
Spectrum preserving tilings enable sparse and modular
reference indexing

Jason Fan1, Jamshed Khan1, Giulio Ermanno Pibiri2,3, and Rob Patro1

1 University of Maryland, College Park, MD 20440, USA
jasonfan@umd.edu jamshed@cs.umd.ed rob@cs.umd.edu

2 Ca’ Foscari University of Venice, Venice, Italy
3 ISTI-CNR, Pisa, Italy

giulioermanno.pibiri@unive.it

Abstract. The reference indexing problem for 𝑘-mers is to pre-process a collection of refer-
ence genomic sequences ℛ so that the position of all occurrences of any queried 𝑘-mer can be
rapidly identified. An efficient and scalable solution to this problem is fundamental for many
tasks in bioinformatics.

In this work, we introduce the spectrum preserving tiling (SPT), a general representation
of ℛ that specifies how a set of tiles repeatedly occur to spell out the constituent reference
sequences in ℛ. By encoding the order and positions where tiles occur, SPTs enable the
implementation and analysis of a general class of modular indexes. An index over an SPT
decomposes the reference indexing problem for 𝑘-mers into: (1) a 𝑘-mer-to-tile mapping; and
(2) a tile-to-occurrence mapping. Recently introduced work to construct and compactly index
𝑘-mer sets can be used to efficiently implement the 𝑘-mer-to-tile mapping. However, imple-
menting the tile-to-occurrence mapping remains prohibitively costly in terms of space. As
reference collections become large, the space requirements of the tile-to-occurrence mapping
dominates that of the 𝑘-mer-to-tile mapping since the former depends on the amount of total
sequence while the latter depends on the number of unique 𝑘-mers in ℛ.

To address this, we introduce a class of sampling schemes for SPTs that trade off speed to
reduce the size of the tile-to-reference mapping. We implement a practical index with these
sampling schemes in the tool pufferfish2. When indexing over 30,000 bacterial genomes,
pufferfish2 reduces the size of the tile-to-occurrence mapping from 86.3GB to 34.6GB while
incurring only a 3.6× slowdown when querying 𝑘-mers from a sequenced readset.

Supplementary materials: Sections S.1 to S.8 available online at https://doi.org/10.
5281/zenodo.7504717

Availability: pufferfish2 is implemented in Rust and available at https://github.com/
COMBINE-lab/pufferfish2.

Keywords: Reference Indexing · Spectrum Preserving Tilings · Minimal Perfect Hashing
· Pufferfish2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.5281/zenodo.7504717
https://doi.org/10.5281/zenodo.7504717
https://github.com/COMBINE-lab/pufferfish2
https://github.com/COMBINE-lab/pufferfish2
https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 1

1 Introduction

Indexing of genomic sequences is an important problem in modern computational genomics, as it
enables the atomic queries required for analysis of sequencing data — particularly reference guided
analyses where observed sequencing data is compared to known reference sequences. Fundamentally,
analyses need to first rapidly locate short exact matches to reference sequences before performing
other operations downstream. For example, for guided assembly of genomes, variant calling, and
structural variant identification, seed sequences are matched to known references before novel se-
quences are arranged according to the seeds [1]. For RNA-seq, statistics for groups of related 𝑘-mers
mapping to known transcripts or genes allow algorithms to infer the activity of genes in single-cell
and bulk gene-expression analyses [2,3,4].

Recently, researchers have been interested in indexing collections of genomes for metagenomic
and pan-genomic analyses. There have been two main types of approaches: full-text indexes, and
hashing based approaches that typically index the de Bruijn graph (dBG). With respect to full-text
indexes, researchers have developed tools that use the r-index [5] to compute matching statistics and
locate maximal exact matches for large reference collections [6,7]. For highly repetitive collections,
such as many genomes from the same species, r-index based approaches are especially space efficient
since they scale linearly to the number of runs in the Burrows-Wheeler Transform (BWT) [8]
and not the length of the reference text. With respect to hashing based approaches, tools restrict
queries to fixed length 𝑘-mers [1,9] and index the dBG. These tools achieve faster exact queries
but typically trade off space. In other related work, graph-based indexes that compactly represent
genomic variations as paths on graphs have also been developed [10,11]. However, these indexes
require additional work to project queries landing on graph-based coordinates to linear coordinates
on reference sequences.

Many tools have been developed to efficiently build and represent the dBG [12,13]. Recently,
Khan et al. introduced a pair of methods to construct the compacted dBG from both assembled
references [14] and read sets [15]. Ekim et al. [16] introduced the minimizer-space dBG — a highly
effective lossy compression scheme that uses minimizers as representative sequences for nodes in the
dBG. Karasikov et al. developed the Counting dBG [17] that stores differences between adjacent
nodes in the dBG to compress metadata associated with nodes (and sequences) in a dBG. Encour-
agingly, much recent work on Spectrum Preserving String Sets (SPSS) that compactly index the
set-membership of 𝑘-mers in reference texts has been introduced [18,19,20,15,21,22,23]. Although
these approaches do not tackle the locate queries directly, they do suggest that even more efficient
solutions for reference indexing are possible.

In this work, we extend these recent ideas and introduce the concept of a Spectrum Preserv-
ing Tiling (SPT) which encodes how and where 𝑘-mers in an SPSS occur in a reference text. In
introducing the SPT, this work makes two key observations. First, a hashing based solution to
the reference indexing problem for 𝑘-mers does not necessitate a de Bruijn graph but instead re-
quires a tiling over the input reference collection — the SPT formalizes this. Second, the reference
indexing problem for 𝑘-mers queries can be cleanly decomposed into a 𝑘-mer-to-tile query and a
tile-to-occurrence query. Crucially, SPTs enable the implementation and analysis of a general class
of modular indexes that can exploit efficient implementations introduced in prior work.

Contributions. We focus our work on considering how indexes can, in practice, efficiently support
the two composable queries — the 𝑘-mer-to-tile query and the tile-to-occurrence query. We highlight
this work’s key contributions below. We introduce:

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Fan et al.

1. The spectrum preserving tiling (SPT). An SPT is a general representation that explicitly encodes
how shared sequences — tiles — repeatedly occur in a reference collection. The SPT enables
an entire class of sparse and modular indexes that support exact locate queries for 𝑘-mers.

2. An algorithm for sampling and compressing an indexed SPT built from unitigs that samples
unitig-occurrences. For some small constant “sampling rate”, 𝑠, our algorithm stores the posi-
tions of only ≈ 1/𝑠 occurrences and encodes all remaining occurrences using a small constant
number of bits.

3. Pufferfish2: a practical index and implementation of the introduced sampling scheme. We
highlight the critical engineering considerations that make pufferfish2 effective in practice.

2 Problem definition and preliminaries

The mapped reference position (MRP) query. In this work we consider the reference indexing
problem for 𝑘-mers. Given a collection of references ℛ = {𝑅1, … , 𝑅𝑁}, where each reference is a
string over the DNA alphabet {A, C, T, G}, we seek an index that can efficiently compute the mapped
reference position (MRP) query for a fixed 𝑘-mer size 𝑘. Given any 𝑘-mer 𝑥, the MRP query
enumerates the positions of all occurrences of 𝑥 in ℛ. Precisely, each returned occurrence is a tuple
(𝑛, 𝑝) that specifies that 𝑘-mer, 𝑥, occurs in reference 𝑛 at position 𝑝 where 𝑅𝑛[𝑝 ∶ 𝑝 + 𝑘] = 𝑥. If a
𝑘-mer does not occur in some 𝑅𝑛 ∈ ℛ, the MRP query returns an empty list.

Basic notation. Strings and lists are zero-indexed. The length of a sequence 𝑆 is denoted |𝑆|. The
𝑖-th character of a string 𝑆 is 𝑆[𝑖]. A 𝑘-mer is a string of length 𝑘. A sub-string of length ℓ in the
string 𝑆 starting at position 𝑖 is notated 𝑆[𝑖 ∶ 𝑖 + ℓ]. The prefix and suffix of length 𝑖 is denoted
𝑆[∶ 𝑖] and 𝑆[|𝑆| − 𝑖 ∶], respectively. The concatenation of strings 𝐴 and 𝐵 is denoted 𝐴 ∘ 𝐵.

We define the glue operation, 𝐴 ⊕𝑘 𝐵, to be valid for any pair of strings 𝐴 and 𝐵 that overlap
by (𝑘 − 1) characters. If the (𝑘 − 1)-length suffix of 𝐴 is equal to the (𝑘 − 1)-length prefix of 𝐵, then
𝐴 ⊕𝑘 𝐵 ≔ 𝐴 ∘ 𝐵[(𝑘 − 1) ∶]. When 𝑘 clear from context, we write 𝐴 ⊕ 𝐵 in place of 𝐴 ⊕𝑘 𝐵.

Rank and select queries over sequences. Given a sequence 𝑆, the rank query given a character
𝛼 and position 𝑖, written rank𝛼(𝑆, 𝑖), is the number of occurrences of 𝛼 in 𝑆[∶ 𝑖] The select query
select𝛼(𝑆, 𝑟) returns the position of the 𝑟-th occurrence of symbol 𝛼 in 𝑆. The access query
access(𝑆, 𝑖) returns 𝑆[𝑖]. For a sequence of length 𝑛 over an alphabet of size 𝜎, these can be
computed in 𝑂(lg 𝜎) time using a wavelet matrix that requires 𝑛 lg 𝜎 + 𝑜(𝑛 lg 𝜎) bits [24].

3 Spectrum preserving tilings

In this section, we introduce the spectrum preserving tiling, a representation of a given reference
collection ℛ that specifies how a set of tiles containing 𝑘-mers repeatedly occur to spell out the
constituent reference sequences in ℛ. This alternative representation enables a modular solution to
the reference indexing problem, based on the interplay between two mappings — a 𝑘-mer-to-tile
mapping and a tile-to-occurrence mapping.

3.1 Definition

Given a 𝑘-mer length 𝑘 and an input reference collection of genomic sequences ℛ = {𝑅1, … , 𝑅𝑁},
a spectrum preserving tiling (SPT) for ℛ is a five-tuple Γ ≔ (𝒰, 𝒯, 𝒮, 𝒲, ℒ):

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 3

𝑅!:	 G C A A A T G A G C
C T A A A T G A

𝑅":	 C T A A A T G A
C T A A A T G A

G A G C A A
𝑈!: 	(−2, 2, 4)

G A G C A A
𝑈!: 	(6, 0, 4)

𝑈": (0, 2, 6)

𝑈": 	(0, 0, 8)

(a) Tiling sequences with (start, offset, length) tuples

C T A A A T G A
G A G C A A

(b) Tiles (SPSS)

𝑈!:
𝑈":

G A G C A A

(c) E.g. Locating k-mer “CAA”

𝑈":	
Occurrence	

“start”	position Offset	into	tile+ = −2 + 3 = 1

𝑅!:	 G C A A A...

Fig. 1. (a) A spectrum preserving tiling (SPT) with 𝑘 = 3, (b) with tiles (an SPSS) that contain all 𝑘-mers
in references. (c) The SPT explicitly encodes where each 𝑘-mer occurs.

• Tiles: 𝒰 = {𝑈1, … , 𝑈𝐹 }. The set of tiles is a spectrum preserving string set, i.e., a set of strings
such that each 𝑘-mer in ℛ occurs in some 𝑈𝑖 ∈ ℛ. Each string 𝑈𝑖 ∈ 𝒰 is called a tile.

