

by more concurrent memory requests (like GPUs), thus more thirsty to memory band-

width. Such results empirically prove that our GraphPhi is more suitable for future HBM

architectures.

2.7 Related Work

Due to the significant importance of graph analytics, there have been many efforts to

efficiently parallelize graph processing on modern multi-core or many-core architectures

in recent years. We describe some of them closely related to our work.

Graph processing on CPUs: There exist many popular graph processing engines and

frameworks on CPUs nowadays, however, they are designed for different scenarios, thus

facing very different problems. Inspired by the BSP model [190], Google Pregel [136]

was proposed as the first vertex-centric graph processing model mainly for large-scale



2.7. RELATED WORK 38

distributed clusters. Such a model has been adopted by many other distributed graph

processing engines since then, such as GraphLab [133] and PowerGraph [78]. The pri-

mary challenge for these distributed graph processing systems is how to efficiently parti-

tion graphs, store partitions on multiple machines, and perform low-cost communications.

Out-of-core graph execution engines, such as GraphChi [115] and X-Stream [166], focus on

reducing disk traffic when processing large-scale graphs which do not fit in the main mem-

ory of a single-machine. In-memory single-machine graph processing frameworks, such as

Polymer [207], Galois [148], and Ligra [175], are similar to GraphPhi. Polymer focuses

on optimizing graph processing on multi-CPU NUMA machines rather than our platform.

Although Galois and Ligra either offer more general APIs or perform an efficient hybrid

execution on CPU platforms, they do not mainly match the Xeon Phi-like architectures,

either, because their current design does not consider the emerging hardware features,

such as wide SIMD units and the HBM. In contrast, GraphPhi is carefully designed and

implemented to take advantage of those features.

Graph processing on GPU and Xeon Phi: There are also many graph processing

frameworks on GPUs [143, 214, 109, 172, 194, 152, 86, 90, 40]. However, they also concern

different problems compared to our work. For example, efforts like GraphReduce [172] and

Graphie [86] aim at reducing CPU-GPU traffic for the processing of large graphs which

do not fit in the GPU memory, while works like CuSha [109] and Gunrock [194] optimize

for load balance and memory coalescing. GraphPhi focuses on a different throughput-

oriented architecture and explores many unique features that are not shown on GPUs.

There are also some optimization techniques for Xeon Phi [42, 100, 25]. Although they

comprehensively explore advanced SIMD execution, none of them offer a general graph

processing framework by effectively exploiting both MIMD and SIMD execution, or emerg-

ing HBM techniques. For example, Chen et al.’s effort [42] requires a relatively heavy

preprocessing to resolve update conflicts and includes a basic MIMD scheduling method

that groups all tiles in the same column together, while our work dynamically resolves

conflicts through careful data organization and computation schedule with an optimized
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MIMD-SIMD scheduling technique. In addition, several graph processing frameworks are

designed for hybrid CPU and coprocessors [91, 76, 41, 135], but their main focus is on

workload partition instead of exploiting the SIMD units. In particular, Chen et al. [41]

employ a vertex-centric message passing model and resolves update conflicts by a costly

reordering process. Mosaic [135], a heterogeneous processing engine uses both the CPU

and multiple Xeon Phi cards as co-processors to perform graph computation without sup-

porting SIMD execution, while our work focuses on a single Xeon Phi card used as the

host processor with SIMD support.

Specific graph algorithms and other important algorithms: Besides these general

graph processing systems, there are also many efforts on parallelizing specific graph ap-

plications or graph related operations on modern parallel architectures that are related

to our work, e.g., BFS [143, 155, 131, 129], Connected-Components [179], Betweenness

Centrality [140], Single Source Shortest Path [55], and SpMV [201, 128]. In contrast, our

goal is to provide a more general graph processing framework on an emerging throughput-

oriented architecture. There also exist some research efforts using Xeon Phi for algorithms

other than graph processing, such as FFT [153], an important scientific computing kernel.

However, scaling FFT and graph computation on KNL are different. The challenge for

scaling graph computation arises from irregular parallelism and memory accesses.

2.8 Chapter Summary

This work presented GraphPhi, a new optimization framework to process graphs efficiently

on Xeon Phi architectures. It consists of an optimized graph representation, a hybrid

vertex-centric and edge-centric execution design, and an efficient MIMD-SIMD scheduler

with lock-free update support. Inherited from edge-centric processing, GraphPhi may pro-

cess redundant edges. However, compensated by our advanced SIMD acceleration together

with a push-based execution for sparse frontiers, GraphPhi produces better performance

than state-of-the-art graph execution frameworks, such as Galois and Ligra. In addition,
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we showed that GraphPhi, by efficiently utilize the SIMD units, converts latency-bound

graph applications into bandwidth-bounded ones, hence taking advantage of the HBM.
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Chapter 3

Parallelizing Pruned Landmark

Labeling: Dealing with

Dependencies in Graph

Algorithms

3.1 Introduction

Computing the shortest path distance between any two vertices stands out as one of

the most fundamental graph operations, with applications ranging from transportation

systems (for distance related navigation) [59], social networks/WWW/semantic web (for

recommendations and ranking) [37], to knowledge graphs (for concept detection) [174],

among others. This operation also serves as the basis for more complex graph analytics and

mining operations, such as graph pattern matching [47, 217], distance join processing [169],

and centrality computation [28].

However, computing shortest path distances over scale-free complex networks (e.g.,

massive social and web graphs) remains a challenging problem [9, 103, 151]. To help

answer shortest path distance queries on demand, the 2-hop labeling approach [48] has
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emerged as an effective tool. Given a graph, it aims to assign each vertex v a label set

L(v), which comprises a list of vertices and their distances to v. Subsequently, given any

two vertices u and v, we only need to use their respective label information, L(u) and

L(v), to rapidly compute their exact distance.

This approach was made scalable by the Pruned Landmark Labeling (PLL) method [9].

This labeling approach adopts a fast greedy process to iteratively consider one vertex at a

time (according to certain vertex order) and potentially assigns it to the label sets of other

vertices, using a distance check criterion. Once the labeling process is done, the results are

guaranteed to be minimum (or canonical) with respect to the given vertex order. In the

past few years, a number of studies [57, 123, 161, 8] have further validated and confirmed

the scalability of this approach.

Parallel PLL: The original PLL algorithm is inherently sequential; i.e., the algorithm

operates one vertex at a time to label the entire graph, and the labeling of a vertex

depends on the partial labeling results from earlier processed vertices. In view of this,

on the one hand, the original PLL [9] suggested to simply parallelize the BFS labeling of

each vertex instead of dealing with inter-vertex labeling dependency, thus severely limiting

parallelism. On the other hand, two recent attempts [65, 162] allow multiple vertices to

be simultaneously processed, but do not produce the same compact label as the original

PLL.

This work studies how PLL can be parallelized in a scalable and exact fashion. We

make the following contributions:

• Linear Algebra Formulation (Section 3.2):. Motivated by developments like

GraphBLAS(T) [107] and GraphMat [189] that support graph computations based

on a set of linear algebra operators, we show how the original PLL algorithm can be

expressed as a series of matrix (and vector) computations. However, we also observe

that because of a masking operation, the more efficient implementation will be the

one based on a vertex-centric approach.
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• Parallel PLL Algorithm (Section 3.3): To solve the mismatch between the in-

herent sequential/dependence of PLL algorithms and the goal of allowing indepen-

dent operations on each vertex, we present a theoretical result and use it to develop

a new VC-PLL algorithm that utilizes VC to parallelize PLL and is guaranteed to

produce the same labels as original PLL.

• Batched Vertex-Centric PLL (Section 3.4): To deal with the limitations of VC-

PLL, we introduce a batched VC-PLL (BVC-PLL) algorithm that largely preserves

the same vertex computation function while reducing the costs of message (label)

broadcasting and remote memory access.

• Efficient Parallelization and Generalization (Section 3.5): We combine intra-

node (shared memory) and inter-node (distributed memory) parallelism, resulting

in an implementation that can handle graphs with more than 1 billion edges. In

addition, we show how BVC-PLL can be extended to handle directed graphs and

weighted graphs, and how the extension for weighted graphs can benefit from SIMD

parallelism.

In our experimental study (Section 3.6), we show that the sequential BVC-PLL

can run more than 2× faster than the original PLL (both using one single thread). The

parallel BVC-PLL also demonstrates good scalability and obtains an average speedup of

6.68× over sequential BVC-PLL on a 20-core shared memory machine and a speedup up

to 11.85× on a 16-node distributed cluster over 1-node version. We also demonstrate that

the shared memory and distributed memory combined BVC-PLL gains good scalability

for large graphs with over 1 billion edges. We finally extend BVC-PLL to process weighted

graph with the help of SIMD parallelism, achieving up to 1.92× speedup over PLL (both

with a single thread), and achieving up to 15.68× speedup in going from 1 to 20 threads.
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Figure 3.1: 2-Hop Labeling and PLL Example: spreading vertex is marked with red; light
shadow vertices have already received the label spread (colored in red); pruning happens
in dark shadow vertices; white vertices are not accessed by the vertex being spread because
of pruning.

3.2 2-hop Labeling and PLL

This section further describes the 2-hop labeling problem and the PLL algorithm that

forms the basis for our work on parallelization. We also describe how this algorithm can

be viewed as a series of linear algebra operations.

3.2.1 2-Hop Labeling

The 2-hop labeling algorithm [48], which was pioneered by Cohen et al. [48], provides an

efficient scheme to answer on-demand shortest distance queries. It assigns each vertex u

in an (undirected) graph a label set L(u) such that for any two vertices u and v, their

distance can be computed using only their respective label sets. Formally, we compute

L(u) and for each h ∈ L(u), the corresponding distance from u, i.e, d(h, u). Table 3.1

illustrates a 2-hop labeling of the undirected graph G that is shown in Figure 3.1a.

Formally, the shortest path distance query Dis(·, ·) between any two vertices u and v

can be answered as:

Dis(u, v) = min
h∈L(u)∩L(v)

{d(u, h) + d(h, v)}

Thus, 2-hop labeling can answer distance queries efficiently by traversing two lists of

vertices, with an operation similar to merge sort. As an example, in Table 3.1, the distance
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between nodes A and B can be computed as 2 by first identifying thatD and I are common

vertices in their label sets, and subsequently that the distance through D is the shortest

(1+1).

Over a decade, numerous efforts [170, 45, 101, 46, 7, 74, 168] largely failed in making

2-hop labeling practical on large real-world graphs. The pruned landmark labeling algo-

rithms [9, 104] are considered a major breakthrough in solving this problem and are the

focus of our work.

3.2.2 Complete Definition of Hierarchical Hub Labeling (HHL) and

Canonical Hierarchical Hub Labeling (CHHL)

An important direction to make 2-hop labeling feasible and scalable for a large graph is

to restrict the choices of labeling (by imposing some special properties on what can be

added to the labels).

Definition 1 (Hierarchical Hub Labeling) Given two distinct vertices u and v, we say

u ⪰ v if u ∈ L(v) (u is a hub of v). A hub (2-hop) labeling is hierarchical if ⪰ forms a

partial order.

In fact, any partial order can be extended to a total order (the order-extension princi-

ple) and for a set of vertices V , the total order is defined as a bijection π : V → 1, · · · , |V |

(π(v) is the rank of v). Given this, we can say that a label is hierarchical if there is a total

order π which satisfies: u ∈ L(v) then π(u) < π(v) (u ranks higher than v).

Definition 2 (Canonical Hierarchical Hub Labeling) Let the shortest path vertex set Puv

consist of all vertices on shortest paths between u and v (including u and v). Given a total

order π on V , its canonical hub labeling is defined as follows: u ∈ L(v) if u has the highest

order in Puv, i.e., no other vertex w in Puv such that π(w) < π(u).

An important implication of canonical hierarchical hub labeling is that it produces the

minimal hierarchical hub labeling for a given order [19]. Thus, the optimal HHL problem
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can be transformed into two sub-problems: 1) finding the optimal order that minimizes

the label size; 2) computing the canonical HHL with respect to a given vertex order.

A main breakthrough enabling efficient 2-hop labeling is the discovery of a simple, yet

elegant algorithm called pruned landmark labeling (PLL) [9]. It computes the canonical

HHL (the second subproblem) for a given vertex order efficiently. Independently, essen-

tially the same style algorithm was discovered for 2-hop reachability labeling, and is called

distribution labeling [104]. In the past few years, a number of studies [57, 123] have fur-

ther validated and confirmed the efficiency and effectiveness of PLL style algorithms for

distance labeling.

Theoretically, the optimal hierarchical hub labeling (HHL) as well as the original 2-hop

labeling have recently been proved to be NP-hard [19], which implies that the optimal

order sub-problem (the first sub-problem listed above) is NP-hard as well. A few heuristics,

such as the ranking by degree and betweenness, have been developed for addressing this

sub-problem [123]. The second sub-problem (labeling generation) typically dominates the

overall labeling computation and is thus the focus of this study.

3.2.3 Pruned Landmark Labeling (PLL)

The main idea of this algorithm is to use a total ordering of all vertices (finding such an

order optimally is NP-hard [197], but heuristics are feasible) for labeling. Given such a

total order π of vertices, the pruned landmark labeling (PLL) [9] assigns each vertex,

based on the order (π(v1) < π(v2) < · · · < π(vn)), to the labels of other vertices in the

graph following a BFS process. Note that when π(vi) < π(vj), we say that vi has the

higher rank. As PLL assigns the vertex u with the rank π(u) as a label to a lower ranked

vertex v, it needs to check if u is the highest ranked vertex in the shortest paths between

u and v (Puv). This can be done by checking

d(u, v) < d(v, h) + d(h, u), for all h ∈ L(u) ∩ L(v).
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Algorithm 3: PLL for G = (V,E) with Order π

1 forall u ∈ V do /* following order π from high to low */

/* BFS process to use u for labeling */

2 Queue Q = {(u, 0)}
3 while Q is not empty do
4 (v, d(u, v))← Q.pop()
5 if d(u, v) < minh∈L(u)∩L(v){d(u, h) + d(h, v)} then
6 Add (u, d(u, v)) into L(v)
7 forall v′ ∈ v’s neighbor do
8 if v′ is unvisited by u and π(u) < π(v′) then
9 Add (v′, d(u, v) + 1) to Q

Table 3.1: 2-hop labeling for Graph G.

Vertex Labels

A {(A, 0), (D, 1), (I, 2)}
B {(B, 0), (D, 1), (E, 1), (F , 2), (I, 2)}
C {(C, 0), (B, 1), (E, 1), (F , 1), (I, 2), (D, 2)}
D {(D, 0), (I, 1)}
E {(E, 0), (D, 1), (I, 1)}
F {(F , 0), (I, 1)}
G {(G, 0), (F , 1), (L, 1), (I, 2)}
H {(H, 0), (A, 1), (I, 1)}
I {(I, 0)}
J {(J , 0), (I, 1), (L, 2)}
K {(K, 0), (J , 1), (L, 1), (F , 2), (I, 2)}
L {(L, 0), (F , 1), (I, 2)}

Intuitively, this is ensuring that the distance between u and v cannot be recovered by a

certain higher ranked vertex. When the condition above does not hold, u will be pruned

by v (i.e., is not added into the label of v and will not be further expanded from v) during

the labeling process.

Figure 3.1 illustrates the processing associated with the two highest ranked vertices (I

and E) for the graph in Figure 3.1a. Rank (or order) of each vertex is explicitly shown

following the vertex ID.

Algorithm 3 sketches the labeling process for an undirected graph. Note that d(u, v) in



3.2. 2-HOP LABELING AND PLL 48

the algorithm is the distance computed by the BFS process, which may not be the exact

distance between u and v (due to the pruning effect). But the recorded distance in the

label (Line 6) is always exact (since it can travel through all the shortest paths starting

from u reaching to v). It can be proved that the results are guaranteed to be minimum

(or canonical) with respect to the given vertex order.

3.2.4 A Linear Algebra View of PLL

It has been well known that a large number of graph algorithms can be stated as operations

on (sparse) matrices [108, 75]. Multiplication of a sparse matrix with a vector (SpMV) and

multiplication of two sparse matrices (SpGEMM) are the operations most commonly used.

Multiple recent efforts have focused on using the work on optimizing (and parallelizing)

SpMV and SpGEMM operations as the basis for graph processing [107, 189].

We have examined how PLL can also be viewed as a series of linear algebra operations.

Our examination, however, shows that PLL requires more than SpMV and SpGEMM and

therefore is better parallelized by taking a vertex-centric view of the computations.

Let A be the adjacency matrix for graph G, where A[u, v] = Dis(u, v). Let I be the

identity matrix and let Ii be the i-th column of identity matrix I.

First, it is well known (see, for example [108]) that the following equation computes

the shortest distances from a given vertex i, denoted as a vector y⃗i:

y⃗i = (ITi (I +A+A2 + · · ·+Ad))T = (I +A+A2 + · · ·+Ad)T Ii

where d is the diameter of the graph. We also denote

A∗ = (I +A+A2 + · · ·+Ad)T .

Note that for any matrix M , Mi is the i-th column of M (Mi = MIi).

Now, we represent the original PLL algorithm as a series of linear algebra operations.



3.2. 2-HOP LABELING AND PLL 49

Following the order used in the PLL algorithm, let x⃗i be the vector recording the distance

of all vertices to the i-th ordered vertex in the distance labeling:

x⃗i[j] = d(j, i), vi ∈ L(vj); x⃗i[j] = +∞, vi /∈ L(vj).

Let ⊖ be the generalized element-wise masking: x⃗[i]⊖ y⃗[i] =∞ if x⃗[i] is larger than or

equal to y⃗[i] and x⃗[i] ⊖ y⃗[i] = x⃗[i] if x⃗[i] is smaller than y⃗[i]. Given this, for two column

vectors x⃗ = {x1, · · · , xn}T and y⃗ = {y1, · · · , yn}T , x⃗⊖ y⃗ = {x1 ⊖ y1, · · · , xn ⊖ y1}T . Then

the labeling PLL essentially utilizes the following equation to assign the labeling:

x⃗1 = A∗I1
x⃗2 = A∗I2 ⊖ (x⃗1x⃗

T
1 )I2

x⃗3 = A∗I3 ⊖ (x⃗1x⃗
T
1 + x⃗2x⃗

T
2 )I3

· · ·
x⃗n = A∗In ⊖ (

∑n−1
i=1 x⃗ix⃗

T
i )In

Here, x⃗ix⃗
T
i generates the matrix recording the shortest distance between any two

vertices via vertex i. Thus, (x⃗ix⃗
T
i )Ij corresponds to the shortest distance from any vertex

to vertex j via vertex i.

In Algorithm 3, line 2–9 basically provides an efficient procedure to generate the dis-

tance label x⃗i. Especially, Line 5 can be considered as the on-demand implementation of

the generalized masking operation (without explicitly producing the masking vector, and

testing the condition as needed).

As we can see above, though we have been able to map PLL to a set of linear algebra

operations, the formulation involves more than SpMV and SpGEMM algorithms. Par-

ticularly, the use of linear algebra libraries will require materialization of the expression

(
∑k−1

i=1 x⃗ix⃗
T
i )Ik during the k-th step, which can be much more expensive as compared to

performing the masking operation (or pruning) on demand in Line 5 of Algorithm 3. As

a result, we examine other models for parallelizing PLL.
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3.3 Parallelization of PLL

This section first gives background on vertex-centric model. It then states the challenges

in parallelizing PLL using this model. We state an important theoretical result and then

proceed to develop an initial (basic) parallel algorithm for PLL.

3.3.1 Vertex-Centric (and Other) Models

Graph algorithms have been frequently parallelized by thinking of independent computa-

tions on each vertex. This was the basis for the seminal vertex-centric programming model

proposed by the Pregel paper [137], and many other parallel graph processing system re-

search efforts [78, 115, 148, 175, 133, 109, 207, 172, 194, 152, 135, 86, 53]. Though other

models have been used, including the recent projects that use (sparse) linear algebra op-

erations (for example, GraphBLAS(T) [107] and GraphMat [189]), we find vertex-centric

model to be a good fit for approaching parallelization of PLL.

