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Abstract
Given an undirected graph with integer edge lengths, we study the problem of approximating the
distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a
distributed algorithm in the CONGEST model of computation that constructs a random spanning
tree with the guarantee that the expected stretch of every edge is O(log3 n), where n is the number
of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run
in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal.
In the weighted case, the run-time of our algorithm matches the currently best known bound for
exact distance computations, i.e., Õ(min{

√
nD,
√
nD1/4 + n3/5 + D}). We stress that this is the

first distributed construction of spanning trees leading to poly-logarithmic expected stretch with
non-trivial running time.
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1 Introduction and Related Work

Trees are easy, general graphs are hard. This can be said as a first-order summary for a wide
range of graph problems, especially in the area of approximation algorithms. Starting with
the work of Alon et al. [3], there has been a beautiful line of developments that try to combat
this issue and make general graphs (almost) as easy as trees, for several families of graph
problems (including distances, cuts, and more) [5, 6, 8, 14, 7, 12, 29, 1, 13, 4, 26, 2]. In a very
rough sense, these methods transform any general graph G to a tree T that approximately
preserves some of the structural properties of G, thus opening the road for the following
(generic) algorithmic approach: (1) transform the graph G into a tree T ; (2) solve the problem
on T ; and (3) project the solution in T back to a solution in G. The quality of the obtained
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4:2 Distributed Low Stretch Spanning Trees

solution depends on how well T preserves the relevant structure of G. Such transformations
have been a key driver in many of the algorithmic developments in the past two decades, in
centralized approximation algorithms. Our focus in this paper is on distance-related graph
problems and transformations of graphs into spanning trees that approximately preserve
distances, based on the notion of stretch.

Spanning Trees and Stretch

Consider some graph G = (V,E, `), where ` : E → R>0 is an edge length function.1 A tree
T = (VT , ET , `T ) is said to be a spanning tree of G if (i) VT = V ; (ii) ET ⊆ E; and (iii) `T
is the restriction of ` to the edges in ET . By definition, the distances in T are at least as
large as those in G, namely, dT (u, v) ≥ dG(u, v) for every two vertices u, v ∈ V , where the
distances dT (·, ·) and dG(·, ·) are defined with respect to the edge length functions `T and `,
respectively. The notion of stretch provides a bound in the converse direction: given an edge
e = (u, v) ∈ G, the stretch of e in T is defined to be strT (e) = dT (u, v)/`(e).

Ideally, we would have wanted to construct a spanning tree T that admits a small stretch
for every edge e ∈ E, but this is clearly hopeless, e.g., if the graph has high girth. Instead,
we wish to construct a random spanning tree T so that the expected stretch of every edge
e ∈ E satisfies ET [strT (e)] ≤ α for some small α (cf. [5]). This notion is closely related
(and essentially equivalent) to constructing a (deterministic) spanning tree with average
stretch α [3]. More precisely, the per-edge expected stretch guarantee trivially leads to a
bound of O(m · α) on the expected total stretch. Using standard techniques, this leads
to a distributed construction of a spanning tree whose total stretch is O(m · α) with high
probability. Therefore, the per-edge expected stretch guarantee is sufficient for the method
to be functional as a subroutine.

There is an extensive literature on constructing (random) spanning trees for general
graphs with low expected stretch, starting with the pioneering work of Alon et al. [3] which
paved the way for the developments in [3, 12, 1, 2]. The state-of-the-art in this line of work
is Abraham and Neiman’s construction of random spanning trees with expected stretch
O(logn log logn) [2]. In a related line of work [5, 6, 8, 14, 7], it is only the distances in G
that matter, essentially ignoring the graph topology so that the tree T can include vertices
and edges that are not part of G, subject to the constraint that the distances in T are
lower-bounded by the corresponding distances in G. The common practice here is to think
of T as a dominating tree metric into which the metric space defined by the distances in G
can be embedded without contracting the distances. The construction of Fakcharoenphol et
al. [14] (often referred to as FRT ) provides an asymptotically optimal O(logn) upper bound
on the expected stretch in this setting (see also [7]).