• Tiling sequences: 𝒯 = {𝑇1, … , 𝑇𝑁} where each 𝑇𝑛 corresponds to each reference 𝑅𝑛 ∈ ℛ.
Each tiling sequence is an ordered sequence of tiles 𝑇𝑛 = [𝑇𝑛,1, … , 𝑇𝑛,𝑀𝑛

], of length 𝑀𝑛, with
each 𝑇𝑛,𝑚 = 𝑈𝑖 ∈ 𝒰. We term each 𝑇𝑛,𝑚 a tile-occurrence.

• Tile-occurrence lengths: ℒ = {𝐿1, … , 𝐿𝑁}, where each 𝐿𝑛 = [𝑙𝑛,1, … , 𝑙𝑛,𝑀𝑛
] is a sequence of

lengths.
• Tile-occurrence offsets: 𝒲 = {𝑊1, … , 𝑊𝑁}, where each 𝑊𝑛 = [𝑤𝑛,1, … , 𝑤𝑛,𝑀𝑛

] is an integer-
sequence.

• Tile-occurrence start positions: 𝒮 = {𝑆1, … , 𝑆𝑁}, where each 𝑆𝑛 = [𝑠𝑛,1, … , 𝑠𝑛,𝑀𝑛
] is an

integer-sequence.

A valid SPT must satisfy the spectrum preserving tiling property, that every reference sequence
𝑅𝑛 can be reconstructed by gluing together substrings of tiles at offsets 𝑊𝑛 with lengths 𝐿𝑛:

𝑅𝑛 = 𝑇𝑛,1[𝑤𝑛,1 ∶ 𝑤𝑛,1 + 𝑙𝑛,1] ⊕ … ⊕ 𝑇𝑛,𝑀𝑛
[𝑤𝑛,𝑀𝑛

∶ 𝑤𝑛,𝑀𝑛
+ 𝑙𝑛,𝑀𝑛

].
Specifically, the SPT encodes how redundant sequences — tiles — repeatedly occur in the

reference collection ℛ. We illustrate how an ordered sequence of start-positions, offsets, and lengths
explicitly specify how redundant sequences tile a pair of references in Fig. 1. More succinctly, each
tile-occurrence 𝑇𝑛,𝑚 with length 𝑙𝑛,𝑚 tiles the reference sequence 𝑅𝑛 as:

𝑅𝑛[𝑠𝑛,𝑚 + 𝑤𝑛,𝑚 ∶ 𝑠𝑛,𝑚 + 𝑤𝑛,𝑚 + 𝑙𝑛,𝑚] = 𝑇𝑛,𝑚[𝑤𝑛,𝑚 ∶ 𝑤𝑛,𝑚 + 𝑙𝑛,𝑚].

In the same way a small SPSS compactly determines the presence of a 𝑘-mer, a small SPT
compactly specifies the location of a 𝑘-mer. For this work, we consider SPTs where any 𝑘-mer
occurs only once in the set of tiles 𝒰. The algorithms and ideas introduced in this paper still work
with SPTs where a 𝑘-mer may occur more than once in 𝒰 (some extra book-keeping of a one-
to-many 𝑘-mer-to-tile mapping would be needed, however). For ease of exposition, we ignore tile
orientations here. We completely specify the SPT with orientations, allowing tiles to simultaneously
represent reverse-complement sequences, in Section S.2.

3.2 A general and modular index over spectrum preserving tilings

Any SPT is immediately amenable to indexing by an entire class of algorithms. This is because an
SPT yields a natural decomposition of the MRP query (defined in Section 2) where 𝑘-mers first map

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 Fan et al.

to the tiles and tile-occurrences then map to positions in references. To index a reference collection,
a data structure need only compose a query for the positions where 𝑘-mers occur on tiles in a SPSS
with a query for the positions where tiles cover the input references.

Ideally, an index should find a small SPT where 𝑘-mers are compactly represented in the set
of tiles where tiles are “long” and tiling sequences are “short”. Compact tilings exist for almost
all practical applications since the amount of unique sequence grows much more slowly than the
total length of reference sequences. Finding a small SPSS where 𝑘-mers occur only once has been
solved efficiently [19,18,20]. However, it remains unclear if a small SPSS induces a small SPT, since
an SPT must additionally encode tile-occurrence positions. Currently, tools like pufferfish index
reference sequences using an SPT built from the unitigs of the compacted de Bruijn graph (cdBG)
constructed over the input sequences, which has been found to be sufficiently compact for practical
applications. Though the existence of SPSSs smaller than cdBGs suggest that smaller SPTs might
be found for indexing, we leave the problem of finding small or even optimal SPTs to future work.
Here, we demonstrate how indexing any given SPT is modular and possible in general.

Given an SPT, the MRP query can be decomposed into two queries that can each be supported
by sparse and efficient data structures. These queries are:

• The kmer-to-tile query: Given a 𝑘-mer 𝑥, k2tile(𝑥) returns (𝑖, 𝑝) — the identity of the tile
𝑈𝑖 that contains 𝑥 and the offset (position) into the tile 𝑈𝑖 where 𝑥 occurs. That is, k2tile(𝑥) =
(𝑖, 𝑝) iff 𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥. If 𝑥 is not in ℛ, k2tile(𝑥) returns ∅.

• The tile-to-occurrence query: Given the 𝑟-th occurrence of the tile 𝑈𝑖, tile2occ(𝑖, 𝑟) re-
turns the tuple (𝑛, 𝑠, 𝑤, 𝑙) that encodes how 𝑈𝑖 tiles the reference 𝑅𝑛. When tile2occ(𝑖, 𝑟) =
(𝑛, 𝑠, 𝑤, 𝑙), the 𝑟-th occurrence of 𝑈𝑖 occurs on 𝑅𝑛 at position (𝑠 + 𝑤), with the sequence 𝑈𝑖[𝑤 ∶
𝑤+𝑙]. Let the 𝑟-th occurrence of 𝑈𝑖 be 𝑇𝑛,𝑚 on 𝒯, then tile2occ(𝑖, 𝑟) returns (𝑛, 𝑠𝑛,𝑚, 𝑤𝑛,𝑚, 𝑙𝑛,𝑚).

When these two queries are supported, the MRP query can be computed by Algorithm 1.
By adding the offset of the queried 𝑘-mer 𝑥 in a tile 𝑈𝑖 to the positions where the tile 𝑈𝑖 occurs,
Algorithm 1 returns all positions where a 𝑘-mer occurs. Line 10 checks to ensure that any occurrence
of the queried 𝑘-mer is returned only if the corresponding tile-occurrence of 𝑈𝑖 contains that 𝑘-mer.
We note that storing the number of occurrences of a tile and returning num-occs(𝑈𝑖) requires
negligible computational overhead. In practice, the length of tiling sequences, 𝒯, are orders of
magnitude larger than the number of unique tiles. In this work, we shall use 𝑜𝑐𝑐𝑖, to denote the
number of occurrences of 𝑈𝑖 in tiling sequences 𝒯.

Algorithm 1:
1 def mrp(𝑥):
2 𝑡𝑢𝑝 ← k2tile(𝑥)
3 if 𝑡𝑢𝑝 = ∅ then
4 return []
5 (𝑖, 𝑝) ← 𝑡𝑢𝑝
6 𝑜𝑐𝑐𝑖 ← num-occs(𝑈𝑖)
7 𝑎𝑛𝑠 ← []
8 for 𝑟 ← 0 to 𝑜𝑐𝑐𝑠𝑖 do
9 (𝑛, 𝑠, 𝑤, 𝑙) ← tile2occ(𝑖, 𝑟)

10 if 𝑤 ≤ 𝑝 ≤ (𝑤 + 𝑙 − 𝑘) then
11 𝑎𝑛𝑠.append(𝑛, 𝑠 + 𝑝)
12 return ans

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 5

3.3 “Drop in” implementations for efficient 𝑘-mer-to-tile queries

Naturally, prior work for indexing and compressing spectrum preserving string sets (SPSS) can
be applied to implement the 𝑘-mer-to-tile query. When pufferfish was first developed, the data
structures required to support the 𝑘-mer-to-tile query dominated the size of moderately sized in-
dexes. Thus, Almodaresi et al. [9] introduced a sampling scheme that samples 𝑘-mer positions in
unitigs. Recently, Pibiri [21,22] introduced SSHash, an efficient 𝑘-mer hashing scheme that exploits
minimizer based partitioning and carefully handles highly-skewed distributions of minimizer occur-
rences. When built over an SPSS, SSHash stores the 𝑘-mers by their order of appearance in the
strings (which we term tiles) of an SPSS and thus allows easy computation of a 𝑘-mer’s offset into
a tile. Other methods based on the Burrows-Wheeler transform (BWT) [8], such as the Spectral
BWT [23] and BOSS [25], could also be used. However, these methods implicitly sort 𝑘-mers in lex-
icographical order and would likely need an extra level of indirection to implement k2tile. Unless
a compact scheme is devised, this can outweigh the space savings offered by the BWT.

3.4 Challenges of the tile-to-occurrence query

The straightforward solution to the tile-to-occurrence query is to store the answers in a table,utab,
where utab[𝑖] stores information for all occurrences of the tile 𝑈𝑖 and computing tile2occ(𝑖, 𝑟)
amounts to a simple lookup into utab[𝑖][𝑟]. This is the approach taken in the pufferfish index
and has proven to be effective for moderately sized indexes. This implementation is output optimal
and is fast and cache-friendly since all 𝑜𝑐𝑐𝑖 occurrences of a tile 𝑈𝑖 can be accessed contiguously.
However, writing down all start positions of tile-occurrences in utab is impractical for large indexes.

For larger indexes (e.g. metagenomic references, many human genomes), explicitly storing utab
becomes more costly than supporting the 𝑘-mer-to-tile query. This is because, as the number of
indexed references grow, the number of distinct 𝑘-mers grows sub-linearly whereas the number
of occurrences grows with the (cumulative) reference length. Problematically, the number of start
positions of tile-occurrences grows at least linearly. For a reference collection with total sequence
length 𝐿, a naive encoding for utab would take 𝑂(𝐿 lg 𝐿) bits, as each position require ⌈lg 𝐿⌉ bits
and there can be at most 𝐿 distinct tiles.

Other algorithms that support “locate” queries suffer from a similar problem. To answer queries
in time proportional to the number of occurrences of a query, data structures must explicitly
store positions of occurrences and access them in constant time. However, storing all positions is
impractical for large reference texts or large 𝑘-mer-sets. To address this, some algorithms employ
a scheme to sample positions at some small sampling rate 𝑠, and perform 𝑂(𝑠) work to retrieve
not-sampled positions. Since 𝑠 is usually chosen to be a small constant, this extra 𝑂(𝑠) work only
imposes a slight overhead.

One may wonder if utab — which is an inverted index — can be compressed using the techniques
developed in the Information Retrieval field [26]. For biological sequences, a large proportion of utab
consists of very short inverted lists (e.g. unique variants in indexed genomes) that are not well-
compressible. In fact, these short lists occur at a rate that is much higher than for inverted indexes
designed for natural languages. So, instead applying existing compression techniques, we develop
a novel sampling scheme for utab and the tile-to-occurrence query that exploits the properties of
genomic sequences.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 Fan et al.

(a) A unitig-tiling (𝑘 = 3)

…	

[… (n, s) …]

(b) Mapped reference position (MRP) query

u2occ(i,r) = utab[i][r] = (n, s)

utab stores positions of unitig occurrences

A A A T G

k2u(“ATG”) = (i,2)

𝑈!:

utab[i]

+
T G A

A A A T G

G A C G

𝑅!:	 A A A T G A C G

Unitigs (tiles) occur
completely in references

Fig. 2. (a) A unitig-tiling is an SPT where tiles, unitigs, always occur completely in the reference sequences.
(b) The MRP query is performed by computing a 𝑘-mer’s offset into a unitig (k2u), then adding the offset
to the positions where unitig-occurrences appear in indexed reference sequences (u2occ). To naively support
the unitig-to-occurrence query, positions of all unitig-occurrences are stored in a table, utab.

