
Neural Networks Reduction via Lumping

Dalila Ressi1[0000−0001−5291−5438], Riccardo Romanello1[0000−0002−2855−1221],
Carla Piazza1[0000−0002−2072−1628], and Sabina Rossi2[0000−0002−1189−4439]

1 Università di Udine, Italy
{dalila.ressi, riccardo.romanello, carla.piazza}@uniud.it

2 Università Ca’ Foscari Venezia, Italy
sabina.rossi@unive.it

Abstract. The increasing size of recently proposed Neural Networks
makes it hard to implement them on embedded devices, where memory,
battery and computational power are a non-trivial bottleneck. For this
reason during the last years network compression literature has been
thriving and a large number of solutions has been published to reduce
both the number of operations and the parameters involved with the
models. Unfortunately, most of these reducing techniques are actually
heuristic methods and usually require at least one re-training step to
recover the accuracy.
The need of procedures for model reduction is well-known also in the
fields of Verification and Performances Evaluation, where large efforts
have been devoted to the definition of quotients that preserve the ob-
servable underlying behaviour.
In this paper we try to bridge the gap between the most popular and
very effective network reduction strategies and formal notions, such as
lumpability, introduced for verification and evaluation of Markov Chains.
Elaborating on lumpability we propose a pruning approach that reduces
the number of neurons in a network without using any data or fine-
tuning, while completely preserving the exact behaviour. Relaxing the
constraints on the exact definition of the quotienting method we can give
a formal explanation of some of the most common reduction techniques.

Keywords: Neural Networks, Compression, Pruning, Lumpability.

1 Introduction

Since 2012, when AlexNet [29] won the famous ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), the number of proposed Artificial Neural Net-
work (ANN or NN) architectures has increased exponentially. Their intrinsic
flexibility, together with the superior performance they can achieve, made neu-
ral networks the tool of choice to solve a wide variety of tasks. As these models
have evolved to process large amount of data or to solve complicated tasks, their
complexity has also increased at same pace [12]. Such elaborate and deep net-
works are the foundation of Deep Learning (DL) and they stand out both for
the large number of layers they are made of and for the higher level of accuracy
they can reach on difficult tasks [56].

2 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

While the academic community mostly focused their efforts in training large
and deep models [28, 9, 57], being able to adopt such networks in embedded
devices resulted to be a problem. Physical constraints such as battery, memory
and computational power greatly limit both the number of parameters used
to the define the architecture and the number of Floating Point Operations
(FLOPs) required to be computed at inference time. A commonly used strategy
to address this problem is called Network Compression. Compression literature
has had a substantial growth during the last years, and for this reason there are
many different ways to group together methods reducing a model in similar ways.

Methods focusing on finding the best possible structure to solve a particular
tasks can be grouped together as Architecture-related strategies. These kind of
methods usually require to train the network from scratch each time the struc-
ture is modified. In particular, Neural Architecture Search (NAS) techniques
aim to find the best possible architecture for a certain task with minimal human
intervention [44, 14, 35]. This is usually made possible by modelling the search
as an optimization problem and applying Reinforcement Learning (LR)-based
methods to find the best architecture [60, 3]. In this group we can also find
Tensor Decomposition, where matrix decomposition/factorization principles are
applied to the d-dimensional tensors in neural networks. Tensor decomposition
generalizes the widely used Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD) to an arbitrary number of dimensions [7, 19, 54].
The goal of these techniques is to reduce the rank of tensors in order to effi-
ciently decompose them into smaller ones and drastically reduce the number of
operations [12]. As the rank of a tensor is usually far from being small, the most
common solutions are to either to force the network to learn filters with small
rank either to use an approximated decomposition [13].

Using a similar approach Lightweight or Compact Networks focus on modi-
fying the design of the architecture such that it performs less operations while
maintaining the same capability. It is the case of the MobileNet series [24, 46, 23],
ShuffleNet series [59, 37], and EfficientNet series [52, 53]. They exploit the idea
of using 1×1 filters introduced by Network in Network [32] and GoogLeNet [49,
50] in their inception modules. A similar concept is explored by the SqueezeNet
[26] architecture in their Fire module, where they substitute the classical con-
volutional layers such that they can achieve the same accuracy of AlexNet on
ImageNet dataset but with a model 510 times smaller.

