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Abstract—This paper tackles the problem of base stations
placement to guarantee line of sight connectivity to vehicles in
urban areas, when high frequency communications (mmWave or
TeraHertz) are used. We introduce a novel methodology mixing
vehicular networks simulations and show that the density of base
stations per squared km is low enough to be feasibly reached.
However, optimizing the placement for vehicles coverage provides
an advantage but may not be enough for pedestrians coverage.

Index Terms—vehicular communication, 5G, mmWave, gNB
placement

I. INTRODUCTION AND STATE OF THE ART

In order to meet the increasing demand for mobile connec-
tivity, the next-generation access networks (which we refer to
as XG) will rely on the use of very high frequencies (mmWave
and TeraHerz) and on the densification of the existing access
network, by increasing up to 10 times the number of base
stations deployed [1]. These new communication technologies
are much more susceptible to obstruction and they need Line-
of-Sight (LoS) to function reliably. For these reasons, the
placement strategy of base stations is crucial, and as already
shown in previous works, an optimal choice of such locations
can lead to substantial savings for network operators [2].

One of the future application enabled by XG is the use
of Cooperative Autonomous Vehicles (CAVs). To be really
effective, cooperative driving will not only require vehicles to
exchange basic data such as position, speed, heading, etc., but
raw sensor data as well. This will permit vehicles to implement
Cooperative Perception (CP) [3], i.e., to be able to construct
a view of the surrounding environment that goes beyond the
field of view of their sensors. Sharing raw sensor data rather
than pre-processed data enables vehicles to take decisions on
their own or to come up with a consensus on how to classify
certain objects, which can lead to safer and more efficient
driving (see the boar and the hare example [4]).

While the placement of base stations is a widely investigated
matter [5], the LoS requirements introduced by the newer
communication technologies have reignited the attention on
the subject, with several works taking advantage of similar
techniques [6]–[9]. However, to the best of our knowledge,
no other study is focused on investigating different placement
strategies to optimize mobile coverage for vehicles using
realistic traffic data. The most similar research, from Jaquet et
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al. [10] is focused on enhancing vehicular networks by taking
advantage of unmanned aerial vehicles.

This paper improves a recently-introduced 3D approach to
find an optimal placement for gNBs (the name for the base
stations in the 5G standard) by taking into account the traffic
patterns in order to better cover the areas where there is a high
vehicular traffic. First, we derive a demand model by using
simulated traffic data, then we devise a new heuristic that takes
advantage of the demand model to find the optimal location
of the gNBs. We take advantage of open geographical data,
specifically OpenStreetMap (OSM) vectorial maps and Digital
Surface Model (DSM) to evaluate different gNB placements
on real-world data. While the analyses have been conducted
only in the city of Luxembourg, the availability of open-data
together with the source code we release will enable anyone
else to reproduce the analyses in different areas.

II. PROBLEM FORMULATION

Given a 3D shape of an urban area, we identify a set of
points Λ in the ground that can be potentially covered with
a LoS connection from a gNB. Each point corresponds to an
(x, y, z) triplet, in which the (x, y) coordinates are quantized
using one point per squared meter. Points are selected to be
outside any building shape and only in public areas (streets,
roundabouts, street parking, sidewalks) and not in private
areas. The problem we tackle can be summarized in three
steps described in the next two sections:

1) For each point define a weight, the higher the weight
the higher the probability the point will be covered.

2) Identify the set P of points in space in which a gNB
could potentially be placed. Each position pi is defined
by an (x, y, z) triplet, and we restrict our analysis to the
facades of buildings.

3) Find an algorithm that chooses the minimal number of
gNB so that the coverage is maximized.

Step one is a novel contribution of this paper. The solution
to the second step comes from a previous publication in which
we introduced the problem of coverage as a variation of the
classical maximum subset coverage problem [2], the third step
modifies the solution proposed therein to take into account the
weights introduced in step one.