Following the influential work of Bartal [5], random dominating tree metrics with low ex-
pected stretch have contributed greatly to the design of approximation and online algorithms,
for problems in which the topology of the underlying graph G is abstracted away. More
recently though there are new applications that require that T is a subgraph of G including
fast solvers for symmetric diagonally dominant (SDD) linear systems [23, 21, 10, 11] and
approximate max-flow and minimum cut algorithms [26, 9, 25, 31, 20], these applications
point the flashlight back in the direction of low stretch spanning trees.

1 Unless stated otherwise, all graphs in this paper are assumed to be undirected and finite.
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Distributed Constructions

Low stretch spanning trees, as well as low stretch dominating tree metrics, have also been
studied and used in distributed graph algorithms. For instance, low stretch spanning trees
were a key component in the max-flow algorithm of Ghaffari et al. [18] which gave the first
sublinear-time distributed max-flow approximation. However, currently known distributed
constructions of these trees have a suboptimal running time and/or suboptimal stretch.

Khan et al. [22] were the first to investigate distributed algorithms for random dominating
tree metrics with low expected stretch, designing a distributed implementation for the FRT
construction that works in Õ(SPD) rounds of the CONGEST model [28], where SPD denotes
the shortest-path-diameter of the network, which can be as large as Θ(n), even in graphs
with very small hop diameter D. Similar to many other graph problems, a lower bound of
Ω̃(D +

√
n) rounds follows from the work of Das Sarma et al. [30] which set Õ(D + n0.5) as

the target desired round complexity. Ghaffari and Lenzen [19] provided a faster distributed
construction that runs in Õ(D+ n0.5+ε) rounds and builds a random dominating tree metric
with expected stretch O(logn/ε). Friedrichs and Lenzen [16] further advanced this line of
work by developing a distributed algorithm that outputs a random dominating tree metric
with expected stretch O(logn) in Õ((D + n0.5) · no(1)) rounds.

The aforementioned distributed constructions suffer from two drawbacks: (1) the round
complexity is still somewhat far from the Ω̃(D+

√
n) target; and (2) the constructed trees do

not have any guarantees regarding the topology of the underlying network and in particular,
they are not spanning trees of this network, thus complicating their usage in distributed
settings. For the more desirable, but also more stringent, notion of low stretch spanning trees,
where the tree T has to be a subgraph of the G, the only known distributed construction is
due to Ghaffari et al [18]. It gives a tree with a much worse stretch of 2O(

√
logn·log logn) and it

runs in Õ((D + n0.5) · 2
√

logn·log logn) rounds, both of which are a factor of 2O(
√

logn·log logn)
away from ideal. Indeed, this suboptimality (in both stretch and running time) is one of
the two bottlenecks in turning the round complexity of the max-flow approximation to the
optimal bound of Õ(D +

√
n).

1.1 Our Contribution
We provide a new distributed algorithm, operating in the CONGEST model, that improves
the state-of-the-art for low stretch spanning trees. For unweighted graphs (i.e., graphs with
unit edge lengths), our algorithm runs in asymptotically optimal O(D) rounds and builds a
random spanning tree with expected stretch O(log3 n). In terms of both round complexity
and stretch, this improves considerably on the algorithm of Ghaffari et al [18] which has
round complexity Õ((D+n0.5) ·2

√
logn·log logn) and stretch 2O(

√
logn·log logn). Our algorithm

also extends to weighted graphs with the same expected stretch guarantee, in which case the
round complexity grows to Õ(min{

√
nD,
√
nD1/4 +n3/5 +D}), i.e., boiling down to the best

known complexity for exact single-source shortest path computation, which is due to Forster
and Nanongkai [15]. We stress that this is the first distributed construction of spanning trees
leading to poly-logarithmic expected stretch with non-trivial round complexity.

I Theorem 1. A spanning tree of expected stretch O(log3 n) for each edge can be computed
in Õ(min{

√
nD,
√
nD1/4 + n3/5 +D}) rounds w.h.p.2 If the input graph is unweighted, then

the same can be achieved in O(D) rounds whp.

2 We say that event A occurs with high probability, abbreviated w.h.p., if Pr(A) ≥ 1− n−c for a constant
c that can be made arbitrarily large.

