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Abstract
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A Satellite Imagery Approach to Estimating Migratory Flows in Guatemala Using
Convolutional Neural Networks

by Sarah LARIMER

Being able to predict migratory flows is important in ensuring political, social, and economic
stability. In the wake of violence, unrest, natural disasters, and social pressures, millions of mi-
grants have fled Central America in search of a better life. However, due to the infrequent nature
and high cost of census data, there is a need for a more remote and up to date approaches. Con-
volutional Neural Networks offer a computer vision based approach that is cheaper and with
significantly less lag. In this study, we seek to evaluate the effectiveness of different convolu-
tional neural networks in predicting migratory patterns in Guatemala. Using a combination
of open source satellite images and census data, we implement a variety of network architec-
tures that seek to predict migration both through regression and classification techniques. We
find that while regression and classification models do not prove to be an effective tool, there
is an opportunity for additional research into the spatial nature of migratory prediction. Our
preliminary results affirm the need for continued research and advancement in deep learning
algorithms to predict migratory flows.
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Chapter 1

Thesis

1 Introduction

Human migration is an international phenomenon that has important connections to the envi-
ronment, policy making, diplomacy, conflict resolution, social organization, and the economy
(Pellegrino, 2000). Migratory rates to the United States have been remarkably consistent over
the last 200 years, with the percent of the population born outside of the country increasing
only from 13% in 1860 to 13.6% in 2021 (Batalova and Ward, 2023).

Measuring migration is an important task for governments and policy makers to effectively
deal with changes in population and population composition. Unpredicted migration can lead
to over-strained cities, limited resources, social tensions, and even violence. It is estimated that
by 2040, 80% of urban growth will occur in the countries and cities that are least equipped to
handle the influx of in-movers (Office of the Director of National Intelligence, n.d.).

This study explores whether convolutional neural networks (CNNs) are a viable approach to
predicting migratory flows using satellite imagery or if more advanced techniques are worth ex-
ploring. We specifically test models which use a combination of open source Landsat 5 satellite
imagery and data from the 2002 census. This paper explores a variety of regression and classifi-
cation models that employ transfer learning, data augmentation, and parameter optimization.
First, we present a literature review covering current approaches to measure and predict migra-
tion, deep learning, and the intersection of neural networks and satellite imagery. In section 3,
we discuss the data sets that are use in our analysis. Then, an overview of methods and results
is given. Lastly, limitations and future directions are discussed.
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2 Literature Review

The phenomenon of migration has been a topic of interest in the social sciences for many years,
and it is a complex and multifaceted phenomenon that is driven by a variety of factors. Eco-
nomic factors have been identified as one of the key drivers of migration, as people seek better
job opportunities and higher wages in other countries or regions. This is particularly true for
migrants from developing countries who move to developed countries in search of better eco-
nomic prospects (Brettell and Hollifield, 2023). Political factors are also important drivers of
migration, including social unrest, violence, crime, and political instability (Burrows and Kin-
ney, 2016). Environmental factors are another reason why people may migrate, as changes in
climate and the environment can affect the availability of resources and the livelihoods of in-
dividuals and communities (Black et al., 2011, Abel et al., 2019). Finally, social and cultural
reasons are also important drivers of migration, including the pursuit of educational oppor-
tunities and the desire to join family members in a new country (Sue, Riosmena, and LePree,
2018). Understanding the various factors that drive migration is critical for policymakers and
researchers alike, as it can inform the development of policies and interventions aimed at man-
aging migration flows and addressing the needs of migrants and host communities.

This literature review will first cover current methods used to model migratory flows. Second,
it will cover a review of the most current deep learning models and their wide variety of appli-
cations. Finally, it will address the ways in which deep learning is being applied to predicting
migration which will serve as a foundation for the rest of the work that will be presented in this
paper.

2.1 Current Approaches to Measure & Predict Human Migration

Measuring & predicting migratory flows is a difficult task that has been of interest for gov-
ernments and researchers for decades. Some current survey based approaches to measuring
human migration include census data, inter-census surveys, country specific self identification
systems, and specialized studies such longitudinal studies (Massey and Capoferro, 2004). Pre-
dictive models using demographic, economic, and social variables can help account for migra-
tory flows in between census years (Tarver, 1961).

Census data and other inter-census surveys (surveys done between census years) provide direct
measures of migration. In the XI Population Census and VI Housing Census of 2002, the data
set of interest in this study (National Institute of Statistics (INE), 2002), a direct question is asked
on the number of international migrants that travel through each household in the previous 5
years. Other studies also use direct census data to directly quantify levels of migration (Siraj
et al., 2019). Siraj et al. used 5 years worth of census micro-data for Columbia at the ADM-
1 level to estimate migration. Using a logistic regression, they used a variety of economic,
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demographic, and geographic factors to estimate migratory flows. Combined with data from
the ADM-2 level, they used ADM-1 migration data to estimate the ADM-2 migratory flows and
then re-aggregate to select the best model which comparing the estimation and observations
had a correlation coefficient of 0.84. Their approach highlights the difficult that using survey
data has to estimate migration. Often information about migration is only directly collected
at the ADM-1 level so estimation of more granular spatial units is challenging. Furthermore,
census data is only collected every 10 years which makes updating models difficult and limits
their application to the current day.