III. A DEMAND MODEL FOR VEHICLES

Obtaining realistic vehicular traffic data is always a chal-
lenging task, as data collected by cities is rarely released to
the public. One possibility, which is the one we consider in
this work, is to generate traffic data using microscopic traffic
simulators and realistic scenarios. In this work we use the
urban traffic simulator SUMO [11] to generate realistic mo-
bility traces of the city of Luxembourg. In particular, we make
use of the Luxembourg SUMO Traffic (LuST) scenario [12], a
publicly available scenario generated from traffic data provided
by the Luxembourg government which includes both public
and private transportation over a period of 24 h.

To obtain traffic traces, we run the scenario over the full
24 h for a total of 286 215 vehicles moving on the streets. The
simulation step is set to 1 s and, at the same frequency, we
log the positions of the vehicles in the area of the city shown
in Fig. 1, corresponding to roughly 4 km2. We collect traces
using GPS (latitude/longitude) coordinates and then convert
them to a .gpx file for later processing.

To generate a matrix of weights from these traces, we first
rasterize the traces mapping each logged position to a cell of
a matrix, where a matrix cell represents an area of 1m2. We
obtain a matrix τ ⋆ where τ ⋆

x,y = n means that n vehicles
have passed from the (x, y) cell during the whole simulation.
For the sake of readability we rescale it to the number of
passages per minute. Fig. 3 shows the empirical pdf of the
values of the cells with non zero value, binned with bins of
size 0.125 passages/minute. It can be seen that the majority of
the cells have less than one passage per minute, with the 95th
percentile roughly at 0.55. The distribution is pretty skewed,
with about 5 orders of magnitude between the largest and the
lowest frequency.

For reasons that will be clear in the next section, Eq. (1)
remaps the values to an uint8 type in the range [0, 255]
obtaining the traffic matrix τ . The values up to the 95th
percentile have been linearly mapped in the interval (0, 64),
while the rest of the values have been linearly mapped to
the range (64, 255). Note that we have considered the values
greater than 21 as outliers and thus they are all equally mapped
to 255.

τx,y =


⌈116 · τ ⋆

x,y⌉ if τ ⋆
x,y ≤ 0.55

⌈9.34 · τ ⋆
x,y + 58.77⌉ if 0.55 ≤ τ ⋆

x,y ≤ 21

255 otherwise

(1)

IV. GNB PLACEMENT

The second required step is to define the set of candidate
locations P from which we will choose the positions of the
gNBs. Let B = {bi} be the set of buildings extracted from
the OSM dataset. Let also ϕ(bi) be a function that extracts a
set of coordinates that compose the perimeter of the building
bi, with points spaced in average one meter away from each

Fig. 1: Area of the city of Luxembourg over which traces are
collected.
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Fig. 2: Empirical p.d.f. of the vehicles passages per minute
per cell.

other, placed 1m below the height of the roof. We can then
define the set of candidate locations P as:

P =
⋃
bi∈B

ϕ(bi) (2)

Once the set of candidate locations is determined, we need to
evaluate the coverage from each one of them. In order to do
so, we take advantage of a viewshed algorithm implemented
using the CUDA library on NVidia GPUs [13]. This algorithm,
applied on a highly precise DSM computes the presence of
LoS from the candidate location pi to each point in Λ given
a maximum distance (dmax = 300m) from pi. Let σi =
Υ(Λ, pi) be a 2-dimensional binary matrix that associates each
point in (x, y) to a non-zero value if there is LoS from the point
pi to the point of coordinate (x, y, z) ∈ Λ. Υ corresponds to
the application of the viewshed algorithm from the point pi
over the set of points Λ. We call σi the viewshed matrix from
point pi. If we apply Υ to all the points in P we obtain a
collection of matrices that represent all the possible viewsheds
from all the potential positions of gNBs, as in Eq. (3):

Ω =
⋃

pi∈P
Υ(Λ, pi) (3)

We then obtain a collection of matrices Ω =
{σ1,σ2, . . . ,σm} in which σi

x,y = 1 means that a
terminal in position (x, y) has LoS with a gNB placed in the
point pi.