A different methodology consists in training a big model from the start, and
then Pruning superfluous parameters. In particular, Weight Pruning consists in
zeroing connections or parameters already close to zero [30], but more elaborated
methods can also take into consideration the impact of the single weights on the
final results [18]. Even if weight pruning is a very powerful tool to reduce the
network parameters [15], its major drawback is that it does not actually reduce
the number of FLOPs at inference time.

A more effective solution consists instead in skipping completely some of
the operations. It is the case of Filter Pruning, where whole nodes or filters (in
case of convolutional layers) are removed from the architecture. Pruning usually

NNs Reduction via Lumping 3

requires some degree of re-training to recover the lost accuracy due to the reduced
network capability, but an interesting phenomena that happens in the early
stages of pruning is that most of the times the test accuracy actually increases,
due to the regularization effect that pruning unnecessary parameters has on
the network. While weight pruning allows more control on what parameters to
remove, filter pruning is usually the best solution compression-wise as it allows to
drastically reduce the network parameters such that the models can be actually
implemented in small embedded devices [45].

Another technique often used in conjunction with pruning is called quantiza-
tion [17]. While pruning aims to reduce the number of parameters, quantization
instead targets their precision. As the weights are usually represented by floating
point numbers, it is possible to reduce the bits used for the number representa-
tion down to single bits [43], without affecting the network accuracy.

In the context of performance evaluation of computer systems, stochastic
models whose underlying stochastic processes are Markov chains, play a key role
providing a sound high-level framework for the analysis of software and hard-
ware architectures. Although the use of high-level modelling formalism greatly
simplifies the specification of quantitative models (e.g., by exploiting the compo-
sitionality properties [21]), the stochastic process underlying even a very compact
model may have a number of states that makes its analysis a difficult, sometimes
computationally impossible, task. In order to study models with a large state
space without using approximations or resorting to simulations, one can attempt
to reduce the state space of the underlying Markov chain by aggregating states
with equivalent behaviours. Lumpability is an aggregation technique used to
cope with the state space explosion problem inherent to the computation of
the stationary performance indices of large stochastic models. The lumpability
method turns out to be useful on Markov chains exhibiting some structural reg-
ularity. Moreover, it allows one to efficiently compute the exact values of the
performance indices when the model is actually lumpable. In the literature, sev-
eral notions of lumping have been introduced: ordinary and weak lumping [27],
exact lumping [47], and strict lumping [6].

With this paper we aim to link together the work of two different communi-
ties, the first one focusing on machine learning and network compression and the
second one focusing on lumping-based aggregation techniques for performance
evaluation. Even if a large number of possible efficient compression techniques
has already been published, we aim instead to give a formal demonstration on
how it is possible to deterministically remove some of the network parameters
to obtain a smaller network with the same performance. Our method condenses
many different concepts together, such as some of the ideas exploited by tensor
decomposition methods, filter pruning and the lumpability used to evaluate the
performance of complex systems.

The paper is structured as follows. In Section 2 we provide a literature re-
view. Section 3 gives the necessary background. Section 4 formally describes our
technique exploiting exact lumpability for quotienting NN. Section 5 presents
some experimental results. Finally, Section 6 concludes the paper.

4 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

2 Related Work

To the best of our knowledge, the only paper similar to our work is [42], where the
authors introduce the classical notion of equivalence between systems in Process
Algebra to reduce a neural network into another one semantically equivalent.
They propose a filter pruning technique based on some properties of the network
that does not need any data to perform the compression. They also define an
approximated version of their algorithm to relax some of the strong constraints
they pose on the weights of the network.

While data free pruning algorithms are convenient when a dataset is in-
complete, unbalanced or missing, they usually achieve poorer results compared
to data-based compression solutions. Indeed, most pruning techniques usually
require at least one stage of fine-tuning of the model. The recovery is often per-
formed in an iterative fashion after removing a single parameter, but there are
also techniques that re-train the model only after a certain level of compression
has been carried out [4].

As defined in [33] filter pruning techniques can be divided according to prop-
erty importance or adaptive importance. In the first group we find pruning meth-
ods that look at intrinsic properties of the networks, and do not modify the train-
ing loss, such as [42, 25, 31, 20, 45, 8]. Adaptive importance pruning algorithms
like [36, 34] usually drastically change the loss function, requiring a heavy re-
train step and to look for a new proper set of hyper-parameters, despite the fact
that they often achieve better performances with respect to property importance
methods. Avoiding to re-train the network at each pruning step as in [33, 55] is
usually faster than other solutions, but there is a higher risk to not being able
to recover the performances.