In the vertex-centric model, parallel graph processing is viewed as an iterative process,

where each iteration processes the set of active vertices. For each vertex in this set, we

perform computations based on the data from incoming and/or outgoing edges together

with the local vertex data, and then update the values/state associated with the vertex.

The vertices that record a change in their local state become the active vertices for the

next iteration. The parallelization typically uses Bulk Synchronous Parallel (BSP) execu-

tion [190] and requires a global synchronization at the end of each iteration. The entire

process terminates once the set of active vertices becomes empty.

A high level abstraction of the vertex-centric computation based on a scatter-gather

model [137, 166] is sketched in Algorithm 4. Each vertex computation is described through

two functions: 1) the Scatter function, which describes how each vertex uses its vertex

value and edge value to propagate a message to its neighbors; and 2) Gather function,

which describes how each vertex computes a new value based on its original value and all

the new messages it received.
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Algorithm 4: Vertex-Centric (Scatter-Gather) (G=(V,E))

1 Initialize ActiveVertices ⊆ V
2 while ActiveVertices is not empty do

/* Scatter Phase: */

3 forall a ∈ ActiveVertices do
/* for each edge e = (a, v) of a, send message(a, e, v) to v */

4 a.Scatter(a.edges)

5 ActiveVertices ← ∅
/* Gather Phase: */

6 forall v Received Message do
/* vertex compute using received messages and update its value

*/

7 v.Gather(v.messages)
8 ActiveVertices ← {v : v.value is updated}

Various more advanced parallel graph programming models are proposed to further

refine the vertex-centric model. This includes GAS (Gather-Apply-Scatter) [78] and push

and pull models [155, 175, 26], where the goal is to better fit the computational and

communication patterns of graph processing. There is also work on generalizing the model

to finer granularity, such as the edge-centric model [166], or to coarser granularity, such

as path- or subgraph-centric [163], and k-step neighborhood [33, 111] models.

Finally, as we stated earlier, there has been recent interest in the use of linear algebra

libraries (and thus using existing methods for parallelizing them). However, because of the

masking (or pruning) operation in PLL, a linear algebra based implementation is unlikely

to be efficient.

In this work, we focus our efforts on the vertex-centric model, with resulting code

implemented efficiently through the use of MPI and OpenMP. Exploration of the use of

other models and whether there can be a programmability or performance benefit is a

subject for future work.
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3.3.2 Vertex-Centric Approach and PLL

Recall that the PLL algorithm (Alg. 3) iterates following the vertex rank (order): at the

ith round, the vertex u with rank π(u) = i will be distributed to all other vertices in the

graph using a BFS process. The key condition to add u into the label of v is that the

distance between u and v cannot be recovered by earlier processed vertices. The main

challenge in parallelizing PLL is that adding a vertex u of rank π(u) to another vertex

v in the BFS traversal seems to be dependent on the completion of labeling of all higher

ranked vertices in order to apply the distance check. In comparison, for parallelization

with the vertex-centric model, we would like to distribute all vertices to their neighbors

simultaneously for vertex labeling. This requirement seems to be in conflict as there is no

guarantee that the higher vertices can finish the distribution before the lower-rank ones.

Indeed, as we mentioned earlier, all the existing attempts have all failed to parallelize

inter-vertex labeling while preserving the canonical labeling criterion [9, 65, 162].

We address this problem through the following important result.

Theorem 1 Assume we spread all vertices simultaneously into the graph (starting by

sending each vertex to its neighbors), and we do the spreading iteration by iteration fol-

lowing the vertex-centric programming model. Let us consider a vertex u with the rank

π(u) that reaches the vertex v at the j-th iteration. Then if there is a vertex w with the

following properties: 1) with a higher rank than u (π(w) < π(u)); 2) with a shorter dis-

tance to v and u (d(w, v) < d(u, v) and d(w, u) < d(u, v)), and 3) being recorded as a label

of v (w ∈ L(v)) and u (w ∈ L(u)), then, w must be able to reach both u and v before the

j-th iteration (d(u, v) steps ).

Proof Sketch: We first note that conditions 1 and 3 ensure w cannot be pruned by other

vertices with higher ranks between w and u (and v). Then vertex w can reach u and v

in less than j iterations as d(w, u) < d(u, v) = j and d(w, v) < d(u, v) = j. (By way of

contradiction, if we assume w cannot reach u (or v) in j iterations, it either has a distance

longer than j or is pruned, i.e, there is another vertex w′ with a higher rank and located
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on the shortest path between w and u. In the latter case, w cannot be recorded as a label

in u (or v).) 2

The Theorem implies that even when the spreading process is parallelized across the

node, we can correctly determine if u should be added to L(v) by testing if there is any

other vertex, say w, with a higher rank than u (π(w) < π(u)), which can produce an equal

or shorter distance, i.e., d(u, v) ≥ d(u,w) + d(w, v).

Recall that the distance check condition for canonical labeling criterion requires not

only the labeling of higher ranked vertices h to be completed before the distance check

between u and v, but also their distances d(u, h) and d(h, v) to be smaller than d(u, v).

The latter condition is the key to the parallelization of PLL.

The main result above can also be stated (or derived) through the linear algebra

formulation. Recall from the last section that the original PLL computes the distance

labels one vertex at a time (x⃗1, x⃗2, · · · , x⃗n). To parallelize it, we will generate labels for

all vertices with the same distance in the same batch. The details of the process are as

follows. At the iteration 0 (initialization): for any vertex i, let z⃗i = Ii and y⃗i = zi (z⃗i

is the newly generated distance vector recording all vertices’ distance to vertex i if they

record vi at the latest iteration. y⃗i is the “accumulated” vector for all vertices recording

their distance to vertex i if they record vi up to the latest iteration).

Next, at iteration 1, we have

z⃗1 = AT z⃗1 ⊖ {y⃗1}
z⃗2 = AT z⃗2 ⊖ {y⃗2 + y⃗1y⃗

T
1 I2}

z⃗3 = AT z⃗3 ⊖ {y⃗3 + (y⃗1y⃗
T
1 + y⃗2y⃗

T
2 )I3}

· · ·
z⃗n = AT z⃗n ⊖ {y⃗n + (

∑n−1
i=1 y⃗iy⃗

T
i )In}

and then for all i, y⃗i = y⃗i + z⃗i. Here, y⃗iy⃗
T
i generates the matrix recording the distance

between any two vertices via vertex i (as their distance label), and (y⃗iy⃗
T
i )Ij corresponds

to the distance from any vertex to vertex j via vertex i (they all use vertex j in their

distance label). Using these values, we will repeat the above computations until no new

label is generated.
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We can easily prove the following result:

Theorem 2 When the above algorithm stops, we have

y⃗i = x⃗i, for all i.

Proof Sketch: We will prove this by induction. First, let us define both x⃗i and y⃗i by

iteration. Let A∗k = (I +A+A2 + · · ·+Ak)T for k-th iteration (k ≤ d, d is the diameter

of the graph). We first observe that

x⃗k1 =A∗kI1

x⃗k2 =A∗kI2 ⊖ (x⃗k1x⃗
k
1
T )I2

=A∗kI2 ⊖ (x⃗k−1
1 x⃗k−1

1
T )I2

x⃗k3 =A∗kI3 ⊖ (x⃗k1x⃗
k
1
T + x⃗k2x⃗

k
2
T )I3

=A∗kI3 ⊖ (x⃗k−1
1 x⃗k−1

1
T + x⃗k−1

2 x⃗k−1
2

T )I3

· · ·

x⃗kn =A∗kIn ⊖ (

n−1∑
i=1

x⃗ki x⃗
k
i
T )In

=A∗kIn ⊖ (

n−1∑
i=1

x⃗k−1
i x⃗k−1

i
T )In

Here, the above equation can be observed as the set x⃗ki ⊖ x⃗k−1
i records what the vertex

i can reach in exactly k steps, and this set will not help prune x⃗kj (what vertex j can reach

within k steps) for j > i.
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Next, let us look at y⃗ki :

y⃗k1 =y⃗k−1
1 +AT z⃗k−1

1 ⊖ {y⃗k−1
1 }

y⃗k2 =y⃗k−1
2 +AT z⃗k−1

2 ⊖ {y⃗k−1
2 + y⃗k−1

1 (y⃗k−1
1 )T I2}

y⃗k3 =y⃗k−1
3 +AT z⃗k−1

3 ⊖ {y⃗k−1
3 + (y⃗k−1

1 (y⃗k−1
1 )T + y⃗k−1

2 (y⃗k−1
2 )T )I3}

· · ·

y⃗kn =y⃗k−1
n +AT z⃗k−1

n ⊖ {y⃗k−1
n + (

n−1∑
i=1

y⃗k−1
i (y⃗k−1

i )T )In}

Now, when k = 0 (initialization), the y⃗0i = x⃗0i , for all i trivially holds. Now, we consider

when k holds to be true, we will derive k+1 to be true. To prove this, again, we can start

with i = 1, and we can easily observe: y⃗k+1
1 = x⃗k+1

1 . Now, assume j ≤ i are all true, then,

let us consider i+ 1:

y⃗k+1
i+1 =y⃗ki+1 +AT z⃗ki+1 ⊖ {y⃗ki+1 + (

i∑
l=1

y⃗kl (y⃗
k
l )

T )Il}

=x⃗ki+1 +AT (x⃗ki+1 ⊖ x⃗k−1
i+1 )⊖ {x⃗

k
i+1 + (

i∑
l=1

x⃗kl (x⃗
k
l )

T )Il}

=A∗kIi+1 ⊖ {(
i∑

l=1

x⃗kl (x⃗
k
l )

T )Il}

=x⃗k+1
i+1 .

2

We note that in each iteration, all z⃗i can be computed simultaneously (as z⃗i now only

depends on its own state and y⃗i, which is computed from earlier iteration). Thus, we can

parallelize PLL. However, we still do not have an efficient implementation based on linear

algebra. More specifically, we have the requirement of materializing (
∑k−1

i=1 y⃗iy⃗
T
i )Ik in the
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Algorithm 5: VC-PLL for G = (V,E) with Order π

/* Init.: (L(v): label; δL(v): new label from each iteration) */

1 ActiveVertices← V ; ∀v ∈ V, δL(v)← {(v, 0)}, L(v)← δL(v) ;
2 while ActiveVertices ̸= ∅ do

/* Scatter Phase: */

3 forall a ∈ ActiveVertices do
/* a.Scatter(a.edges): */

4 forall (a, v) ∈ a.edges do
5 for all (u, d(u, a)) ∈ δL(a), when π(u) < π(v) ∧ u /∈ L(v): send

(u, d(u, a) + 1) to v.messages ;

6 ActiveVertices ← ∅;
/* Gather Phase: */

7 forall v ∈ V : v.messages ̸= ∅ do /* Received Message */

/* v.Gather(v.messages): */

8 δL(v)← ∅ ;
9 forall unique (u, d(u, v)) ∈ v.messages do

10 if d(u, v) < minh∈L(u)∩L(v){d(u, h) + d(h, v)} then
11 Add (u, d(u, v)) to δL(v);

12 If δL(v) ̸= ∅: L(v)← L(v) ∪ δL(v); Add v to ActiveVertices ;

k-th step, which will be very expensive.

3.3.3 Vertex-Centric Parallel Implementation
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(b) L after the 1st iteration.
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(c) L after the 2nd iteration.

Figure 3.2: A VC-PLL Example: light shadow vertices got new labels (colored in red)
in this iteration and will spread them in the next iteration.

Algorithm Description: Algorithm 5 sketches the main process of performing PLL

based on the vertex-centric computation model (Algorithm 4). In the Initialization phase,

all vertices are active initially (ActiveV ertices = V ). For each vertex v, L(v) records the
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partial label, and δL(v) records the new label being generated at each iteration. Initially,

every vertex v records itself and distance 0 (any vertex reaches itself in zero steps). The

main computation alternates between the Scatter phase andGather phase and will continue

until no new active vertices exist (Lines 2 to 12):

1) Scatter phase (Lines 3 to 5, also referred to as the push model): all active vertices with

new labels perform a vertex Scatter function (Lines 4 to 5): each sends their new labels

with the updated distance: (u, d(u, a)) ∈ δL(a) → (u, d(u, a) + 1) to all their neighbors

(Line 5) with two conditions: the rank of vertex u needs to higher than v (otherwise, it

will be pruned) and it has never been added to the label of v.

2) Gather phase (Line 7-12): all vertices that receive a new message (v.messages ̸= ∅)

perform a vertex Gather function (Lines 7-12): For a vertex v, it traverses all its received

messages (distance label from its neighbors), and for each unique vertex (u, d(u, v)) across

the set of messages, it confirms the distance check for the canonical labeling criterion: for

a distance label message (u, d(u, v)), d(u, v) must be smaller than the distances via any

existing labels (L), i.e., d(u, v) < minh∈L(u)∩L(v) d(u, h) + d(h, v) (Line 10). If this is true,

it will be added into δL(v). Once δL(v) is computed, and it is not empty, we will add it

into L(v) and add v to ActiveVertices (Line 12). Note that we need to identify unique

vertices in the step above, because two neighbors may send the same vertex u.

Running Example: Figures 3.2 illustrates the first 2 iterations of label spreading in

VC-PLL, where the labels in red denote newly generated labels δL. At each iteration,

L(v) is simply the union of all δL(v) from all earlier iterations.

3.3.4 Theoretical Properties

This section explains two key properties of the proposed VC-PLL algorithm.

Property I: Correctness. Theorem 3 proves that VC-PLL produces the same label as

PLL.

Theorem 3 VC-PLL (Algorithm 5) produces the minimum labeling size (or canonical
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u

w

v
a

Figure 3.3: w reaches u and v before u reaches v

hub labeling) [19] given a vertex order π.

Proof Sketch: Recall the shortest path vertex set Puv consists of all vertices on

shortest paths between u and v (including u and v). Then, we need to prove u ∈ L(v) iff

u has the highest order in Puv (Definition 2).

First (→), we can see that if u ∈ L(v), then we cannot find another vertex w with a

rank higher than u, such that d(u, v) ≥ d(u,w) + d(w, v). Thus, u must have the highest

order in Puv. If not, assume we have another vertex w ̸= u that has the highest rank in

Puv. Then, based on our algorithm, w will be the highest ranked in Pwu and Pwv. Thus,

w can always reach u and v before u reaches v (Figure 3.3) and it is in Lu and Lv when

u reaches v.

Second (←), assuming u has the highest order Puv, then, based on the same argument,

it can definitely go through the shortest path from u to v using Algorithm 5, and if it

reaches v, no other vertices in Lv (and Lu) can prune it. 2

The following corollary can be immediately obtained.

Corollary 1 In VC-PLL, when a distance label (u, d(u, v)) is added into δL(v), d(u, v)

is the exact shortest path distance between u and v, and u has the highest rank in Puv.

Further, at any time L(v) ⊆ L(v), where L(v) is the final complete label of v.

Property II: Time Complexity. Following the approach in PLL [9], we can obtain a

theoretical upper bound of VC-PLL’s time complexity.
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Theorem 4 Assuming graph G with a tree-decomposition [165] of tree-width w, then there

is a vertex order π, in which the VC-PLL takes O(w|E| log |V |+w2|V |(log |V |)2) time (the

same as that of PLL [9]).

Proof Sketch: The main idea is to utilize a recursive centroid extraction procedure

to reorganize the tree decomposition: the centroid bag of the tree can break the tree

decomposition into disjoint components where each disjoint component has no more than

half of the tree bags. The centroid bag will become the root of the tree, and its children

will be the centroid bag of the disjoint subtrees. Given this, the new tree’s height is at

most log |V |. We then can order the vertices in the graph based on their highest node in

the tree, and if two vertices have the same height, they can break order arbitrarily. Since

each node in the tree corresponds to a graph separator, the maximal label size of any

vertex is w log |V | (for a vertex in the leaf bag, all the vertex in its ancestors including its

own bag of vertices can be added into the label). Then, the time complexity of generating

distance labels is bounded by O(w log |V ||E|). The time complexity of distance check is

O(w2|V | log2 |V |). 2

3.3.5 Limitations of VC-PLL

Sequential Performance Comparison: We implemented Algorithm 5 (VC-PLL) and

tested its performance on the DBLP graph (that is introduced in Section 3.6) against PLL

using a single thread. We found that it has poor performance with a total execution time

of 13, 583 seconds compared to less than 100 seconds for PLL! It does not fare well against

PLL in other graphs either.

Basic algorithm and performance analysis reveals that VC-PLL introduces additional

computational costs due to extra labeling spreading and distance testing. For a given

vertex u, PLL will send it to a vertex v only once. In BFS, PLL will flag v after one distance

label (u, d(u, v)) is passed through (Line 7 in Algorithm 3 is sequentially executed). But

VC-PLL can send multiple (u, d(u, v)) messages to the same v in two consecutive iterations.



3.3. PARALLELIZATION OF PLL 60

Therefore, VC-PLL introduces redundant distance labeling messages, which may also lead

to redundant distance checks. Furthermore, individual distance checks in PLL can be

much faster due to the reuse of L(u) in an array or hash-table representation.

Additional Cost of Distance Label Generation: For a given vertex u, PLL will send

it to a vertex v only once. In BFS, PLL will flag v after one distance label (u, d(u, v)) is

passed through (Line 7 in Algorithm 3 is sequentially executed). But VC-PLL can send

multiple (u, d(u, v)) messages to the same v at two consecutive iterations.

Lemma 3.1 Given vertex u and vertex v, a distance label (u : d(u, v)) may reach v at

exactly two possible and consecutive iterations: Let a be a neighbor of v, and u ∈ L(a) (u

is the highest rank vertex in Pua), then it reaches v at d(u, a)+1 iteration, which is either:

1) equal to the shortest path distance between u and v, and u may or may not be added to

L(v); or 2) equal to d(u, v) + 1, i.e., the path from u to a to v is one step longer than the

shortest path between u and v, and u will be pruned.

Proof Sketch: To see this, we first need to prove that the shortest path distance d(u, a)

is smaller than or equal to d(u, v)+1, where a and v is the direct neighbor of one another.

By way of contradiction, let us assume d(u, a) ≥ d(u, v) + 2. Then, let w be the highest

rank vertex in Pua, then, we can find a path from u to w to v to a, which is d(u, v) + 1.

This suggests d(u, a) ≤ d(u, v)+1. Next, we show u indeed can reach v in two consecutive

iterations. This happens when u reach v via a being the shortest path between u to v:

d(u, v) = d(u, a) + 1; but u is not the highest rank one in Puv. Thus, u is not added to

L(v) in d(u, v) iteration. Now, assume u reach a′ with d(u, a′) = d(u, v) and u ∈ L(v′)

(added in d(u, v) iteration. If a′ is the neighbor of v, then u will be sent to v in d(u, v)+1

iteration as well. 2

In addition, at each of these two iterations, if u has not been or is not in the label of

v, then different neighbors of v may send the same (u, d(u, v)) messages to v.

Additional Cost of Distance Check:
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Lemma 3.2 The set consisting of all pairs (u, v) for distance checks is the same in PLL

and VC-PLL.

Proof Sketch: Let reach(u) be the subset of vertices u reaches. In PLL, it corresponds

to all the (u, d(u, v)) messages added into the Q (Line 7 in Algorithm 3). In VC-PLL, it

corresponds to all the (u, d(u, v)) messages being sent to vertex v (Line 5 in Algorithm 5).

Thus,
⋃

u∈V {u} × reach(u) is the set consisting of all pairs (u, v) for distance check. In

PLL and VC-PLL, for a vertex u, it is assigned to the same subset of vertices (Corollary

1). Also, it will also be sent to the same set of vertices that do not use u as a label. Thus,

the set
⋃

u∈V {u} × reach(u) is the same for both. 2

However, the number of distance checks in VC-PLL can be higher than PLL, as a

vertex u can be sent to v in two consecutive iterations in VC-PLL.