…	

[… C A T …]
…	

ptab
…	

[… A A G …]
…	

stab

𝑈!

(b) Store predecessor and successor nucleotides

𝑈!

ptab[i][r] = C stab[i][r] = A

…
C A
C… A

𝑟-th occurrence of 𝑈!
𝑈!

(a) Sample positions of unitig-occurrences

𝑅!:

𝑅":

Not-sampled – O(1) bits per occ.

Sampled – lg	(𝐿) bits per occ.
Overlapping
(𝑘 − 1)-mer

Fig. 3. (a) Pufferfish2 samples unitigs and their occurrences on a unitig-tiling. Only the positions of the
occurrences of the sampled unitigs (black) are stored in utab. Positions of the not-sampled unitigs (gray) can
be computed relative to the positions of sampled unitigs by traversing backwards on the visualized tiling of
references. Sampling the zero-th unitig-occurrence on every reference sequence guarantees that traversals
terminate. (b) Predecessor and successor nucleotides are obtained from adjacent unitig occurrences and are
stored in the order in which they appear on the references. These nucleotides for the 𝑟-th occurrence of 𝑈𝑖
is stored in ptab[𝑖][𝑟] and stab[𝑖][𝑟], respectively.

4 Pufferfish2

Below, we introduce pufferfish2, an index built over an SPT consisting of unitigs. Pufferfish2
applies a sampling scheme to sparsify the tile-to-occurrence query of a given pufferfish index [9].

4.1 Interpreting pufferfish as an index over a unitig-based SPT

Though not introduced this way by Almodaresi et al., pufferfish is an index over a unitig-tiling of
an input reference collection [9]. A unitig-tiling is an SPT which satisfies the property that all tiles
always occur completely in references where, for every tile-occurrence 𝑇𝑛,𝑚 = 𝑈𝑖, offset 𝑤𝑛,𝑚 = 0
and length 𝑙𝑛,𝑚 = |𝑈𝑖|. When this property is satisfied, we term tiles unitigs.

An index built over unitig-tilings does not need to store tile-occurrence offsets, 𝒲, or tile-
occurrence lengths ℒ since all tiles have the same offset (zero) and occur with maximal length.
For indexes constructed over unitig-tilings, we shall use k2u to mean k2tile, and u2occ to be
tile2occ with one change. That is, u2occ omits offsets and lengths of tile occurrences since they
are uninformative for unitig-tilings and returns a tuple (𝑛, 𝑠) instead of (𝑛, 𝑠, 𝑤, 𝑙), In prose, we shall
refer to these queries as the 𝑘-mer-to-unitig and unitig-to-occurrence queries.

The MRP query over unitig-tilings can be computed with Algorithm 4 (in Section S.1) where
Line 10 is removed from Algorithm 1. We illustrate the MRP query and an example of a unitig-tiling
in Fig. 2.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 7

4.2 Sampling unitigs and traversing tilings to sparsify the unitig-to-occurrence query

Pufferfish2 implements a sampling scheme for unitig-occurrences on a unitig-tiling. For some
small constant 𝑠, our scheme samples 1/𝑠 rows in utab each corresponding to all occurrences of a
unique unitig. In doing so, it sparsifies the u2occ query and utab by only storing positions for a
subset of sampled unitigs. To compute unitig-to-occurrence queries, it traverses unitig-occurrences
on an indexed unitig-tiling.

Notably, pufferfish2 traverses unitig-tilings that are implicitly represented. For unitig-tilings
with positions stored in utab, there exists no contiguous sequence in memory representing oc-
currences that is obvious to traverse. However, when viewed as an SPT, unitig-occurrences have
ranks on a tiling and traversals are possible because tiling sequences map uniquely to a sequence of
unitig-rank pairs.

Specifically, we define the pred query — an atomic traversal step that enables traversals of
arbitrary lengths over reference tilings. Given the 𝑟-th occurrence of the unitig 𝑈𝑖, the pred query
returns the identity and rank of the preceding unitig. Let tile 𝑇𝑛,𝑚 be the 𝑟-th occurrence of the unitig
𝑈𝑖 on all tiling sequences 𝒯. Then, pred(𝑖, 𝑟) returns (𝑗, 𝑞) indicating that 𝑇𝑛,𝑚−1, the preceding
unitig-occurrence, is the 𝑞-th occurrence of the unitig 𝑈𝑗. If there is no preceding occurrence and
𝑚 = 1, pred(𝑖, 𝑟) returns the sentinel value ∅.

When an index supports pred, it is able to traverse “backwards” on a unitig-tiling. Successively
calling pred yields the identities of unitigs that form a tiling sequence. Furthermore, since pred
returns the identity 𝑗 and the rank 𝑞 of a preceding unitig-occurrence, accessing data associated
with each visited occurrence is straightforward in a table like utab (i.e., with utab[𝑗][𝑞]).

Given the unitig-set 𝒰, pufferfish2 first samples a subset of unitigs 𝒰𝑆 ⊆ 𝒰. For each sampled
unitig 𝑈𝑖 ∈ 𝒰𝑆, it stores information for unitig-occurrences identically to pufferfish and records,
for all occurrences of a sampled unitig 𝑈𝑖, a list of reference identity and position tuples in utab[𝑖].

To recover the position of the 𝑟-th occurrence a not-sampled unitig 𝑈𝑖 and to compute u2occ(𝑖, 𝑟),
the index traverses the unitig-tiling and iteratively calls pred until an occurrence of a sampled unitig
is found — let this be the 𝑞-th occurrence of 𝑈𝑗. During the traversal, pufferfish2 accumulates
number of nucleotides covered by the traversed unitig-occurrences. Since 𝑈𝑗 is a sampled unitig,
the position of the 𝑞-th occurrence can be found in utab[𝑗][𝑞]. To return u2occ(𝑖, 𝑟), pufferfish2
adds the number of nucleotides traversed to the start position stored at utab[𝑗][𝑞], the position of
a preceding occurrence of the sampled unitig 𝑈𝑗.

This procedure is implemented in Algorithm 2 and visualized in Fig. 3. Traversals must account
for (𝑘 − 1) overlapping nucleotides of unitig-occurrences that tile a reference (Line 5). Storing the
length of the unitigs is negligible since the number of unique unitigs is much smaller than the
number of occurrences.

On the termination of traversals. Any unitig that occurs as the zero-th occurrence (i.e., with
rank zero) of a tiling-sequence is always sampled. This way, backwards traversals terminate because
every occurrence of a not-sampled unitig occurs after a sampled unitig. This can be seen from Fig. 3.
Concretely, if 𝑇𝑛,1 = 𝑈𝑖 for some tiling-sequence 𝑇𝑛, then the unitig 𝑈𝑖 must always be sampled.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

8 Fan et al.

Algorithm 2:
1 def u2occ(𝑖, 𝑟):
2 𝑙 ← 0
3 while !isSamp[𝑖] do
4 (𝑖, 𝑟) = pred(𝑖, 𝑟)
5 𝑙 ← 𝑙 + |𝑈𝑖| − 𝑘 + 1
6 (𝑛, 𝑠) ← utab[𝑖][𝑟]
7 return (𝑛, 𝑠 + 𝑙)

Algorithm 3:
1 def pred(𝑖, 𝑟):
2 𝑝 ← ptab[𝑖][𝑟]
3 𝑦 ← 𝑝 ∘ 𝑈𝑖[∶ 𝑘 − 1]
4 (𝑗, _) ← k2u(𝑦)
5 𝑠 ← 𝑈𝑖[𝑘]
6 𝑡 ← rank𝑝(ptab[𝑖], 𝑟)
7 𝑞 ← select𝑠(stab[𝑗], 𝑡)
8 return (𝑗, 𝑞)

4.3 Implementing the pred query with pufferfish2

Pufferfish2 computes the pred query in constant time while requiring only constant space per
unitig-occurrence by carefully storing predecessor and successor nucleotides of unitig-occurrences.

Predecessor and successor nucleotides. Given the tiling sequence 𝑇𝑛 = [𝑇𝑛,1, … , 𝑇𝑛,𝑀𝑛
], we

say that a unitig-occurrence 𝑇𝑛,𝑚 is preceded by 𝑇𝑛,𝑚−1, and that 𝑇𝑛,𝑚−1 is succeeded by 𝑇𝑛,𝑚.
Suppose 𝑇𝑛,𝑚 = 𝑈𝑖, and 𝑇𝑛,𝑚−1 = 𝑈𝑗, and let the unitigs have lengths ℓ𝑖 and ℓ𝑗, respectively.

We say that, 𝑇𝑛,𝑚−1 precedes 𝑇𝑛,𝑚 with predecessor nucleotide 𝑝. The predecessor nucleotide is
the nucleotide that precedes the unitig-occurrence 𝑇𝑛,𝑚 on the reference sequence 𝑅𝑛. Concretely,
𝑝 is the first nucleotide on the last 𝑘-mer of the preceding unitig, i.e., 𝑝 = 𝑇𝑛,𝑚−1[ℓ𝑗 − 𝑘]. We say
that, 𝑇𝑛,𝑚 succeeds 𝑇𝑛,𝑚−1 with successor nucleotide 𝑠. Accordingly, the successor nucleotide, 𝑠, is
the last nucleotide on the first 𝑘-mer of the succeeding unitig, i.e., 𝑠 = 𝑇𝑛,𝑚[𝑘].

Abstractly, the preceding occurrence 𝑇𝑛,𝑚−1 can be “reached” from the succeeding occurrence
𝑇𝑛,𝑚 by prepending its predecessor nucleotide to the (𝑘 − 1)-length prefix of 𝑇𝑛,𝑚. Given 𝑇𝑛,𝑚
and its predecessor nucleotide 𝑝, the 𝑘-mer 𝑦 that is the last 𝑘-mer on the preceding occurrence
𝑇𝑛,𝑚−1 can be obtained with 𝑦 = 𝑝 ∘ 𝑇𝑛,𝑚[∶ 𝑘 − 1]. Given an occurrence 𝑇𝑛,𝑚, let the functions
pred-nuc (𝑇𝑛,𝑚) and succ-nuc (𝑇𝑛,𝑚) yield the predecessor nucleotide and the successor nucleotide
of 𝑇𝑛,𝑚, respectively. If 𝑇𝑛,𝑚 is the first or last unitig-occurrence pair on 𝑇𝑛, then succ-nuc (𝑇𝑛,𝑚)
and pred-nuc (𝑇𝑛,𝑚) return the “null” character, ‘$’.

These notationally dense definitions can be more easily understood with a figure. Figure 3 shows
how predecessor and successor nucleotides of a given unitig-occurrence on a tiling are obtained.

Concrete representation. Pufferfish2 first samples a set of unitigs 𝒰𝑆 ⊆ 𝒰 from 𝒰 and stores a
bit vector, isSamp, to record if a unitig 𝑈𝑖 is sampled where isSamp[𝑖] = 1 iff 𝑈𝑖 ∈ 𝒰𝑆. Pufferfish2
stores in utab the reference identity and position pairs for occurrences of sampled unitigs only.