Another option consists in deciding which parameters to remove according
to the impact they have on the rest of the network [40, 58]. Finally, while most of
the already mentioned methods focus on removing whole filters or kernels from
convolutional layers, some other methods actually target only fully connected
layers, or are made to compress classical neural networks [51, 2].

3 Preliminaries

In this section we formally introduce the notion of neural network in the style
of [42]. Moreover, we recall the concept of exact lumpabibility as it has been
defined in the context of continuous time Markov chains.

Neural Networks

A neural network is formed by a layered set of nodes or neurons, consisting of
an input layer, an output layer and one or more hidden layers. Each node that
does not belong to the input layer is annotated with a bias and an activation
function. Moreover, there are weighted edges between nodes of adjacent layers.
We use the following formal definition of neural network.

NNs Reduction via Lumping 5

x1 x2 xm. . .

u1 u2 umLayer `− 1 . . .

v . . .Layer `

ReLU
(∑

j W`(uj , v)xj + b`(v)
)

z

Layer ` + 1

. . .

W`(u1, v)
W`(u2, v)

W`(um, v)

W`+1(v, z)

Fig. 1. Node v behaviour on input x1, x2, . . . , xm

For k ∈ N, we denote by [k] the set {0, 1, . . . , k}, by (k] the set {1, . . . , k}, by
[k) the set {0, . . . , k − 1}, and by (k) the set {1, . . . , k − 1}.

Definition 1 (Neural Network). A Neural Network (NN) is a tuple N =
(k,Act, {S̀ }`∈[k], {W`}`∈(k], {b`}`∈(k], {A`}`∈(k]) where:

– k is the number of layers (except the input layer);
– Act is the set of activation functions;
– for ` ∈ [k], S̀ is the set of nodes of layer ` with S̀ ∩ S̀ ′ = ∅ for ` 6= `′;
– for ` ∈ (k], W` : S̀−1 × S̀ → R is the weight function that associates a

weight with edges between nodes at layer `− 1 and `;
– for ` ∈ (k], b` : S̀ → R is the bias function that associates a bias with nodes

at layer `;
– for ` ∈ (k], A` : S̀ → Act is the activation association function that asso-

ciates an activation function with nodes of layer `.

S0 and Sk denote the nodes in the input and output layers, respectively.

In the rest of the paper we will refer to NNs in which all the activation associ-
ation function are constant, i.e., all the neurons of a layer share the same activa-
tion function. Moreover, such activation functions A` are either ReLU (Rectified
Linear Unit) or LeakyReLU, i.e., they are combinations of linear functions. So,
from now on we omit the set Act from the definition of the NNs.

Example 1. Figure 1 shows the behaviour of node v in Layer `. The input values
x1, x2, . . . xm are propagated by nodes u1, u2, . . . um respectively. Node v com-
putes the ReLU of the weighted sum of the inputs plus the bias. The result of
this application is the output of v and it is propagated to z.

6 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

The operational semantics of a neural network is as follows. Let v : S̀ → R
be a valuation for the `-th layer of N and V al(S̀) be the set of all valuations for
the `-th layer of N . The operational semantics of N , denoted by [[N]], is defined
in terms of the semantics of its layers [[N]]`, where each [[N]]` associates with
any valuation v for layer `− 1 the corresponding valuation for layer ` according
to the definition of N . The valuation for the output layer of N is then obtained
by the composition of functions [[N]]`.

Definition 2. The semantics of the `-th layer is the function [[N]]` : V al(S̀−1)→
V al(S̀) where for all v ∈ V al(S̀−1), [[N]]`(v) = v′ and for all s′ ∈ S̀ ,

v′(s′) = A`(s
′)
(∑
s∈S̀ −1

W`(s, s
′)v(s) + b`(s

′)
)
.

The input-output semantics of N is obtained by composing these one layer
semantics. More precisely, we denote by [[N]]` the composition of the first ` layers
so that [[N]]`(v) provides the valuation of the `-th layer given v ∈ V al(S0) as
input. Formally, [[N]]` is inductively defined by:

[[N]]1 = [[N]]1

[[N]]` = [[N]]` ◦ [[N]]`−1 ∀` ∈ (k]

where ◦ denotes the function composition.
We are now in position to define the semantics of N as the input-output

semantic function [[N]] defined below.

