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ABSTRACT 
There is no debating the importance of data for artificial intelligence. The behavior 
of data-driven machine learning models is determined by the data set, or as the old 
adage states: “garbage in, garbage out (GIGO).” While the machine learning 
community is still debating which techniques are necessary and sufficient to assess 
the adequacy of data sets, they agree some techniques are necessary. In general, 
most of the techniques being considered focus on evaluating the volumes of 
attributes. Those attributes are evaluated with respect to anticipated counts of 
attributes without considering the safety concerns associated with those attributes. 
This paper explores those techniques to identify instances of too little data and 
incorrect attributes. Those techniques are important; however, for safety critical 
applications, the assurance analyst also needs to understand the safety impact of 
not having specific attributes present in the machine learning data sets. To provide 
that information, this paper proposes a new technique the authors call data hazard 
analysis. The data hazard analysis provides an approach to qualitatively analyze 
the training data set to reduce the risk associated with the GIGO.  

 
 
INTRODUCTION 

This paper focuses on a critical building block on 
the path to certifying machine learning software items 
- establishing assurance practices for the data set used 
to train, validate, and test the machine learning 
models. Key to addressing data assurance concerns 
associated with certifying machine learning is 
conducting the hazard analysis of data sets and 
assuring the adequacy of the data set. Thus, this paper 

works through what makes up data assurance for 
machine learning and devotes additional time on 
establishing hazard assessment artifacts for the data 
set. This paper also presents some techniques the 
industry is proposing for conducting data set 
adequacy, completeness, and representativeness, as 
well as an example of data hazard analysis. 
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OUTLINE 

An introduction to highlights of traditional 
software assurance is provided, which includes a 
comparison of what type of additional assurance is 
needed for machine learning, where data assurance 
plays a key role. After that introduction, what is 
necessary to successfully accomplish data assurance 
is covered, where data hazard assessment plays a 
foundational role. Given that foundational role, 
additional time is spent in this paper proposing what 
would be necessary for data hazard assessment. This 
topic is presented to the safety community to generate 
discussion and engagement. There are certainly 
additions that should be made to the approach, and we 
hope the introduction of this concept generates some 
of that feedback and recommendations. Also, with 
this introduction we hope to begin to prepare the 
safety community for the arrival of data assurance 
techniques, and their role in the certification of 
machine learning based software items. 

BACKGROUND 

As indicated by SAE International Aerospace 
Information Report (AIR) 6988 (Artificial 
Intelligence in Aeronautical Systems: Statement of 
Concerns, AIR6988™, 2021) and Aerospace Vehicle 
Systems Institute (AVSI) AFE-87 (AFE 87 Project 
Members, 2020), the traditional aviation framework 
certification guidance is not adequate for the 
uncertainty added by the probabilistic development 
techniques used by machine learning:  

“Industry standard development assurance 
processes such as ED-12C/DO-178C, ED-109A/DO-
278A, ED-80/DO-254, do not have guidance for AI 
techniques such as Machine Learning algorithms. For 
some AI techniques, it may not be possible to meet all 
ED-12C/DO-178C, ED-109A/DO-278A and ED-
80/DO-254 objectives such as those associated with 
the low-level requirements, implementation, 

integration, and verification activities. For artificial 
neural networks, there may be no meaningful 
representation of the internal structure of Machine 
Learning algorithm.”  (Artificial Intelligence in 
Aeronautical Systems: Statement of Concerns, 
AIR6988™, 2021) 

Moreover, AVSI AFE-87 indicates the 
“fundamentally different nature of data-based 
systems”, i.e., machine learning. AFE-87 goes on to 
indicate, “Traditional physical models are explicitly 
constrained, while data driven models are implicitly 
constrained by the observed phenomenon in the 
training data.”  

Our approach for the development of 
airworthiness certification guidance for machine 
learning considers the recommendations laid out in 
AIR6988 for establishing a framework for AI/ML, 
and also that of the AVSI AFE-87, SAE International 
Aeronautical Standard (AS) AS-6983 (SAE G-34, 
2022), EASA Level 1 (Soudain, 2021), and SCSC-
153B (The SCSC Safety of Autonomous Systems 
Working Group (SASWG), 2022).  