After sampling unique unitigs, pufferfish2 stores a predecessor nucleotide table, ptab, and
a successor nucleotide table, stab. For each not-sampled unitig 𝑈𝑖 only, ptab[𝑖] stores a list of
predecessor nucleotides for each occurrence of 𝑈𝑖 in the unitig-tiling. For all unitigs 𝑈𝑖, stab[𝑖] stores
a list of successor nucleotides for each occurrence of 𝑈𝑖. Concretely, when the unitig-occurrence 𝑇𝑛,𝑚
is the 𝑟-th occurrence of 𝑈𝑖,

ptab[𝑖][𝑟] = pred-nuc (𝑇𝑛,𝑚) and stab[𝑖][𝑟] = succ-nuc (𝑇𝑛,𝑚) .
As discussed in Section 4.2, unitigs that occur as the zero-th element on a tiling is always sampled

so that every occurrence of a not-sampled unitig has a predecessor. If 𝑇𝑛,𝑚 has no successor and is

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 9

𝑼𝒊𝑼𝒋

? G

(b) Computing pred(i, r = 1)

Stored nucleotides have corresponding ranks
ptab[i] = [T0 T1 G0]
stab[j] = [A0 C0 A1]

Compute rank of T1 to find index of A1
t = rankT(ptab[i], 1) // rank of T1
q = selectA(stab[j], t) // index of A1
return (j, q)

(a) Occurrences of 𝑈! and 𝑈", and stored
predecessor and successor nucleotides

Predecessor nucleotides
ptab[i]

Successor nucleotides
stab[j]

T1A1 pred(i,1)(j,2)

?C
(j,1)

TA(j,0)

Fig. 4. Visualizing the pred query that finds the occurrence of 𝑈𝑗 that precedes the queried occurrence
of 𝑈𝑖 with rank 1. (a) All occurrences of 𝑈𝑖 and 𝑈𝑗 are visualized (in sorted order) with their preceding
and succeeding unitig occurrences, respectively. The figure shows stored successor nucleotides for 𝑈𝑗, and
predecessor nucleotides for 𝑈𝑖. Whenever an occurrence of 𝑈𝑗 precedes an occurrence of 𝑈𝑖, a corresponding
pair of nucleotides “A” and “T” occur and are stored in stab[𝑗] and ptab[𝑖] respectively. (b) Their ranks
(annotated with subscripts) of the corresponding predecessor-successor nucleotide pair match in ptab[𝑖]
and stab[𝑗], but the indices do not. A rank query for predecessor nucleotide “T” at index 𝑟 = 1 yields the
matching rank of the successor nucleotide “A”. A select query for the nucleotide “A” with rank 1 yields the
index and occurrence of the predecessor 𝑈𝑗.

the last unitig-occurrence on a tiling sequence, stab[𝑖][𝑗] contains the sentinel symbol ‘$’. Figure 3
illustrates how predecessor and successor nucleotides are stored.

Computing the pred query. Given the 𝑘-mer-to-unitig query, pufferfish2 supports the pred
query for any unitig 𝑈𝑖 that is not-sampled. When the 𝑟-th occurrence of 𝑈𝑖 succeeds the 𝑞-th
occurrence of 𝑈𝑗, it computes pred(𝑖, 𝑟) = (𝑗, 𝑞) with Algorithm 3. To compute pred, it constructs
a 𝑘-mer to find 𝑈𝑗, and then computes one rank and one select query over the stored lists of
nucleotides to find the correct occurrence.

Pufferfish2 first computes 𝑗, the identity of the preceding unitig. The last 𝑘-mer on the
preceding unitig must be the first (𝑘 − 1)-mer of 𝑈𝑖 prepended with predecessor nucleotide of the
𝑟-th occurrence of 𝑈𝑖. Given ptab[𝑖][𝑟] = 𝑝, it constructs the 𝑘-mer, 𝑦 = 𝑝 ∘ 𝑈𝑖[∶ 𝑘 − 1], that must
be the last 𝑘-mer on 𝑈𝑗. So on Line 4, it computes k2u(𝑦) to obtain the identity of the preceding
unitig 𝑈𝑗.

It then computes the unitig-rank, 𝑞, of the preceding unitig-occurrence of 𝑈𝑗. Each time 𝑈𝑖 is
preceded by the nucleotide 𝑝, it must be preceded by the same unitig 𝑈𝑗 since any 𝑘-mer occurs in
only one unitig. Accordingly, each occurrence 𝑈𝑗 that is succeeded by 𝑈𝑖 must always be succeeded
by the same nucleotide 𝑠 equal to the 𝑘-th nucleotide of 𝑈𝑖, 𝑈𝑖[𝑘]. For the preceding occurrence of
𝑈𝑗 that the algorithm seeks to find, the nucleotide 𝑠 is stored at some unknown index 𝑞 in stab[𝑗]
— the list of successor nucleotides of 𝑈𝑗.

Whenever an occurrence of 𝑈𝑖 succeeds an occurrence of 𝑈𝑗, so do the corresponding pair
predecessor and successor nucleotides stored in ptab[𝑖] and stab[𝑗]. Since ptab[𝑖] and stab[𝑗] store
predecessor and successor nucleotides in the order in which unitig-occurrences appear in the tiling
sequences, the following ranks of stored nucleotides must be equal: (1) the rank of the nucleotide
𝑝 = ptab[𝑖][𝑟] at index 𝑟 in the list of predecessor nucleotides, ptab[𝑖], of the succeeding unitig 𝑈𝑖,
and (2) the rank of the nucleotide 𝑠 = 𝑈𝑖[𝑘] at index 𝑞 in the list of successor nucleotides, stab[𝑗],
of the preceding unitig 𝑈𝑗. We illustrate this correspondence between ranks in Fig. 4. So to find

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

10 Fan et al.

𝑞, the rank of the preceding unitig-occurrence, pufferfish2 computes the rank of the predecessor
nucleotide, 𝑡 = rank𝑝(ptab[𝑖], 𝑟). Then, computing select𝑠(stab[𝑖], 𝑡), the index where the 𝑡-th
rank successor nucleotide of 𝑈𝑗 occurs must yield 𝑞.

Time and space analysis. Pufferfish2 computes the pred query in constant time. The 𝑘-mer
for the query k2u is assembled in constant time, and the k2u query itself is answered in constant
time, as already done in the pufferfish index [9].

For not-sampled unitigs, pufferfish2 does not store positions of unitig-occurrences in utab.
Instead, it stores nucleotides in tables stab and ptab. These tables are implemented by wavelet
matrices that support rank, select, and access operations in 𝑂(lg 𝜎) time on sequences with alphabet
size 𝜎 while requiring only lg 𝜎 + 𝑜(lg 𝜎) bits per element [24].

As explained in Section 3.1, we have avoided the treatment of orientations of nucleotide se-
quences for brevity. In actuality, unitigs may occur in a forward or a backwards orientation (i.e.,
with a reverse complement sequence). When considering orientations, pufferfish2 implements
the pred query by storing and querying over lists of nucleotide-orientation pairs. In this case, ptab
and stab instead store predecessor-orientation and successor-orientation pairs. Accordingly, wavelet
matrices are then built over alphabets of size 8 and 9 respectively — deriving from eight nucleotide-
orientation pairs and one sentinel value for unitig-occurrences that have no predecessor. Thus, ptab
and stab in total require ≈ 7 bits per unitig-occurrence (since 7 = ⌈lg 8⌉ + ⌈lg 9⌉). We describe how
the pred query is implemented with orientations in Section S.3.

Construction. The current implementation of pufferfish2 sparsifies the unitig-to-occurrence
query and compresses the table of unitig occurrences, utab, of an existing pufferfish index, and
inherits its 𝑘-mer-to-unitig mapping. In practice, sampling and building a pufferfish2 index always
takes less time than the initial pufferfish index construction. In brief, building pufferfish2
amounts to a linear scan over an SPT. We describe how pufferfish2 in constructed in more detail
in Section S.4.

4.4 A random sampling scheme to guarantee short backwards traversals

Even with a constant-time pred query, computing the unitig-to-occurrence query is fast only if the
length of backwards traversals — the number of times pred is called — is small. So for some small
constant 𝑠, a sampling scheme should sample 1/𝑠 of unique unitigs, store positions of only 1/𝑠 of
unitig-occurrences in utab, and result in traversal lengths usually of length 𝑠.

At first, one may think that a greedy sampling scheme that traverses tiling sequences to sample
unitigs could be used to bound traversal lengths to some given maximum length, 𝑠. However, when
tiling sequences become much longer than the number of unique unitigs, such a greedy scheme
samples almost all unitigs and only somewhat effective in limited scenarios (see Section S.5). Thus,
we introduce the random sampling scheme that samples 1/𝑠 of unitigs uniformly at random from 𝒰.
This scheme guarantees that traversals using the pred query terminate in 𝑠 steps in expectation if
each unitig-occurrence 𝑇𝑛,𝑚 is independent and identically distributed and drawn from an arbitrary
distribution. Then, backwards traversals until the occurrence of a sampled unitig is a series of
Bernoulli trials with probability 1/𝑠, and traversal lengths follow a geometric distribution with
mean 𝑠. Although this property relies on a simplifying assumption, the random sampling scheme
works well in practice.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 11

Dataset Sampling strategy u2occ size (GB) 10M 𝑘-mers (secs) 100K reads (secs)

7 Humans
None 16.8 86.1 139.4
Random (𝑠 = 3, 𝑡 = .05) 7.8 (0.46) 4159.1 (43.8×) 8092.8 (58.04×)
Random (𝑠 = 3, 𝑡 = .25) 9.9 (0.59) 681.1 (7.9×) 1466.2 (10.52×)

4000 Bacteria
None 7.7 35.5 12.6
Random (𝑠 = 3, 𝑡 = .05) 3.7 (0.48) 420.4 (11.9×) 15.6 (1.24×)
Random (𝑠 = 3, 𝑡 = .25) 4.7 (0.61) 323.8 (9.1×) 15.5 (1.23×)

30K Human gut

None 86.3 80.6 178.7
Random (𝑠 = 3, 𝑡 = .05) 45.6 (0.53) 439.4 (5.5×) 570.2 (3.19×)
Random (𝑠 = 3, 𝑡 = .25) 54.4 (0.63) 365.2 (4.5×) 576.9 (3.23×)
Random (𝑠 = 6, 𝑡 = .05) 34.6 (0.40) 1037.5 (12.9×) 644.8 (3.61×)
Random (𝑠 = 6, 𝑡 = .25) 45.6 (0.53) 614.0 (7.6×) 646.1 (3.56×)

Table 1. Size and speed of pufferfish2 indexes querying 10 million random 𝑘-mers and 100,000 reads.
Uncompressed, baseline implementations of the unitig-to-occurrence query (pufferfish indexes with the
sparse k2u implementation [9]) are labeled with “None” sampling strategy. Relative sizes of compressed
representations and relative slowdowns to the baseline are indicated in parentheses.

4.5 Closing the gap between a constant time pred query and contiguous array access

Even though the pred query is constant time and traversals are short, it is difficult to implement
pred queries in with speed comparable to contiguous array accesses that are used to compute the
u2occ for when utab is “dense” — i.e., uncompressed and not sampled. In fact, any compression
scheme for utab would have difficulty contending with constant time contiguous array access re-
gardless of their asymptotics since dense implementations are output optimal, very cache friendly,
and simply store the answers to queries in an array. To close the gap between theory and practice,
pufferfish2 exploits several optimizations.