Definition 3. The input-output semantic function [[N]] : V al(S0) → V al(Sk)
is defined as

[[N]] = [[N]]k .

Lumpability

The notion of lumpability has been introduced in the context of performance
and reliability analysis. It provides a model aggregation technique that can be
used for generating a Markov chain that is smaller than the original one while
allowing one to determine exact results for the original process.

The concept of lumpability can be formalized in terms of equivalence rela-
tions over the state space of the Markov chain. Any such equivalence induces a
partition on the state space of the Markov chain and aggregation is achieved by
clustering equivalent states into macro-states, reducing the overall state space.

Let S be a finite state space. A (time-homogeneous) Continuous-Time Markov
Chain (CTMC) over S is defined by a function

Q : S×S→ R

such that for all u, v ∈ S with u 6= v it holds that:

– Q(u, v) ≥ 0 and

NNs Reduction via Lumping 7

–
∑
v∈S,v 6=uQ(u, v) = −Q(u, u) .

A CTMC defined over S by Q models a stochastic process where a transition
from u to v can occur according to an exponential distribution with rate Q(u, v).

Given an initial probability distribution p over the states of a CTMC, one can
consider the problem of computing the probability distribution to which p con-
verges when the time tends to infinity. This is the stationary distribution and it
exists only when the chain satisfies additional constraints. The stationary distri-
bution reveals the limit behaviour of a CTMC. Many other performance indexes
and temporal logic properties can be defined for studying both the transient and
limit behaviour of the chain.

Different notions of lumpability have been introduced with the aim of reduc-
ing the number of states of the chain, while preserving its behaviour [1, 6, 22, 27,
38, 39, 47]. In particular, we consider here the notion of exact lumpability [6, 47].

Definition 4 (Exact Lumpability). Let (S, Q) be a CTMC and R be an
equivalence relation over S. R is an exact lumpability if for all S, S′ ∈ R/S,
for all v, t ∈ S it holds that:∑

u∈S′
Q(u, v) =

∑
u∈S′

Q(u, t) .

There exists always a unique maximum exact lumpability relation which allows
to quotient the chain by taking one state for each equivalence class and replacing
the rates of the incoming edges with the sum of the rates from equivalent states.

The notion of exact lumpability is in many applicative domains too demand-
ing, thus providing poor reductions. This issue is well-known for all lumpability
notions that do not allow any form of approximation. With the aim of obtaining
smaller quotients, still avoiding rough approximations, the notion of proportional
lumpability has been presented in [38, 39, 41] as a relaxation of ordinary lumpa-
bility. In this paper instead we introduce to proportional exact lumpability which
is defined as follows.

Definition 5 (Proportional Exact Lumpability). Let (S, Q) be a CTMC
and R be an equivalence relation over S. R is a proportional exact lumpability
if there exists a function ρ : S → R>0 such that for all S, S′ ∈ S/R, for all
v, t ∈ S it holds that:

ρ(v)
∑
u∈S′

Q(u, v) = ρ(t)
∑
u∈S′

Q(u, t) .

It can be proved that there exists a unique maximum proportional exact lumpa-
bility which can be computed in polynomial time. This is true also if (S, Q) is
a Labelled Graph instead of a CTMC, i.e., no constraints are imposed on Q.

Example 2. Figure 2 shows a proportionally exact lumpable Markov chain with
respect to the function ρ defined as: ρ(1) = 1, ρ(2) = 1, ρ(3) = 2, ρ(4) = 2, ρ(5) =
1, ρ(6) = 2, ρ(7) = 2, ρ(8) = 1 and the equivalence classes S1 = {1}, S2 =
{2, 3, 4}, S3 = {5, 6, 7}, S4 = {8}.

8 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

31

2

4

5

6

7

8

2

3

6

1

1

1

1

3

4

1

3

1

1

Fig. 2. Proportionally exact lumpable CTMC.