TRADITIONAL SOFTWARE ITEM ASSURANCE 

In general, the traditional software item assurance 
approach can be summarized as shown in Figure 1. Of 
course, Figure 1 is a bit of an oversimplification for 
the purposes of this paper. Other critical ML-based 
system assurance processes are not shown because 
they are similar to assurance processes for traditional 
systems. These include planning process, 
configuration management process, quality assurance 
process, and certification liaison processes. Processes 
not shown in Figure 1 but included in requirement 
assurance are high-level requirements (HLRs) 
processes,  low-level requirements (LLRs) processes 
and the bi-traceability between HLRs and LLRs. In 
addition, requirement assurance includes the bi-
directional traceability from HLRs to system/sub-

Figure 1: Traditional Software Lifecycle Assurance 

Note for Figure 1: Grey fill is used to illustrate existing traditional processes, i.e., processes covered under existing processes and 
standards. For example, software lifecycle is covered under RTCA DO-178C (SC-205, 2011). 
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system requirements. Implementation assurance 
includes design, coding, verification, and 
implementation, and the appropriate bi-directional 
traceability between those processes. It is through the 
execution of the objectives and activities associated 
with those processes that assurances are provided for 
the software item to ensure it will “perform [its] 
intended functions under all foreseeable operating 
conditions."  (14 CFR 25.1309 Equipment, systems, 
and installations.) Similar quotes are applicable for 
CFR Parts 23, 27, and 29.  

MACHINE LEARNING SOFTWARE ITEM 
ASSURANCE 

As indicated in AIR 6988 and AFE-87, additions 
are necessary to the traditional software lifecycle 
process assurance approach to account for the unique 
aspects of data-driven machine learning software 
development techniques.  Grey fill was used in Figure 
1 to indicate traditional software development 
processes, while in Figure 2 white fill is used to 
indicate necessary modifications or additions. For 
machine learning based software item development, 
data assurance and learning assurance are necessary 
assurance additions. In addition, enhancements are 
necessary to the processes that enable requirements 
and implementation assurance. Enhancements will 
also be necessary to the planning, configuration 
management, quality assurance, and certification 
liaison processes, but those are beyond the scope of 
this paper.  

For machine learning-based software item 
assurance, the traditional software item assurance of 
requirement and implementation assurance processes 
will be augmented by the addition of data and learning 
assurance. We propose that data assurance consists of 
ensuring, for example, the training, verification, and 
test data set correctness, completeness, and 
representativeness of the operational design domain. 
Correctness, completeness, and representativeness of 
the operational design domain are three attributes of 

the data set that will determine the accuracy and 
performance of a machine learning model in the 
operational design domain.  

Learning assurance consists of activities to 
confirm the intended machine learning model 
generalization performance is reached, e.g., not 
underfitting or overfitting,  not being susceptibility to 
bias or drift, and appropriate behavior for out of 
distribution samples. Underfitting occurs when 
unacceptable error occurs during model validation. 
This is often a symptom model susceptibility to bias 
and is an indication of too small of a training data set. 
Overfitting occurs when validation error is low, but 
test error is high. Overfitting is an indication that the 
model has memorized the training and validation set, 
i.e., is fitting the variance noise in the data, but is not 
generalizing. Addressing the expectations associated 
with the machine learning model requirements and 
learning assurance is out of scope of this paper but 
will be addressed in follow-on papers. 

Such follow-on work will go through the new 
machine learning development lifecycle (MLDL), 
which augments the machine learning 
implementation lifecycle (MLIL). The machine 
learning development lifecycle includes the processes 
to ensure the new development assurance 
expectations for machine learning are met.   

Data-driven machine learning software 
development does not use traditional software 
development methodologies. That is, data-driven 
machine learning development does not develop 
implementation source code and parameter values 
directly from low-level requirements (LLRs). Instead, 
machine learning trains a machine learning model, 
which is a set of hyperparameters, neurons, and layers 
from a training data set. The data set and machine 
learning model are based on a set of data and model 
requirements. The machine learning data 
requirements are used to drive the data collection 
process, where the data set must be correct, complete, 

Figure 2: Machine Learning Development Lifecycle Assurance 
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and representative of the deployment operational 
design domain. Once collected, processed, and 
curated, the data set is divided into three independent 
subsets that are used to train, validate, and test 
machine learning algorithms. We call the approach to 
ensure the data set is adequate (i.e., correct, complete, 
and representative, and collected, processed, and 
curated correctly, and split appropriately) data 
assurance, where data governance is the process to 
ensure data assurance. In this paper, learning 
assurance is the term used for adequately designing, 
developing, training, validating, and testing the 
machine model.  