In practice, a small proportion of unique unitigs are “popular” and occur extremely frequently.
Fortunately, the total number of occurrences of popular unitigs is small relative to other unitigs. To
avoid an excessively large number of traversals from a not-sampled unitig, pufferfish2 modifies
the sampling scheme to always sample popular unitigs that occur more than a preset number,
𝛼, times. Better yet, we re-parameterize this optimization and set 𝛼 so that the total number of
occurrences of popular unitigs sum to a given proportion 0 < 𝑡 ≤ 1 of the total occurrences of all
the unitigs. For example, setting 𝑡 = 0.25 restricts pufferfish2 to sample from 75% of the total
size of utab consisting of unitigs that occur most infrequently.

Also, the MRP and pred query are especially amenable to caching. Notably, pufferfish2
caches and memoizes redundant k2u queries in successive pred queries. Also, it caches “streaming”
queries to exploit the fact that successive queried 𝑘-mers (e.g., from the same sequenced read) likely
land on the same unitig. We describe in more detail these and other important optimizations in
Section S.6.

5 Experiments

We assessed the space-usage of the indexes constructed by pufferfish2 from several different whole-
genome sequence collections, as well as its query performance with different sampling schemes.
Reported experiments were performed on a server with an Intel Xeon CPU (E5-2699 v4) with 44
cores and clocked at 2.20 GHz, 512 GB of memory, and a 3.6 TB Toshiba MG03ACA4 HDD.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

12 Fan et al.

Datasets. We evaluated the performances on a number of datasets with varying attributes: (1) Bac-
terial collection: a random set of 4000 bacterial genomes from the NCBI microbial database; (2) Hu-
man collection: 7 assembled human genome sequences from [27]; and (3) Metagenomic collection:
30,691 representative sequences from the most prevalent human gut prokaryotic genomes from [28].

Results. To emulate a difficult query workload, we queried the indexes with 10 million random true
positive 𝑘-mers sampled uniformly from the indexed references. Our results from Table 1 show that
sampling popular unitigs is critical to achieve reasonable trade-offs between space and speed. When
indexing seven human genomes, the difference in space between always sampling using 𝑡 = 0.05 and
𝑡 = 0.25, is only 2.1GB (12.5% of the uncompressed utab). However, explicitly recording 2.1GB of
positions of occurrences of popular unitigs, substantially reduces the comparative slowdown from
43.8× to 7.9×. This is because setting 𝑡 = 0.25 instead of 𝑡 = 0.05 greatly reduces the maximum
number of occurrences of a not-sampled unitig — from ≈87,000 to ≈9,000 times, respectively. Here,
setting 𝑡 = 0.25 means that random 𝑘-mer queries that land in not-sampled unitigs perform many
fewer traversals over reference tilings.

On metagenomic datasets, indexes are compressed to a similar degree but differences in query
speed at different parameter settings are small. Pufferfish2 is especially effective for a large
collection of bacterial genomes. With the fastest parameter setting, it incurs only a 4.5× slowdown
for random queries while reducing the size of utab for the collection of 30,000 bacterial genomes
by 37% (from 86.3GB to 54.4GB).

Apart from random lookup queries, we also queried the indexes with 𝑘-mers deriving from
sequenced readsets [29,30]. We measured the time to query and recover the positions of all 𝑘-mers
on 100,000 reads. This experiment demonstrates how the slowdown incurred from sampling can (in
most cases) be further reduced when queries are positionally coherent or miss. Successive 𝑘-mer
queries from the same read often land on the same unitig and can thus be cached (see Section 4.5).
True negative 𝑘-mers that do not occur in the indexed reference collection neither require traversals
nor incur any slowdowns.

To simulate a metagenomic analysis, we queried reads from a human stool sample against 4,000
bacterial genomes. This is an example of a low hit-rate analysis where 18% of queried 𝑘-mers map
to indexed references. In this scenario, pufferfish2 reduces the size of utab by half but incurs only
a 1.2× slowdown. We also queried reads from the same human stool sample against the collection
of 30,000 bacterial genomes representative of the human gut. Here, 88% of 𝑘-mers are found in the
indexed references. At the sparsest setting, pufferfish2 indexes incur only a 3.6× slowdown while
reducing the size of utab by 60%.

We observe that pufferfish2’s sampling scheme is less effective when indexing a collection
of seven human genomes. When sampled with 𝑠 = 3 and 𝑡 = 0.25, pufferfish2 incurs a 10.5×
slowdown when querying reads from a DNA-seq experiment in which 92% of queried 𝑘-mers occur
in reference sequences. Interestingly, the slowdown when querying reads is larger than the slowdown
when querying random 𝑘-mers. This is likely due to biases from sequencing that cause 𝑘-mers and
reads to map to non-uniformly indexed references. Nonetheless, this result motivates future work
that could design sampling schemes optimized for specific distributions of query patterns.

We expect to see less-pronounced slowdowns in practice than those reported in Table 1. This
is because tools downstream of an index like pufferfish2 almost always perform operations much
slower after straightforward exact lookups for 𝑘-mers. For example, aligners have to perform align-
ment accounting for mismatches and edits. Also, our experiments pre-process random 𝑘-mer sets
and read-sets so that no benchmark is I/O bound. Critically, the compromises in speed that

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 13

Dataset u2occ w/ pufferfish2 k2u w/ SSHash New index Original pufferfish index
7 Human 9.9 3.2 13.1 28.0
4000 Bacteria 3.7 7.3 11.0 26.1
30K Human gut 34.6 22.0 55.6 131.7

Table 2. Sizes in GB of possible, new indexes — with k2u implemented by SSHash and u2occ by
pufferfish2 — compared to the size of original pufferfish indexes. Selected sampling parameters for
datasets (top-to-bottom) are (𝑠 = 3, 𝑡 = 0.25), (𝑠 = 3, 𝑡 = 0.05), and (𝑠 = 6, 𝑡 = 0.05), respectively.

pufferfish2 makes are especially palatable because it trades-off speed in the fastest operations
in analyses — exact 𝑘-mer queries — while substantially reducing the space required for the most
space intensive operation.

Using SSHash for even smaller indexes. For convenience, we have implemented our SPT com-
pression scheme within an index that uses the specific sparse pufferfish implementation for the
𝑘-mer-to-tile (𝑘-mer-to-unitig) mapping [9]. However, the SPT enables the construction of modular
indexes that use various data structures for the 𝑘-mer-to-tile mapping and the tile-to-reference
mapping, provided only a minimalistic API between them. A recent representation of the 𝑘-mer-
to-tile mapping that supports all the necessary functionality is SSHash [22]. Compared to the k2u
component of pufferfish, SSHash is almost always substantially smaller. Further, it usually pro-
vides faster query speed compared to the sparse pufferfish implementation of the 𝑘-mer-to-tile
query, especially when streaming queries are being performed.

In Table 2, we calculate the size of indexes if SSHash is used for the 𝑘-mer-to-tile mapping —
rather than the sparse pufferfish implementation. These sizes then represent overall index sizes
that would be obtained by pairing a state-of-the-art representation of the 𝑘-mer-to-tile mapping
with a state-of-the-art representation of the tile-to-reference mapping (that we have presented in
this work). Practically, the only impediment to constructing a fully-functional index from these
components is that they are implemented in different languages (C++ for SSHash and Rust for
pufferfish2) — we are currently addressing this issue.

Importantly, these results demonstrate that, when SSHash is used, the representation of the
tile-to-occurrence query becomes a bottleneck in terms of space, occupying an increasingly larger
fraction of the overall index. Table 2 shows that, in theory, if one fully exploits the modularity of
SPTs, new indexes that combine SSHash with pufferfish2 would be half the space of the original
pufferfish index. As of writing, with respect to an index over 30,000 bacterial genomes, the
estimated difference in monetary cost of an AWS EC2 instance that can fit a new 55.6GB index
versus a 131GB pufferfish index in memory is 300USD per month (see Section S.7).

Comparing to MONI and the r-index. We compared pufferfish2 to MONI, a tool that builds
an r-index to locate maximal exact matches in highly repetitive reference collections [6]. In brief,
pufferfish2 is faster and requires less space than MONI for our benchmarked bacterial dataset.
Our tool does so with some trade-offs. Pufferfish2 supports rapid locate queries for 𝑘-mers of a
fixed length, while r-index based approaches supports locate queries for patterns of any arbitrary
length and can be used to find MEMs. Notably, it has been shown that both 𝑘-mer and MEM
queries can be used for highly effective read-mapping and alignment [1,6].

For reference, we built MONI on our collection of 4,000 bacterial genomes. Here, MONI required
51.0G of disk space to store which is 29% larger than the pufferfish index (39.5GB) with its dense

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

14 Fan et al.

k2u implementation — its least space-efficient configuration. The most space efficient configuration
of the pufferfish2 index (with 𝑠=3, 𝑡=.25) is 42% the size of MONI when built on from the same
data and requires 21.7GB of space. Compared to a theoretically possible index specified in Table 2
that would only require 11.0GB, MONI would need 4.6× more space.

We also performed a best-effort comparison of query speed between pufferfish2 and MONI.
Unfortunately, it is not possible to directly measure the speed of exact locate queries for MONI
because it does not expose an interface for such queries. Instead, we queried MONI to find MEMs
on true-positive 𝑘-mers treating each 𝑘-mer as unique read (encoded in FASTQ format as MONI
requires). We argue that this is a reasonable proxy to exact locate queries because, for each true-
positive 𝑘-mer deriving from an indexed reference sequence, the entire 𝑘-mer itself is the maximal
exact match. For MONI, just like in benchmarks for in Table 1, we report the time taken for
computing queries only and ignore time required for I/O operations (i.e. loading the index and
quries, and writing results to disk).

We found that pufferfish2 is faster than MONI when querying 𝑘-mers against our collection
of 4,000 bacterial genomes. MONI required 1,481.7 seconds to query the same set of 10 million
random true-positive k-mers queried in Table 1. When compared to the slowest built most space
efficient configuration of pufferfish2 benchmarked in Table 1, pufferfish2 is 3.5× faster.

6 Discussion and future work

In this work, we introduce the spectrum preserving tiling (SPT), which describes how a spectrum
preserving string set (SPSS) tiles and “spells” an input collection of reference sequences. While
considerable research effort has been dedicated to constructing space and time-efficient indexes
for SPSS, little work has been done to develop efficient representations of the tilings themselves,
despite the fact that these tilings tend to grow more quickly than the SPSS and quickly become
the size bottleneck when these components are combined into reference indexes. We describe and
implement a sparsification scheme in which the space required for representing an SPT can be
greatly reduced in exchange for an expected constant-factor increase in the query time. We also
describe several important heuristics that are used to substantially lessen this constant-factor in
practice. Having demonstrated that modular reference indexes can be constructed by composing a
𝑘-mer-to-tile mapping with a tile-to-occurrence mapping, we have thus opened the door to exploring
an increasingly diverse collection of related reference indexing data structures.

Despite the encouraging progress that has been made here, we believe that there is much left
to be explored regarding the representation of SPTs, and that many interesting questions remain
open. Some of these questions are: (1) How would an algorithm sample individual unitig-occurrences
instead of all occurrences of a unitig to explicitly bound the lengths of backwards traversals? (2) Does
a smaller SPSS imply a small SPT and could one compute an optimally small SPT? (3) Given some
distributional assumptions for queries, can an algorithm sample SPTs to minimize the expected
query time? (4) In practice, how can an implemented tool combine our sampling scheme with
existing compression algorithms for the highly skewed tile-to-occurrence query? (5) Can a lossy
index over an SPT be constructed and applied effectively in practical use cases?

With excitement, we discuss in more detail these possibilities for future work in more detail
in Section S.8.