4 Lumping Neural Networks

The idea of exploiting exact lumpability for quotienting NN has been proposed
in [42] where a notion of pre-sum preserving backward bisimulation has been
considered. It can be easily observed that such a notion coincides with that of
exact lumpability. The term (probabilistic) bisimulation is standard in the area
of Model Checking, where (probabilistic) temporal logical properties are used
for both specifying and synthesizing systems having a desired behaviour [10, 11,
16, 5]. Since such logics usually formalize the behaviours in terms of forward
temporal operators, the bisimulation notions tend to preserve the rates of the
outgoing edges [48]. However, as proved in [42], in order to preserve the behaviour
of a NN it is necessary to refer to the rates/weights of the incoming edges. This
is referred to as backward probabilistic bisimulation and coincides with the well-
known notion of exact lumpability used in the area of performances evaluation.

In this paper we extend the proposal of [42]. We prove that in the case
of ReLU and LeakyReLU activations, proportional exact lumpability preserves
the behaviour of the network allowing to obtain smaller quotients. It does not
require any retraining step and it ensures the same behaviour on all possible
inputs. Moreover, since the neural networks we refer to are acyclic it can be
computed in linear time.

Definition 6 (Proportional Exact Lumpability over a NN). Let N be a
NN. Let R = ∪`∈[k)R` be such that R` is an equivalence relation over S̀ , for all
` ∈ (k) and R0 is the identity relation over S0. We say that R is a proportional
exact lumpability over N if for each ` ∈ (k) there exists ρ` : S̀ → R>0 such
that for all S ∈ S̀ /R`, for all S′ ∈ S̀−1/R`−1, for all v, t ∈ S it holds that:

ρ`(v)b`(v) = ρ`(t)b`(t) ,

ρ`(v)
∑
u∈S′W`(u, v) = ρ`(t)

∑
u∈S′W`(u, t) .

NNs Reduction via Lumping 9

There are some differences with respect to the definition of proportional exact
lumpability over CTMCs. First, we impose that two equivalent neurons have to
belong to the same layer. However, we could have omitted such restriction from
the definition and proved that neurons from different layers are never equivalent.
This is an immediate consequence of the fact that we refer to acyclic NNs. More-
over, we demand that on input and output nodes the only admissible relation is
the identity. This is a substantial difference. Since the nodes in the input layer
have no incoming edges the definition of proportional lumpability given over
CTMCs allows to collapse them. However, the input nodes in NNs hold the in-
put values that have to be propagated, so they cannot be collapsed. This is true
also for the output nodes, since they represent the result of the computation.

It can be proved that there always exists a unique maximum proportional
exact lumpability over a NN. If we use proportional exact lumpability for re-
ducing the dimension of a NN by collapsing the equivalent neurons, we have to
modify the topology and the weights of the NN as formalized below.

Definition 7 (Proportional Reduced NN). Let N = (k, {S̀ }`∈[k], {W`}`∈(k],
{b`}`∈(k], {A`}`∈(k]) be a NN. Let R be a proportional exact lumpability over N.
The NN N/R = (k, {S′`}`∈[k], {W ′`}`∈(k], {b′`}`∈(k], {A′`}`∈(k]) is defined by:

– S′` = {[v] | [v] ∈ S̀ /R}, where v is an arbitrarily chosen representative for
the class;

– W ′`([u], [v]) = ρ`−1(u)
∑
w∈[u]

W`(w,v)
ρ`−1(w) ;

– b′`([v]) = b`(v);
– A′`([v]) = A`(v).

Despite the arbitrary choice of the representative, we can prove that the reduced
NN’s behaviour coincides with that of the initial one over all the inputs.

Theorem 1. Let N be a NN and R be a proportional exact lumpability over N.
It holds that

[[N/R]] = [[N]] .

Proof. Sketch. Let us focus on two neurons v and t belonging to layer 1 that are
equivalent in R1. Let ReLU be the activation function for both of them.

On input x1, x2, . . . xm for the nodes u1, u2, . . . , um of layer 0 the nodes v
and t take values V al(v) = ReLU(

∑m
j=1W1(uj , v)xj + b1(v)) and V al(t) =

ReLU(
∑m
j=1W1(uj , t)xj + b1(t)), respectively. However, since v and t are equiv-

alent, it holds that:

m∑
j=1

W1(uj , t)xj + b1(t) =
ρ1(v)

ρ1(t)

m∑
j=1

W1(uj , v)xj + b1(v)

Since ρ1(v) and ρ1(t) are positive numbers, we get that:

V al(t) = ReLU(
∑m
j=1W1(uj , t)xj + b1(t))

= ρ1(v)
ρ1(t)

ReLU(
∑m
j=1W1(uj , v)xj + b1(v)) = ρ1(v)

ρ1(t)
V al(v) .