Both new types of assurances (data and learning) 
are necessary to ensure machine learning is developed 
in a mature way to consider its use in flight and safety 
critical applications. Moreover, the addition of these 
two assurance approaches compensates for the loss of 
some traditional software development objectives and 
activities, e.g., loss of low-level requirements, and 
meaningfulness of traceability and design detail. The 
loss of the assurance provided by those traditional 
software development objectives and activities must 
be accounted for when contemplating the possible use 
of machine learning in flight and safety critical 
applications. 

DATA GOVERNANCE 
Data is one of the bigger technical debts (D. 

Sculley, 2015) of the machine learning processing: 
“Data Dependencies Cost More than Code 
Dependencies” and “Changing Anything Changes 
Everything (CACE)”. These technical debts, i.e., 
resources and risks, are spread across all the processes 
associated with data governance, i.e., data planning to 
allocation. Data collection alone spans various types 
of data acquisition which could involve discovering 
existing collected data sets or synthetic generation 
and augmentation of data sets. After the collection 
process, the preparation and processing begin where 
labeling and other improvements are necessary. The 
labeling can be an intensive and technical process 
involving manual labeling or a semi-supervised 
labeling technique. Where necessary, improvements 
to the data may be necessary, which can also be 
intensive. Through each of these processes, care must 
be taken to maintain the data set's validity and 
authenticity. The data set has a large impact on the 
performance of the model properly reflecting the 
required generalization behavior in the operational 

design domain. Benign and even imperceptible 
modifications to data can cause unexpected, 
unanticipated, and undesired behavior of the models 
when exposed to deployed operational design domain 
native data sources.     

As shown in Figure 3, the data governance process 
manages the data's sourcing, collection, processing, 
hazard assessment, and allocation. Data Governance 
provides the following processes, objectives, and 
activities to enable data assurance: data integrity, data 
hazard assessment, data planning, data completeness, 
data representativeness, data accuracy, correctness, 
data traceability, data reproducibility (i.e., collection, 
augmenting, transformation, labelling), dataset 
independence, data verification, data configuration 
management (e.g., corruption guards). The 
Configuration Management Process addresses the 
data configuration management, and the data 
verification is addressed by the machine learning 
verification process.  

Notes for Figure 3:  

• Note 1: Data set includes the features, 
attributes, and classes as well as the samples, 
signals, sources, and collection of those 
features, attributes, and classes.  

• Note 2: Data configuration management, 
executed in the ML Configuration 
Management process, will ensure data is only 
used appropriately, e.g., avoiding data leakage, 
via methods like blockchain, and data 
integrity. 

• Note 3: Data verification, executed in the ML 
Verification Process, will ensure the data is 
adequate, appropriate, representative, and 
complete as described in the Data 
Requirements.   

Updates to the data set output from ML data 
governance processes may be driven by the ML 
Model Development Process or ML Verification 
Process. Should those updates occur, the ML data 
requirements, system safety requirements, and 
operational design domain requirements should be re-
examined to determine if updates are necessary to 
those as well. Because requirements-based testing 
should be used for flight and safety-critical 
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applications, any updates to those requirements 
should also be reflected in updates to verification 
cases. Because data set changes can be costly, all 
efforts should be made to correctly produce fully 
representative data set requirements and complete 
data sets as early in the process as possible. 

Except for data hazard assessment, detailed 
definitions of each of these attributes of data 
assurance is beyond the scope of this of this paper but 
will be covered in general. Follow-on work is 
necessary to fully define the expectation for each of 
these attributes. The follow-on work will look to 
luminary guidance like that provided by SCSC-127G 
Data Safety Guidance (Version 3.4) (Data Safety 
Initiative Working Group, 2022). 