The computational cost of distance check

d(u, v) < min
h∈L(u)∩L(v)

{d(u, h) + d(h, v)}

in VC-PLL is also higher than that in PLL. In VC-PLL, the cost is O(|L(u)| + |L(v)|),

where L(u) and L(v) are (partial) labels of u and v at the time of distance check for

d(u, v). Assuming L(u) and L(v) are not sorted, we can first map L(u) into an array or

hash table, and then check all the vertices in L(v) against the above data structure. In

PLL [9], since we process vertex u one at a time, and when we try to process u, its label

L(u) is already computed. Thus, we can first map L(u) to an array only once at the

beginning of the BFS iteration. Thus, the cost of O(|L(u)|) can be practically saved for

each distance check; thus the distance check for PLL is only O(|L(v)|). For VC-PLL, we

cannot do this directly as it is prohibitively expensive to map every L(u) to an array or

hash table at the same time.

To summarize, VC-PLL introduces redundant distance labeling messages, which may

also lead to redundant distance checks d(u, v). Furthermore, individual distance checks in

PLL can be much faster due to the reuse of L(u) in an array or hash-table representation.
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In fact, these performance issues seem to challenge the capabilities of Vertex Centric (VC)

computational in supporting: 1) effective message filtering and communication and 2)

efficient memory access.

Thus, our question is: can VC-PLL overcome its limitations and reduce those additional

costs (message spreading and remote memory access)?

3.4 Batched Vertex-Centric Algorithm

To deal with the performance inefficiency of VC-PLL discussed in the last section, we

introduce a new algorithm. Specifically, here, the batches of the vertices are formed

according to the rank of each vertex. For instance, the top 1K vertices form the first

batch, and the next 1K vertices form the second batch, etc. Batches are processed in

sequence with the vertices within each batch being processed in parallel. The reason to

use batch is to 1) effectively and efficiently eliminate redundant message passing, and 2)

significantly improve remote vertex memory access (as only the vertices in the batch need

to be accessed remotely).

BVC-PLL Algorithm: Algorithm 6 sketches the batched Vertex-Centric algorithm for

PLL, referred to as BVC-PLL. Specifically, here, the batches of the vertices are formed

according to the rank of each vertex (Line 2). The earlier processed batch consists of the

vertices with higher ranks (Line 3). BVC-PLL labels vertices one batch at a time and for

assigning the labels in each batch, the vertex-centric computation in VC-PLL is followed

(Lines 6-17) – more specifically, the Scatter Phase and Scatter function, Gather Phase and

Gather function is preserved with only minor revisions for dealing with message passing

and remote memory access. Each vertex v is associated with a candidate-bit vector C(v).

Its length is equal to the batch size. It will be initialized for each batch (Lines 1 and

Line 18). During the Scatter phase, for any vertex a to send a message (u, d(u, a) + 1) to

its neighbor v, it will check if u is sent to v before (u /∈ C(v), Line 9). This corresponds

to the unvisited flag in the original PLL. Due to the atomic compare-and-swap operation,
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Algorithm 6: BVC-PLL for G = (V,E) with Order π

/* Init.: (L(v): label; δL(v): new label from each iteration) */

1 ∀v ∈ V,L(v)← ∅, C(v)← ∅
2 Split V into equal-size batches: B1, B2, · · · BT where Bi include the vertices with

rank (i− 1)× |V |/T + 1 to i× |V |/T
3 forall Bi : i = 1 to T do /* Labeling in Batch */

4 ActiveVertices ← Bi

5 ∀u ∈ Bi, δL(u)← {(u, 0)}, L(u)← L(u) ∪ δL(u), and map L(u) to Hashtable
H(u)

6 while ActiveVertices ̸= ∅ do
/* Scatter Phase: */

7 forall a ∈ ActiveVertices do
/* a.Scatter(a.edges): */

8 forall (a, v) ∈ a.edges do
9 for all (u, d(u, a)) ∈ δL(a), when π(u) < π(v) ∧ u /∈ C(v): flag u in

C(v) and send (u, d(u, a) + 1) to v.messages

10 ActiveVertices ← ∅
/* Gather Phase: */

11 forall v ∈ V : v.messages ̸= ∅ do /* Received Messages */

/* v.Gather(v.messages): */

12 δL(v)← ∅
13 forall (u, d(u, v)) ∈ v.messages do
14 if d(u, v) < minh∈L(u)∩L(v){d(u, h) + d(h, v)} then
15 Add (u, d(u, v)) to δL(v)

16 If δL(v) ̸= ∅: L(v)← L(v) ∪ δL(v); Add v to ActiveVertices
17 If v ∈ Bi: Add δL(v) to H(v)

18 ∀v ∈ V,C(v)← ∅

it can guarantee only one message from u is being sent to v and thus help resolve the

redundant distance labeling generation problem (in Subsection 3.3.5).

Each vertex u in the batch Bi will map its existing label L(u) to a hash-table (or array)

H(u) at the beginning of vertex-centric computation (Line 5). Since the new label of u

may be generated during the labeling process, we will map the new label δL(v) to H(v)

when the update is available (Line 17). Given this, the distance check (in Line 14) only

needs to go through L(v), and thus has the same distance check cost as the original PLL.

Next, we discuss two key optimization techniques which leverage the batch processing
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to reduce the additional computational costs from VC-PLL:

Using Bit Operation for Efficient Message Passing and Filtering: In each batch

processing step, an active vertex only processes up to batch size unique labels. Based on

this important observation, we can use a compact bit-vector data structure called candidate

bit-vector for efficient message filtering. The basic idea is as follows. Each active vertex

maintains a candidate bit-vector with the length of batch size bits, each bit corresponding

to a vertex in the batch (e.g., if the batch size is 1K, such candidate bit-vector is only

128 bytes). If a vertex u in the current batch is sent to a vertex v, then its corresponding

bit in the candidate bit-vector of v is set. Note that the use of bit-vectors also allows

atomic compare-and-swap operation in the shared memory setting. Note that without

batch processing, we have to consider doing an expensive list merge for handling message

passing and aggregation (as the scatter and gather functions in VC-PLL for distance label

messaging and processing, respectively).

Improving Data Locality for Remote Vertex Memory Access: Simply speaking,

only the vertices in the current processing batch can be accessed remotely during the

vertex-centric computation. Because the number of vertices in each processing batch is

limited, we can use a compact data structure such as an array or hash-table to store their

labels for efficient O(1) access (similar to what is done in PLL for each processed vertex

in distance checks).

Correctness: It is easy to see that BVC-PLL (Algorithm 6) produces the minimal labeling

given a vertex order π: the distance criterion (u ∈ L(v) if u has the highest rank in

Puv) is maintained as BVC-PLL can assign u to L(v) at u’s batch correctly (Theorem 3)

following the batch processing order. Another interesting property is that when the batch

size reduces to one, i.e., when we process one vertex at a time, then BVC-PLL behaves

exactly the same as the original PLL [9].

Complexity: We note that introducing and using bit-vector C(v) for each vertex v and

H(u) for each processing batch vertex u does not introduce additional time complexity

compared with PLL. PLL uses only one bit for each vertex v as the visited flag and one
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H(u) for distance check, whereas BVC-PLL simply utilizes a group of them at the same

time. Thus, the time complexity results of Theorem 4 hold for BVC-PLL as well.

3.4.1 Complete Computation Cost Comparison between BVC-PLL and

PLL

In the following, we provide an apple-to-apple computational cost analysis between BVC-

PLL and PLL. We will focus on the cost of generating (sending) distance labels and

distance checks.

Cost of Distance Label Generation: Since in BVC-PLL, each vertex u can be sent to

v exactly once, together with Lemma 3.2 (the same set of u reaches v), we thus observe:

Lemma 3.3 The time complexity of sending vertex label messages (u, d(u, v)) along the

edges in graph G given an order π, is the same for PLL and BVC-PLL.

Following Lemma 3.3, we obtain the following corollary.

Corollary 2 The total number of distance checks (applying canonical labeling criterion)

being invoked in PLL (Line 5 in Algorithm 3) is the same as those being invoked in BVC-

PLL (Line 14 in Algorithm 6).

This is because the number of distance checks is equivalent to the total number of generated

distance label message:
∑

u∈V |reach(u)| (following the algorithm logic).

Cost of Distance Check: Now, the cost of the same distance check on d(u, v): d(u, v) <

minh∈L(u)∩L(v) d(u, h) + d(h, v), in PLL and BVC-PLL, is O(|L(v)|). However, L(v) are

different for PLL and BVC-PLL: In PLL, when u reaches v, L(v) consists of all vertex

labels which have higher rank than u; In BVC-PLL, assuming u in batch Bi, L(v) consists

of all the vertex labels in all the batches before Bi (those are the same as those in PLL)

and the vertices in the current batch which are within the distance of d(u, v).

Given this, let us focus on only those vertices being added at batch Bi for L(v), and

denote it as Li(v). Next, we break the distance check cost on |Li(v)| into two categories:
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1) the positive distance check which will confirm the vertex u and can add it into the

corresponding label of v; 2) the negative distance check will return false on the distance

check and thus prune the vertex u.

Theorem 5 (Positive Distance Check) The time complexity of all positive distance checks

in BVC-PLL is lower than or equal to that of PLL.

Proof Sketch: Let us consider any batch Bi. For the positive cases of distance check

d(u, v) here, given a vertex v and u, u will always be added to the label of v. For PLL, for

a vertex v, let its complete Li(v) consists of u1, u2, · · · , un ∈ Bi, where n = |Li(v)| and

π(u1) < π(u2) · · · < π(un). Then the total cost of distance check with respect to |Li(v)|

is simply 0 + 1 + · · ·+ n− 1 = n(n− 1)/2,

because in PLL, when ui arrives, L
i(v) already consists of partial labels {u1, · · · , ui−1}. For

BVC-PLL, for a vertex v, we note that its distance label in Bi is arriving in group according

to their distances. Let g1, g2, · · · gk be the groups ordered by arriving (as well as distance),

i.e., given any two vertices x, y ∈ gi, d(x, v) = d(y, v), and their distance is smaller than

those in gi+1. Note that for any vertex u ∈ gi, we only utilize Li(v) = g1 ∪ · · · ∪ gi−1 for

distance check (See Lines 7-12 in Algorithm 5, Li(v) will be updated until all the distance

checks in a batch gi are done). Let ni = |gi| and n =
∑k

i=1 ni, making the total cost of

distance checks of vertex v with respect to |Li(v)| in BVC-PLL to be

0 + n1 × n2 + (n1 + n2)× n3 + · · ·+ (
k−1∑
i=1

ni)× nk

= (n− n1)n1 + (n− (n1 + n2))n2 + · · ·+ (n−
k−1∑
i=1

nk−1)

= n(n− 1)/2−
k∑

i=1

ni(ni − 1)/2.2

Figure 3.4 illustrates the key idea in the proof of Theorem 5. Assuming 9 vertices

a, b, · · · , i in one batch being added into L(v) in PLL labeling, its total distance check
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Figure 3.4: Theorem 5: (Positive Distance Check) The time complexity of all positive
distance checks in BVC-PLL is lower than or equal to that of PLL.

cost is 36 no matter which order they are received in (visualized as the area under the

diagonal stairs). Now assuming they arrive in three groups as shown in Figure 3.4(a), then

in BVC-PLL, their total distance check cost is 3 + 3× 6 = 27, a 25% reduction compared

to PLL.

Theorem 5 essentially shows that BVC-PLL is able to save the intro-group cross-vertex

comparison in each batch. Basically, if vertices arrive at the same time, they have the

same distance to vertex v and cannot prune one another.

To compare the time complexity difference between PLL and BVC-PLL for the negative

distance check, we introduce the following notation: for any vertex x, and one of its vertex

label u (u ∈ Li(x)), we denote < x, u > to be a subset:
{
x ∈

⋃
y∈N(x)

Li(y) \ Li(x) : π(u) < π(v) < π(x), d(x, u) > d(v, y) + 1
}
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Similarly, we define < y, v > for vertex y with its label v, v ∈ Li(y):

{
u ∈

⋃
x∈N(y)

Li(x) \ Li(y) : π(u) < π(v), d(x, u) > d(v, y) + 1
}

Theorem 6 (Negative Distance Check) In batch Bi, and on negative distance check, the

time complexity saved by BVC-PLL compared with PLL is no higher than

O(
∑
x∈V

∑
u∈Li(x)

|⟨x, u⟩| −
∑
y∈V

∑
v∈Li(y)

|⟨y, v⟩|).

The time complexity saved by PLL compared with BVC-PLL is no higher than

O(
∑
y∈V

∑
v∈Li(y)

|⟨y, v⟩| −
∑
x∈V

∑
u∈Li(x)

|⟨x, u⟩|).

Proof Sketch: To quantify the difference of the time complexities between two algo-

rithms, we focus on the cases where one algorithm can save computational cost when the

Li(v) will be different for distance check d(u, v).

For the first case, let us consider vertex x, it has a vertex u ∈ Li(x). Now, consider

any vertex v ∈ Bi reaches vertex x for distance check and returns negative result. If v

can reach x, it must be a label of neighbor y of x, i.e., v ∈ Li(y), y ∈ N(x), and v /∈ Li(x)

(false distance check). When v reaches x, it has also lower rank than u but higher than x:

π(u) < π(v) < π(x). Given this, for PLL, u is already in L(x); however, for BVC-PLL, v

can reach x before u reaches x. Thus, this case will introduce a gain for BVC-PLL; and

such v is characterized and recorded in set ⟨x, u⟩.

For the second case, let us consider vertex y, and it has a vertex v ∈ Li(y). Now,

consider any vertex u ∈ Bi reaches vertex y for distance check and returns negative result.

If u can reach y, it must be a label of neighbor x of y, i.e., u ∈ Li(x), x ∈ N(y), and

u /∈ Li(y) (false distance check). When u reaches y, it has also higher rank than v:

π(u) < π(v). Given this, for BVC-PLL, v is already in L(y); however, for PLL, u can
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reach x before v is added into L(y). Thus, this case will introduce a gain for PLL; and

such u is characterized and recorded in set ⟨y, v⟩. 2

Theorem 6 does not provide a clear winner on the cost of negative check. However,

from the symmetric expression of these two qualities, we conjecture they should be close to

one another. In Section 3.6, we will experimentally confirm this. In addition, for negative

distance check, we typically do not need to traverse through the entire L(v) set. Indeed,

the bit-parallel mechanism proposed in the original PLL paper [9] can help provide almost

O(1) pruning. Since the number of negative checks is the same for PLL and BVC-PLL,

we expect their overall cost will be fairly close to each other.

Putting It Together: Assuming that PLL and BVC-PLL have a similar cost for negative

distance checks, theoretically, BVC-PLL may have smaller computational cost than that of

PLL (due to positive distance check) since they have the same cost of generating/sending

distance labeling! Furthermore, BVC-PLL is guaranteed to have a smaller memory access

cost for graph topology than PLL as it groups messages together for each edge access.

Overall, it seems BVC-PLL, an unexpected marriage between PLL and VC computation,

can run faster than the original PLL sequentially and can also enjoy the scalability of the

VC model! Indeed, Section 3.6 shows that it can be more than two times faster than PLL

(both using one thread) on real-world graphs.

3.5 Variants and Parallel Implementation

3.5.1 Generalization

Directed Graphs: For a directed graph, each vertex v is assigned with two labels Lin(v)

and Lout(v). VC-PLL and BVC-PLL can be easily extended to handle directed graphs

by considering these as separate computations. Specifically, in the Scatter function, the

new labels δLin and δLout will be sent out along the outgoing edges and incoming edges,

respectively. In the Gather function, there will be two message queues: one for candidate

vertices in Lin, and another for those in Lout. The labels generated by this algorithm
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will be canonical. The computational complexity analysis in Subsection 3.3.4 holds for

directed graphs as well.

Weighted Graphs: The direct application of VC-PLL and BVC-PLL (by changing

d(u, v)+ 1 to d(u, v)+we where we is the edge weight) on weighted graphs can produce a

2-hop labeling; but it may not be a canonical labeling. This is because unlike unweighted

graphs, the iteration on the vertex-centric model will not be in sync with the distance

between two vertices. For instance, when vertex u reaches v in two iterations, their

distance may be larger than a path via vertex w with a higher rank, but w may take more

than 2 iterations to reach v and u. Given this, we cannot use the partial label L(u) at

an arbitrary iteration to fully determine if vertex v is a true or final label for u anymore.

Thus, adding vertex v into u’s partial label L(u) or δL(u) (using the partial labels in the

weighted graph) may lead to unnecessary vertices being spread in the networks. To deal

with this problem, at the end of each batch processing (Line 18 in BVC-PLL), we can

perform a distance recheck using only the labels from the batch. Since the hash tables

of the labeling vertices in the batch are still in the memory, this recheck can be quite

efficient.

3.5.2 Parallel Implementation Issues

Shared Memory Implementation: The BVC-PLL computation (as shown in Algo-

rithm 6) can be easily parallelized with coarse-grained threads. The computation of each

batch uses vertex-centric processing (line 6 to line 17) that consists of two parallel phases:

(Scatter and Gather), with an implicit synchronization between them. In each phase,

each thread processes a chunk of active vertices with dynamic scheduling to achieve load

balance. In a shared memory implementation, we use OpenMP to parallelize each batch,

manage the workload of each thread dynamically, and expand active vertices.

Extension to Distributed Platforms: BVC-PLL’s shared memory parallel implemen-

tation was also extended to distributed platforms using MPI. Because BVC-PLL processes

nodes based on an order, and this order is, in turn, based on degrees, we use the follow-



3.5. VARIANTS AND PARALLEL IMPLEMENTATION 71

ing process to maintain load balance. After sorting vertices according to their rank (i.e.,

degrees) from high to low, vertices are assigned to nodes in a zigzag round-robin way. For

instance, assuming there are p nodes in total, p consecutive vertices are assigned to node

0 to node p − 1, respectively; then the next p consecutive vertices are assigned to node

p− 1 to node 0, and so on.

In maintaining information for each node, we follow the master-mirror notion (as

also used by PowerGraph [78]). Every edge is placed on the computer node that owns

its destination vertex (as a master) [187]. As described above, a vertex is assigned to a

specific computer node on which the vertex is a master. If the vertex is the source of an

edge that is assigned to a different computer node, the same vertex is a mirror on that

computer node. Only the master contains all labels of that vertex.

The parallel implementation is based on MPI. In the scatter phase, every master sends

its newly added labels to all of its mirrors. Then a mirror scatters those labels to its

neighbors on that computing node. In the gather phase, every node maintains a hash-

table to store all labels of vertices in the current batch. When conducting a distance check,

a vertex only needs to look up its own labels and this hash-table. Thus, the distance check

only requires local operations without any message passing to remote nodes. The hash-

table is once established at the beginning of every batch and is synchronized at the end of

the scatter phase. Note that the batch strategy is even more important for the distributed

implementation than the shared memory one as it reduces the remote access overhead

significantly.

SIMD Parallelization for Weighted Graphs: BVC-PLL is able to significantly in-

crease the data locality for remote vertex memory access, thereby offering us extra op-

portunities to better exploit fine-grained data-level parallelism (i.e., SIMD parallelism or

vectorization). Consider the Gather Phase in Algorithm 6 that involves an intensive label

distance check kernel (line 13 to line 15). BVC-PLL can vectorize this kernel with the help

of advanced SIMD gather/scatter and mask instructions in the latest AVX-512 intrinsic
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set1. Unfortunately, such vectorization requires a dynamic expansion of the compact label

structure that offsets most benefits of SIMD parallelization for unweighted graphs. How-

ever, vectorization turns to be useful for weighted graphs because the distance recheck

operation incurs extra computation overhead. Efficient SIMD parallelization can signifi-

cantly reduce such overhead.

3.5.3 Some Implementation Details

Integrated Bitmap and Queue: Much temporary data is generated for both labeling

vertices and active vertices during each batch processing. These steps require a clearance

(e.g., Algorithm 6, line 18). The cost of this clearance is significant as this operation occurs

for each batch. Traditionally, we often use either a bitmap or a queue to handle the set

of active vertices. However, they become inefficient or insufficient for supporting BVC-

PLL. For a bitmap, each of its cleanings can take O(|V |) where |V | is the total number

of vertices; for a queue, it cannot support efficient checks for whether a given vertex is

active or not. Given this, we propose a new traversal control data structure by combining

both the bitmap and the queue. The basic idea is that a bitmap supports fast recording

and checking visited vertices and a queue supports fast finding and clearing the visited

vertices. Each time a vertex is processed, we add it to both the bitmap and the queue.