10 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

u1 u2 umLayer `− 1 . . .

v tt . . .Layer `

zLayer ` + 1

. . .

. . .

W`(u1, v)

W`(u2, v)

W`(um, v)

W`+1(v, z) + ρW`+1(t, z)

ρW`(u1, v)

ρW`(u2, v)

ρW`(um, v)

W`+1(t, z)

Fig. 3. Pruning one node and updating the network.

Let now z be a neuron of layer 2. The value of z depends on

W2(v, z)V al(v) +W2(t, z)V al(t) = (W2(v, z) +
ρ1(v)

ρ1(t)
W2(t, z))V al(v)

So, the definition of W ′2 takes care of the fact that in the reduced network v
represents the equivalence class, while t has been “eliminated”. Such definition
ensures that the value of neuron z is unchanged.

A formal proof can be obtained generalizing the above arguments. ut

Example 3. Figure 3 shows how the pruning technique works on two nodes v, t.
In particular, t input weights are proportionals to v’s. The algorithm proceeds
in two steps. Firstly, t is deleted together with all its input and output edges.
Secondly, the weight from v to z is modified by adding ρW`+1(t, z).

The maximum proportional exact lumpability over N together with the re-
duced network can be efficiently computed by proceeding top-down from layer
1 to k − 1. Since the network is acyclic, each layer is influenced only by the
previous one. Hence, the computation is linear with respect to the number of
edges of the network.

Theorem 2. Let N be a NN. There exists a unique maximum proportional exact
lumpability R over N. Moreover, R and N/R can be computed in linear time
with respect to the size of N, i.e., in time Θ(

∑
`∈(k] |S̀−1 × S̀ |).

Intuitively, Theorem 1 exploits the following property of ReLU (LeakyReLU):

∀y ∈ R ∀r ∈ R>0 ReLU(r ∗ y) = r ∗ReLU(y) .

This allows us to remove some neurons exploiting the proportionality relation
with others. In order to guarantee the correctness of the removal on all possible

NNs Reduction via Lumping 11

inputs, as stated in Theorem 1, it is not possible to exploit less restrictive rela-
tionships than proportionality. This fact can also be formally proved, under the
hypothesis that the input set is sufficiently rich. However, one could ask what
happens if we move from a simple proportionality relation to a linear depen-
dence. For instance, what happens if in Definition 6 we relax the two equations
by considering that t is a linear combination of v1 and v2, i.e.:

ρ`(t)b`(t) = ρ`(v1)b`(v1) + ρ`(v2)b`(v2) ,

ρ`(t)
∑
u∈S′W`(u, t) = ρ`(v1)

∑
u∈S′W`(u, v1) + ρ`(v2)

∑
u∈S′W`(u, v2) .

In this case we could eliminate t by including its contribution on the outgoing
edges of both v1 and v2. Unfortunately, the behaviour of the network is preserved
only for those input values x1, x2, . . . , xm which ensure that

∑m
j=1W`(uj , v1)xj+

b`(v1) and
∑m
j=1W`(uj , v2)xj + b`(v2) have the same sign, since

∀y1, y2 ∈ R, ∀r1, r2 ∈ R>0,

ReLU(r1 ∗ y1 + r2 ∗ y2) = r1 ∗ReLU(y1) + r2 ∗ReLU(y2) iff y1 ∗ y2 ≥ 0 .

In other terms our analysis points out that reduction techniques based on
linear combinations of neurons can be exploited without retraining the network
only when strong hypothesis on the sign of the neurons hold.

More sophisticated methods that exploit Principal Component Analysis can
be seen as a further shift versus approximation, since they do not only involve
linear combinations of neurons, but also a base change and the elimination of
the less significant dimensions.

5 Experimental Results

To assess the robustness of our method we set up some simple experiments where
we implemented the neural network pruning by lumping. In particular, we want
to show how the accuracy is affected when the weights of the node to prune are
not simply proportional to the weights of another node in the same layer, but
they are instead a linear combination of the weights of two or more other nodes.