Funding. This work is supported by the NIH under grant award numbers R01HG009937 to R.P.; the
NSF awards CCF-1750472 to R.P. and CNS-1763680 to R.P; and NSF award No. to DGE-1840340 J.F.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing 15

This work was also partially supported by the project MobiDataLab (EU H2020 RIA, grant agreement
No̲101006879).
Conflicts of interest. R.P. is a co-founder of Ocean Genomics Inc.

References

1. Fatemeh Almodaresi, Mohsen Zakeri, and Rob Patro. PuffAligner: a fast, efficient and accurate aligner
based on the pufferfish index. Bioinformatics, June 2021. btab408.

2. Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods, 14(4):417–419, 2017.

3. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic RNA-seq
quantification. Nature Biotechnology, 34(5):525–527, 2016.

4. Rob Patro, Stephen M. Mount, and Carl Kingsford. Sailfish enables alignment-free isoform quantifi-
cation from rna-seq reads using lightweight algorithms. Nature Biotechnology, 32(5):462–464, May
2014.

5. Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-runs bounded
space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, page 1459–1477, USA, 2018. Society for Industrial and Applied Mathematics.

6. Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. Moni: A
pangenomic index for finding maximal exact matches. Journal of Computational Biology, 29(2):169–
187, 2022. PMID: 35041495.

7. Omar Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Langmead. Spumoni 2:
Improved pangenome classification using a compressed index of minimizer digests. bioRxiv, 2022.

8. Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm. In Digital
SRC Research Report. Citeseer, 1994.

9. Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space and time-efficient index
for the compacted colored de bruijn graph. Bioinformatics, 34(13):i169–i177, 2018.

10. Daehwan Kim, Joseph M. Paggi, Chanhee Park, Christopher Bennett, and Steven L. Salzberg. Graph-
based genome alignment and genotyping with hisat2 and hisat-genotype. Nature Biotechnology,
37(8):907–915, Aug 2019.

11. Erik Garrison, Jouni Sirén, Adam M. Novak, Glenn Hickey, Jordan M. Eizenga, Eric T. Dawson,
William Jones, Shilpa Garg, Charles Markello, Michael F. Lin, Benedict Paten, and Richard Durbin.
Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nature
Biotechnology, 36(9):875–879, Oct 2018.

12. Ilia Minkin, Son Pham, and Paul Medvedev. TwoPaCo: an efficient algorithm to build the compacted
de Bruijn graph from many complete genomes. Bioinformatics, 33(24):4024–4032, 09 2016.

13. Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de Bruijn graphs from sequencing
data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 06 2016.

14. Jamshed Khan and Rob Patro. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn
graphs from large-scale genome collections. Bioinformatics, 37(Supplement_1):i177–i186, 07 2021.

15. Jamshed Khan, Marek Kokot, Sebastian Deorowicz, and Rob Patro. Scalable, ultra-fast, and low-
memory construction of compacted de bruijn graphs with cuttlefish 2. Genome Biology, 23(1):190, Sep
2022.

16. Barış Ekim, Bonnie Berger, and Rayan Chikhi. Minimizer-space de bruijn graphs: Whole-genome
assembly of long reads in minutes on a personal computer. Cell Systems, 12(10):958–968.e6, 2021.

17. Mikhail Karasikov, Harun Mustafa, Gunnar Rätsch, and André Kahles. Lossless indexing with counting
de bruijn graphs. Genome Res., 32(9):1754–1764, May 2022.

18. Amatur Rahman and Paul Medvedev. Representation of 𝑘-mer sets using spectrum-preserving string
sets. In Russell Schwartz, editor, Research in Computational Molecular Biology, pages 152–168, Cham,
2020. Springer International Publishing.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

16 Fan et al.

19. Sebastian Schmidt and Jarno N. Alanko. Eulertigs: minimum plain text representation of k-mer sets
without repetitions in linear time. bioRxiv, 2022.

20. Karel Břinda, Michael Baym, and Gregory Kucherov. Simplitigs as an efficient and scalable represen-
tation of de Bruijn graphs. Genome Biology, 22(1):96, April 2021.

21. Giulio Ermanno Pibiri. On weighted k-mer dictionaries. In International Workshop on Algorithms in
Bioinformatics (WABI), pages 9:1–9:20, 2022.

22. Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. Bioinformatics, 38(Supplement_1):i185–
i194, 06 2022.

23. Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuohtoniemi. Succinct k-mer sets using subset rank
queries on the spectral burrows-wheeler transform. bioRxiv, 2022.

24. Francisco Claude and Gonzalo Navarro. The wavelet matrix. In International Symposium on String
Processing and Information Retrieval, pages 167–179. Springer, 2012.

25. Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de Bruijn graphs.
In International Workshop on Algorithms in Bioinformatics (WABI), pages 225–235. Springer, 2012.

26. Giulio Ermanno Pibiri and Rossano Venturini. Techniques for inverted index compression. ACM
Comput. Surv., 53(6):125:1–125:36, 2021.

27. Uwe Baier, Timo Beller, and Enno Ohlebusch. Graphical pan-genome analysis with compressed suffix
trees and the Burrows–Wheeler transform. Bioinformatics, 32(4):497–504, October 2015.

28. Pranvera Hiseni, Knut Rudi, Robert C. Wilson, Finn Terje Hegge, and Lars Snipen. HumGut: a
comprehensive human gut prokaryotic genomes collection filtered by metagenome data. Microbiome,
9(1):165, July 2021.

29. Justin M. Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow, Ziming
Weng, Yuling Liu, Christopher E. Mason, Noah Alexander, Elizabeth Henaff, Alexa B.R. McIntyre,
Dhruva Chandramohan, Feng Chen, Erich Jaeger, Ali Moshrefi, Khoa Pham, William Stedman, Tiffany
Liang, Michael Saghbini, Zeljko Dzakula, Alex Hastie, Han Cao, Gintaras Deikus, Eric Schadt, Robert
Sebra, Ali Bashir, Rebecca M. Truty, Christopher C. Chang, Natali Gulbahce, Keyan Zhao, Srinka
Ghosh, Fiona Hyland, Yutao Fu, Mark Chaisson, Chunlin Xiao, Jonathan Trow, Stephen T. Sherry,
Alexander W. Zaranek, Madeleine Ball, Jason Bobe, Preston Estep, George M. Church, Patrick Marks,
Sofia Kyriazopoulou-Panagiotopoulou, Grace X.Y. Zheng, Michael Schnall-Levin, Heather S. Ordonez,
Patrice A. Mudivarti, Kristina Giorda, Ying Sheng, Karoline Bjarnesdatter Rypdal, and Marc Salit.
Extensive sequencing of seven human genomes to characterize benchmark reference materials. Scientific
Data, 3(1):160025, June 2016.

30. Joan Mas-Lloret, Mireia Obón-Santacana, Gemma Ibáñez-Sanz, Elisabet Guinó, Miguel L. Pato, Fran-
cisco Rodriguez-Moranta, Alfredo Mata, Ana García-Rodríguez, Victor Moreno, and Ville Nikolai Pi-
menoff. Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired
stool and colon sample. Scientific Data, 7(1):92, March 2020.

31. Alistair Moffat and Lang Stuiver. Binary interpolative coding for effective index compression. Infor-
mation Retrieval, 3(1):25–47, 2000.

32. Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
2018.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing S.1

Supplementary materials for
“Spectrum preserving tilings enable sparse and modular

reference indexing”,
Jason Fan, Jamshed Khan, Giulio Ermanno Pibiri, and Rob Patro

S.1 The mapped position query (MRP) for unitig-tilings

Algorithm 4: The MRP query for
unitig-tilings

1 def mrp(𝑥):
2 𝑡𝑢𝑝 ← k2u(𝑥)
3 if 𝑡𝑢𝑝 = ∅ then
4 return []
5 (𝑖, 𝑝) ← 𝑡𝑢𝑝
6 𝑜𝑐𝑐𝑖 ← num-occs(𝑈𝑖)
7 𝑎𝑛𝑠 ← []
8 for 𝑟 ← 0 to 𝑜𝑐𝑐𝑠𝑖 do
9 (𝑛, 𝑠) ← u2occ(𝑖, 𝑟)

10 𝑎𝑛𝑠[𝑟] = (𝑛, 𝑠 + 𝑝)
11 return ans

S.2 Spectrum preserving tilings with orientations

We extend the definition of spectrum preserving tilings (without orientations) given in Section 3.1,
to formally define spectrum preserving tilings (SPT) with orientations. An SPT with orientation
allows tiles (members of a spectrum preserving string set) to occur in either a forward orientation
as stored in memory as a nucleotide sequence, or a backwards orientation as the reverse complement
of the stored sequence.

With respect to representing reference genomic sequences, using SPTs with orientations is par-
ticularly useful because it avoids redundantly encoding and storing occurrences of a 𝑘-mer and
the reverse complement of said 𝑘-mer. Furthermore, since most sequencing technologies are agnos-
tic to strands of DNA sequences, considering orientations enables the simultaneous and canonical
representation of both corresponding strands of an indexed genomic sequence.

Also, as in [9], we consider only odd 𝑘-mer sizes so that no 𝑘-mer is its own reverse complement.

Tiling sequences of tile and orientation pairs. Given a fixed 𝑘-mer size, 𝑘, a tiling sequence
𝑇𝑛 in 𝒯 is instead sequences of tile-orientation pairs where each occurrence is defined to be 𝑇𝑛,𝑚 =
(𝑈𝑖, 𝑜), for some unitig 𝑈𝑖 ∈ 𝒰 and an orientation 𝑜 ∈ {0, 1}. Here, 𝑜 = 1 indicates that the unitig
𝑈𝑖 occurs in a forward orientation and 𝑜 = 0 indicates that it occurs in the backwards orientation
with reverse complement sequence 𝑈𝑖. Notationally, 𝑈𝑖 is the string that is the reverse complement
of 𝑈𝑖 where 𝑈𝑖 is reversed and each nucleotide is replaced with its complement.

Let us define the spell(𝑈𝑖, 𝑜) function for a unitig orientation pair to return the forward se-
quence 𝑈𝑖 if 𝑜 = 1 and the backwards, reverse complement sequence 𝑈𝑖 otherwise. Abusing some
notation, when 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜), let spell(𝑇𝑛,𝑚) = spell(𝑈𝑖, 𝑜).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

S.2 Fan et al.

Then formally, a spectrum preserving tiling with orientations for a reference collection ℛ =
{𝑅1, … , 𝑅𝑁} tiles each reference sequence 𝑅𝑛 with sequences spelled by occurrences of tile-orienation
pairs. Specifically, each 𝑅𝑛 can be reconstructed by gluing together the sequences that tile-orientation
pairs spell. For each 𝑅𝑛 that is tiled by 𝑀𝑛 tile occurrences, the SPT satisfies the property that:

𝑅𝑛 = spell(𝑇𝑛,1)[𝑤𝑛,1 ∶ 𝑤𝑛,1 + 𝑙𝑛,1] ⊕𝑘 … ⊕𝑘 spell(𝑇𝑛,𝑀𝑛
)[𝑤𝑛,𝑀𝑛

∶ 𝑤𝑛,𝑀𝑛
+ 𝑙𝑛,𝑀𝑛

]

S.2.1 Returning queries with orientations

Accordingly, when indexing an SPT with orientations the mapped reference position query, 𝑘-mer-
to-tile query, and tile-to-occurrence query also return orientations. Here, we extend and reintroduce
the queries defined in Section 3.