Inter-census surveys gather additional information in between census years at a smaller scale.
These can provide additional information that fill in the gaps of census data. One such example
is to use the inter-census survey to estimate internal migration within a country such as the
2005 population survey conducted in China (Ebenstein and Zhao, 2015). Ebenstein et al. used
migrants place of origin and destination in order to estimate internal urban to rural migration
in China. They found that using origin-based counts resulted in an over-count of migrants in
comparison to a destination-based approach. They also found that different estimates over and
under represented migrants depending on whether their origin (hukou) was urban or rural.
While Inter-census surveys can be helpful in providing additional data, they also have limi-
tations. For example, in the Ebenstein study the 2005 survey was conducted with a different
sampling method than the regular decennial census that potentially resulted in an oversam-
pling of communities that experienced a large outflow of migrants and an under-sampling of
areas that received a large influx of migrants.

Other types of records can also be used to measure migration. This includes proxy variables
such as using the Gini index of inequality to measure the spatial focus of migration patterns
(Rogers and Sweeney, 1998). Migration from Mexico to the United States has also been ap-
proximated using an identification card program called Matricula Consular de Alta Seguridad
(Caballero, Cadena, and Kovak, 2018).

There is a large body of literature on quantitative models that seek to use demographic charac-
teristics of different regions and populations in order to measure migration. The most basic of
these is a gravity model based the population of regions of origin and destination, as well as the
distance between these two regions. Research using gravity models has achieved an R-squared
of .624 when estimating migration to the EU from neighboring countries (Ramos, 2016) and an
R-squared of .66 when looking at migration into Canada (Karemera, 2000). Other models seek
to incorporate environmental factors such as changes in climate or rainfall (Smit, 2002, Ajzen,
1991). For example, the Model of Migration Adaptation to Rainfall Change that when simu-
lated had a mean correlation coefficient of the modelled and observed data sets of 0.8 (Smith
and Kniveton, 2010). Basic econometric models can also capture gross migration by calculating
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the expected returns of balancing the costs of migration with the benefits. These econometric
models include variables such as the distance between capital cities in the regions, the wage
rate, unemployment rate, educational outcomes, population, urbanization, and "migrant stock"
or the current number of people from the origin location living in the destination location. An-
other type of econometric model used is the Human Capital model (Walsh, 1974) that evaluates
the earnings rate and costs of migration under the assumption that the marginal rate of substi-
tution leisure for consumption is equal to the wage rate. While economic and statistical models
can provide an interesting perspective on migratory flows and perhaps capture some migratory
patterns, many models rely heavily on theoretical assumptions that are not met in real life such
as the symmetry assumption in the gravity model that assumes migration from location A to
location B is the same quantity as migration from B to A (Hoda Rahmati S, 2017), or the lack of
mobility costs in the human capital model (Walsh, 1974).

Markov Chain Models have also been used by researchers to measure and predict migration
(Constant, 2012, Lindsay, 1972). One such example is a multistage network equilibrium model
(Pan, 1994). The authors implemented MCM in order to capture the path dependency of migra-
tory flows instead of modeling a single step from origin to destination. Their implementation
also captured the intermediary locations a migrant may pass through. This is especially rele-
vant in places like Latin America where crime, natural landscapes, and political climates limit
the places where border crossings can occur. As discussed later, this appears in Guatemala as
many migrants end up stuck in towns near borders as they wait to cross.

As new big data sources become available, innovative approaches to measure migration are
being used. Newer techniques like using geo-tagged online search data (Böhme, Gröger, and
Stöhr, 2020) and social media data (Unver, 2022) seek to predict real-time migratory flows. In
other examples, phone records can be used to track human mobility (Bengtsson, 2017, European
Commission et al., 2016). Call Detail records (CDR) provided by telecommunications compa-
nies are being used to follow the location of anonymized individuals. This data can be used
to track internal and international migration over time. One such study used CDR to evaluate
internal displacement after natural disasters (European Commission et al., 2016). Other studies
use Google Location History (Kraemer et al., 2020). Kraemer et al. aggregated and mapped
Google Location History data to a 5km x 5km grid for locations where significant time was
spent. By using 70 million unique location pairs, they were able to map migratory information
for nearly 60 percent of the earth’s populated areas. Through their analysis and coupled with
other data sources, they were able to identify different migration trends across time as well as
across income groups.

The utilization of big data approaches, such as call records and Google search locations, pro-
vides various benefits for studying migration patterns. One advantage is that these data types
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are not self-reported, reducing the potential for biased reporting. Additionally, they are avail-
able in real-time or near real-time, enabling faster and more up-to-date analysis without the
cost of traditional surveying methods. However, these approaches present real challenges. For
example, call detail records (CDRs) rely on the assumption that each phone corresponds to a
unique individual, but phones can be gifted or shared by multiple people. CDRs can also only
track migrants with phones, which excludes many of the poorest migrants. Furthermore, CDR
data are usually available at a single country level, and integrating data across phone providers
can be difficult. The integration of Google Location History data partially resolves these issues
as it is available across countries and at more frequent intervals than call data. However, both
techniques can be undermined by migrants who switch SIM cards when leaving the country.