The following sections specifically focus on 
ensuring data safety and data completeness and 
representativeness, accuracy, and correctness through 
the use of data hazard analysis and data verification 
techniques. 

DATA HAZARD ASSESSMENT PROCESS 

Data hazard assessment is a hazard assessment 
process that leverages techniques applied to 
traditional system and software hazard analysis 
techniques. In addition, the approach introduces novel 
techniques to assess the hazard impacts associated 

with the use of data sets for machine learning model 
training, validation, and testing.  

Figure 4 shows the bi-directional traceability of 
the data hazard assessment to the traditional system 
safety hazard assessment process (shown in grey fill), 
e.g., those associated with and identified in SAE 
International Aerospace Recommended Practice 
(ARP) 4754 (S-18, 2010) and ARP 4761 (S-18, 
1996). Analysis is on-going to determine if and how 
traditional hazard assessment processes may need to 
be augmented for machine learning based systems, 
e.g., accounting for autonomy level (classification) 
and methodologies may impact the functional hazard 
assessment (Copeland, 2019) or development 
assurance levels.  

Notes for Figure 4:  

• Note 1: Data includes the features, attributes, 
and classes present in the data as well as the 
samples, signals, sources, and collection of 
those features, attributes, and classes.  

• Note 2: Data is most applicable to data-driven 
ML techniques; however, similar techniques 
more applicable to reinforcement learning will 
be specifically covered in the future, e.g., 
scenario planning, assessment, and 
verification.  

Figure 3: ML Data Governance Process 
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In the discussion that follows, the failure modes 
and effects analysis (FMEA) is offered up as one type 
of data hazard analysis technique, but others might be 
more appropriate, e.g., SCSC-127G proposes the 
establishment and use of the Data Safety Assurance 
Level (DSAL).  

As indicated in ARP 4761: “An FMEA is a 
systematic, bottom-up method of identifying the 
failure modes of a system, function, or item and 
determining the effects on the next higher level. It 
may be performed at any level within the system (e.g., 
piece-part, function, black box). Software can also be 
analyzed qualitatively using a functional FMEA 
approach. Typically, an FMEA is used to identify 
failure effects resulting from single failures.” An 
additional resource for the application and 
development of the FMEA is SAE International ARP 
5580 (Recommended Failure Modes and Effects 
Analysis (FMEA) Practices for Non-Automobile 
Applications, ARP 5580, 2020).  

As shown in Figure 5, for the discussion in this 
paper, the machine learning data FMEA is a data 
hazard analysis technique that would be used to assess 
the failure effects of the data, e.g., attributes, features, 
signals and sources, and the hazard effect on the ML 
model.  

As shown in Figure 5, inputs to the ML Data 
FMEA include the following:  

• As shown in the grey boxes, the systems-level
hazard assessment artifacts, including the
systems functional hazard assessment which
should assess the hazard impacts of the
functions within the ML-based system.

• From the ML requirements process, the ML
data requirements.

• From the ML planning process, the ML data
source planning and identification process
artifacts, which may include data design of
experiments type artifacts indicating what data
is necessary and why.

Other artifacts that influence the machine learning 
data FMEA are the following:  

• ML Data Development Plan
• ML Data Standard
• ML Data Requirements Standard

Data FMEA is a safety assessment of data
features, attributes and sources, samples, and signals 
anticipated to drive the AI/ML model generalization 
in its operational design domain. Each of those is 
analyzed similarly to the approach used by a Software 
Interface FMEA described in ARP5580. Ultimately, 

Figure 4: Hazard Assessment Processes 
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the Data FMEAs may be summarized into a Data 
Failure Modes Effect Summary (FMES) to support 
the failure modes analysis considerations. Given the 
sensitivity of the machine learning model to input 
data sources, developing the data FMEA or its 
equivalent, is encouraged. 

As an example, Table 1, from the Computer 
Vision- Hazard and Operability Study (CV-HAZOP) 
(Oliver Zendel, 2017), shows a type of data FMEA 
establishing traceability from failures (errors) in the 
data attributes, features, samples, sources, and signals 
to resultant impact of the ML model. The table 
identifies the source (location) and feature/attribute 
(guide word) and the consequences and risk.  