1. The mapped reference position (MRP) query Given any 𝑘-mer 𝑥, the MRP query enu-
merates the positions and orientations of all occurrences of 𝑥 in ℛ. Precisely, each returned
occurrence is a tuple (𝑛, 𝑝, 𝑜), that specifies that 𝑘-mer 𝑥 occurs in reference 𝑛 at position 𝑝
with orientation 𝑜. That is, if 𝑜 = 1, then 𝑥 occurs in the forward orientation as 𝑅𝑛[𝑝 ∶ 𝑝+𝑘] = 𝑥.
Otherwise, the reverse complement occurs as 𝑅𝑛[𝑝 ∶ 𝑝 + 𝑘] = 𝑥. If a 𝑘-mer does not occur in
some 𝑅𝑛 ∈ ℛ, the query returns an empty list.

2. The kmer-to-tile query: Given a 𝑘-mer 𝑥, k2tile(𝑥) returns (𝑖, 𝑝, 𝑜) — the identity of the
tile 𝑈𝑖 that contains 𝑥, the offset (position) into the tile 𝑈𝑖 where 𝑥 occurs, and the orientation
of how 𝑥 occurs. That is, k2tile(𝑥) = (𝑖, 𝑝, 1) if 𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥, and k2tile(𝑥) = (𝑖, 𝑝, 0) if
𝑈𝑖[𝑝 ∶ 𝑝 + 𝑘] = 𝑥 where 𝑥 occurs in the backwards orientation as the reverse complement. If 𝑥
is not in ℛ, k2tile, k2tile(𝑥) returns ∅.

3. The tile-to-occurrence query: Given the 𝑟-th occurrence of the tile 𝑈𝑖, tile2occ(𝑖, 𝑟) returns
the tuple (𝑛, 𝑜, 𝑠, 𝑤, 𝑙) that encodes how and in what orientation 𝑈𝑖 tiles the reference 𝑅𝑛. Let the
𝑟-th occurrence of 𝑈𝑖 be a tile-occurrence 𝑇𝑛,𝑚 on 𝒯 where 𝑇𝑛,𝑚 = 𝑈𝑖, 𝑜 for some orientation
𝑜. Then tile2occ(𝑖, 𝑟) returns (𝑛, 𝑜, 𝑠𝑛,𝑚, 𝑤𝑛,𝑚, 𝑙𝑛,𝑚). When tile2occ(𝑖, 𝑟) = (𝑛, 𝑜, 𝑠, 𝑤, 𝑙)
and 𝑜 = 1, the 𝑟-th occurrence of 𝑈𝑖 occurs on 𝑅𝑛 at position (𝑠 + 𝑤), with the sequence
𝑈𝑖[𝑤 ∶ 𝑤 + 𝑙]. When tile2occ(𝑖, 𝑟) = (𝑛, 𝑜, 𝑠, 𝑤, 𝑙) and 𝑜 = 0, the 𝑟-th occurrence of 𝑈𝑖 occurs
on 𝑅𝑛 at position (𝑠 + 𝑤), with the sequence 𝑈𝑖[𝑤 ∶ 𝑤 + 𝑙].

With some arithmetic bookkeeping considering orientations and lengths, the MRP query with
orientations can again be decomposed into the two corresponding 𝑘-mer-to-tile and tile-to-occurrence
queries that also return orientations. Although not introduced with respect to an SPT, the pufferfish
index developed by Almodaresi et al. [9] is implemented exactly this way as an index over an SPT
with orientations of unitigs.

S.3 Pufferfish2: the pred query with orientations

Pufferfish2’s sampling scheme and the pred query can be applied when considering orientations
— our implemented tool does exactly this. Below, we extend Section 4 to fully specify the introduced
sampling scheme and the pred query when orientations are considered.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing S.3

S.3.1 Predecessor and successor nucleotides

When SPT references, predecessor and successor nucleotides are defined and obtained with respect
to sequences on the references. Specifically, the predecessor nucleotide is the first nucleotide of the
last 𝑘-mer on of the preceding unitig-occurrence as spelled with the corresponding orientation of the
occurrence. The successor nucleotide is defined in the same manner.

Suppose 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜), and 𝑇𝑛,𝑚−1 = (𝑈𝑗, 𝜔), and let the unitigs have lengths ℓ𝑖 and ℓ𝑗, re-
spectively. We say that, 𝑇𝑛,𝑚−1 precedes 𝑇𝑛,𝑚 with predecessor nucleotide 𝑝 and orientation 𝑜. Con-
cretely, 𝑝 is the first nucleotide on the last 𝑘-mer of the preceding unitig, with 𝑝 = spell(𝑇𝑛,𝑚−1)[ℓ𝑗−
𝑘]. We say that, 𝑇𝑛,𝑚 succeeds 𝑇𝑛,𝑚−1 with successor nucleotide 𝑠 and orientation 𝜔. Accordingly,
the successor nucleotide, 𝑠, is the last nucleotide on the first 𝑘-mer of the succeeding unitig, with
𝑠 = spell(𝑇𝑛,𝑚)[𝑘].

S.3.2 Storing nucleotide-orientation pairs in ptab and stab

Instead of storing only nucleotides, pufferfish2 stores nucleotide-orientation pairs in implementa-
tion. That is, for each occurrence 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜) that is the 𝑟-th occurrence of a not-sampled unitig
𝑈𝑖,

ptab[𝑖][𝑟] = (pred-nuc(𝑇𝑛,𝑚), 𝑜).
And for each occurrence 𝑇𝑛,𝑚 = (𝑈𝑖, 𝑜) that is the 𝑟-th occurrence of any unitig 𝑈𝑖,

stab[𝑖][𝑟] = (succ-nuc(𝑇𝑛,𝑚), 𝑜).

In summary, ptab and stab store for each corresponding unitig-occurrence, the nucleotides that
succeed and precede it as they occur on a tiled reference, and the orientation of said occurrence.

S.3.3 Computing the pred query by matching ranks of predecessor-orientation and
successor-orientation pairs

When orientations are considered, computing the pred query requires matching ranks of predecessor-
orientation and successor-orientation pairs. Critically, any time a pair of unitigs occur as a successor-
predecessor pair in fixed orientations, the corresponding pair of predecessor and successor nucleotides
are consistent and also fixed. Furthermore, if an occurrence of the 𝑈𝑗 in orientation 𝜔 precedes a
unitig 𝑈𝑖 with orientation 𝑜, any other occurrence of 𝑈𝑗 that precedes 𝑈𝑖 with orientation 𝑜 must
also occur with orientation 𝜔. We state and prove this property with Theorem 1 and illustrate
examples of both possible and impossible unitig-occurrences with Fig. S1.

Theorem 1 guarantees that whenever 𝑈𝑖 occurs with orientation 𝑜 with predecessor nucleotide
𝑝 preceded by 𝑈𝑗, 𝑈𝑗 must occur with fixed orientation 𝜔 with a fixed successor nucleotide 𝑠. We
illustrate this correspondence in Fig. S1. Algorithm 5 implements pred with orientations considered.

To find the identity, 𝑗, of the preceding unitig occurrence, Algorithm 5 must construct the last
𝑘-mer of the corresponding occurrence 𝑈𝑗 as it appears on the reference. Specifically, in Line 3 it
spells 𝑈𝑖 before extracting the overlapping (𝑘 − 1)-mer. Here, k2u returns orientation, 𝜔, of the
queried 𝑘-mer on 𝑈𝑗, which must also be the orientation of the preceding unitig occurrence on the
reference. Furthermore, the successor nucleotide, 𝑠, for the preceding occurrence of 𝑈𝑗 must be the
𝑘-th nucleotide on 𝑈𝑖 spelled with orientation 𝑜 (Line 5).

Now, Algorithm 5 has all it needs to compute 𝑞, the unitig-rank of the preceding occurrence of
𝑈𝑗. Computing the rank of (𝑝, 𝑜) in ptab[𝑖] yields the rank of the corresponding successor-orientation

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

S.4 Fan et al.

𝑼𝒊𝑼𝒋

? (G,1)

(a) Matching occurrences of predecessor-orientation
and successor-orientation pairs

ptab[i]stab[i]

(T,1)(A,1)
pred(i,1)(j,2)

?(C,1)
(j,1)

(T,1)(A,1)(j,0)

(G,0)(C,0)
(j,4)

(G,0)(C,0)
(j,3)

(c) Impossible tilings

𝑼𝒊𝑼𝒋

𝑼𝒊𝑼𝒋

(b) Occurrences have consistent orientations

𝑼𝒊𝑼𝒋

𝑼𝒊𝑼𝒋

Fig. S1. Properties of the pred query for unitig-tilings with orientations. (a) Adjacent pairs of successor
and predecessor unitigs have consistent and unique co-occurring pairs of predecessor nucleotide-orientation
successor nucleotide-orientation pairs. (b) Whenever a pair of unitigs occur adjacently on the tiling, the
orientation of one fixes the orientation of the other (for odd 𝑘-mer sizes). (c) That is, if 𝑈𝑗 with orientation
𝜔 precedes a unitig 𝑈𝑖 with fixed orientation 𝑜 once, it cannot precede another occurrence (of 𝑈𝑖 with
orientation 𝑜) in the opposite orientation.

pair stored for the preceding unitig-occurrence. Finally, selecting for the successor-orientation pair
(𝑠, 𝜔) in stab[𝑗] yields 𝑞.

Algorithm 5: The pred query with
orientations

1 def pred(𝑖, 𝑟):
2 (𝑝, 𝑜) ← ptab[𝑖][𝑟]
3 𝑦 ← 𝑝 ∘ spell(𝑈𝑖, 𝑜)[∶ 𝑘 − 1]
4 (𝑗, _, 𝜔) ← k2u(𝑦)
5 𝑠 ← spell(𝑈𝑖, 𝑜)[𝑘]
6 𝑡 ← rank(𝑝,𝑜)(ptab[𝑖], 𝑟)
7 𝑞 ← select(𝑠,𝜔)(stab[𝑗], 𝑡)
8 return (𝑗, 𝑞)

S.3.4 Unitig-unitig occurrences have consistent orientations and predecessor-
successor nucleotides

The key to the correctness of pufferfish2’s reference tiling traversal, by way of successor-orientation
and predecessor-orientation pairs, is that predecessor-successor nucleotide pairs for adjacent unitig-
occurrences are consistent and unique up to orientation. Whenever unitigs 𝑈𝑎 and 𝑈𝑏 overlap and
tile with some given fixed orientations, corresponding successor and predecessor nucleotides are
consistent and always the same. Below, we prove Theorem 1 that formally states this property.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing S.5

Theorem 1. Let unitigs 𝑈𝑎 and 𝑈𝑏 overlap and tile in orientations 𝑜 and 𝜔, with successor and
predecessor nucleotides 𝑝 and 𝑠. If any occurrence of 𝑈𝑎 with orientation 𝑜 is preceded by the
nucleotide 𝑝, it must always be preceded by the same unitig 𝑈𝑏 in the same orientation 𝜔. Simul-
taneously, if any unitig 𝑈𝑏 with orientation 𝜔 is succeeded by the nucleotide 𝑠, it must always be
succeeded by the same unitig 𝑈𝑎 in the same orientation 𝑜.

Proof. Theorem 1 is result of the lemmas proved below. Lemmas 1 and 2 state that with fixed
orientations and predecessor and successor nucleotides, the identities of successor-predecessor unitig
pairs must be unique. Lemmas 3 and 4 state that with fixed predecessor and successor nucleotides
for fixed unitig identities, the orientations of a successor-predecessor unitig pair must be unique.