2.2 Deep Learning

Deep learning is a type of machine learning that involves training algorithms called neural net-
works to recognize patterns in data. Neural networks are composed of layers of interconnected
nodes that process and transform data as it passes through the network (Minaee, 2020). Deep
learning can be used for tasks such as image recognition (Pak and Kim, 2017, Wu and Chen,
2015) , speech recognition (Deng and Platt, 2018, Noda et al., 2014), and natural language pro-
cessing (Socher, Bengio, and Manning, 2012). Deep learning algorithms require large amounts
of labeled data and computing power to train, but can achieve state-of-the-art performance in
many tasks.

Convolutional Neural Networks (CNNs) are a type of neural network that have shown sig-
nificant success in image analysis tasks. In a CNN, the input image is first passed through a
series of convolutional layers, which apply filters to the image and produce a set of feature
maps (cite (Sylvain, Drolet, and Brown, 2019). Each filter learns to recognize a specific feature,
such as edges or corners, and the combination of filters in the convolutional layer results in the
extraction of more complex features (Simulink, n.d.).

In recent years, CNNs have been applied to a wide range of image analysis tasks, including
medical image analysis (Li et al., 2014b, Avşar and Salçin, 2019, Reshi et al., 2021), autonomous
driving (Kaymak and Uçar, 2019, Fujiyoshi, Hirakawa, and Yamashita, 2019), and remote sens-
ing (Zhang, Tang, and Zhao, 2019, Kattenborn et al., 2021, Shao and Cai, 2018). Using CNNs for
image analysis can take a few possible routes: Image classification which assigns a label to the
category of an image (Rawat and Wang, 2017), object detection which identifies unique compo-
nents within an image (Zhiqiang and Jun, 2017), semantic segmentation which can distinguish
broader components such as foreground and background (Briot, Viswanath, and Yogamani,
2018), image captioning which describes the content of an image (Gu et al., 2017), and style
transfer which learns the visual components of one image to translate to a new image (2016).
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Although the use of neural networks to predict migration is limited, there is an extended body
of literature on the power of CNNs for other predictive uses. Classification tasks vary from us-
ing medical imagery like MRIs to detect brain tumors and Alzheimer’s (Ayadi et al., 2021, Ab-
dulAzeem, Bahgat, and Badawy, 2021), ECG and PSGs to measure Arrhythmia and sleep cycles
(Chen et al., 2020, Phan et al., 2019), malware detection (Vasan et al., 2020), identifying natural
features like plants and landscapes (Lee, Park, and Kim, 2016, Pi et al., 2020, Valarmathi et al.,
2021, Lu, Tan, and Jiang, 2021), and text classification (Luan and Lin, 2019). Regression tasks
also encompass a diverse body of literature with examples such as using 2D and 3D deep learn-
ing models to estimate wave heights (Choi et al., 2020), age estimation (Niu et al., 2016, Ren et
al., 2019) , facial reconstruction (Jackson et al., 2017), estimation harmful cyanobacteria in rivers
(Pyo et al., 2019), cell counting in laboratory samples(Xue et al., 2016), pain intensity estimation
in videos(Zhou et al., 2016), fetal head circumference(Zhang et al., 2020), and even apparent
personality traits from people talking on camera.(Ventura, Masip, and Lapedriza, 2017)

2.3 Neural Networks and Satellite Imagery

An emergent use of Neural Networks is their application to satellite imagery. They have been
used for a variety of image analysis tasks that involve classification, regression, and object de-
tection. As large, high quality, and open-source data sets are becoming more accessible, the
combination of neural networks and satellite imagery has continued to grow.

Neural networks have been used for a variety of satellite image classification tasks. These in-
clude classifying building damages (Duarte et al., 2018), unused landscape (Akshay et al., 2020),
construction activities (Yeşilmen and Tatar, 2022), crop types (Kussul et al., 2017), land use (Ku-
mar and Gorai, 2022), and cyclone intensity (Zhang et al., 2021a). These models perform with
relatively high accuracy such as using Landsat 8 imagery to classify land cover with 92 percent
accuracy (Li et al., 2014a).

Satellite imagery in conjunction with neural networks is also used to do a variety of image
regression tasks. These include estimation of physical attributes like surface soil moisture
(Singh and Gaurav, 2023), inter-city road quality(Cadamuro, Muhebwa, and Taneja, 2019), for-
est height (Ge et al., 2022), building orientation angle(Shahin and Almotairi, 2021), urban ex-
pansion (Boulila et al., 2021) and winter wheat yield(Morales and Sheppard, 2021). Other stud-
ies estimate non-visible socioeconomic factors such as estimating housing prices(Bency et al.,
2017), predicting poverty levels (Jarry et al., 2021). Many of the limitations and challenges that
occur in these studies are points of interest in this paper. For example, when looking at housing
prices, a consideration is how much of a neighborhood to include in an image to estimate price.
Because the variables of estimation are not explicitly shown in the images, the relevant range
of which to include is ambiguous. Part of how Bency et al. addresses this is through training 6
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different neural networks, one for each image resolution available. Another strategy employed
is to describe what can be seen in the images by tagging places of interest such as post offices
and stores.

Lastly, deep learning models have demonstrated high performance with object identification
tasks such as detecting clouds (Segal-Rozenhaimer et al., 2020) using both visible RGB bands
and NIR bands, water bodies(Zhang et al., 2021b) using a Multi-feature Extraction and Combi-
nation Network (MECNet), buildings (Li et al., 2020, Kim et al., 2021) like greenhouses and roofs
through Faster R-CNN, SSD, and custom CNNs, physical objects (Liu et al., 2020), earthquake
induced ground failure effects(Hacıefendioğlu, Başağa, and Demir, 2020), and oil spills (Seydi
et al., 2021). However, one limitation that these studies face is the discovery of a ground truth,
especially when the image quality is lower resolution or the object of identification is more
ambiguous such as cloud cover. The existence of supplemental data such as tagging locations
Google Places (Bency et al., 2017) can validate satellite imagery.