This approach is different from the bitmap and queue used in the push and pull strategy

presented in [155, 175, 26] because we use both the bitmap and queue simultaneously

rather than in different stages of processing.

Bit-parallel Adoption: Similar to PLL [9], bit-parallel is also adopted to accelerate

the distance checking in the implementation of BVC-PLL for unweighted graphs. Its

construction is similar to multi-source BFS traversals and can be easily expressed in the

Vertex-Centric computing model.

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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3.6 Evaluation

In this section, we perform a detailed evaluation of BVC-PLL, focusing on answering the

following questions: 1) How does BVC-PLL algorithm perform against the original PLL

in a sequential setting (single thread; no parallelism)? 2) In a shared memory setting, how

does BVC-PLL scale as the number of threads increases? 3) How well does our distributed

memory implementation scale (especially on large graphs with more than a billion edges)?

4) How does the weighted extension of BVC-PLL with SIMD perform and how does it

fare against ParaPLL [162] (the state-of-the-art parallel weighted PLL algorithm)?

3.6.1 Experimental Setup

Table 3.2: Characterization of evaluation graphs.

Name Graph Category |V | |E|
GNUT Gnutella Social 63 K 148 K
DBLP DBLP Citation 317 K 1 M
WIKI Wikipedia Talk Comm. 2.4 M 5 M
YOUT YouTube Social 3.2 M 9 M
TREC TREC WT10g Hyperlink 1.6 M 8.0 M
SKIT Skitter Computer 1.7 M 11 M
CADO Catster/Dogster Social 62 K 15 M
FLIC Flickr Social 2.3 M 33 M
HOLY hollywood-2009 Social 1.1 M 114 M
INDO indochina-2004 Hyperlink 7.4 M 194 M
IT it-2004 Hyperlink 41.3 M 1.1 B

GSH gsh-2015-host Computer 68.6 M 1.8 B

Platforms: Our shared memory scaling experiments were performed on an Intel Xeon

Gold 6138 CPU. It is a Skylake processor with 20 cores running at 2.0 GHz supporting

512-bit AVX-512 intrinsics, with 27.5 MB L3 cache and 192 GB DDR4 memory. All

code is compiled with an Intel icc compiler (version 19.0.2.187) with -O3 optimization

option. Hyper-threading is not used to simplify the analysis of experiment results. Our

experiments for distributed memory scalability (while using one thread per node) were

performed on a cluster with 16 nodes, each of which has an Intel Xeon E5-2680 CPU at
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2.4 GHz with 35.8 MB L3 cache and 125 GB DDR4 memory. For evaluating the version

that combines shared and distributed memory parallelism (and ability to process large

graphs), we use another cluster with up to 224 cores (maximum of 28 cores per node and

up to 8 nodes) and up to 512 GB memory per node.

Graph Datasets: The 12 graphs used in our evaluation are summarized in Table 3.2.

They are from 5 categories (Social, Citation, Communication, Hyperlink, and Computer)

with varied numbers of vertices and edges – GNUT, and WIKI are from SNAP2, DBLP, YOUT,

TREC, SKIT, CADO, and FLIC are from KONET3, HOLY and INDO are from SuiteSparse

Matrix Collection4, and IT and GSH are from WebGraph5. Particularly, IT and GSH are

two large graphs with more than 1 billion edges. Because of large memory and computation

time associated with these two massive datasets, experiments were limited to the version

that combined shared and distributed memory parallelism, and used either 4, 6, or 8

nodes, with 4, 8, 16, or 28 threads on each node. For all other datasets, because of limited

size (and thus parallelism), we either used only 1 node or 1 thread per node. These graphs

are all unweighted. To test the performance of our BVC-PLL on weighted graphs, we

randomly assign weights (from 1 to 7 with a uniform distribution) to their edges. Since

we only evaluate algorithms for undirected graphs, we have transformed the edges in the

directed graphs in Citation and Hyperlink as undirected edges.

Baselines: For the sequential performance comparison on unweighted graphs, we compare

BVC-PLL against the PLL implementations by the original authors [9] and by [123]. We

found these two implementations provide comparable performance with the former being

slightly faster. Given this, we only compare against this version. For performance compar-

ison on weighted graphs, we compare the weighted BVC-PLL against the implementation

of ParaPLL [162], applying SIMD parallelism to both. Note that existing published work

on parallelizing PLL (across threads or nodes) either has limited parallelism or does not

2https://snap.stanford.edu/snap/
3http://konect.uni-koblenz.de/
4https://sparse.tamu.edu/
5http://law.di.unimi.it/datasets.php

https://snap.stanford.edu/snap/
http://konect.uni-koblenz.de/
https://sparse.tamu.edu/
http://law.di.unimi.it/datasets.php
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Table 3.3: Unweighted Performance (sec.): BVC-PLL vs. PLL. LT denotes labeling
time (sec.). |L| denotes the average label size for each vertex. SP denotes speedup. BVC-
PLL and PLL have the same label size. The same short names are used for Table 3.4.

Name |L| PLL BVC-PLL
LT LT SP

GNUT 477 33 13 2.46
DBLP 214 61 47 1.30
WIKI 12 40 32 1.24
YOUT 70 285 249 1.15
TREC 269 462 323 1.43
SKIT 138 317 242 1.31
CADO 96 117 92 1.28
FLIC 442 1,624 909 1.79
HOLY 2,199 10,743 4,368 2.46
INDO 442 4,755 3,508 1.36
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Figure 3.5: The scalability of BVC-PLL (unweighted).

produce the same results as a sequential implementation, and thus no comparison was per-

formed. In all of our experiments, we determine the vertex order through the original and

the most popular method where the vertices are ordered by their vertex degree [9, 123].

Throughout our experiments, we use 1024 as the batch size for unweighted graphs

and use 512 for weighted graphs. In our experimental platform, we found those two are

the optimal batch size. In general, we observe the larger the batch size the better the

performance, as long as there is available memory. Due to the space limitation, we will

not report the results that explore the sensitivity to batch size.
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Figure 3.6: Performance analysis.
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Figure 3.7: Data locality: BVC-PLL vs. PLL.

3.6.2 BVC-PLL vs PLL and Shared Memory Scalability

Table 3.3 shows the performance comparison between BVC-PLL as a sequential algorithm

and PLL (both using a single thread and no other parallelism, such as SIMD) on all

graphs. Both algorithms use the same vertex order and produce the same label size, as

expected. Interestingly, the BVC-PLL algorithm consistently outperforms PLL with the

speedup ranging from 1.15× (YOUT) to 2.46× (GNUT and HOLY) with an average speedup

1.58× over PLL. Later in this section, we will report a more detailed cost breakdown and

comparison.

Figure 3.5 shows the shared-memory scalability of BVC-PLL on all but the two largest

graphs (1 node execution was not feasible for these graphs because of memory require-

ments). Figure 3.5a shows its speedup over 1-thread BVC-PLL, while Figure 3.5b shows
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its speedup over the original sequential PLL. With 20 threads, BVC-PLL can achieve

up to 11.08× and 24.95× speedup over its 1-thread version and PLL, respectively (with

geometric mean 6.68× and 9.33×, respectively), demonstrating good scalability.

In addition, by comparing Figure 3.5 and the average label sizes in Table 3.3, we found

that generally, BVC-PLL scales better as the average label size increases. For example,

GNUT and HOLY with the largest average label sizes result in the best scalability while WIKI

with the smallest results in lower scalability. The labeling size provides a good indication

of the total computational costs (message passing and distance checks) involved for each

vertex.

Figure 3.6a shows the overall running time breakdown on two graphs: GNUT and TREC.

Due to space limitation, we only report results for these two – trends are similar in other

graphs. We can see the Gather and the Scatter phases dominate the overall computational

costs. In addition, within gather, the distance check time takes about 60% − 80% and

30%− 40% of the gather phase and overall time, respectively.

Figure 3.6b shows the total number of edge access for BVC-PLL and PLL on two

graphs: GNUT and TREC. We can see that BVC-PLL has 5 and 18 times reduction for both

graphs. Finally, Figure 3.7 shows the LLC (last level cache) miss rate and miss access

count for the entire labeling process of BVC-PLL and PLL. We can see BVC-PLL has

consistent lower LLC miss rate and access count than PLL.
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Figure 3.9: Scalability of BVC-PLL (unweighted) on large graphs.

3.6.3 Distributed Memory Results

To further test scalability, we experimented with distributed memory parallelism. For the

third and fourth largest datasets in our collection, HOLY and INDO, we used 1 thread per

node. (Experiments on the two largest datasets, IT and GSH, combine both distributed

memory and shared memory parallelism and are reported in the next subsection.) Fig-

ure 3.8 shows the distributed memory scalability of unweighted BVC-PLL on HOLY and

INDO. For HOLY, BVC-PLL achieves 2.05×, 4.00×, 7.18×, and 11.85× speedup over 1 node

as the number of nodes is 2, 4, 8, and 16, respectively. For INDO, the speedups over 1 node

are 1.99× (on 2 nodes), 3.74× (on 4 nodes), 6.29× (on 8 nodes), and 9.32× (on 16 nodes).

When the number of nodes is large (e.g., 16 nodes), BVC-PLL cannot achieve near

linear speedups mainly because of the communication overhead caused by the large volume

of label data. This is particularly obvious for INDO that generates large label data.

3.6.4 Test on Large Graphs w/ Billions of Edges

BVC-PLL works on large graphs as well. We report results from IT and GSH that have

over 1 billion edges. Because of computation time and memory requirements, experiments

on these graphs involve the combination of distributed memory and shared memory par-

allelism, with 4, 6, or 8 nodes and 4, 8, 16, or 28 threads per node.

Figure 3.9 shows the results – Figure 3.9a shows the scalability from 4 to 8 nodes (each
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Table 3.4: Weighted Performance (sec.): BVC-PLL vs. PLL (Dijkstra). “-S” denotes
SIMD version. “-N” denotes non-SIMD version.

Name |L| PLL BVC-PLL
LT-N LT-S LT-N LT-S SP-N SP-S

GNUT 656 52 47 123 37 0.42 1.26
DBLP 387 152 139 293 146 0.52 0.95
WIKI 152 350 327 396 171 0.88 1.92
YOUT 147 652 625 763 546 0.85 1.14
TREC 304 632 579 1,140 662 0.55 0.87
SKIT 432 1,511 1,467 2,146 921 0.70 1.59
CADO 224 527 510 442 347 1.19 1.47
FLIC 653 3,879 3,826 4,189 2,483 0.93 1.54
HOLY 2,217 18,707 18,041 24,161 10,399 0.77 1.73
INDO 828 13,940 13,105 26,744 14,768 0.52 0.89

with 28 threads). From 4 to 6 nodes, IT shows super-linear speedup mainly due to the

increase of available memory and cache capacity; while from 6 to 8 nodes, its speedup is

sublinear because of the intensive label data communication. GSH shows a similar trend.

Moreover, Figure 3.9b reports BVC-PLL’s good scalability on 8 nodes with changing the

OpenMP thread count from 4 to 28.

3.6.5 Extension to Weighted Graphs and SIMD

A similar performance study is conducted between PLL and BVC-PLL for weighted

graphs. To evaluate weighted BVC-PLL’s sequential performance against PLL, we have

modified the original PLL implementation as suggested in [9], changing its BFS traversal

to Dijkstra. We also extended BVC-PLL as described in Subsection 3.5.1. Please no-

tice: both PLL and BVC-PLL are optimized with SIMD for the weighted version (and

for unweighted, we also implemented them with SIMD however without obvious speedup

change).

Table 3.4 shows the comparison results for 1-thread SIMD and non-SIMD versions

of PLL and BVC-PLL. For all non-SIMD tests, PLL consistently performs better than

BVC-PLL; while for most SIMD tests, BVC-PLL outperforms PLL. This is because the
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Figure 3.10: Scalability of BVC-PLL (weighted) on shared memory.

weighted BVC-PLL introduces additional distance check (due to additional message pass-

ing) and rechecks, which significantly increases the number of instructions for BVC-PLL,

resulting in degraded performance. However, SIMD parallelism is a good remedy that can

significantly reduce the number of instructions. It should be noted that BVC-PLL is able

to effectively exploit SIMD parallelism because the data locality has been improved. (See

the performance analysis in the last Subsection). In particular, for SIMD version, BVC-

PLL outperforms PLL for 7 out of 10 graphs, resulting in 1.14× to 1.92× speedup with

an average of 1.34×. For the slowdown cases, BVC-PLL’s performance is only degraded

up to around 10%. Our BVC-PLL is able to continue exploring hierarchical parallelism

to further extract the most out of the massive parallelism of modern processors.

Figure 3.10 shows the scalability of BVC-PLL on all weighted graphs, in which, Fig-

ure 3.10a shows its speedup over 1-thread BVC-PLL while Figure 3.10b shows its speedup

over PLL. With 20 threads, BVC-PLL can achieve up to 12.34× and 15.68× speedup over

1-thread and PLL, demonstrating good scalability.

Finally, we compare BVC-PLL with the state-of-the-art ParaPLL, which does weighted

parallel PLL. Unfortunately, it can only run on small graphs (this is consistent on what

being presented in their original paper [162]). In Figure 3.11 shows the performance

comparison of BVC-PLL and ParaPLL on the graph GNUT (the only graph we are able

to run for ParaPLL, as it throws a Segmentation Fault for the other graphs). For this
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graph, we can see that BVC-PLL is, in general, more than one order of magnitude faster

than ParaPLL (even for non-SIMD version).

3.7 Related Work

Many existing efforts aim to efficiently parallelize graph algorithms. Some of them most

closely related to our work are discussed here.

Parallel PLL: Multiple parallel PLL approaches [65, 162, 60, 117] allow processing

multiple vertices simultaneously. However, they cannot produce the same (and compact)

label sets as the original PLL. They also cannot process large graphs as in our implemen-

tation. For instance, PLaNT [117] produces a superset of labels initially, so it needs label

cleaning after construction. Dong et al. combine intra-node parallelism (as proposed in

original PLL paper [9]) and inter-node parallelism – the latter not leading to the same

results as the sequential computation. We are also made aware that Li et al. propose Par-

allel Shortest-distance Labeling (PSL) that replaces PLL’s node-order dependency with a

shortest-distance dependence [122]. Our basic vertex-centric algorithm, VC-PLL [102], is



3.7. RELATED WORK 82

discovered independently as PSL. Moreover, we provide linear algebra analysis and com-

bine the vertex-centric model and batched design to guarantee a smaller memory access

cost than PLL.

Graph Processing Paradigms: Batch processing is a general idea that is also explored

within the context of graph processing [202]. However, this work was focused on address-

ing problems like skewed distributions and high density. The use of block processing to

improve the 2-hop labeling approach is original to our work. From the theoretical side,

we can prove that it reduces the number of distance check operations (as shown in sup-

plementary materials aforementioned). It also significantly improves the data locality of

remote distance check operations and restricts the overall memory usage.

Our BVC-PLL adopts a synchronous paradigm (Bulk Synchronous Parallel (BSP)

execution [190]) because its key designs to accelerating the batched processing (like bit

operation, and compact data structure) rely on this property. It can be beneficial to

extend BVC-PLL to incorporate asynchronous execution ideas (like k-level asynchronous

(KLA) [66], and synchronization-avoiding algorithms [67]) to further improve its scalability

and performance in the future.

Finally, as we mentioned, new graph processing frameworks (like GraphBLAS(T) [107]

and GraphMat [189]) exploit efficient implementations of SpMV and SpGEMM from HPC

community. As we also explained, due to the complicated masking operator it appears

inefficient to implement BVC-PLL in this linear algebra form.

Graph Framework Implementations: Many popular graph processing engines and

frameworks have been developed in recent years. Some of them focus on processing

in-memory datasets on one node (e.g., Galois [148], Ligra [175], Polymer [207], Graph-

Grind [188], etc.), or disk-resident datasets on one node, (Graphchi [115], X-Stream [166],

etc.) or performing distributed memory processing (Pregel [136], GraphLab [133], Power-

Graph [78], etc.). The in-memory frameworks focus on improving shared memory paral-

lelism and addressing NUMA issues, the out-of-core ones aim to reduce disk traffic, and the

distributed ones concern how to efficiently partition graphs, store partitions on multiple
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machines, and perform low-cost communication. Many graph frameworks are also designed

for GPUs [143, 214, 109, 172, 215, 194, 152, 86, 90, 99, 130, 71, 142]. For instance, works

like CuSha [109] and Gunrock [194] target on load balance and memory coalescing opti-

mizations, while works like GraphReduce [172] and Graphie [86] focus on reducing CPU-

GPU traffic for the processing of large graphs not fitting in the GPU memory. Certain

efforts were also specific to Xeon Phi [181, 42, 100, 25, 156]. In addition, certain graph pro-

cessing frameworks are designed for hybrid CPU and coprocessors [91, 76, 41, 171, 135, 53].

Moreover, certain compiler-based efforts offer either high-level intermediate representa-

tions or domain-specific languages to support high-performance and high-productivity

graph programming, such as GraphIt [213] on CPU (and, similarly, IrGL [152] on GPU).

To the best of our knowledge, PLL has not been the target of any of these efforts, and

there is no previous work supporting a scalable and exact parallel implementation of PLL.

3.8 Chapter Summary

In this work, we proposed VC-PLL, which, to the best of our knowledge, is the first

scalable parallelization of Pruned Landmark Labeling (PLL) that is able to produce the

same result as the sequential method. We have achieved this by developing new insights

that enable mapping the algorithm to a vertex-centric model. We also introduced a new

batched execution mechanism for VC-PLL to better support message filtering and remote

memory access. The resulting BVC-PLL algorithm can even run faster than the original

PLL sequentially. Our experimental results further demonstrate the parallel efficiency

and scalability of BVC-PLL and shows its superiority over the most recent ParaPLL

algorithms on weighted graphs (using a straightforward extension of BVC-PLL). In our

future work, we plan to further investigate how to optimize BVC-PLL on weighted graphs

and how to extend it for out-of-core graphs. We also plan to investigate the possibility of

implementing the cost-saving mechanism in BVC-PLL for other graph algorithms.
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Chapter 4

Speed-ANN: A Parallel

Approximate Nearest Neighbor

Search Algorithm for the

Graph-Based Index

4.1 Introduction

Nearest neighbor search (NNS) is a fundamental building block for many applications

within machine learning systems and database management systems, such as recommen-

dation systems [51], large-scale image search and information retrieval [113, 134, 157],

entity resolution [89], and sequence matching [24]. NNS has recently become the focus

of intense research activity, due to its core role in semantic-based search of unstructured

data such as images, texts, video, speech using neural embedding models. In semantic-

based search, a neural embedding model transfers objects into embeddings in Rd, where

d often ranges from 100 to 1000 and N ranges from millions to billions. The task then

is to find the K nearest embeddings for a given query. For example, major e-commerce

players such as Amazon [149] and Alibaba [210] build semantic search engines, which em-
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bed product catalog and the search query into the same high-dimensional space and then

recommends products whose embeddings that are closest to the embedded search query;

Youtube [49] embeds videos to vectors for video recommendation; Web-scale search en-

gines embed text (e.g., word2vec [145], doc2vec [118]) and images (e.g., VGG [177]) for

text/image retrieval [43, 186]. We expect applications built on top of the embedding-based

search to continue growing in the future, due to the success and continual advancement of

neural embedding techniques that can effectively capture the semantic relations of objects.

We also expect the objects to embed will grow rapidly, due to ubiquitous data collections,

e.g., through phones and IoT devices.