Lemma 1. Consider unitigs 𝑈𝑖, 𝑈𝑗, 𝑈𝑘 ∈ 𝒰. Let adjacent unitig occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and
𝑇𝑎,𝑏+1 = (𝑈𝑗, 𝜔) occur with successor nucleotide 𝑠. For any 𝑐, 𝑑, there does not exist another pair of
adjacent occurrences 𝑇𝑐,𝑑 = (𝑈𝑖, 𝑜) and 𝑇𝑐,𝑑+1 = (𝑈𝑘, 𝜔′) with the same succeeding nucleotide 𝑠 but
with 𝑈𝑗 ≠ 𝑈𝑘.

Proof. Let us assume the contrary. Let 𝑧 be the last (𝑘 − 1)-mer on spell(𝑇𝑎,𝑏), which is the same
as spell(𝑇𝑐,𝑑). Then the 𝑘-mer 𝑧 ∘ 𝑠 occurs on different unitigs 𝑈𝑗 and 𝑈𝑘. However, this is a
contradiction since any unique 𝑘-mer occurs in only one unique unitig.

Lemma 2. Consider unitigs 𝑈𝑖, 𝑈𝑗, 𝑈𝑘 ∈ 𝒰. Let the occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and 𝑇𝑎,𝑏−1 = (𝑈𝑗, 𝜔)
occur with preceding nucleotide 𝑝. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈𝑖, 𝑜), 𝑇𝑐,𝑑−1 = (𝑈𝑘, 𝜔′)
in ℛ where 𝑈𝑗 ≠ 𝑈𝑘, with the same preceding nucleotide 𝑠.

Proof. This is symmetrical to Lemma 1.

Lemma 3. Let {𝑈𝑖, 𝑈𝑗} ∈ 𝒰 Given unitig occurrences 𝑇𝑎,𝑏 = (𝑈𝑖, 𝑜) and 𝑇𝑎,𝑏+1 = (𝑈𝑗, 1) that tile
𝑅𝑎 with successor nucleotide 𝑠. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈, 𝑜), 𝑇𝑐,𝑑+1 = (𝑈𝑗, 0) in
ℛ with the same successor nucleotide 𝑠.

Proof. Let us assume the contrary. Let 𝑧 be the last (𝑘 − 1)-mer on 𝑇𝑎,𝑏 and 𝑇𝑐,𝑑. Suppose 𝑧 ∘ 𝑠 is
the first 𝑘-mer on 𝑈𝑖. The tiling on 𝑅𝑐 implies that 𝑧 ∘ 𝑠 is the first 𝑘-mer on 𝑈 𝑗 and that 𝑧 ∘𝑠 is the
last 𝑘-mer on 𝑈𝑗. But the tiling on 𝑅𝑎 implies that 𝑧 ∘ 𝑠 is the first 𝑘-mer on 𝑈𝑗. If |𝑈𝑗| = 𝑘 and 𝑈𝑗
is itself a 𝑘-mer, then the above implies 𝑈𝑗 = 𝑈𝑖. This cannot be the case, since we consider only
odd-length 𝑘-mers, and no odd length 𝑘-mer can be equal to its reverse complement. If |𝑈𝑗| > 𝑘,
then 𝑧 occurs in two distinct positions in 𝑈𝑗, this is again a contradication since any unique 𝑘-mer
occurs in only one unique unitig.

Lemma 4. Let {𝑈𝑖, 𝑈𝑗} ∈ 𝒰 Given unitig occurrences 𝑇𝑎,𝑏 = (𝑈, 𝑜) and 𝑇𝑎,𝑏−1 = (𝑉 , 1) that tile
𝑅𝑎 with predecessor nucleotide 𝑝. There does not exist another pair 𝑇𝑐,𝑑 = (𝑈, 𝑜), 𝑇𝑐,𝑑−1 = (𝑉 , 0)
in ℛ with the same precedecessor nucleotide 𝑝.

Proof. This is symmetrical to Lemma 3.

S.4 Constructing pufferfish2 from pufferfish

Building pufferfish2 requires a linear scan over the 𝑛 total unitig-occurrences in the tiling se-
quences indexed by a given pufferfish index to collect predecessor and successor nucleotides.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

S.6 Fan et al.

The construction process is dominated by the time it takes to build the pair of wavelet matrices
over all the predecessor and successor nucleotides of every unitig-occurrence. We note that since
pufferfish2 sparsifies and compresses and existing pufferfish index, it adopts pufferfish’s up-
stream preprocessing of unknown bases, where each N is replaced by a pseudo-random nucleotide.
Constructing a wavelet matrix over an alphabet of size 𝜎 requires 𝑂(𝑛 lg 𝜎) time and amounts to
successive stable partitions of the encoded characters according to their bitwise representations. In
the future, we plan to update pufferfish2 to index input reference sequences directly.

S.5 Greedy unitig sampling with bounded traversal length 𝑠

Here we describe a greedy sampling scheme that greedily bounds traversal lengths to be at most
of length 𝑠. To ensure that all backwards traversals terminate, the greedy sampling with integer
paramater 𝑠 first samples all unitigs that occur as the first occurrence of a tiling sequence, adds
them to the set of sampled unitigs 𝒰𝑆, and sets the corresponding bits in isSamp to 1 and all other
bits to zero. Then, traversing tiling sequences in the order in which they appear, the greedy scheme
maintains a counter of the distance to the last sampled unitig-occurrence. At each unitig occurrence
𝑇𝑛,𝑚 = 𝑈𝑖, if 𝑈𝑖 is already sampled (i.e., isSamp[𝑖] is 1), the greedy scheme resets the counter to
zero. Otherwise, the greedy scheme increases the counter by one. When the counter is greater than
𝑠, it samples the current unitig and resets the counter.

Although the greedy scheme is able to explicitly bound the traversal length it samples almost all
unitigs when the length of tiling sequences become much larger than the number of unique unitigs.
This is because, as implemented, pufferfish2 samples all occurrences of a unitig, if said unitig is
sampled. For example, when applying this sampling scheme to index a collection of seven human
genomes, a greedy scheme with 𝑠 = 3 samples 40% of unique unitigs that constitute more than 70%
of unitig-occurrences. In this example, over 70% of utab must then be kept and uncompressed.

S.6 Optimizations for pufferfish2

Caching traversals. When enumerating all positions of a unitig with u2occ, pufferfish2 caches
the k2u query — the empirically slowest constant-time operation in the pred query (Line 4 in
Algorithm 3). The purpose of this k2u query is only to find the identity of the preceding unitig
given a unitig-occurrence’s predecessor nucleotide. While a unitig may be preceded by many oc-
currences, preceding occurrences can have at most four unique unitig identities — one for each
possible nucleotide. If 𝑈𝑖 occurs more than once with 𝑈𝑗 preceding it, 𝑈𝑗 must always precede 𝑈𝑖
with the same fixed predecessor nucleotide each time. For MRP queries, pufferfish2 can avoid
executing the redundant k2u queries (within pred queries) when the same nucleotide is prepended
to different occurrences of 𝑈𝑖. Specifically, during MRP queries where the pred query is executed,
pufferfish2 caches the mapping from predecessor nucleotides to preceding unitig identities. In
practice, pufferfish2 maintains an efficient LRU cache to memoize Lines 3 and 4 in Algorithm 3.

Caching streaming MRP queries. In practice, a stream of successive MRP queries for different
𝑘-mers often land in the same unitig (e.g. when querying 𝑘-mers on a sequenced read). So, instead
of performing redundant u2occ queries that may perform backwards traversals for the same unitig,
pufferfish2 maintains a cache for the u2occ query. When successive 𝑘-mers are found to be in
the same unitig via the k2u query, pufferfish2 checks a “streaming cache” to avoid performing

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

Spectrum preserving tilings enable sparse and modular reference indexing S.7

repeated u2occ queries for the same unitig. This caching scheme for “streaming” queries is also
employed in [22].

Exiting early. In practice, programs such as read-mappers and aligners can exit early from the
mapped reference position query if a queried 𝑘-mer is uninformative and occurs too frequently. With
pufferfish2, instead of always computing the u2occ query for every occurrence in loop starting
on Line 8, a caller of the MRP query can exit before the loop and avoid traversals altogether.

Interpolating between wavelet matrices and short linear scans. In practice, computing
rank and select for short predecessor and successor nucleotide sequences (see Lines 6 and 7) is
faster with a linear scan in an array than an operation in the wavelet matrix. So, for unitigs that
occur at most 64 times, pufferfish2 stores corresponding lists of nucleotides in packed arrays
instead of wavelet matrices.

S.7 Cost estimate for Amazon Web Services (AWS) EC2 instances

Estimated prices for AWS EC2 instances in the “US East” region are obtained from https://
calculator.aws/#/estimate. EC2 instances were specified with 500Gb of storage and 8 CPUs
for 10 hrs per week of usage. Recommended EC2 x2gd.4xlarge instances have 258GiB of memory
whereas x2gd.2xlarge instances have 128GiB of memory. As of writing, estimated cost per month
for x2gd.4xlarge and x2gd.2xlarge are 651USD and 351USD, respectively.

S.8 Future work

1. Given the SPT definition, we have introduced strategies for sampling 𝒰. That is, either a
tile has all or none of its occurrences sampled. Yet, nothing theoretically prevents one from
instead sampling over 𝒯, so that occurrences are sampled according to their position on a tiling
regardless of their unitig-identities. This approach introduces some extra complications but
provides the benefit of allowing sampling schemes to trivially bound the worst-case traversal
length, while also directly controlling the fraction of sampled entries by sampling every 𝑠-th
occurrence. The question of what sampling strategy works better in practice is an interesting
open question.

2. Does a smaller SPSS imply a smaller SPT? Currently, this is not clear, since working with
unitigs dispenses entirely the space required for 𝒲, ℒ, and 𝒮, so that a smaller SPSS may
increase the space for representing the tiling given the need to encode 𝒲, ℒ, and 𝒮.

3. We have provided an intuitive notion of how a “good” or “desirable” SPT looks: Ideally, an
SPT amenable to indexing has few but long tiles and short tilings. Yet, rather than separating
the problem of finding a set of tiles and then efficiently representing the tiling it induces, there
is a more general optimization problem: Given a set ℛ of references, what is the SPT that
minimizes the overall space, or the query time? Likewise, we may ask, if one has knowledge
of the queries that are to be performed, how might the selection of samples be optimized to
minimize the expected query time?

4. We have implemented one, specific, sparsification and compression scheme to reduce the size of
SPTs. However, as hybrid encoding strategies have proven successful in optimizing the represen-
tation of 𝑘-mer-to-tile mappings [22], we may expect the same to be true of the tile-to-occurrence

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://calculator.aws/#/estimate
https://calculator.aws/#/estimate
https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

S.8 Fan et al.

map. For example, long occurrence lists may compress well with traditional information retrieval
compression schemes [31], and delta-encoding-like schemes may prove very effective in compress-
ing the occurrence lists for tiles that almost always co-occur. In general, hybrid encoding and
compression schemes likely hold great promise in tackling this problem.

5. Finally, we have considered here only exact and lossless representation of SPTs. However, many
successful indexing schemes for problems like read mapping avoid indexing all sub-words, in-
stead, for example, indexing only minimizers [32] or altering the sampling strategy in highly-
repetitive regions. Thus, for many important applications it may not be necessary to have a
complete and lossless index over the underlying SPT and it is possible that a lossy index over
an SPT could be made much smaller and faster still.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 11, 2023. ; https://doi.org/10.1101/2022.10.27.513881doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.27.513881
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Spectrum preserving tilings enable sparse and modular reference indexing