Studying migratory flows has increasingly utilized machine learning approaches due to the
accessibility of large and open source data sets. Current satellite imagery based approaches
include mapping the distribution and growth of informal settlements (Corbane et al., 2017),
and estimating population movement during natural disasters (European Commission et al.,
2016). Other examples include using dwelling detecting algorithms on refugee and IDP camps
(Wickert, 2019), land cover classification to monitor environmental drivers (Atik and Ipbuker,
2021), and contextualizing urbanization and armed conflict in Goma using Landsat data (Pech
and Lakes, 2017). More recently, deep learning models have fused satellite imagery with census
data in order to achieve higher performance (Runfola et al., 2022). This approach involves in-
corporating census data in the form of a social signature as a joint input into the neural network.
Using the full social signature with imagery resulted in an r2 of .72 and around 64% of estimates
accurate to within 1000 migrants.

3 Data

3.1 Study Area

This study aims to predict migratory patterns in Guatemala, a country with 197 unique munic-
ipalities spanning over 42,000 square miles. Guatemala was chosen as the focus of this research
due to its status as the largest country in the Northern Triangle, an area known for its tumul-
tuous political climate and significant migrant population. In 1960, Guatemala entered a 36
year long civil war that drove many people to migrate to other parts of Central America and
the United Sates. Following the war’s conclusion in 1996, Guatemalans continued to leave in
the wake of continued poverty, civil unrest, and natural disasters (Jonas, 2013). The temporal



Chapter 1. Thesis 8

area of focus for this study is from 1997-2002. This time period directly follows the civil war
and also includes the 5 years before the 2002 census, the most recent data available.

FIGURE 1.1. 2002 Guatemala Municipality Administrative Boundaries.

3.2 Census Data

Census data is used to determine the number of international migrants in each municipality.
Census data was retrieved from IPUMS International (National Institute of Statistics (INE),
2002). The most recent census data available for Guatemala is the 2002 census. This was a
10 percent sample census that asked respondents questions at the individual and household
level. The sample had a sample size of 1121946 people located within 222,770 households. The
variables of interest in this data set included GEO2GT2002 (the municipality in 2002), INTMIG1
(the number of international migrants), and POPDENSEGEOLEV2 (the population density of
the municipality). Census data was downloaded by individual responses, aggregated based on
household, and then the number of international migrants was summed for each municipality.
To account for variation in population across the different municipalities, an additional column
was made that normalized the number of migrants in each municipality by the population den-
sity.
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TABLE 1.1: Sample Census Data Aggregated by Municipality

Municipality Pop. Density International Migrants Normalized Migrants

Guatemala 4074 61651 1.133

Mixco 4209 4250 1.00

Villa Nueva 4708 1690 .359

... ... ... ...

Atescatempa, El Adelanto 195 68 .465

Quesada, San José Acatempa 105 48 0.457

Santa Catarina llita 111 126 1.135

Population density is reported in persons per square kilometer and ranges from 2 to 4746 with
a mean of 325.09 and a standard deviation of 647.96. The number of international migrants
ranges from 5 to 61,651 with a mean of 1432.74 and a standard deviation of 5069.62. When
normalized by population density, the number of migrants ranges from 0.036 to 2,220.71 with
a mean of 18.31 and a standard deviation of 158.99. The distribution of both of these variables
can be found in Appendix A.

It is important to note that both the raw count of migrants and the normalized migrants both
contain one large outlier. However, this outlier is a different municipality in each distribution.
In the raw data, Guatemala City has significantly more migrants than the other municipalities.
However, when normalized for population density, it has a normalized population density of
around 15. The outlier in the normalized data is Flores and Melchor de Mencos. While it has
a relatively low number of migrants, it is also has a very low population density. The city of
Melchor de Mencos is the only major border crossing from Guatemala to Belize. Hundreds of
Guatemalans cross the border into Belize each day either to work or to go to school (Reynolds,
2010) While counted as international migrants, they are not the point of interest in this study.

TABLE 1.2: Outliers in Raw and Normalized Migrant Counts

Municipality Pop. Density International Migrants Normalized Migrants

Guatemala 1 4074 61651 15.133

Flores, Melchor de Mencos 7.0 15545 2220.71
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FIGURE 1.2. Number of international migrants by municipality.

3.3 Landsat Imagery

In order to compile the imagery for this study, Landsat 5 imagery was obtained using GeoPan-
das and Google Earth Engine. Of the seven bands available, only the three visible bands (B1:
Blue (0.45 - 0.52 µm), B2: Green (0.52 - 0.60 µm), B3: Red (0.63 - 0.69 µm)) were used, with
a resolution of 30m. The shapefile for Guatemalan municipalities in 2002 was obtained from
geoBoundaries. Since Guatemala’s administrative boundaries have undergone changes over
time, it was crucial to ensure that the correct year for boundaries was being used. The Google
Earth Engine API was used to download images of individual municipalities, employing a
bounding box method to capture the entire municipality, including parts of surrounding mu-
nicipalities.
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FIGURE 1.3. Bounding Box Methodology.
Im-

Images for municipalities that were too large to download via the script were
manually downloaded via Google Earth Engine. All municipalities were down-
loaded using a bounding box method where the northern, southern, western,
and easternmost points for each municipality were used to form a box around
the entirety of the area. As seen in this image, this method includes the entire

municipality but also parts of the surrounding regions.