A. Quasi-optimal gNB placement

We want to find a subset Ω⋆ ⊆ Ω whose size is lower
than a parameter k (|Ω⋆| ≤ k) that maximises the elements



coverage
∣∣∣∨σi∈Ω⋆ σi

∣∣∣, where
∨

is the OR operator between
binary matrices and | · | is the norm-1 operator (the sum or all
elements). In order to take into account the traffic patterns, let
τ be a non-negative integer matrix as defined in Eq. (1) with
the same shape of σi. We can formulate the maximization
objective as follows:

maxΩ⋆

∣∣∣∣∣∣τ ⊙
∨

σi∈Ω⋆

σi

∣∣∣∣∣∣ (4)

Where ⊙ is the element-by-element multiplication between
two matrices. This will lead to a choice of the optimal k sets
in Ω⋆ to cover the roads with the highest traffic. The problem
is a so-called weighted maximum coverage problem.

We can now better justify Eq. (1). Since the frequencies in
Fig. 3 are very skewed, and we are using a GPU with integer
algebra, we can not remap linearly between 1 and 255, or else,
95% of the samples would be squashed at weight 1. On the
other hand we want to give a strong priority to points with a
very high weight, so we decided to linearize the weights with
two different slopes. This guarantees that our heuristic will
choose the few points with a high weight with a high priority,
but also that it will be able to distinguish between points with
low, but different weights.

Note that if we call 1 the matrix made of all one elements,
and we set τ = 1 then the problem converges to the classical
unweighted maximum coverage problem, in which we try to
cover the largest portion of the points in Λ treating all of them
equally. In other words, the weighted variant tries to optimize
the coverage of cars, while the unweighted variant tries to
optimize the coverage of all terminals in the public areas,
streets, crossroads, sidewalks, and thus can be interpreted as
the attempt to provide coverage to pedestrians, for which we
can not have a movement pattern.

B. Heuristic solution

Since the above-described coverage problem is NP-Hard in
our past work we relied on a polynomial greedy heuristic with
bounded error to efficiently find a quasi-optimal solution [2].

Here we modify the greedy heuristic as described in detail
in Algorithm 1 to take into account the weight provided by
the vehicular networks simulations. The heuristic proceeds as
follows: we start by defining a coverage matrix C of the same
size of τ , initialized with zeroes (Line 2). Each iteration of
the loop in Line 4 will choose the position of one gNB. For
each candidate location pi and the corresponding viewshed
σi we derive the so-far uncovered elements as the negation
of the coverage matrix (Line 7). We define C⋆ that represents
the so-far uncovered elements that would be covered by the
candidate location, with their weight given by τ (Line 8).
Note that bool() is a function that makes an integer matrix
a boolean one, ¬ is the boolean NOT operand. We then
provide a score for pi as the norm-1 of the coverage matrix
(in Line 9). Then, the element with the maximal ranking is
chosen and the corresponding values of the viewshed matrix
are added to C (Line 14). Note this makes C a non-boolean

Algorithm 1 Greedy algorithm for the weighted maximum
coverage problem.

Require: Ω (Set of viewsheds), k (number of gNBs),
τ (weighted traffic matrix)

Ensure: Ω⋆ (Set of the viewsheds from optimal locations)
1: procedure Γ (Ω, k, τ )
2: C = 0
3: Ω⋆ = {}
4: for i← 0 to k do
5: h⋆ = −∞
6: for σj ∈ Ω do
7: C̄ = ¬bool(C)
8: C⋆ = C̄ ⊙ σj ⊙ τ
9: hj = |C⋆|

10: if hj > h⋆ and σj /∈ Ω⋆ then
11: σ⋆ = σj ; h⋆ = hj

12: end if
13: end for
14: C = C + σ⋆

15: Ω⋆ = Ω⋆ ∪ {σ⋆}
16: end for
17: return Ω⋆

18: end procedure

matrix. Finally, the viewshed σ⋆ is added to the set of optimal
viewsheds (Line 15). The loop is repeated till the number of
desired locations is reached. The operation at line Line 8 has
complexity |Λ|, and is repeated at most k ×m times, so the
overall complexity is O(km|Λ|).