We designed and trained a simple Convolutional Neural Network (CNN)
made of two convolutional blocks (32 3 × 3 filters each, both followed by a
maxpooling layer) and after a simple flatten we add three fully connected layers
(fc), with 16, 128 and 10 nodes each, where the last one is the softmax layer.
As required by our method, we use only ReLU activations, except for the out-
put layer. We used the benchmark MNIST dataset, consisting of 7000 28×28
greyscale images of handwritten digits divided into 10 classes.

After a fast training of the model we focused on the second last fully con-
nected layer for our pruning method. We randomly selected a subset of nodes in
this layer and then manually overwrote the weights of the rest of the nodes in the
same layer as linear combinations of the fixed ones. We then froze this synthetic
layer and retrained the network to recover the lost accuracy. The resulting model

12 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

presents a fully connected layer with 2176 (2048 weight + 128 bias) parameters
that can be the target of our pruning method.

During the first round of experiments we confirmed that if the weights in the
fixed subset have all the same sign, then our method prunes the linearly depen-
dant vectors and the updating step does not introduce any performance loss.
Differently, as illustrated in Figure 4, when the weights in the subset have dif-
ferent sign, the updating step can introduce some loss. This happens only in the
case that the weights are a linear combination of two or more of the weights
incoming to the other nodes in the synthetic layer. In particular, the accuracy
drops faster as the number of nodes involved in the linear combination increases.

0 20 40 60 80 100 120
Number of pruned nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Lumping synthetic layer

Dependant on two
Dependant on three
Dependant on four

Fig. 4. Accuracy loss when pruning nodes which incoming weights are linear combina-
tion of two, three and four other nodes’ weights in the same layer.

6 Conclusion

In this paper we present a data free filter pruning compression method based
on the notion of lumpability. Even though we impose rigid constraints on the
weights in order to obtain a reduced network, in doing so we also demonstrate
how the resulting model exhibits the same exact behaviour. Regardless the lim-
itations of our method, this work opens the door to a new research field where
the aggregation techniques typical of performance evaluation are adopted in net-
work compression, usually explored only by the machine learning community. In
the future, we would like to further analyze how our algorithm works for dif-
ferent study cases, and in particular to test how an approximation of the linear
dependence would affect the accuracy under different conditions. Another inter-
esting experiment would be to use SVD on the fully connected layers to estimate
how many vectors are linearly independent and therefore compute the reduction
potentially achieved by our method, especially for quantized networks.

NNs Reduction via Lumping 13

Acknowledgements. This work has been partially supported by the Project
PRIN 2020 “Nirvana - Noninterference and Reversibility Analysis in Private
Blockchains” and by the Project GNCS 2022 “Proprietà qualitative e quantita-
tive di sistemi reversibili”.

References

1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in Marko-
vian automata: Algorithms and applications to product-form analyses. Information
and Computation 260, 99–125 (2018)

2. Ashiquzzaman, A., Van Ma, L., Kim, S., Lee, D., Um, T.W., Kim, J.: Compacting
deep neural networks for light weight iot & scada based applications with node
pruning. In: 2019 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC). pp. 082–085. IEEE (2019)

3. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

4. Blalock, D., Gonzalez Ortiz, J.J., Frankle, J., Guttag, J.: What is the state of
neural network pruning? Proceedings of machine learning and systems 2, 129–146
(2020)

5. Bossi, A., Focardi, R., Macedonio, D., Piazza, C., Rossi, S.: Unwinding in informa-
tion flow security. Electronic Notes in Theoretical Computer Science 99, 127–154
(2004)

6. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31, 59–75 (1994)

7. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional
scaling via an n-way generalization of “eckart-young” decomposition. Psychome-
trika 35(3), 283–319 (1970)

8. Castellano, G., Fanelli, A.M., Pelillo, M.: An iterative pruning algorithm for feed-
forward neural networks. IEEE transactions on Neural networks 8(3), 519–531
(1997)

9. Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: Marrying convolution and attention
for all data sizes. Advances in Neural Information Processing Systems 34, 3965–
3977 (2021)

10. Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis using parallelotopic enclo-
sure and applications to epidemic models. In: International Workshop on Hybrid
Systems Biology. pp. 67–82. Springer (2014)

11. Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis through temporal logic spec-
ifications. In: International Symposium on Formal Methods. pp. 213–230. Springer
(2015)

12. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware ac-
celeration for neural networks: A comprehensive survey. Proceedings of the IEEE
108(4), 485–532 (2020)

13. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
neural information processing systems. pp. 1269–1277 (2014)

14. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. The
Journal of Machine Learning Research 20(1), 1997–2017 (2019)

15. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 (2018)

14 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

16. Gallina, L., Hamadou, S., Marin, A., Rossi, S.: A probabilistic energy-aware
model for mobile ad-hoc networks. In: International Conference on Analytical and
Stochastic Modeling Techniques and Applications. pp. 316–330. Springer (2011)

17. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

18. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

19. Harshman, R.A., et al.: Foundations of the parafac procedure: Models and condi-
tions for an” explanatory” multimodal factor analysis (1970)

20. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4340–4349 (2019)

21. Hillston, J.: A Compositional Approach to Performance Modelling. Ph.D. thesis,
Department of Computer Science, University of Edinburgh (1994)

22. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proc. of
Valuetools 2013 Conf. pp. 194–203. ACM Press (2013)

23. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324
(2019)

24. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

25. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250 (2016)

26. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016)

27. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer (1976)
28. Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., Houlsby, N.:

Big transfer (bit): General visual representation learning. In: European conference
on computer vision. pp. 491–507. Springer (2020)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012)

30. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in neural
information processing systems. pp. 598–605 (1990)

31. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

32. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

33. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter
pruning using high-rank feature map. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 1529–1538 (2020)

34. Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.:
Towards optimal structured cnn pruning via generative adversarial learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 2790–2799 (2019)

NNs Reduction via Lumping 15

35. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolution-
ary neural architecture search. IEEE transactions on neural networks and learning
systems (2021)

36. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2736–2744 (2017)

37. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV). pp. 116–131 (2018)

38. Marin, A., Piazza, C., Rossi, S.: Proportional lumpability. In: Formal Modeling
and Analysis of Timed Systems - 17th International Conference, FORMATS 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11750, pp. 265–281. Springer
(2019)

39. Marin, A., Piazza, C., Rossi, S.: Proportional lumpability and proportional bisim-
ilarity. Acta Informatica 59(2), 211–244 (2022)

40. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estima-
tion for neural network pruning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11264–11272 (2019)

41. Piazza, C., Rossi, S.: Reasoning about proportional lumpability. In: QEST. Lecture
Notes in Computer Science, vol. 12846, pp. 372–390. Springer (2021)

42. Prabhakar, P.: Bisimulations for neural network reduction. In: International Con-
ference on Verification, Model Checking, and Abstract Interpretation. pp. 285–300.
Springer (2022)

43. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European conference on
computer vision. pp. 525–542. Springer (2016)

44. Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Chen, X., Wang, X.: A com-
prehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR) 54(4), 1–34 (2021)

45. Ressi, D., Pistellato, M., Albarelli, A., Bergamasco, F.: A relevance-based cnn
trimming method for low-resources embedded vision. In: International Conference
of the Italian Association for Artificial Intelligence. pp. 297–309. Springer (2022)

46. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018)

47. Schweitzer, P.: Aggregation methods for large Markov chains. In: Proc. of the
International Workshop on Computer Performance and Reliability. pp. 275–286.
North Holland (1984)

48. Sproston, J., Donatelli, S.: Backward stochastic bisimulation in csl model checking.
In: First International Conference on the Quantitative Evaluation of Systems, 2004.
QEST 2004. Proceedings. pp. 220–229. IEEE (2004)

49. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

50. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

51. Tan, C.M.J., Motani, M.: Dropnet: Reducing neural network complexity via iter-
ative pruning. In: International Conference on Machine Learning. pp. 9356–9366.
PMLR (2020)

16 Dalila Ressi, Riccardo Romanello, Carla Piazza, and Sabina Rossi

52. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

53. Tan, M., Le, Q.V.: Efficientnetv2: Smaller models and faster training. arXiv
preprint arXiv:2104.00298 (2021)

54. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

55. Wang, Z., Xie, X., Shi, G.: Rfpruning: A retraining-free pruning method for ac-
celerating convolutional neural networks. Applied Soft Computing 113, 107860
(2021)

56. Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., Pennington, J.: Dynamical
isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In: International Conference on Machine Learning. pp.
5393–5402. PMLR (2018)

57. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.:
Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917 (2022)

58. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 9194–9203 (2018)

59. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6848–6856 (2018)

60. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