FIGURE 1.4. Image Size Difference.

The smallest (Petapa: 218 x 192 pixels) and largest (San Andrés, San José: 3236
x 4687 pixels) municipality images in the data set.

■ 
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This method was selected over blocking out the surrounding municipalities, as municipal char-
acteristics such as economic, geographic, and social factors are not confined solely to their bor-
ders.1 As municipalities differ in area, the resulting images varied in size, ranging from the
largest municipality at 4,678x3,236 to the smallest at 192x218.

Satellite imagery from 1997-2002 was download and aggregated.Because the most recent census
data is from 2002, satellite imagery was downloaded from 1997-2002 and aggregated. This
included taking the average pixel value for each municipality across all of the available satellite
imagery. Municipalities ranged from 43 to 55 in the number of raw images that went into the
average pixel value. An average pixel value was taken to account for longer term drivers of
migration leading up to the census as well as to account for cloud cover.

FIGURE 1.5. Average Pixel Value.

1Thirty-four municipalities were too large to be downloaded automatically via the API, and were instead manu-
ally downloaded from Google Earth Engine (see Appendix B).

April 1999 September 2000 

Petapa Aggregate Image 
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Landsat imagery is a widely used in the field of remote sensing. Having collected data since
1972, Landsat has provided spatial, spectral, and radiometric data across continents, oceans,
coastlines, and islands for 50 years. (Wulder et al., 2019) Numerous studies have used Landsat
imagery to successfully train deep learning models for a variety of tasks. For example, Landsat
8 imagery was used to successfully identify man-made reservoirs in certain regions with 99
percent accuracy (Fang et al., 2019), active fire detection with 87 percent accuracy (Almeida
Pereira et al., 2021), and map/monitor salt storms with 93 percent accuracy (Aghazadeh et al.,
2022) Satellite imagery has also been used to study non-geological information such as mapping
temporal population density (Zhuang et al., 2021), estimating building heights (Cao and Huang,
2021) and detecting armed conflict damages (Pfeifle, 2022).

TABLE 1.3: Data sources and descriptive statistics

Data Type Source Average Median Min Max

Satellite Imagery Google Earth Engine (919,986) (789,751) (192, 218) (4678, 3236)

Migration Counts IPUMS Census Data 1432.7 169 5 61651
n = 197

4 Methods

This study explores whether convolutional neural networks (CNNs) are a viable approach to
predicting migratory flows using satellite imagery. A variety of model architectures were eval-
uated for both regression and classification tasks.

For all models, data were split using an 80:20 training/testing split with 158 municipalities
used for training and 39 for testing for all model types. Then, models were trained to do either
a regression or classification task. In either case, these models take in satellite imagery as an
input, process it trough a series of network layers, and produce an output, whether that be a
value (regression) or a category (classification).
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FIGURE 1.6. Model Workflow.

For regression tasks, a variety of model architectures were trained and a series of tests were con-
ducted to select associated hyper-parameters. Five model architectures were tested: ResNet50,
EfficientNetB7, InceptionV3, VGG16, and a custom 14-layer sequential model. These models
were iteratively run with a combination of select hyper-parameters such as image size, batch
size, optimizer, loss function, and whether or not data augmentation was employed. As neu-
ral networks can only accept standard image sizes, the images had to be standardized to the
same size, given their initial differing dimensions due to different sizes in municipalities. Batch
size refers to the number of images before updating the weights. Adam and Stochastic Gradi-
ent descent (SGD) were the 2 optimizers tested. The 4 different loss functions evaluated were
Mean Absolute Error (MAE), Mean Squared Logarithmic Error (MSLE), Mean Absolute Per-
cent Error (MAPE), and Mean Squared Error (MSE). Lastly, because the data set is small, data
augmentation techniques were tested in some of the models to see if they improved accuracy.
Through these tests, final metrics were recorded including the final learning rate and number of
completed epochs. These varied between models because callbacks for early stopping and de-
creasing learning rate on plateaus were employed. Models with the highest performance were
then explored further, including further testing including techniques such as unfreezing some
of the inner base model layers.

Classification tasks were also run to answer the same predictive question but just at a less gran-
ular level. In this case, both the raw count of migrants and the normalized migrant count were
classified into 1 of 4 categories: very few, few, moderate, and high number of migrants. The
same architectures as the regression models (ResNet50, VGG16, EfficientNetB7, InceptionV3,
simple sequential) were repeated. Models were then trained in a way similar to the regression
task by testing a variety of model parameters such as image size, batch size, and optimizer.
However, instead of testing different loss functions, different activation functions for the final
layer were tested instead. Because it is a classification task, Categorical Cross-entropy was the

Training set 
(80%) 

Convolulional layer Pooling layer Convolutional layer Pooling layer Fully connected 
layer 

0 Number of 
migrants 

Q High 

QMedium 

Q Low 

Q Few/none 

Output layer 
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loss function in all models. Like the regression models, the highest performing models were
then selected for further testing and iterations. Due to large class imbalances, class weights
were added to all of the classification models.