The result of this algorithm is a set of quasi-optimal
viewsheds.

V. EXPERIMENTS AND RESULTS

Our initial results are based on a single area in the city of
Luxembourg with a surface S of roughly 4km2.

We apply Algorithm 1 to compute the optimal locations for
the gNBs, increasing k. We consider a density λ of gNBs
per squared km going from 5 to 85 at steps of 5, and we set
k = λS. We consider two different settings, one in which we
use the weighted variant, and another in which we use the
unweighted variant (τx,y = 1) so every element in Λ has the
same weight. We obtain two solutions for the coverage

Ω⋆
λ,τ = Γ (Ω, λ ∗ S, τ ) (5)

Ω⋆
λ,1 = Γ (Ω, λ ∗ S,1) (6)

that we aggregate with the OR operator to obtain a full
coverage matrix:

Φλ,τ =
∨

σj∈Ω⋆
λ,τ

σj ; Φλ,1 =
∨

σj∈Ω⋆
λ,1

σj (7)

Finally, we use four metrics to compare the results:

V covτ (λ) =
|τ ⊙ Φλ,τ |
|τ |

; V cov1(λ) =
|τ ⊙ Φλ,1|
|τ |

(8)
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Fig. 3: The V covτ and V cov1 metrics.
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Fig. 4: The Pcovτ and Pcov1 metrics.

The metrics in Eq. (8) tell how good is the coverage of
vehicles when we optimize for vehicles (V covτ (λ)) or when
we optimize for pedestrians (V cov1(λ)). The second metric, in
practice, tells us what happens if we try to optimize the street
coverage for pedestrians but we measure the results only on
the points where the vehicles pass (with their multiplicity).

Pcovτ (λ) =
|Φλ,τ |
|Λ|

; Pcov1(λ) =
|Φλ,1|
|Λ|

(9)

Metrics in Eq. (9) instead are used to evaluate the opposite
situation. Both metrics express how good is the coverage
of pedestrians, in the first case when we optimize with cor
vehicles (Pcovτ (λ)) in the second, when we optimize for
pedestrians (Pcov1(λ)).

Fig. 3 reports the metric in Eq. (8) and shows two very
relevant conclusions. The first is that V covτ reaches 90%
coverage with λ = 15, 95% coverage with λ = 20 and 99.9%
coverage with λ = 35 while V cov1 needs 33% and 25% more
gNB to cover 90% and 95% of the vehicles, and can not reach
99.9% even with λ = 85. Considering that vehicles coverage
for autonomous driving requires a high reliability, we see that
there is a relevant difference when we specifically optimize for
vehicles, rather than for pedestrians. The second conclusion is
more generic: so far we did not have any concrete indication of
how much we need to increase the density of gNBs to achieve
vehicles coverage, and this result tells us that in urban areas,
a reasonably low density can still be sufficient for reliable
service.

Fig. 4 instead tells a different message. There is a remark-
able difference in the coverage of pedestrians when optimizing
for vehicles or not. In particular, the vehicles’ optimization
does not allow us to cover 95% of the ground. Note also that
if we would consider non public areas, or areas non adjacent
to streets (like parks) this metric would be even worse.

The takeaway for the operator that needs to start deploying
gNBs for LoS communications is that the goals of covering
vehicles or pedestrians are concurring ones. Optimizing for ve-
hicles would reduce significantly the required density of gNBs
but would not allow to reliably cover pedestrians positions.

VI. CONCLUSIONS

The foreseen densification of gNBs and the advancements
in vehicular communications are playing a pivotal role in the
deployment of XG access networks in ultradense urban areas.
This paper proposes a novel data-driven method to optimize
the placement of such gNBs and provide crucial insights to
the network operators to understand how the two coverages,
for vehicular communication and pedestrians, are intertwined.
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