Since the search occurs for every query, the latency and the accuracy (recall) of the

search engine critically depend on the ability to perform fast near neighbor search in

the high-recall range. Various solutions for approximate nearest neighbor search (ANNS)

have been proposed, including hashing-based methods[93, 52, 10, 11], quantization-based

methods [96, 73, 199, 195], tree-based methods [176, 23, 192], and graph-based meth-

ods [138, 200, 69]. Among them, graph-based algorithms have emerged as a remarkably

effective class of methods for high-dimensional ANNS, outperforming other approaches

for very high recalls on a wide range of datasets [16]. As a result, these graph-based al-

gorithms have been integrated with many large-scale production systems [69, 139], where

optimizations for fast search and high recall are the focus of a highly active research area

and have a clear practical impact.

To provide scalability, existing ANN search libraries often resort to coarse-grained

inter-query parallelism, by dispatching each query to a core or even across different ma-

chines such that multiple queries can be processed simultaneously [69, 22]. Although inter-

query parallelism obtains impressive throughput improvements, it does not help reduce

query latency. In particular, online applications often process each query upon its arrival

and have stringent latency service level agreements (e.g., a few milliseconds). As the size

of datasets grows rapidly, the increased latency of current graph-based ANN algorithms

has been restraining ANN-based search engines from growing to large-scale datasets, es-
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pecially for high-recall regimes. To provide relevant results with consistently low latency,

in this work, we investigate the possibility of intra-query parallelism on individual nodes

to meet latency goals.

Although graph-based ANN consists of primarily graph operations, simply dividing the

work of graph traversal into multiple threads is insufficient for supporting efficient ANN

search, as it cannot efficiently leverage the underline multi-core processors due to complex

interactions between graph operations and the hardware threads and memory hierarchy.

In our studies, the intra-query parallelism may sometimes hurt search efficiency, because

the communication and synchronization overhead increases as we increase the number of

cores, making it especially harder to achieve high efficiency.

In this work, we provide an in-depth examination of the graph-based ANN algorithms

with intra-query parallelism. Through a series of experiments, we have identified that an

intrinsic challenge of the graph search process lies in its long convergence step — existing

best-first search leads to long convergence steps and introduces heavy control dependencies

that limit the upper bounds on speedup by using more cores, as predicted by Amdahl’s

Law. In our study, we find that, by enlarging the Best-First Search to Speed-ANN , the

search process can converge in much fewer iterations, suggesting that the search process

can achieve better overall performance by running individual queries with more hardware

resources. However, exposing the path-wise parallelism also changes the search dynamics of

queries, leading to additional challenges that may adversely affect search efficiency, which

resides in the aspects of redundant computations, memory-bandwidth under-utilization,

high synchronization overhead, and irregular accesses caused poor data locality.

Based on the insights from our analysis, we present Speed-ANN , a similarity search

algorithm that combines a set of optimizations to address these challenges. Speed-ANN

introduces three tailored optimizations to provide improved performance for graph-based

ANN search. First, Speed-ANN uses path-wise parallelism to divide the search workload

to multiple workers in coarse-grained parallelism. Among it, every worker performs its

private best-first search in an asynchronous manner to avoid heavy global communication.
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Second, Speed-ANN employs a staged search scheme, which reduces redundant computa-

tions caused by over-expansion during a parallel search. Third, Speed-ANN is character-

ized by redundant-expansion aware synchronization to lazily synchronize among workers

while still providing fast search speed high recall. Finally, Speed-ANN provides additional

optimizations such as loosely synchronized visiting maps and a cache-friendly neighbor

grouping mechanism to improve cache locality during parallel search. In summary, this

work makes the following contributions:

1. provides the first comprehensive experimental analysis of intra-query parallelism for

ANN search on multi-core architecture and identifies several major bottlenecks to

speedup graph-based approximate nearest neighbors in high recall regime;

2. studies how the characteristics of a query vary as the search moves forward from mul-

tiple aspects, e.g., by increasing the edge-wise parallelism degree and the dynamics

in search queue update positions, which reveals the opportunities and challenges it

brings;

3. introduces a search algorithm named Speed-ANN with novel optimizations such as

staged path-wise parallelism and redundant-expansion aware synchronization that

allow parallel search on graph-based ANN to achieve significantly lower latency with

high recall on different multi-core hardwares.

4. conducts thorough evaluation on a wide range of real-world datasets ranging from

million to billion data points to show that Speed-ANN speeds up the search by 1.3×–

76.6× compared to highly optimized state-of-the-art CPU-based search algorithms

NSG [69] and HNSW [139]. Speed-ANN sometimes achieves super-linear speedups

in the high recall regime as the number of threads increases, obtaining up to 37.7×

speedup over NSG and up to 76.6× speedup over HNSW when using 32 threads.

Speed-ANN also outperforms a state-of-the-art GPU implementation and provides

good scalability.
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4.2 Preliminaries

4.2.1 Approximate Nearest Neighbors

Searching for nearest neighbors in high-dimensional space is fundamental in various ap-

plications of information retrieval and database management. In this work, the Euclidean

space under the l2 norm is denoted by Ed. The closeness of any two points p1 and p2

is defined by the l2 distance δ(p1, p2) between them [69]. The Nearest Neighbor Search

(NNS) can be defined as follows [77]:

Definition 1 (Nearest Neighbor Search) Given a finite point set P of n points in the

space Ed, preprocess P so as to answer a given query point q by finding the closest point

p ∈ P .

Please note that the query point q is not in the point set P , i.e. q /∈ P . The above

definition generalizes naturally to the K Nearest Neighbor Search (K-NNS) where we want

to find K > 1 points in the database that are closest to the query point. A näıve solution

is to linearly iterate all points in the dataset and evaluate their distance to the query. It

is computationally demanding and only suitable for small datasets or queries without a

time limit of response. Therefore, it is practical to relax the condition of the exact search

by allowing some extent of approximation. The Approximate Nearest Neighbor Search

(ANNS) problem can be defined as follows [77]:

Definition 2 (ϵ-Nearest Neighbor Search) Given a finite point set P of n points in

the space Ed, preprocess P so as to answer a given query point q by finding a point p ∈ P

such that δ(p, q) ≤ (1 + ϵ)δ(r, q) where r is the closest point to q in P .

Similarly, this definition can generalize to the Approximate K Nearest Neighbor Search

(AKNNS) where we wish to findK > 1 points p1, . . . , pK such that ∀i = 1, . . . ,K, δ(pi, q) ≤

(1 + ϵ)δ(ri, q) where ri is the ith closest point to q.

In practice, determining the exact value of ϵ requires high computational overhead.

Instead, we use recall as the metric to evaluate the quality of the approximation. A high
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recall implies a small ϵ, thus a good quality of the approximation. It is defined as the

value of the recall. Suppose the approximate points set found for a given query q is R′,

and the true K nearest neighbor set of q is R, the recall is defined as follows [68]:

Recall(R′) =
|R′ ∩R|
|R′|

=
|R′ ∩R|

K
(4.1)

For a particular recall target, i.g. 0.990 or 0.995, our goal is to make the query latency

as short as possible.

4.2.2 Graph-based ANN Search

(a) Data points and a query
point.

1

(b) Nearest neighbors of the
query.

2

(c) A graph index and search
procedure.

Figure 4.1: An example of graph-based ANNS. Circles are data points. The golden star
is query target (not in dataset). Four red circles are its nearest neighbors. Graph-based
ANNS builds a graph index on the dataset in 4.1c. The yellow circle is the starting point.
Orange circles are visited vertices during the search via Algorithm 7.

Various ANNS solutions have been proposed over decades, e.g., the ones based on

trees [14], hashing [92], quantization [12], and graphs [138, 200, 69]. Recently, many ex-

perimental results [138, 69] show that graph-based approaches usually outperform others,

resulting in the best execution performance and recall. That is because graph-based ap-

proaches can better express the neighbor relationship, allowing to check much fewer points

in neighbor-subspaces.

Graph-based ANNS relies on a graph structure as its index, in which a vertex represents

a data point in the data set and an edge links two points. A vertex p2 is called a neighbor
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of a vertex p1 if and only if there is an edge from p1 to p2. Many prior efforts focus

on constructing optimal graphs for efficient ANNS [69, 139]—which is not the focus of

this work. In contrast, this work is based on the state-of-the-art graph construction

approach [69], and aims to parallelize ANNS itself with a thorough study of its bottleneck

and a set of advanced techniques addressing these bottlenecks.

Given the graph-based index built ready, Best-First Search algorithm is widely used by

many graph-based methods for searching nearest neighbors [56, 15, 84, 105, 138, 139, 87].

Given a query point Q and a starting point P , the algorithm is to search for K nearest

neighbors to Q. In the first search step, it visits P ’s neighbors and computes their distance

to Q respectively to choose the closest vertex or candidate, and the next search step starts

from the chosen candidate from the last step. All visited vertices are recorded and kept

in order according to their distance to Q. The search step stops when the first K visited

vertices do not change anymore, which are the final K nearest neighbors. The time spent

to find the K nearest neighbors is the query’s latency.

4.3 Complexities in Graph-based ANN Search for Opti-

mizations

4.3.1 Overview of Graph-based ANN Search

The search procedure in existing similarity graph algorithms, such as NSG [69] and

HNSW [139], is a best-first traversal that starts at a chosen (e.g., medoid or random)

point and walks along the edges of the graph while getting closer to the nearest neighbors

at each step until it converges to a local minimum. Algorithm 7 shows the basic idea. In

a similarity graph, nodes represent entities in a problem domain (e.g., a video or image in

a recommendation system), with each carrying a feature vector . Edges between nodes

capture their closeness relationship, which can be measured through a metric distance

(e.g., Euclidean). There are a few main differences between the best-first traversal and
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classic BFS (breadth-first search) and DFS (depth-first search) algorithms. The first is

an ordering-based expansion . During graph traversal, the algorithm selects the closest

unchecked node vi, called an active node , and computes the distance of all neighbors of

vi to the query with their feature vectors (Line 9-13), and only inserts promising neighbors

into a priority queue as new unchecked candidates for future expansion. In this way, the

search can limit the number of distance computations needed to converge to near neigh-

bors. Second, different from the BFS and DFS, which traverse all the connected nodes, the

best-first search converges when no new (unchecked) vertex can be found to update the

priority queue, leading to a different number of convergence iterations (i.e., the number

of while loop iterations in Algorithm 7) for different datasets and queries.

Algorithm 7: Best-First Search (BFiS )

Input: graph G, starting point P , query Q, queue capacity L
Output: K nearest neighbors of Q

1 priority queue S ← ∅
2 set S’s capacity as L
3 index i← 0
4 compute dist(P,Q)
5 add P into S
6 while has unchecked vertices in S do
7 i← the index of the 1st unchecked vertex in S
8 mark vi as checked

/* Expand vi */

9 foreach neighbor u of vi in G do
10 if u is not visited then
11 mark u as visited
12 compute dist(u,Q)
13 add u into S

14 return the first K vertices in S

4.3.2 Complexities for Optimizations

The graph traversal process in similarity graphs shares some common complexities with

traditional graph processing for performance optimizations, but it also owns some dis-
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tinctive features. However, no previous work has given a systematic examination of these

complexities. Such knowledge is essential for optimizing similarity graph search, especially

at a large scale.

Challenge I: Best-First Search (BFiS) takes long iterations to converge, result-

ing in a prolonged critical path with heavy control dependency. As Algorithm 7

shows, this search consists of a sequence of search steps (Line 6-13) in which the candidates

in the current step are determined by the last step. Consider that ANNS usually queries

for the top K nearest neighbors, requiring the first K elements in the priority queue to

become stable. This state update usually converges slowly (e.g., > 400 search steps or

convergence steps to find the 100-nn with 0.999 recall for a million-scale dataset SIFT1M),

resulting in a long critical path of execution.

Challenge II: Limited edge-wise parallelism in traversal and memory band-

width under-utilization. Beyond the aforementioned long convergence steps, it is pos-

sible to parallelize the neighbor expansion step (Line 9-13 in Algorithm 7) to reduce the

execution time by dividing the neighbors into disjoint subsets and having multiple threads

each compute the distance for a subset in parallel, which is called edge-wise parallelism.

However, this parallelism strategy often achieves sub-optimal performance, because many

similarity graphs have a small truncated out-degree on all nodes to avoid the out-degree

explosion problem [69]. As a result, dividing the work across more worker threads would

result in each thread processing only a very small number of vertices. Furthermore, edge-

wise parallelism also adds synchronization overhead (e.g., at Line 14) to maintain an

ordered expansion. Our preliminary experiment results in Table 4.1 show that the edge-

wise parallelism strategy (e.g., running with 64 threads on five datasets) leads to less than

5% of the peak hardware memory bandwidth (∼80 GB/s), indicating a large performance

potential remains yet to tap into.

Table 4.1: Memory bandwidth (bdw.) measurement for edge-wise parallelism strategy.

Datasets SIFT1M GIST1M DEEP10M SIFT100M DEEP100M

bdw. (GB/s) 1.9 3.3 1.6 1.0 1.1
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Figure 4.2: The storage structure of the graph-based index. The graph topology is stored
in compressed sparse row (CSR) format, and the data vectors are stored in consecutive
arrays.

Challenge III: Strict expansion order leads to high synchronization cost. Exist-

ing similarity graph search algorithms use a priority queue to maintain the strict priority

order of all candidates according to their distances to the queue point. Although it is

possible in principle to use a concurrent priority queue that uses locks or lock-free al-

gorithms to synchronize the candidate insertions (Line 14), we observe that the parallel

scalability is severely limited by maintaining this strict order because each worker thread

only performs distance computations for a few vertices.

Challenge IV: Poor locality brought by irregular memory accesses. Existing

similarity graphs often store the graph index (e.g., in the compressed sparse row (CSR)

format that contains a vertex array and an edge array) and feature vectors (e.g., in one

embedding matrix) separately in memory as different objects, as shown in Figure 4.2.

There are two points in this design that lead to inefficiencies. First, the accessed nodes

often reside discontinuously in memory, which leads to unpredictable memory accesses.

Second, it requires one-level of indirection to access feature vectors, leading to difficulties

for memory locality optimizations.

4.4 Design of Speed-ANN

Based on the observations from Section 4.4.1, we introduce Speed-ANN , a parallel search

algorithm that exploits lightweight intra-query parallelism (i.e., path-wise parallelism and
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Figure 4.3: Overview of Speed-ANN .

edge-wise parallelism) to accelerate the search efficiency of similarity graphs on multi-core

CPU architectures. We first provide an overview of our architecture-aware design, and

then we discuss technical details.

Figure 4.3 depicts Speed-ANN ’s overall design that addresses the challenges mentioned

in Section 4.3 to perform an efficient similarity graph search. To reduce the long critical

path dependency (Challenge I) and increase the amount of parallelism, Speed-ANN uses

path-wise parallelism to deliver coarse-grained parallelism. Speed-ANN further introduces

a staged search strategy to reduce redundant computations caused by over-expansion dur-

ing a parallel search. To limit global synchronization overhead (Challenge III), Speed-ANN

adopts redundant-expansion aware synchronization to adaptively adjust synchronization

frequency. As such, Speed-ANN reduces the number of global synchronizations while still

achieving high search accuracy. Besides, Speed-ANN uses loosely synchronized visit maps

for lightweight communication and also performs neighbor grouping to improve memory

locality (Challenge IV).
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Figure 4.4: Comparison of BFiS and Speed-ANN . BFiS needs a long search path with
backtrack to find nearest neighbors (11 steps). Speed-ANN reduces backtrack and com-
pletes with a shorter path (5 steps).

4.4.1 Path-Wise Parallelism

Although it is challenging to parallelize the Best-First Search (BFiS ) process due to its

long critical path and limited edge-wise parallelism, the semantics of the algorithm does

not seem to always require a strict order as long as the goal is to minimize the total search

time of near neighbors. In this section, we exploit whether the search is robust to deviation

from a strict order by allowing concurrent expansion of multiple active nodes. For practical

similarity search, e.g., NSG and HNSW, there is no guarantee that amonotonic search path

always exists for any given query [69]. As a result, the search can easily get trapped into

the local optimum. To address this issue, BFiS may backtrack to visited nodes and find

another out-going edge that has not been expanded to continue the search. Figure 4.4(a)

illustrates a search path with backtracking. The search starts from vertex A and calculates

the distance (indicated by the number following the letter on each vertex) between the

three neighbors of A (B, F , and H) and the query point. Because H’s distance is locally

the smallest, BFiS would select H as the active node in the next step. However, given

that further expanding H no longer leads to a closer candidate, the search reaches a local

minimum and performs a backtracking to the next promising candidate F . The search
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Figure 4.5: Speed-ANN results in much less search steps than BFiS . Dataset is SIFT1M.
They have the same L = 100. Speed-ANN has M = 64, where M means the top M
unchecked candidates.

process then may backtrack multiple times until it either finds the near neighbor (e.g., O)

or exhausts the search budget.

Backtracking creates additional dependencies in BFiS process and increases the con-

vergence steps to find near neighbors. However, many of these backtracking dependencies

can be ”fake” dependencies if we perform path-wise parallelism, e.g., by expanding mul-

tiple active nodes concurrently, it is possible to shorten the convergence steps by starting

early at one of those backtracking points. As an example, while it takes 11 steps to find

the near neighbor in Figure 4.4(a), it only takes 5 steps in Figure 4.4(b) if we expand

nodes F, G, J, M right after expanding their parent nodes.

Based on this insight, we introduce Speed-ANN . In this scheme, the priority order is

relaxed such that in each step, top M unchecked candidates are selected as active

nodes for expansion instead of just the best candidate.

Speed-ANN exposes hidden parallelism. The relaxation of the order enables two

levels of parallelism: the path-wise parallelism where multiple threads can concurrently

expand the search frontier, and the edge-wise parallelism when expanding an individual
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active node. Moreover, instead of having a global queue to maintain strict expansion

orders among all workers, each worker has a local priority queue, which allows a thread

to exploit a small number of order inversions (i.e., allowing a worker thread to locally

select and expand active nodes ahead of the global order), which can dramatically reduce

communication, synchronization, and coordination between threads.

Speed-ANN converges faster to near neighbors. One key benefit of Speed-ANN is

that it significantly shortens the convergence steps compared to BFiS . Figure 4.5 shows

the comparison results of convergence steps between BFiS and Speed-ANN . The results

are measured on dataset SIFT1M using 10K queries with 0.90 recall target, and M is

set to 64. Speed-ANN takes on average 3.4, 5.0, and 5.4 steps to find the 1st, 50th,

and 100th nearest neighbor, respectively, whereas BFiS takes 10.1, 69.4, and 88.1 steps,

respectively. From another aspect, Speed-ANN takes much fewer steps to finish examining

all the unchecked vertices in S than BFiS , as shown in Figure 4.5b. Both results indicate

that Speed-ANN has a much faster convergence speed than BFiS .

Tree-based Expansion View. Similar to the classical DFS/BFS, BFiS naturally in-

troduces an expansion tree: the root node Tr of the tree is the starting vertex P in graph

G; the children of a tree node Ti (corresponding to a graph vertex vi) are the unvisited

neighbors of vi. The expansion of BFiS bears many similarities to DFS, as each time, it

will expand only one leaf node. However, different from DFS, which expands the one with
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the most depth, BFiS expands the one which is closest to query Q. Thus, we have the

same concepts of backtracking and Steps in BFiS .

The power of Speed-ANN is that it expands the M leaves simultaneously of the tree,

which are M nearest neighbors of query Q among all the leaves of the current expansion

tree. This effectively searches/extends M paths in parallel instead of a single path (in

BFiS ). Thus, Speed-ANN can potentially reduce the total number of steps of BFiS by a

factor of M times, as for k Steps, Speed-ANN can expand kM tree nodes/leaves. Further,

due to the hardware capability, at the same time, Speed-ANN can process M leaves/paths

expansion as only what is in BFiS (one single leave or path expansion), leading to the

low latency of query processing. We also note that the BFiS becomes a special case of

Speed-ANN where M = 1, and both parallelization are under Bulk Synchronous Parallel

(BSP) model [190] though BFiS has rather limited parallelism to explore.