TABLE 1.4: Raw Count Data
Classifications

Category Range Count

Very Few <1 87

Few [1-10) 83

Mid [10-80) 23

High >80 4

TABLE 1.5: Normalized Data
Classifications

Category Range Count

Very Few [0-100) 61

Few [100-900) 98

Mid [900-11000) 34

High >11000 4

The pre-trained networks (ResNet50, EfficientNetB7, InceptionV3, and VGG16) all employ a
transfer learning technique. These models start from with the pre-trained weights from Ima-
geNet. ImageNet is a large ( 14 million observations) data set of images that cover over 80,000
unique objects (ImageNet, n.d.). The top layer is then removed and a new fully connected layer
is added which the model retrains to fit the task at hand. The inner layers remain frozen in order
to preserve the pre-trained weights. Pre-trained models build off the progress of computation-
ally expensive models without having to re-train the entire network, and generally perform
well. In this case, all models used weights that were a result of training on the imagenet data
set. For models that performed well with standard transfer learning, some of the inner layers
of the base model were systematically unfrozen and re-trained at a low learning rate to free
up more trainable parameters and facilitate increased performance. First, just the last frozen
layer before the top layer was unfrozen followed by the second and third to last. Then, a cus-
tom sequential model was also developed. This original sequential model has 14 layers with a
repeated convolutional-pooling-dropout structure.

5 Results

In these results we present the performance for both the regression and classification model-
ing approaches. In general, all model architectures performed similarly and we found that
techniques such as normalizing the data by population, unfreezing inner layers of pre-trained
networks, and switching from a regression task to a classification task, did not lead to sig-
nificant performance gains. Highest performing regression models had a MAPE of 80% and
highest performing classification models had an accuracy of 50%. However, because of outliers,
summary statistics have limitations in interpretability.
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5.1 Regression Results

For the regression task, models trained on the raw data performed significantly better than
models performed on the normalized data. As presented in the table below, the models trained
on the non-normalized data had a highest MAPE of 80% and across architectures only varied
by 10%. This is different from the same models trained on the normalized data where the best
performing model was 80% and the worst performing model at 854%. Also, neither unfreez-
ing inner layers nor adding data augmentation resulted in gains in accuracy for the regression
models.

The table of results below show a summary of the highest performing models of each archi-
tecture. Although MAE is very large relative to the mean number of migrants, the variance of
both the MAE and MAPE is large across municipalities and also subject to extreme outliers. In
a sample of predictions done on the highest performing VGG16 model, absolute error ranged
from 61,000 to 3 and percent errors ranged from 3% to 565%.

TABLE 1.6: Model Performance: Non-Normalized Data, Regression

Architecture Image Size Batch Size Epochs Optimizer Learning Rate Loss MAPE MAE

InceptionV3 360 15 23 Adam .001 MSLE 87.23 3842.71

VGG16 360 15 5 Adam .001 MAPE 82.20 3877.99

ResNet50 360 15 4 SGD .01 MAPE 81.80 3882.50

EfficientNetB7 720 5 8 Adam .001 MAPE 80.29 3875.47

Sequential 360 10 10 Adam .01 MAPE 87.66 3906.27

Normalizing the count of international migrants by population density resulted in worse model
performance. Only the custom sequential model was able to achieve a MAPE of under 100%. A
point of not here is that whereas the highest performing model on the non-normalized data was
EfficientNetB7 and the worst was the custom sequential model, this was nearly reversed for the
normalized data where the sequential model outperformed the other models by a substantial
amount and EfficientNetB7 had the second worst performance.

TABLE 1.7: Model Performance: Normalized Data, Regression

Architecture Image Size Batch Size Epochs Optimizer Learning Rate Loss MAPE MAE

InceptionV3 720 10 9 SGD .01 MSLE 854.72 11.06

VGG16 360 5 5 Adam .001 MAPE 156.97 9.90

ResNet50 360 15 12 SGD .01 MAE 155.52 10.00

EfficientNetB7 360 10 4 Adam .001 MAPE 164.79 9.83

Sequential 720 15 30 Adam .001 MSE 88.47 10.04
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5.2 Classification Results

Unlike the regression results, classification results improved when the data was normalized
and all of the top performing models of each architecture that were trained on both normalized
and non-normalized data performed similarly with accuracies from 45% to 50%. Similar to
the regression models, neither unfreezing the inner layers of the pre-trained models nor adding
data augmentation resulted in additional accuracy gains.

TABLE 1.8: Model Performance: Non-Normalized Data, Classification

Architecture Image Size Batch Size Epochs Optimizer Learning Rate Activation Function Accuracy

InceptionV3 360 5 3 Adam .001 tanh 44.73%

VGG16 360 10 6 Adam .001 tanh 47.37%

ResNet50 360 5 4 Adam .001 tanh 44.73%

EfficientNetB7 360 5 3 Adam .001 sigmoid 44.73%

Sequential 360 5 13 Adam .001 sigmoid 44.73%

Normalizing the data had a positive impact on performance and the top performing VGG16
model was able to achieve 50% classification accuracy. Interestingly, many of the top performing
models in each architecture switched which activation performed the best when the data was
normalized for population.