Additional steps would be to indicate the expected 
machine learning effect, and eventually, if the data is 
available, the probability of each. Currently the CV-
HAZOP has 1,469 entries. Such a systematic 
approach by computer vision experts allows for the 
machine learning based software item to be 
appropriately representative and complete data sets to 

be collected and used for machine learning training, 
validation, and testing. Data sets used can be assessed 
against the data hazard assessment to determine if all 
negative consequence and high risks effects are 
covered. Where gaps in the data set exist, appropriate 
mitigations can be determined, e.g., creation of 
synthetic data, creation of a derived subsystem 
requirement to mitigate, or other. Any gaps that 
remain in the data set should be indicated in the ML 
data processing and MLDL verification output data 
item and brought to the attention of the certification 
authority.  

With respect to chronology, a data hazard 
assessment occurs before data source identification 
and collection, so as to drive the collection of safety 
critical features/attributes over those less so.   

Similar methodology would be employed for 
reinforcement learning, but instead of data set/signal 
attributes/features, the reinforcement training 
scenario attribute/features would be analyzed.  

Figure 5: Data Hazard Assessment 
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DATA VERIFICATION ASSESSMENT PROCESS 

Statistical data verification assessment of machine 
learning data sets is an emerging field, so various 
methods are mentioned where their applicability 
depends on the situation. For this paper, a few 
different techniques will be mentioned with 
appropriate references to guide their application: 

• Random Forest, e.g., feature importance 
• Clustering, e.g., feature redundance (Tabular 

Modeling Deep Dive, 2022)  
• k-fold cross-validation 
• Training Set Alignment Test (TSAT) (Nagy, 

2021) 
• Source to Attribute Ratios – nth Order 

Grouping (StAR-n) 
• hyper-cubes (focus - data completeness)  

(Kevin Fuchs, 2016) 
• distribution discriminator framework (out-of-

distribution) 

The machine learning based software item 
developer may have different techniques they prefer. 
In such a situation the vendor should indicate their 
selection. The evaluation and justification of the 
statistical relevance of the data set should be 
conducted regardless of the approach for determining 
such validity. The goal of these approaches is to 
quantitatively show, through statistical analysis, that 
the data set selected, e.g., samples, signals, sources, 
attributes, and features, contains a complete 
representation of the operational design domain. 
While the method matters, more important is that the 
processes is pursued. Approaches to present a valid 
statistical representation of the data set may involve 
the following techniques or others unique to the 
vendor’s approach:  

• Exploratory Data Analysis (Brillinger, 2011) 
• Boxing clever (Rob Ashmore, 2018) 
• Datasheets for datasets (Timnit Gebru, 2021) 

Table 1: Example Data FMEA 



Carter, H.G. et al  Proposing the Use of Hazard Analysis 
for Machine Learning Data Sets 

  Journal of System Safety – Vol 58(2) Summer 2023 38 

These machine learning data set verification 
results should present these statistical examinations of 
the data sets. The results should explain where the 
data set does not statistically fulfill the requirements 
associated with the operational design domain. The 
goal of these approaches is to ensure the proper data 
sets were collected, so these processes are 
complementary to the data hazard assessment 
processes.  

CONCLUSION 

For machine learning the data set is critical and 
ultimately determines how well the machine learning 
model generalizes on previously unseen data when 
deployed in complex operational design domain. Data 
assurance, specifically data hazard assessment and 
data verification, is a necessary assurance addition to 
the certification of machine learning based software 
items. Data assurance provides the necessary 
confidence that the data set is adequate, complete, and 
representative of the operational design domain. The 
data hazard assessment determines the impact of 
features, attributes and sources, samples, and signals. 
Through this process, the data hazard assessment 
provides guidance for the collections of features, 
attributes and sources, samples, and signals that 
should be present in the data set. The data hazard 
assessment process output will be used to guide the 
data governance collection and processing processes 
to help ensure data set adequacy, completeness, and 
representativeness. The complementary data set 
verification process ensures those features, attributes 
and sources, samples, and signals were collected.  
Through the addition of the data assurance process, 
and others to be addressed more thoroughly in follow-
on work, the assurance community can begin to 
consider the inclusion of data-driven machine 
learning based software items in flight and safety 
critical applications.  
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