4.4.2 Staged Speed-ANN to Avoid Over-Expansion

Despite the faster convergence speed, intra-query parallel search incurs additional chal-

lenges in increased distance computations. Figure 4.6 shows that to reach the same recall,

Speed-ANN often leads to more distance computations than BFiS . Speed-ANN has more

computations because path-wise parallelism allows a query to take fewer steps to reach

the near neighbors by avoiding fake dependencies from backtracking but it also introduces

more computations to explore additional paths. Furthermore, we observe that although

the convergence steps continue to decrease with larger M , the number of distance compu-

tations also increases dramatically, as shown in Figure 4.7.

When the number of parallel workers is large, the search speed of Speed-ANN might

be sluggish because the over-expansion of neighbors can result in many redundant com-

putations during the entire search process. To avoid unnecessary distance computations

caused by over-expansion, we take a staged search process by gradually increasing the ex-

pansion width (i.e., M) and the number of worker threads every t steps during the search

procedure. The intuition is that the search is less likely to get stuck at a local minimum at
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Figure 4.8: Comparison between Speed-ANN without staged search and with staged
search: distance computation & search steps. M = 64.

the beginning of the search, so the best-first search with a single thread can already help

the query to get close to near neighbors. As the search moves forward, it becomes more

likely that a query will get stuck at a local minimum and requires backtracking to escape

from the local minimum. Therefore, path-wise parallelism with a larger expansion width

in later phases can better help reduce the convergence steps. We find that a simple staging

function works well in practice: when the search begins, we first set a starting value and

a maximum value for M . The starting value is usually one, and the maximum value can

be as large as the number of available hardware threads. Subsequently, for every t steps

(e.g., t = 1) we double the value of M until M reaches its maximum. Figure 4.8a shows

that staged Speed-ANN reduces the amount of redundant significantly in comparison to

Speed-ANN without a staged search and leads to distance computations close to BFiS .

On the other hand, staged Speed-ANN is able to converge as almost fast as Speed-ANN

without staged search, as shown in Figure 4.8b. These results indicate that our staged

search method still achieves fast convergence speeds without incurring too many distance

computations caused by over-expansion through the parallel search on a large number of

workers.
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4.4.3 Redundant-Expansion Aware Synchronization

As mentioned in Section 4.3, yet another big performance bottleneck in intra-query paral-

lelism resides in the synchronization overhead. Figure 4.9 shows how the global synchro-

nization frequency influences the synchronization overhead (calculated by synchronization

time divided by overall execution time) and the overall distance computations. All results

in this figure return the same recall value. It shows that the synchronization overhead

increases significantly when the synchronization frequency grows. We also find that or-

der inversion (with insufficient synchronization) slows down the search convergence and

results in growing distance computations (as shown in Figure 4.9). This is because, with

insufficient synchronization, worker threads keep searching their own (unpromising) areas

without benefiting from other threads’ latest search results that may lead to faster con-

vergence. This study demonstrates that a proper synchronization frequency is desired to

achieve high system performance.

Measuring redundant expansion via update positions. To unleash the full power

of multi-core systems, Speed-ANN performs a unique form of lazy synchronization so that

worker threads do not need to synchronize at every search step in most cases. Especially,

our synchronization scheme is redundant-expansion aware, which means instead of having

a strict order through the entire convergence steps, we allow some relaxation of the order

as long as each worker thread is still performing some effective search and the global order
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becomes consistent again after a large amount of redundant expansion has been detected.

In this work, we propose a new way to measure the effectiveness of intra-query parallel

search based on the update positions of workers. When a worker expands an unchecked

candidate, its neighbors are then inserted into the worker’s local queue, and the update

position is defined as the lowest (best) position of all newly inserted candidates. Thus,

the average update position is the mean of all update positions of workers. Figure 4.10

demonstrates how an example query’s average update position changes during the search

steps without global synchronization. It shows that the average update position increases

gradually to the local queue capacity and resides there to the end. When the average

update position is close to the queue capacity, it indicates that most workers are searching

among unpromising areas and cannot find good enough candidates to update their local

results. Therefore, the average update position can be used as a metric to determine if

all workers need to synchronize their local results to adjust the search order. We would

like to note that there could be more than one metric to decide when to perform the lazy

synchronization. We leave it as an open research question and more advanced methods

might lead to better performance improvements.

Algorithm 8 describes how to use the average update position as the metric to decide

when to perform a lazy synchronization. Given the queue capacity L and a position ratio

R, the threshold of the average update position to do synchronization is set as L · R. If

the checker finds the average update position is greater than or equal to the threshold

(Line 2), it returns true indicating a global synchronization in Algorithm 9. Empirically,

the ratio R is close to 1.0, such as 0.9 or 0.8. The input vector of all update positions is

updated by workers regularly without locks. The return flag is only written by the checker

who is assigned among workers in a round-robin manner.

Table 4.2 shows preliminary results about the performance comparison between adap-

tive synchronization and no-synchronization. No-synchronization means each thread per-

forms its local search and only combines the results in the end. The results show that

adaptive synchronization is able to improve search efficiency with fewer distance computa-
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Algorithm 8: CheckMetrics() (Update Position Version)

Input: vector of update positions U , queue capacity L, position ratio R, number
of workers T

Output: true or false
1 ū← average positions of elements in U
2 if ū ≥ L ·R then
3 return true

4 else
5 return false

Table 4.2: Comparison between no-sync. and adaptive sync. 8 threads on SIFT1M
for Recall@100 0.9. Adaptive sync. check workers’ dynamic status and merge queues
adaptively. Lt. denotes latency. Compt. denotes distance computation.

Dataset no-sync. adaptive sync.
Lt. (ms.) Compt. Lt. (ms.) Compt.

SIFT1M 1.16 125.3 M 0.70 33.1 M

tions. Overall, the reduced synchronization and distance computation from our redundant-

expansion-aware synchronization is especially helpful for path-wise parallelism on a large

number of workers, because global synchronization across multiple threads is still expen-

sive and not very scalable as the number of cores increases.

Putting It Together. Algorithm 24 describes the overall algorithm of Speed-ANN . At

the beginning of each global step, the global queue evenly divides its unchecked candidates

among all local threads. After that, each worker performs a local best-first search based

on its own local queue of sub-states (Line 11 to Line 21). Different from the global state

that involves updating the global queue, a worker’s local sub-state is the state of its private

queue. In a local search step, a worker expands its own best unchecked candidate and

updates its private queue accordingly. Before the global queue’s state is updated, a worker

can have multiple sub-states of its own private queue. A worker continues expansion until

CheckMetrics() raises a flag for merging or it has no unchecked candidates left locally. In

a round-robin way, a worker is assigned as the checker. The checker’s duty is to check (as

what CheckMetrics() does) if all workers need to synchronize their sub-states by merging
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all private queues into the global queue. If so (Line 19), all workers will stop their local

search and merge their queues.

Algorithm 9: Speed-ANN Intra-Query Parallel ANN Search

Input: graph G, starting point P , query Q, queue capacity L, number of workers
T

Output: K nearest neighbors of Q
1 expansion width M ← 1
2 global priority queue S ← an empty queue with capacity L
3 local priority queues LS ← T empty queues with capacity L
4 compute dist(P,Q)
5 add P into S
6 while true do
7 divide all unchecked vertices from S into LS
8 if all LS are empty then
9 break

10 foreach worker t out of M in parallel do
11 while LS[t] contains unchecked vertices and doMerge is false do
12 vertex v ← the first unchecked vertex in LS[t]
13 mark v as checked
14 foreach neighbor u of v in G do
15 if u is not visited then
16 mark u as visited
17 compute dist(u,Q)
18 add u into LS[t]

19 if t is the checker and CheckMetrics() returns true then
20 doMerge← true
21 assign the next checker in round-robin way

22 merge LS into S
23 if M < T then
24 M ← 2M

25 return the first K vertices in S

4.4.4 Additional Optimizations

Loosely Synchronized Visiting Map. There is one potential bottleneck to multi-

threaded parallel scaling in Algorithm 9 on our target architectural platforms (multi-core

systems). Consider visiting a neighbor of a candidate. This is typically after a check and
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then an update to a visiting map to ensure that a vertex is calculated once (Line 15-

16). During path-wise parallelism, the visiting map is shared by all workers to indicate

if a vertex has been visited. Since multiple threads may access the shared visiting map

concurrently, locking or lock-free algorithms are required if we still want to ensure a vertex

is visited only once. However, this approach involves a significant scalability bottleneck,

because it leads to lock contention and sequentialization of updating the visiting map.

We observe that the ANN search algorithm is still correct even if a vertex is calculated

multiple times because the local candidates are guaranteed to be merged back to the

global priority queue and the visiting map is also guaranteed to have eventual consistency

the next time of global synchronization. Furthermore, by inserting memory fences, cache

coherence further ensures that the updated visiting map is visible to other cores. Due to

the potential out-of-order execution in processors, modern multi-core processors provide

fence instructions as a mechanism to override their default memory access orders. In

particular, we issue a fence after a thread updates the visiting map to guarantee a processor

has completed the distance computation of the corresponding vertex and has updated the

visiting map (otherwise, there is no guarantee the updated visiting map is visible to other

cores before next step of global synchronization).

By doing the loosely synchronized local search, we observe that the search algorithm

only performs a very small percentage of additional distance computations (less than 5%)

for SIFT1M (and similar for other datasets) with 8-way parallelism. This reduces the over-

head from synchronization by 10% and allows us to avert the issue of non-scaling locking

across the multi-threading search. This optimization was also considered by Leiserson and

Schardl [119] (termed as ”benign races”) for their parallel breadth-first search algorithm.

Furthermore, we use a bitvector to implement the visiting map instead of a byte-array.

This optimization allows the cache to hold the largest possible portion of the visiting map

and therefore improves the data locality for memory accesses.

Cache Friendly Neighbor Grouping. When a feature vector is loaded into memory

for distance computation, modern CPU architectures actually automatically load vectors
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from nearby memory locations as well. Our neighbor grouping technique taps into this

feature to mitigate the two levels of irregularity mentioned in Section 4.3.

First, Speed-ANN flattens the graph indices by placing the embeddings of neighbor

vertices in contiguous memory, which would avoid one-level of implicit memory addressing

and enables a thread to pre-fetch neighbor feature vectors once an active node is selected.

Second, Speed-ANN also regroups nodes, such that vertices that are likely to be visited

during the graph traversal are already pre-load into the CPU memory and cache. Together,

these two optimizations increase the cache hit rate and help speed up the search process.

One caveat of this approach is that it introduces additional memory consumption, be-

cause two neighbor lists may share the same vertex as a common neighbor. It is therefore

may require more memory consumption than the original approach. To avoid increasing

the memory consumption, Speed-ANN takes a hierarchical approach by regrouping only

a subset of vertices. In particular, Speed-ANN divides a graph to a two-level index as

shown in Figure 4.11, where only the top-level vertices have their neighbors flattened and

stored in contiguous memory, and the bottom-level index stores other vertices using the

standard structure. In this work, we explore two strategies to graph division: Degree-
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centric, which puts high in-degree nodes to the top-level of the indices. The intuition is

that high in-degree nodes are more frequently accessed, and therefore improving their lo-

cality would benefit the most for the overall search efficiency. Frequency-centric, which

exploits query distribution to figure out which nodes are more frequently accessed and

puts those frequently accessed nodes into an optimized index. Section 4.5 evaluates both

strategies and shows that Speed-ANN ’s neighbor grouping strategy brings 10% perfor-

mance improvements with selecting only 0.1% vertices as the top level for a dataset with

100M vertices.

4.5 Evaluation

This evaluation proves that Speed-ANN can significantly reduce the ANN search latency

with the proposed effective parallel optimizations.

Evaluation Objectives. This evaluation targets five specific evaluation objectives: (1)

latency—demonstrating that Speed-ANN outperforms existing ANN search algorithms

(NSG [69], HNSW [139], and a parallel version of NSG) by up to 76.6× speedup in

terms of the latency without any precision compromise; (2) scalability—confirming that

Speed-ANN scales well on modern multi-core CPU architectures with up to 64-cores; (3)

optimization effects—studying the performance effect of our key optimizations (path-

wise parallelism, staged search, redundant-expansion aware synchronization, and cache

friendly neighbor grouping) on overall latency, distance computations, synchronization

overhead, etc; (4) portability—proving Speed-ANN has good portability by evaluating

it on other multi-core CPU architectures; (5) practicability—showing that Speed-ANN

is practical, applicable to extremely large datasets (e.g., bigann) with billions of points

and outperforming an existing GPU implementation (i.e. Faiss) by up to 6.0× speedup

with 32 CPU cores.

Implementation. A natural question is if our implementations can leverage any existing

graph libraries (e.g., Ligra [175]); however, it turns out this is very difficult due to multiple
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Table 4.3: Characterization of datasets. Dim. denotes the dimension of the feature
vector of each point, #base denotes the number of points, and #queries denotes the
number of queries.

Dataset Dim. #base #queries

SIFT1M 128 1M 10K
GIST1M 960 1M 1K
DEEP10M 96 10M 10K
SIFT100M 128 100M 10K
DEEP100M 96 100M 10K

reasons: First, ANN algorithms do not pass messages between vertices. The computation

only happens between a vertex and the query point. Second, ANN algorithms need to

do computation with vector values. Third, ANN algorithms need to keep output results

sorted. This requires extra efforts to maintain the results especially after synchronization

between workers. Fourth, existing libraries’ optimization techniques for general graph

processing are usually not suitable for ANN algorithms. For example, Ligra [175] can

switch between push and pull modes according to the number of active vertices. However,

in ANN algorithms, the number of active vertices is capped by the expected output number

of nearest neighbors, making the switching never happen. Besides, Speed-ANN runs in a

semi-synchronous pattern with delayed synchronization among workers, which is different

from the BSP model [190] with strict synchronization after every parallel step. Therefore,

we have our high-performance implementation of those algorithms without using existing

graph processing libraries. Our proposed ANN algorithms are written in C++ compiled

by Intel C++ Compiler 2021.4.0 with “-O3” option. We use OpenMP 5.0 to handle the

intra-query parallelism.

Platform and Settings. Unless otherwise specified, all major experiments are conducted

on Intel Xeon Phi 7210 (1.30 GHz) with 64 cores and 109 GB DRAM (KNL for short).

Speed-ANN sets the average update position ratio as 0.8 for SIFT1M, GIST1M, and

SIFT100M, and 0.9 for DEEP10M and DEEP100M.

Datasets. This evaluation uses five datasets that are characterized in Table 4.3. SIFT1M
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and GIST1M are from the datasets1 introduced by Jégou et al. [97]; SIFT100M is sampled

from the SIFT1B (bigann) introduced by Jégou et al. [98]; DEEP10M and DEEP100M

are sampled from DEEP1B2 which is released by Babenko and Lempitsky [18]. These are

common datasets for ANN algorithms evaluation [69].

Baselines. Speed-ANN is compared with two state-of-the-art sequential ANN search

implementations, NSG3 [69] and HNSW4 [139]. NSG employs a search algorithm called

Best-First Search, and HNSW uses its own best-first search algorithm corresponding to its

hierarchical index. The hyperparameters used for building their indices are set as default

values as long as the authors provided them. Otherwise, several values are tested and the

best performance is reported.

For NSG, we use its optimized version of searching for SIFT1M, GIST1M, and DEEP10M,

and its normal version for SIFT100M and DEEP100M because of memory limit. We also

implement a Näıve Parallel NSG that parallelizes neighbor visiting during expansion.

4.5.1 Search Latency Results

Figure 4.12 compares the latency of Speed-ANN , NSG, and HNSW. Speed-ANN uses

32 threads while NSG and HNSW are sequential approaches. The query latency is the

average latency of all queries, i.e., it equals the total searching time divided by the number

of queries. All methods search the 100 nearest neighbors for every query (i.e. K = 100).

The measure Recall@100 is calculated according to Formula 4.1 with K = 100, which

means the ratio of ground-truth nearest neighbors in searching results for each query. The

value of Recall@100 is the average of all queries. All recalls mentioned in this section are

Recall@100 if not specified.

Figure 4.12 shows that Speed-ANN outperforms NSG and HNSW on all five datasets.

Speed-ANN ’s latency advantage increases with the growth of recall requirement, and it

1http://corpus-texmex.irisa.fr/
2https://sites.skoltech.ru/compvision/noimi/
3https://github.com/ZJULearning/nsg
4https://github.com/nmslib/hnswlib

http://corpus-texmex.irisa.fr/
https://sites.skoltech.ru/compvision/noimi/
https://github.com/ZJULearning/nsg
https://github.com/nmslib/hnswlib


4.5. EVALUATION 109

0.90 0.95 1.000.5

1

2

4

8
SIFT1M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64

256

1024
GIST1M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.000.5

2

8

32

DEEP10M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64
SIFT100M

Speed-ANN-32T
NSG
HNSW

0.90 0.95 1.001

4

16

64

256
DEEP100M

Speed-ANN-32T
NSG
HNSW

Recall@100

La
te

nc
y 

(m
s)

Figure 4.12: Latency (ms) comparison among Speed-ANN , NSG, and HNSW on five
datasets. Speed-ANN use 32 threads.

performs significantly better for high recall cases (e.g., from 0.995 to 0.999). For the

cases of Recall@100 (R@100) being 0.9, 0.99, and 0.999, on all five datasets, Speed-ANN

achieves 2.1×, 5.2×, and 13.0× geometric mean speedup over NSG, and 2.1×, 6.7×, and

17.8× over HNSW, respectively. As the recall becomes 0.999, Speed-ANN achieves up

to 37.7× speedup over NSG on DEEP100M, and up to 76.6× speedup over HNSW on

GIST1M. Speed-ANN achieves significantly better performance for high recall situations

mainly because of two reasons. First, Speed-ANN ’s path-wise parallelism effectively re-

duces convergence steps (comparing with NSG) because it is not easily trapped at a local

optimum and can explore a local region more quickly than a sequential search. This is

particularly critical for a large graph (e.g., DEEP100M) to achieve high recall, where a

query can more easily get stuck at a local optimum. Second, Speed-ANN has better data

locality from using aggregated L1/L2 cache provided by multiple threads, in contrast to

a sequential search where only private cache can be used. Further profiling results are

provided in Section 4.5.3.
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Figure 4.13: Percentile latency of Speed-ANN & NSG. Recall: 0.999.
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Figure 4.14: Speedup of Speed-ANN over 1 thread on three datasets.

Impact on Tail Latency. For online inference, tail latency is as important, if not

more, as the mean latency. To see if Speed-ANN provides steady speed-ups, we collect

the 90th percentile (90%tile), 95th percentile (95%tile), and 99th percentile (99%tile)

latency from running NSG and Speed-ANN on SIFT100M and DEEP100M in Figure 4.13.

The results show that while NSG’s 99%tile increases significantly by 154% and 91% for

SIFT100M and DEEP100M, respectively, the Speed-ANN ’s 99%tile increases only by 31%

and 19% over its average for SIFT100M and DEEP100M, respectively. Speed-ANN leads

to a relatively smaller increase in tail latency presumably because intra-query parallel

search is particularly effective in reducing latency on long queries.

4.5.2 Scalability Results

Scaling with An Increasing Number of Threads. Figure 4.14 reports the speedup

of 1- to 64-thread Speed-ANN over 1-thread on three datasets for three selected recall
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Figure 4.15: Scalability with varied graph sizes for Speed-ANN , NSG, and HNSW on
DEEP1M, DEEP10M, and DEEP100M. Speed-ANN uses 32 threads.

(0.99, 0.995, and 0.999), respectively. It shows that this scalability increases as the target

recall grows because of the increased distance computations that offers more parallelism

opportunities. The geometric mean speedup of all datasets for the highest recall (0.999) is

9.6×, 11.1×, and 9.2× for 16-, 32-, and 64-thread, respectively. Speed-ANN only scales to

16 threads for SIFT1M because SIFT1M is too small without enough workload for more

threads. Speed-ANN demonstrates super-linear speedup (up to 16 threads) for 0.999 recall

on GIST1M and DEEP100M. This phenomenon will be further analyzed in Section 4.5.3.