TABLE 1.9: Model Performance: Normalized Data, Classification

Architecture Image Size Batch Size Epochs Optimizer Learning Rate Activation Function Accuracy

InceptionV3 360 5 3 Adam .001 sigmoid 47.37%

VGG16 720 10 5 Adam .001 tanh 50.00%

ResNet50 360 10 7 Adam .001 sigmoid 47.37%

EfficientNetB7 360 5 4 Adam .001 tanh 47.37%

Sequential 360 5 15 Adam .001 sigmoid 47.37%

5.3 Spatial Distribution of Error

Looking at the spatial distribution of error can help better understand which municipalities are
resulting in the highest errors and if there are any commonalities between municipalities that
are predicted with significant error.

The map below highlights the spatial nature of error. Unsurprisingly, error in the model
does not appear to be random across space. Municipalities with the highest performance
tend to be clustered together and surrounded by other higher performing municipalities. The



Chapter 1. Thesis 18

municipalities with higher error appear to be less clustered together in some parts, however,
indicating possible municipality-specific reasons for high error.

FIGURE 1.7. Spatial Distribution of Error (VGG16 Regression).

The dark orange municipality in the top left of the country is San Andres, San Jose. Upon
further investigation, much of the municipality is covered by a national park. According to
the census, it had reported 21 international migrants. However the model over-estimated the
number of migrants to be 83. The large national park means much of the area is undevel-
oped natural land. Many of the other rural municipalities have higher number of migrants,
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potentially because of low paying agricultural jobs. Because of this, it would make sense
that the model over-predicts the number of migrants in this municipality because the highly
undeveloped nature of the national park.

There are also topographical reasons why the model might result in more error in certain mu-
nicipalities in comparison to others. The map below shows how the highest error municipalities
are located in relation to the topographical features of Guatemala.

FIGURE 1.8. Relationship of Error and Topographical Features.
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The cluster of 4 municipalities in the middle of the country also offer unique circumstances that
possibly explain the high error of the model. These municipalities (Panzos, Chahal, Purulhai,
and Santa Catalina la Tinta) are all over-predicted by the model. These municipalities sit on the
edge of a mountain range. Also, in 1970, the region that contains these municipalities (Northern
Transversal Strip) was part of an agricultural development program that looked to improve the
agricultural output of the area. This area is more agriculturally productive than the surround-
ing mountainous areas and may explain why the model over-predicted the number of migrants.

La Unión is the dark red municipality farthest to the right. Upon further investigation, this land
is in the shadow of the Sierra de las Minas which produces a climate effect called Chaparral.
Chaparral is semi-arid land that is similar to a Mediterranean climate and good for agriculture.
This would potentially make the land more profitable than satellite imagery by itself would
suggest. Additionally, there is another corridor of municipalities with high error. These
model also over-predicts the number of migrants in these areas although besides being along a
mountain range, the reasoning is unclear.

In a practical application sense, the top 5 municipalities with the highest percent error shown
on the above map all have fewer than 25 observed migrants but absolute errors of between 28
and 83. While this results in a high percent error, for practical application this means only a
difference of a few dozen people. Conversely, it is important to keep in mind when looking at
percent error that it can also disguise high error. For example, in the data shown here San Pablo
Jocopilas and Guatemala City both have approximately 100% error. However in terms of real
application that is an absolute error of 25 migrants and 61,566 migrants respectively.

6 Discussion

6.1 Alternative Models

While the models presented in this paper today perform significantly worse than current
models of migratory flows, the fact that any information at all is able to be derived from
satellite imagery alone has distinct advantages and important implications for future research.
Satellites circulate the globe every day and their imagery can be used to make up-to-date
predictions that are not bound by multi year survey projects. Furthermore, unlike many
statistical modeling methods that rely on difficult to acquire or delayed data, satellite imagery
is open source and accessible on Google Earth Engine.
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6.2 Socio-political factors

Border crossing towns highlight an important characteristic of international migration in Cen-
tral America which is that the velocity of migratory flows are not constant. Major border cross-
ing points appear to become locations where individuals aggregate while waiting for migratory
opportunities as migration, especially illegally, is a challenging, expensive, and dangerous pro-
cess. The average Guatemalan waits nearly 5 years to be granted asylum and smugglers charge
up to $8,600 to smuggle a single adult (Cordoba, 2019), a debilitation amount of money where
nearly half the population lives below the poverty line of $5.5 USD a day. Furthermore, as the
US pressures Mexico to limit migratory flows, many migrants are being forcibly turned away
at border crossings like Tecun Uman (Carrillo and Ramirez, 2020). For future research, it means
that many migrants are likely double counted in both their municipality of origin as well as
stuck in border crossing towns. The last phenomenon of relevance to this study are towns like
Joyabaj that receive a high number of Guatemalans deported from the US. With a population of
less than 85,000 people, it was the second highest destination of deported migrants following
Guatemala City.

6.3 Limitations and Future Directions

This study had a number of limitations in which we will discuss: spatial distribution of popu-
lation, outliers, a temporal aspect, limited scope, and an independence assumption.
Census data reported population density in persons per square kilometer. However, this gives
no indication of urban centers or the distribution of a population across space. For example,
a municipality that is moderately populated evenly across space could have a very similar
population density to a municipality that is primarily rural but with a large urban center.
This is an important concept to note as migrants from rural areas are over-represented in
migratory flows in relation to their proportional makeup of the Latin American population
(Riosmena and Massey, 2012). This potentially means that two municipalities with very differ-
ent climates and drivers of migration are viewed equally by the model. In future work, this
could possibly be corrected for by weighting the population density with an urbanization index.

A second consideration and limitation of the models considered in this paper are that both the
raw count data and normalized data had significant outliers. Whereas most of the data was
clustered around a single point, the presence of a few large data points skewed the distribution.
This is a more significant consideration for the regression models where a few large values
can dramatically impact performance metrics. For classification models, this resulted in a very
distinct class imbalance. Although class weights were employed to help mitigate the issue,
due to how few observations there were for the largest classes, there was still a chance that
all of the highest category municipalities were included in the training subset and none in the
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validation subset of the 80:20 split. Future researchers can seek to minimize this by using block
randomization to ensure that half of the under-represented classes always appear in the testing
subset.

A large limitation of this study is the removed temporal aspect. Although high quality satellite
imagery for Guatemala exists for decades, the study time frame is limited by the census data
available to report on the number of international migrants. This limits the relevance of the
study to the early millennium and future work would have to be done in order to apply these
models to current migratory patterns. This is for two main reasons. First, the political, social,
and natural landscape of Guatemala has changed in the last 20 years as a result of regime
changes, the rise of organized crime, and climate change. Secondly, the actual administrative
boundaries of Guatemala have changed since 2002 so future application of machine learning
models will have to account for these changes in municipality boundaries in both the satellite
imagery collected and the census data. Lastly, because the data was collected for five years prior
to the census, a recurrent neural network (RNN) approach might be beneficial in capturing the
temporal patterns. However, this model type was not tested in this study.

Fourth, the scope of this study was small in both the number of models tested as well as the
number of samples. Further robustness checks could be done with a variety of architectures
including other pre-trained models such as Xcpetion, DenseNet, or Inception. Additionally,
ensemble models could be used to employ multiple model architectures at once. In terms of
the small sample size, there are fewer than 200 municipalities in Guatemala. Future directions
could seek to expand on this by looking at smaller administrative divisions, expanding to
multiple countries trained together, or looking at countries that are geographically larger.

Finally, there are inconsistencies in how independently each municipality is evaluated by the
model through the nature of the bounding box approach taken to capture the satellite imagery.
Some municipalities were represented by images with significant portions containing aerial
views of other municipalities while other images were primarily dominated by the munici-
pality in question. This meant that there was inconsistency across the data set of how much
information about the surrounding municipalities was contained in an image. The meant that
in some cases there was not enough independence from surrounding areas. However, as many
migratory drivers impact entire regions at once, the model is also limited in that it evaluates
each municipality independent of where it is in space. Combined, this results in a model that
is both spatially too independent but also not independent enough. This could be partially
addressed through different image processing techniques such as blocking out parts of images
that do not correspond the to the primary municipality, or training models on a variety of zoom
levels.
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7 Conclusion

The study of migratory flows is an important topic yet challenging task when it comes to
basic deep learning models. This study seeks to answer the question of to what extent can
convolutional neural networks predict migration from satellite imagery alone. Both regression
and classification models were able to use satellite imagery to predict at least some variance in
migratory flows of Guatemala. Neither regression nor classification models had high measures
of accuracy. Highest performing regression models had a MAE of around 81 percent and
highest performing classification models achieved an accuracy of around 47 percent.

The model uses public ally available Landsat satellite imagery and 2002 census data. A
variety of model architectures were evaluated for both regression and classification tasks.
Parameter selection attempted to identify the highest performing models which were then
further explored with data augmentation techniques and the unfreezing of inner layers for
transfer learning based approaches. Due to a large variance in the data and the presence
of significant outliers, models were run on raw and normalized migration counts as well as
discreet classification categories.

While model performance in this study is low in comparison to the performance of other migra-
tion models, this is a testament to the variety of observable and unobservable factors that drive
migration. Future work can seek to supplement these models with other census data through
social signatures, include a measure of urbanization in the normalization process, and account
for changes in administrative divisions over time.
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Appendix A

Appendix

FIGURE A.1. Distribution of International Migrants (Raw Count).
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FIGURE A.2. Distribution of International Migrants (Normalized).
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Manually Downloaded Municipalities
• Guatemala
• El Jícaro, Guastatoya, Morazán, San Cristóbal Acasaguastlán, Sansare
• Iztapa, La Democracia (Escuintla), Masagua
• San Gabriel, San José El Idolo, San Lorenzo (Suchitepéquez), Santo Domingo Su-

chitepéquez
• Retalhuleu, Santa Cruz Muluá
• Barillas
• San Juan Ixcoy, San Sebastián Coatán, Santa Eulalia
• Concepción (Huehuetenango), San Miguel Acatán, San Rafael La Independencia
• Santiago Chimaltenango, Todos Santos Cuchumatán
• San Pedro Necta
• Ixcán
• Chicamán
• Salamá, San Jerónimo
• Cubulco, Granados, El Chol
• San Pedro Carchá
• Cobán
• Lanquín, Senahú
• Chisec
• Chahal, Cahabón
• Fray Bartolomé de las Casas
• San Francisco, Santa Ana, Sayaxché
• La Libertad (Petén)
• Flores, Melchor de Mencos
• San Luis
• Poptún
• Dolores
• San Andrés, San José
• Morales
• Puerto Barrios
• Los Amates
• Livingstón
• El Estor
• Gualán, Río Hondo
• Concepción Las Minas, Esquipulas
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