Speed-ANN does not scale well for 64 threads due to various reasons. For datasets with

high dimensional vectors (e.g. GIST1M), 32-thread Speed-ANN has saturated memory

bandwidth already. For others (e.g., SIFT1M, DEEP10M, and DEEP100M), extra dis-

tance computations of too many unnecessary expansions gradually dominate overall exe-

cution.

Scaling with An Increase of the Graph Sizes. Our experiments also evaluate the

scalability with varied dataset sizes (DEEP1M, DEEP10M, and DEEP100M) for Speed-

ANN , NSG, and HNSW, respectively. Figure 4.15 reports the latency results of Speed-

ANN , NSG, and HNSW for the recall of 0.9, 0.99, and 0.999, in which Speed-ANN uses 32

threads. Speed-ANN constantly outperforms NSG and HNSW, and the heavier workload,

the better performance Speed-ANN shows. More specifically, with the growth of dataset

size, the speedup of Speed-ANN over NSG and HNSW increases. For example, when the

recall is 0.999, the speedup of Speed-ANN over NSG grows from 5.9x to 27.8x when the

dataset size changes from 1M to 100M. This trend becomes increasingly obvious with the
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growth of the recall. The results reflect that Speed-ANN is particularly effective and offers

more speedups than existing search methods for larger graphs.

4.5.3 Analysis Results

This section performs a series of experiments to show where Speed-ANN ’s improvements

come from. It first compares Speed-ANN ’s performance with several alternative paral-

lel search schemes. (i) NSG-32T: This configuration extends NSG with path-wise paral-

lelism only (e.g., M=1). (ii) Speed-ANN -NoStaged : This configureation is Speed-ANN but

without using the staged search process. (iii) Speed-ANN -NoSync: This configureation

performs path-wise parallelism but never synchronizes among workers until the very end.

(iv) Speed-ANN -Exhaust : This configureation uses an exhaustive search to preprocess the

dataset and obtain the proper synchronization settings. It should have the best latency

performance, although requiring more than ten hours of tuning for the given dataset. (v)

Speed-ANN -Adaptive: This is the configuration described in Section 4.4, which adopts

redundant-expansion aware synchronization.

For this comparison, we report results on DEEP100M dataset with 32 threads in

Figure 4.16. Other datasets and threads show the same trend, thus we omit them due to

the space constraint.

Effects on Latency. Figure 4.16a first reports the latency results of all five versions

when we change recall from 0.90 to 1.00. Compared with NSG-32T, Speed-ANN -NoStaged

has 4.9× speedup on average for all recall cases, because of the convergence iterations

reduction from path-wise parallelism. Speed-ANN -Exhaust has an extra 1.5× speedup over

Speed-ANN -NoStaged mainly due to its reduction in synchronization optimization. Speed-

ANN -Exhaust achieves slightly better performance than Speed-ANN -Adaptive (e.g., 1.1×

speedup). However, Speed-ANN -Adaptive does not require the expensive offline tuning

process as Speed-ANN -Exhaust .

Effects on Convergence Iterations. Figure 4.16b profiles the convergence steps of the

five parallel methods. Each point is averaged from all queries. NSG-32T results in the most
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Figure 4.16: Synchronization study w/ 32 threads on DEEP100M.

steps of convergence; while Speed-ANN -NoStaged results in the fewest. All three versions

of Speed-ANN result in comparable convergence steps to Speed-ANN -NoStaged that are

much less than NSG-32T. This is because Speed-ANN -NoStaged employs a fixed and rel-

atively large number of multiple paths throughout the searching, resulting in the most ag-

gressive exploring. Speed-ANN -Adaptive and Speed-ANN -Exhaust adopt a staged search,

which slightly increases the convergence steps but significantly reduces distance computa-

tions. Meanwhile, Speed-ANN -NoSync suffers more divergence compared to Speed-ANN -

Adaptive and Speed-ANN -Exhaust .

Effects on Distance Computation. Figure 4.16c profiles the number of distance com-

putations for those five methods. Speed-ANN -NoStaged with a fixed value ofM = 32 leads

to more distance computations than NSG-32T, Speed-ANN -Exhaust , and Speed-ANN -

Adaptive to achieve the same recall (especially for low recall cases). While completely
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removing synchronization, Speed-ANN -NoSync has the most distance computations than

others. However, as shown in Figure 4.16a, it still achieves lower latency than Speed-ANN -

NoStaged because synchronization overhead can dominate the total search time when the

number of parallel workers is large.

Effects on Synchronization Overhead. Figure 4.16d reports the execution time break-

down of our four approaches. It splits the whole execution time into three parts: Expand-

ing part (Expand), Merging part (Merge), and Sequential part (Seq). Expand denotes

the parallel phase of a query that workers expand their unchecked candidates. It con-

sists of computing distances and inserting visited neighbors into their queues. Merge

denotes the phase that workers merge their local queues into a global queue after they

complete expanding. It reflects the major synchronization overhead. Other sequential

execution of a search is included in Seq. All results are for recall 0.999. Figure 4.16d

shows that redundant-expansion aware synchronization strategy effectively mitigates the

synchronization overhead, allowing Speed-ANN -Adaptive to achieve a similar portion of

synchronization overhead as Speed-ANN -Exhaust .

Effects of Neighbor Grouping. Our fully optimized Speed-ANN -32T also includes

another optimization, i.e. neighbor grouping. Figure 4.17 shows that our two proposed

strategies (degree-centric and frequency-centric) outperform no-grouping by up to 1.22×

and 1.21× speedup, respectively, when we change the thread numbers from 1 to 64. This
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speedup mainly comes from the reduction of the last-level cache miss and TLB (translation

lookaside buffer) cache miss. This profiling result is omitted due to the space constraint.

Super-linear Speedup Observation. Section 4.5.2 shows that Speed-ANN results in

an interesting super-linear speedup (up to 16 threads) for 0.999 recall on GIST1M and

DEEP100M. Figure 4.18 reports three profiling results, distance computations, L1 cache

misses, and performance speedup for DEEP100M when changing the thread numbers from

1 to 64. The left x-axis shows the first two profiling results while the right x-axis shows

the last one. It shows that as we increase the number of threads, the L1 cache misses

and distance computations first decrease and then increase. This causes the super-linear

speedup for the cases whose thread numbers are less than 16. Distance computation

shows this trend because: on the one hand, path-wise parallelism helps avoid the search

from being trapped by local minimal candidates and quickly pick up promising searching

paths for more nearest neighbors; on the other hand, too many exploring threads cause

unnecessary expansion of non-promising candidates, increasing distance computations. L1

cache miss shows this trend because multi-threads increase the total size of L1 cache.
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Figure 4.19: Portability study: DEEP100M on Skylake.

4.5.4 Portability Evaluation

To evaluate the portability, Speed-ANN is also tested on Intel Skylake architecture, Xeon

Gold 6138 (2.0 GHz) with 20 cores and 187 GB DRAM (Skylake for short). For the

sake of space saving, only results on DEEP100M are presented as other datasets show
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Figure 4.20: Performance comparison of Speed-ANN and NSG on SIFT1B (bigann) and
DEEP1B. Speed-ANN ’s speedup is over its 1-thread. Recall is 0.9.

the same trend. Figure 4.19a compares the latency of Speed-ANN , NSG, and HNSW, in

which, Speed-ANN uses 16 threads. It shows a similar trend as previous, i.e., Speed-ANN

outperforms NSG and HNSW for all recall. For 0.9, 0.99, and 0.999 cases, Speed-ANN

achieves 1.7×, 4.5×, and 12.9× speedup over NSG, and 1.3×, 5.3×, and 9.7× over HNSW,

respectively. Figure 4.19b evaluates Speed-ANN ’s scalability. Similarly, target recall 0.999

can achieve the best speedup over 1 thread, and speedup for 0.999 is 4.9× and 6.3× for 8

threads and 16 threads, respectively.

4.5.5 Practicality Evaluation

This section evaluates Speed-ANN ’s practicality with two case studies: 1) evaluating it

on very large datasets, SIFT1B (bigann) and DEEP1B that contain over 1 billion data

vectors; 2) comparing it with a state-of-the-art GPU implementation.

Billion-Scale Datasets. This experiment is conducted on a particular machine with

Xeon Gold 6254 (3.10 GHz) 72 cores and 1.5 TB memory because of the large memory

requirement. Figure 4.20 compares the latency of Speed-ANN and NSG. Speed-ANN

uses up to 64 threads, and the recall target is 0.9. When using 64 threads, Speed-ANN

outperforms NSG with 11.5× and 16.0× speedup for SIFT1B and DEEP1B, respectively.

As we increase the number of threads, Speed-ANN shows sub-linear speedup because of

the well-known NUMA effect (this machine has 4 NUMA domains). These results indicate
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Table 4.4: Latency comparison of Speed-ANN and Faiss-GPU on five datasets. Lt.

means Latency. OOM means out of memory. Faiss-GPU’s index format is IVFFLat. Speed-
ANN uses 32 threads.

Datasets
Faiss-GPU w/ IVFFlat Speed-ANN -32T on KNL
R@100 Lt. (ms.) R@100 Lt. (ms.)

SIFT1M 0.52 0.87 0.91 0.61
GIST1M 0.36 7.25 0.90 1.21
DEEP10M 0.62 5.79 0.90 0.96
SIFT100M OOM OOM 0.90 2.00
DEEP100M OOM OOM 0.90 1.91

the effectiveness of our method in speeding up the search process on billion-scale datasets.

Compare with a GPU Implementation. We also compare Speed-ANN with a GPU-

based large-scale ANN search algorithm [106] in Faiss library [6]. The GPU experiments

are conducted on an NVIDIA Tesla P100 with CUDA 10.2. Faiss is set to have one query

in every batch, because we focus on reducing the online query latency to meet stringent

latency requirement. Table 4.4 shows the latency comparison results on five datasets.

Speed-ANN uses 32 threads on KNL. For the SIFT100M and DEEP100M, Faiss-GPU

complains of out-of-memory errors. For other datasets, Speed-ANN outperforms Faiss-

GPU with 1.4× to 6.0× speedup and much better recall, which indicates that Speed-ANN

can effectively achieve faster search speed than GPU-based search algorithms on CPUs,

which are often much cheaper than GPUs.

4.6 Related Work

This section describes prior efforts closely related to our work.

Graph-based ANN. Navigating Spreading-out Graph (NSG) [69] is one of the state-of-

the-art graph-based indexing methods. It is a close approximation of Monotonic Relative

Neighborhood Graph (MRNG) that ensures a close-logarithmic search complexity with

limited construction time. NSG (and many other graph-based methods [56, 15, 84, 105,

138, 139, 87], e.g., FANNG [87], NSW [138], and HNSW [139]) rely on best-first search to
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process queries. Other graph-based methods include [121, 208, 94, 120, 21, 127, 159, 58,

22]. In contrast to these efforts that mostly focus on indexing building, our work for the

first time unveils the real bottleneck of intra-query graph search, and significantly reduces

search latency (particularly for billion-scale graphs) with multiple advanced architecture-

aware parallel techniques.

Non-Graph based ANN Methods. Hashing-based methods [93, 52, 10, 11] map data

points into multiple buckets with a certain hash function such that the collision probability

of nearby points is higher than the probability of others. Quantization-based methods [96,

73, 199, 195, 192] (e.g., IVF [97], and IMI [17]) compress vectors into short codes to reduce

the number of bits needed to store and compute vectors. Faiss [106] is implemented

by Facebook with produce quantization (PQ) methods. Tree-based methods (e.g., KD-

tree [176] and R* tree [23]) hierarchically split the data space into lots of regions that

correspond to the leaves of a tree structure, and only search a limited number of promising

regions. Flann [146] is a library based on KD-tree. Graph-based methods have been proved

to outperform these non-graph-based methods by checking fewer data points to achieve

the same recall [69, 16, 121, 62]. Another line of work that is closely related to Speed-ANN

is to accelerate ANN search by varied accelerators, e.g., FPGA [206] and GPU [106].

Parallel Graph Systems. Many graph engines and frameworks have been developed

in the past decade. Some of them are shared-memory, focusing on processing in-memory

datasets within a computation node, e.g., Galois [148], Ligra [175], Polymer [207], Graph-

Grind [188], GraphIt [211], and Graptor [191]. Some are distributed systems, e.g., Pregel [136],

GraphLab [133], and PowerGraph [79]. Some efforts focus on out-of-core designs (e.g.,

GraphChi [114] and X-Stream [166]) and process large graphs with disk support. Many

graph frameworks are also on GPUs, such as CuSha [109], Gunrock [194], GraphRe-

duce [172], and Graphie [86]. These graph systems are either based on a vertex-centric

model [136] or its variants (e.g., edge-centric [166]). These models are in the strict BSP

model [190]. Different from them (and other asynchronous graph traversal efforts [86, 85]),

Speed-ANN uses delayed synchronization that is in the spirit of stale synchronization [88]
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where workers are running in an asynchronous fashion before synchronization, which makes

it possible to retain high parallelism and also a low amount of distance computations.

Moreover, as aforementioned in the implementation, due to the uniqueness of ANN, it is

challenging to migrate many of these system designs to Speed-ANN directly.

Generic Search Schemes. Many efforts aim to parallelize various search schemes (e.g.,

BFS [175], DFS [147], and Beam search [141]). Although Speed-ANN ’s path-wise paral-

lelism design is inspired by prior parallel search algorithms on graphs, our work has a very

different focus and aims to: 1) identify that ANN’s convergence bottleneck comes from

the fact that ANN requires to find many targets that may be (or not be) present in the

graph—a search scenario that is very different from many previous graph search problems;

2) several optimizations specifically tailored for reducing the number of distance compu-

tations and synchronization overhead from path-wise parallelism, such as staged search

and redundant-expansion aware synchronization.

4.7 Chapter Summary

This work looks into the problem of accelerating graph-based ANN search algorithms on

multi-core systems, performing comprehensive studies to reveal multiple challenges and

opportunities to exploit intra-query parallelism for speeding up ANN searching. Based

on the detailed performance characterization, we propose Speed-ANN , a similarity search

algorithm that takes advantage of multi-core CPUs to significantly accelerate search speed

without comprising search accuracy. Speed-ANN consists of a set of advanced parallel de-

signs, including path-wise parallelism, staged search, redundant-expansion aware synchro-

nization, loosely synchronized visit map, and cache friendly neighbor grouping, system-

atically addressing all the identified challenges. Evaluation results show that Speed-ANN

outperforms two state-of-the-art methods NSG and HNSW by up to 37.7× and 76.6× on

a wide range of real-world datasets ranging from million to billion data points.
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Chapter 5

Optimizing Computational

Graph-based Deep Neural

Network Inference on

Microcontrollers

5.1 Introduction

In this chapter, we explore the range of applications to the machine learning applications

running on embedded systems such as microcontrollers units (MCUs). Tiny machine

learning (TinyML) is a fast-growing field that is the intersection of machine learning and

embedded systems [125]. On the one hand, machine learning (ML) applications have been

employed in various hardware, from large-scale clusters to personal mobile phones, while

the demand to deploy ML applications to new platforms has been growing continuously.

On the other hand, the number of embedded devices has reached 250 billion and still has

a strong projected growth over coming years [216]. The combination of machine learning

and embedded systems gives rise to new opportunities for TinyML which might bring the

application scope of ML to a new level.
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Compared to machine learning applications that run on large machines or even mobile

phones, applications running locally on tiny devices have three major advantages. The

first advantage is low cost. Tiny devices such as MCUs are very cheap. For example, the

average selling price of 23-bit MCUs is $0.20 in 2020 [182]. Enabling ML applications on

those tiny devices can allow more people to enjoy the convenience that ML techniques

bring. The second advantage is low network latency. Local computation on the device

does not depend on a connection to the cloud or servers, which is suitable for applications

that require stringent response latency or that run in extreme environments without an

internet connection. The third advantage is high privacy. Some small applications, such as

wake word detection, can be highly integrated with daily life. As the tiny device does not

have an internet connection, all input data monitored and collected are processed locally

without privacy concerns.

The major challenge of deploying ML applications to embedded devices is the limited

computational resources, especially the computational power of processors and the size

of memory [144]. First, the limited power of the processor might cause high response

latency that is longer than expected. Second, the scarcity of memory limits the range of

applications that can be deployed. For example, a state-of-the-art ARM Cortex-M4 MCU

has only 324KB SRAM and 2MB Flash storage, which is impossible to run some large

off-the-shelf deep learning models (DNNs).

Taking into account the hardware constraints, the objective of this work is to improve

the inference performance of deep neural networks (DNNs) on MCUs and also mitigate the

memory constraints by taking full advantage of hardware resources. First, for the neural

networks that can directly fit in the memory, we optimize the operations to provide better

latency performance. Second, for the large models that cannot fit in on-chip memory, we

exploit the off-chip memory and study its performance effects.

In these preliminary results, we use fine-tuned loop unrolling to improve the perfor-

mance of the convolution operation and use lightweight quantization to reduce the over-

head of re-quantization. Moreover, we test the performance effects of off-chip memory.
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The ultimate goal in the future is to design an end-to-end inference framework that can

provide optimal latency performance for various neural networks.

5.2 Background and Challenges

5.2.1 Neural Network Execution

A given neural network can be regarded as a computational graph where the vertices cor-

respond to operations (also called layers or operators). An operation takes one or multiple

input tensors and produces an output. The edges in the computational graph correspond

to the dependencies between individual operations, as one predecessor operation’s output

will become its successor operations’ input.

The inference proceeds by evaluating operations one by one in their topological order

in the graph. Some operations, such as convolution, have weights or parameters that

will load into memory during evaluating. Meanwhile, an operation requires buffers for its

inputs and output to be present in memory. Otherwise, the operation cannot commence.

The total size of its weights, inputs, and output make up the memory footprint of the

operation, and the total size of weights or parameters determines the size of the neural

network or model.

5.2.2 Resource Scarcity of Microcontrollers

As a device with limited resources, a microcontroller typically has a low-frequency process-

ing unit from tens to hundreds of megahertz, such as 180 MHz for STM32F469NI [184],

equipped with 128–2048 KB of on-chip memory. The on-chip memory consists of two

parts, i.e., the SRAM that supports read and write by programs, and the Flash memory

that is read-only during execution.

While the Flash acts as the storage to hold the executable code and static data,

SRAM acts as the memory buffer where the code can allocate, read, and write temporary

variables. Unlike general computers, there is no intermediate memory level between the
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SRAM and Flash. However, an MCU board can equip peripherals, including off-chip

memory, such as QSPI, SDRAM, and SD-card. Those off-chip memories usually have

larger capacity but lower speed than on-chip memory.

Most MCUs are bare-metal devices and do not have operating systems. After a com-

piled program is loaded into its Flash, the MCU keeps running the program once it has

been powered on. The memory limit for the program comes from two parts. First, the

total size of the binary program itself cannot exceed the Flash size (usually 1–2 MB). Sec-

ond, the program cannot have a memory footprint larger than the SRAM size (typically

16–1024KB).

Likewise, neural network inference on MCUs has the same memory requirements com-

ing from the two types of on-chip memory. Weights or parameters of a model are im-

mutable and compiled into the executable code as static data stored in the Flash. All

intermediate tensors that are allocated when evaluating an operation at runtime would

have to be stored in SRAM. Therefore, the model size and peak memory footprint are

constrained by the capacities of the Flash and the SRAM, respectively.

5.2.3 Challenges

Considering the constraints from hardware resources, the challenges of neural network

inference on MCUs can be divided into two parts:

1. For small models that are able to fit in the Flash and SRAM, how to improve their

inference latency?

2. For large models that cannot even fit in the Flash, how to deploy them on MCUs

for inference?

5.3 Optimizations

We studied some optimization techniques to improve deep learning inference performance.

For small networks that can fit in memory, we studied lightweight quantization and loop
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unrolling to improve their inference latency. For large networks that can not fit in the

on-chip memory, we tried exploiting off-chip memory to execute the inference.

5.3.1 Lightweight Quantization

Quantization is a technique that can provide a significant decrease in not only a neural

network’s memory footprint but also its whole size. In general, quantization reduces the

number of bits used to represent each weight of the model so that the total size is reduced

by the same factor [150]. In the TinyML scenario, this is very important as memory

scarcity is a major constraint for MCU hardware. Besides, quantization enables the use

of fixed-point instead of floating-point encoding. In other words, weights are represented

as integers (e.g., int8) rather than floating-point types (e.g., float32), which allows

operations to be performed using integer instructions. This is of benefit because some

MCUs do not have floating-point units. Thus their floating-point instructions must be

emulated in software, introducing a large overhead [158]. Besides, presenting values in

8-bit integers also enables the usage of SIMD instructions supported by some MCUs.

We inspected the inference workflow of quantized neural networks in CMSIS-NN. In

the beginning, it takes quantized neural networks whose weights are encoded in int8 in

advance. When executing a convolution operation, the intermediate results are stored

in int32 formats at first and then are re-quantized into int8 as the final results. The

re-quantization scheme is shown in Formula 5.1.

Qc =
Scale×Qa ×Qb + 230

231
≫ Shift (5.1)

Here theQa andQb are in int8 and their product is in int32. The final resultQc is in int8

after quantization. The values Scale and Shift are in int32 and are calculated according

to current filters during the inference, and this scheme contains at least two multiplications

and one division. According to profiling results, the overhead of re-quantization computa-
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tion takes 23.0% of the total inference latency for a given MobileNetV2 model [167], not

including the calculation overhead of Scale and Shift.

In order to reduce the re-quantization overhead, we employed a new lightweight quan-

tization scheme with the help of quantization-aware training. The scheme is shown in

Formula 5.2.

Qc = (Qa ×Qb)≫ Shift (5.2)

Here the value of Shift is given after training, so it does not cost calculation overhead, and

this scheme only has one multiplication and a shift operation. The preliminary evaluation

results of latency are shown in the evaluation section.

5.3.2 Loop Unrolling

Convolution is an important operation in neural networks, especially in Convolution Neu-

ral Networks (CNNs). It convolutes the input tensors with its filters by computing their

inner product. A typical implementation of convolution is using im2col (image-to-column)

approach [61], which has been highly successful in neural network frameworks such as

TensorFlow Lite for Microcontrollers (TFLM) [54] and CMSIS-NN [116]. For example,

CMSIS-NN uses im2col to transform two columns of input matrices and compute their

inner produce with the kernels in every iteration. Therefore, the convolution turns out to

be implemented as matrix multiplication that consists of nested for-loops.

Loop unrolling is a traditional optimization technique for improving loop performance.

It occurs by extending the necessary code manually for the loop to occur multiple times in

the loop body and then updating the conditions and the iteration index accordingly [112].

When unrolling a loop by an unrolling factor of K, the loop body repeats K times, and

the iteration space is reduced by K.

The benefits of loop unrolling come from three parts. First, it reduces loop overhead
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since the total number of iterations is reduced to produce the same output. Second, it

allows some variables to be kept in registers for fast access. Third, increase the opportunity

of instruction level parallelism [36]. However, a too-large unrolling factor might hurt the

performance because of the increased code size and register spilling [39]. Therefore, how

to choose a proper unrolling factor is a challenge to achieving optimal performance for

operations that depend on loop-structure computation.

We examined TFLM and found that it used CMSIS-NN’s operation implementation.

Besides, it implemented the convolution operation by using matrix multiplication which

applied loop unrolling with the factor of 2. We tested different unrolling factors to see

their effects on inference latency. The preliminary results are shown in the evaluation

section.

5.3.3 Off-Chip Memory

Besides on-chip memory, off-chip memory is the memory outside the MCU core. Common

off-chip memory available for MCUs includes Quad-SPI NOR Flash (QSPI) and SDRAM.

QSPI corresponds to the on-chip Flash and can hold the executable code. Meanwhile,

SDRAM corresponds to the on-chip SRAM and can be used for intermediate variables

during the execution. The capacity of QSPI and SDRAM is usually tens of megabytes,

which is larger than the on-chip memory. However, the access speed for them is slower.

Some neural networks cannot be executed on MCUs because their whole sizes are too

large. As mentioned in Section 5.2.2, a model is compiled into the executable code before

being loaded into the Flash of an MCU device. If the model size is too large, it cannot be

held by the Flash directly.

The intuitive idea is to exploit the available off-chip memory to hold large models

when running on MCUs. The challenge is how to determine which part of the network

should be put on slow memory. In the preliminary testing, we put the whole model into

the off-chip memory, allocated intermediate variables in off-chip memory, and tested its

inference latency. The preliminary results are shown in the evaluation section.
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5.4 Preliminary Evaluation

This evaluation section shows some preliminary results of techniques that were introduced

in this work, including loop unrolling, lightweight quantization, and off-chip memory.

Evaluation Objective. The major evaluation objective is the latency – how long it takes

to finish the inference compared with the baseline. Specifically, the objective is to show

how the loop unrolling, lightweight quantization, and off-chip memory influence inference

latency.

Platform. The MCU device used for testing is STM32F469NI-DISCO [183]. It has

an ARM Cortex-M4 processor with a frequency of up to 180MHz, 324KB SRAM for

temporary variables, and 2 MB Flash for binary code. It is also equipped with other

peripherals including 16 MB Quad-SPI NOR Flash (QSPI) and 16 MB SDRAM.

Baseline. The inference framework used as the baseline is TensorFlow Lite Micro (TFLM) [54].

It is an interpreter-based framework designed for deploying deep learning models to embed-

ded hardware. It also allows hardware vendors to provide platform-specific optimization

for some particular operations. In the evaluation, TFLM employs high-performance ARM

CMSIS-NN libraries [116] for common deep neural network operations, such as convolu-

tion, to provide optimized performance.

Models. For testing loop unrolling and lightweight quantization, we use a modified

MobileNetV2 model that has 3.3M MACs (multiply-accumulate operations). However,

this model is filled with random int8 values without training, so we did not test the

accuracy of our re-quantization method. For testing off-chip memory, we use another

larger modified MobileNetV2 model called mbv2-w0.3-r80 imagenet.tflite that is provided

by MCUNet [125]. It has 7.3M MACs and can barely be fitted in the Flash.

Implementation. The implementation of the optimization techniques is written in C++.

For loop unrolling and lightweight quantization, we implement the corresponding modi-

fied convolution operation and re-quantization operation and then integrate them into the

original TFLM framework. For off-chip memory, we add methods to change the work-
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flow and put the whole binary code into QSPI and allocate new variables in SDRAM,

respectively, to test its effects on latency performance.

5.4.1 Effects of Lightweight Quantization

baseline quant.0

50

100

150

La
te

nc
y 

(m
s.

)

139
116 (1.18x)

Figure 5.1: Lightweight quantization latency performance and combined with loop un-
rolling.

Figure 5.1 shows the inference latency performance of lightweight quantization (quant.)

and also the combination of quantization and loop unrolling (quant.+unroll.). With only

the lightweight quantization, it can have 1.18× speedup over baseline. As the model has

not been trained yet, the effect of quantization on accuracy is unknown at this moment.

Providing a suitable quantization method while guaranteeing the accuracy is part of future

work.

5.4.2 Effects of Loop Unrolling

Figure 5.2 shows the inference latency comparison between the baseline and different loop

unrolling settings for the convolution operation. The computation kernel contains a 2-

level for-loop. For the convenience of discussion, here outX-inY denotes the outer loop

uses unrolling factor of X, and the inner loop uses Y . For example, the baseline uses the

unrolling setting of out2-in2, meaning that the unrolling factors for its outer and inner
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Figure 5.2: Loop rolling factor settings and latency performance.

loops are both 2.

We tested several different unrolling settings. The best performance comes with out1-

in4 that has 1.07× speedup over the baseline. The speedup does not show a significant

improvement in latency for two reasons. First, only the convolution operations use fine-

tuned loop unrolling settings, and there are other operations in the neural network, al-

though convolution accounts for about 70% total latency. Second, the baseline already

exploits loop unrolling to improve performance, although the unrolling factor might not

be universally optimal. How to automatically choose a proper setting for a given neural

network and a device is a part of future work. Together with lightweight quantization, it

can have 1.30× speedup over baseline.

5.4.3 Effects of Off-Chip Memory

Figure 5.3 shows the effects of off-chip memory upon inference latency. The neural network

for testing can barely be fitted in the on-chip Flash. In total, the profiling contains four

memory usage patterns: 1) Flash+SRAM uses only on-chip memory. The binary code

compiled with the model is loaded in the Flash, and the program creates temporary

variables in the SRAM; 2) Flash+SDRAM keeps the binary code in the Flash while

creating temporary variables in the off-chip SDRAM. 3) QSPI+SRAM uses the off-chip

QSPI to house the binary code and uses on-chip SRAM to hold intermediate variables.
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Figure 5.3: Off-chip memory latency performance.

4) QSPI+SDRAM uses both the off-chip QSPI and SDRAM for holding the binary code

and temporary variables, respectively.

The results show that using SDRAM instead of SRAM increases the latency to 1.28×

over the baseline. In contrast, using QSPI instead of Flash increases the latency to 12.47×

over the baseline, which is a large performance downgrade. Using both SDRAM and QSPI

causes the latency to increase to 12.50×. Here neither the binary code nor the temporary

variables use a mix of both on-chip and off-chip memory. How to properly choose the part

of data to be put on off-chip memory in order to mitigate the performance decline is part

of future work.

5.5 Related Work

Hardware. Most published work about neural network applications on MCUs ([125, 124,

167, 144, 20, 54]) uses the devices based on ARM processors for testing purposes, such

as Cortex-M4 and Cortex-M7. Some commercial products based on the ARM platform

include STM32 series [35], Arduino Nano [13], SparkFun Edge [180], etc. Meanwhile, some
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existing work targets the open PULP platform [160]. GAP8 processor is a commercial

implementation of the PULP platform, which is designed based on RISC-V architecture

and distributed by GreenWaves [80].

Software. There are several deep learning frameworks for MCUs. ARM provides CMSIS-

NN that consists of efficient implementation of many operations [116]. TensorFlow Lite

for Microcontrollers (TFLM) is a general framework developed by Google [54]. It is

an interpreter-based framework that contains its own implementation of operations but

also is able to integrate with other libraries such as CMSIS-NN. Other than that, there

are several frameworks including TinyEngine [125], MicroTVM [44], CMix-NN [34], etc.

STMicroelectronics also provides an extension tool named X-CUBE-AI to deploy deep

learning models on its STM32 series MCUs [185].

There are also frameworks particularly for PULP-based platforms. GAP8 has its own

operation library named PULP-NN [72]. Other frameworks aiming to deploy deep learning

models on GAP8 processors include FANN-on-MCU [193] and Dory [31].

Deep Learning Applications. Some existing work provides efficient design for general

deep learning applications on MCUs. For example, MCUNet [125] uses the neural ar-

chitecture search (NAS) technique to search for suitable model structures for running on

MCUs. Its successor work uses a patch-based method to reduce the peak memory foot-

print when doing inference [124]. SwapNN [144] dynamically swaps neural network data

chunks between SRAM and external SD card, although it does not consider the QSPI or

SDRAM. Some existing work aims at some specific applications running on MCUs. Those

applications includes short commands recognition [82], face recognition [204], environmen-

tal sound classification [64], etc. Besides inference, there is also existing work conducting

neural network training on MCUs [126, 154].
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5.6 Chapter Summary

Deep Neural Network (DNN) applications are widely used in daily life. The platforms

running those applications are diverse, from mobile phones to cloud clusters. Meanwhile,

large numbers of tiny edge devices such as microcontrollers (MCUs) are integrated into

daily devices and have a promising growing trend. However, deploying and employing

DNN applications on tiny devices is still challenging because of the limited computing

resources those devices have. We study some possible optimization techniques to bridge the

gap between the applications and the devices. For small enough DNN models, we aim to

improve the inference latency on MCUs by lightweight quantization and loop unrolling. For

large models that cannot fit in the device directly, we test the off-chip memory performance

to take full advantage of the resources. Preliminary results show latency improvement to

some extent. The future goal is to provide optimal latency performance for various neural

networks.
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Chapter 6

Conclusion and Future Research

Directions

6.1 Summary of Dissertation Contributions

Graph processing is an important building block of many modern applications. On the

one hand, those graph-based applications have difficulty achieving high performance from

parallelism techniques due to their irregular computation pattern and unpredictable con-

trol flow, and some of the applications in the database and machine learning fields even use

sophisticated algorithms that are inherently sequential and thus hard to be parallelized.

On the other hand, modern multi-core architectures provide massive computing resources

through their capability of parallelism, including thread-level parallelism, data-level paral-

lelism, and advanced memory hierarchy. This dissertation focuses on how to improve the

performance of graph-based applications via algorithm and system co-design. It studies

the characteristics of graph-based applications and provides deliberate optimizations to

improve the data locality, workload balance, and synchronization overhead. Furthermore,

it proposes parallel solutions to break the inherent dependencies of particular applications.

First, for typical graph algorithms with available parallel solutions, this dissertation

presents the insight that the whole graph processing system stack, including data rep-



6.1. SUMMARY OF DISSERTATION CONTRIBUTIONS 134

resentation, the execution model, and job scheduling, should match the features of the

hardware. It presents GraphPhi as a new approach to graph processing on emerging Intel

Xeon Phi-like architectures. Specifically, GraphPhi consists of 1) an optimized hierarchi-

cally blocked graph representation to enhance the data locality for both edges and vertices

within and among threads, 2) a hybrid vertex-centric and edge-centric execution to effi-

ciently find and process active edges, and 3) a uniform MIMD-SIMD scheduler integrated

with a lock-free update support to achieve both good thread-level load balance and SIMD-

level utilization. Besides, our efficient MIMD-SIMD execution is capable of hiding memory

latency by increasing the number of concurrent memory access requests, thus benefiting

more from the latest High-Bandwidth Memory technique. We evaluate our GraphPhi on

six graph processing applications. Compared to two state-of-the-art shared-memory graph

processing frameworks, GraphPhi results in speedups up to 4× and 35×, respectively.

Second, for particular graph applications without nontrivial parallel solutions, this

dissertation studies a state-of-the-art 2-hop labeling approach named Pruned Landmark

Labeling (PLL), which is used to solve the shortest path distance problem for large graphs.

PLL imposes a control-flow dependency among each graph traversal iteration, which re-

duces its algorithmic complexity but becomes its major obstacle to enabling parallelism.

This dissertation re-designs PLL from a parallel processing perspective and proposes the

algorithm named BVC-PLL, which breaks PLL’s inherent dependencies and parallelizes

it in a scalable way. This dissertation also demonstrates how the BVC-PLL algorithm

can be extended to handle directed graphs and weighted graphs and how the version for

weighted graphs can benefit from SIMD parallelization. In the results, the sequential

BVC-PLL can run above 2× faster than the original PLL (both using one single thread).

And the parallel BVC-PLL shows an average speedup of 6.6× over sequential BVC-PLL

on a 20-core shared memory machine, and up to 11.8× on a 16-node cluster.

Third, for particular applications using graph-based solutions, this dissertation re-

searches the sequential search algorithm for the graph-based indexing methods used for

the approximate nearest neighbor search (ANNS) problem. The sequential search algo-
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rithm employs best-first traversal along the underlying graph indices to search nearest

neighbors for given queries. This dissertation proposes Speed-ANN , a parallel similar-

ity search algorithm that adopts hidden intra-query parallelism that uses multi-cores to

accelerate the search speed while achieving high accuracy. It allows multiple walkers to

simultaneously advance the search frontier and relax the strict global order. The results

show that Speed-ANN reduces query latency by 13× and 17.8× on average of million-scale

datasets than two state-of-the-art graph-based solutions at 0.999 recall target, respectively.

It also offers up to 16.0× speedup on two billion-scale datasets.

Fourth, this dissertation explores the optimization opportunities for deep neural net-

work applications on MCUs. This dissertation exploits the lightweight quantization and

fine-tuned loop unrolling techniques to improve the inference latency, which provides to-

tally 1.30× speedup over baseline. This dissertation also tested the impact of off-chip mem-

ory by putting the executable code and intermediate variables in the QSPI and SDRAM,

respectively. Compared with SDRAM, QSPI results in a much larger decline in inference

latency.

6.2 General Strategies of Optimization

Based on the observation from this dissertation, there are some general strategies for

optimizing the performance of graph-based applications.

6.2.1 Algorithm Side Strategies.

First, it is important to design a parallel algorithm to expose potential parallelism oppor-

tunities. As mentioned before, some applications only have sequential algorithms. Those

algorithms are elaborated to reduce theoretical time complexity but also have an inher-

ent dependency, which is difficult to be parallelized. Thus, designing a parallel algorithm

for the applications can bring new opportunities for parallelism, allowing them to take

advantage of underlying parallel architectures.
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Second, the designed parallel algorithm should consider providing coarse-grained par-

allelism rather than fine-grained parallelism. Compared with fine-grained parallelism,

coarse-grained parallelism is able to provide enough workloads for multiple processors and

thus reduce the number of synchronization and corresponding overhead.

6.2.2 System Side Strategies.

First, data grouping is a general strategy not only for CPU but also GPU [109]. Data

grouping stores relevant data in contiguous memory, which is able to improve temporal

data locality and also spacial data locality. Because graph-based applications usually

have irregular memory access patterns, the improvement in data locality can make a big

difference in the final performance. Moreover, data grouping brings new dimensions for

organizing the data, which also provides opportunities for improving the load balance

among processors. In order to group relevant data together, some new storage formats

might be necessary. The new format should take into account the access and computation

pattern of the given application.

Second, when grouping data together, it is also important to consider the influence of

hierarchies. The design of the data hierarchy should match the features of the hardware.

For example, for CPU architectures, a hierarchy can achieve good performance when its

sizes match the CPU’s memory hierarchy; For GPU architectures, it is important to take

into account the size of warps and thread blocks to improve GPU utilization [173].

Third, some applications need to take the synchronization overhead into account, es-

pecially for ordered graph algorithms [212]. Designing a good synchronization mechanism

can reduce synchronization overhead and hence improve the final performance.

6.2.3 Comparison with GPUs

Although this dissertation focuses on optimization performance on CPUs, some challenges

and optimization ideas are also shared with GPUs.
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First, data layout and format for memory access regularity. GPU has a global mem-

ory shared by all GPU processors. When accessing the global memory, the threads of a

warp use one single coalesced memory access if they are accessing contiguous memory ad-

dresses [109]. However, graph-based applications usually have irregular memory accesses,

which require multiple memory accesses by a GPU to fetch all data scattered across differ-

ent memory locations. This irregularity impedes a GPU from achieving its peak memory

bandwidth. Therefore, designing a proper graph data layout and representation is also

important for GPUs. To overcome the irregular memory access issue, some work, such

as CuSha [109] and GTS [110], propose particular data formats to reduce non-coalesced

memory accesses.

Second, workload mapping for load balance. The complex graphs usually have skewed

degree distribution that a small part of vertices may have a very large degree than others.

As GPUs run in a Single Instruction Multiple Threads (SIMT) model, threads in a warp

are issued the same instruction. An uneven workload distribution among the threads

within a kernel call may harm the performance significantly [70]. Some work, such as

MapGraph [70] and GunRock [194], proposes workload mapping strategies to overcome

the load imbalance issue.

6.3 Future Research Directions

A possible short-term future research is to find some computational kernels that have a

graph-based pattern and also have a large impact on the performance of the whole system.

With different features, these kernels might need customized optimization techniques.

For general graph-based applications, one future work is to integrate existing optimiza-

tion into a graph-oriented compiler. The objective of this compiler is to generate optimized

code for different target applications and platforms with various input data. First, the

compiler can automatically apply those optimization techniques based on the application

requirement. Second, the compiler can simplify the deployment procedure for different
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target platforms. Third, the compiler has a pipeline with an intermediate representation

that can expose potential optimization opportunities.

Another line of future research is to continue the exploration of deep neural network

applications on tiny devices such as MCUs. The possible goal is to design a framework

that can provide an end-to-end solution for model deployment. Moreover, accuracy is also

an important metric that has not been discussed in this dissertation. How to guarantee

accuracy while also improving the inference latency is still an open research question.
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