DISC 2019



4:4 Distributed Low Stretch Spanning Trees

More generally, our method can be seen as an efficient reduction of the task of computing a low-
stretch spanning tree of expected stretch O(log3 n) to single-source shortest path computations
with a virtual super-source, which is formalized in Definition 2. Any improvements in
distributed algorithms for this task will thus carry over to our construction.

We note that, unfortunately, our approach cannot be used to reduce to approximate
single-source shortest path computations, as the decomposition technique that we will use [27]
crucially relies on the subtractive form of the triangle inequality, which fails even under small
relative errors in distances.

1.2 Our Method In a Nutshell
The general approach taken in the current paper is very similar to the divide and conquer
technique due to Elkin et al. [12]. That is, we apply a graph partitioning scheme called
star decomposition (introduced formally in Section 2) that given a root or center node x0,
decomposes the graph into a center part V0 and cone parts V1, . . . , Vk centered at nodes
x1, . . . , xk, respectively, referred to as the cone anchors. This star decomposition has the
following properties: (1) the radius of Vi with respect to xi, 0 ≤ i ≤ k, is smaller than the
radius r of G with respect to x0 by a constant factor; and (2) each anchor node xi, i ∈ [k],
is connected via a direct edge, referred to as a bridge edge, to some node yi ∈ V0 so that,
for every cone, the distance between anchor node and center of the decomposition plus the
radius of the cone is at most a factor of 1 + ε larger than the radius r with respect to x0.

The idea is then to apply such star decompositions recursively to each of the obtained
parts V0, . . . , Vk, leading to spanning trees T0, . . . , Tk. The spanning tree T that is returned
by the algorithm is then constructed by connecting the trees T1, . . . , Tk to the central tree
T0 using the bridge edges (x1, y1), . . . , (xk, yk). Clearly this approach leads to a spanning
tree, however from the description so far, it is not clear why T has small expected stretch.

For this, we need that the star decompositions that we construct have the additional
small cut property: For each edge e = (u, v) ∈ E, the probability that e is cut by the
decomposition, i.e., that u ∈ Vi and v ∈ Vj for i 6= j, is at most O(logn · `(e)/(εr)). Elkin et
al. [12] use an intricate cone growing procedure in order to construct the parts V1, . . . , Vk in
a way that ensures the (deterministic counterpart of the) small cut property. It is not clear
though how to implement the cone growing procedure efficiently in a distributed manner.

In this paper, we replace the cone growing process of [12] by a graph partitioning technique
due to Miller et al. [27]. This technique has the desirable property that it can be implemented
in the CONGEST model of computation in a straightforward way based on single source
shortest path (SSSP) computations. Specifically, after constructing the center part V0, we
let every node u that is “just outside” V0 (we make this notion precise in Section 3) draw
a value δu from an exponential distribution with mean β = Θ( logn

εr ). We now conceptually
start a ball growing process from all such nodes, where node u joins the process at time δu.

Miller et al. [27] have shown (for the unweighted case) that this leads to a decomposition
that “cuts edges” with a probability sufficiently small for their needs (they were not concerned
with star decompositions). We observe that when applied to the graph H = G \ V0, this
leads to a star decomposition that satisfies the desired small cut property, see Section 3.2. In
Section 4, we furthermore show that this is sufficient for the resulting tree (after recursing
on the parts of the decomposition and connecting the obtained trees using the bridge edges)
to have expected stretch O(log3 n) for every edge. Replacing the cone growing process
with this decomposition technique also results in a conceptually much simpler algorithm
for constructing spanning trees of small expected stretch in standard centralized models
of computation. This can be of independent interest. Lastly, we remark that, also for the
PRAM model, our technique yields a similar reduction of computing spanning trees of low
expected stretch to exact SSSP with virtual super-source.
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2 Preliminaries

Our algorithm runs on an undirected, connected input graph G = (V,E, `) with positive
integer edge lengths ` that are polynomially bounded, i.e., bounded by nc for some constant
c. For graphs H, we denote by dH(u, v) the length of the shortest path between two nodes u
and v. If H is the input graph G, we may omit G and simply write d(u, v) for dG(u, v).

For a node u ∈ V and a radius r > 0, we call B(u, r) := {v ∈ V : d(u, v) ≤ r} the ball
of radius r around u, i.e., the set of nodes of distance at most r from u. For any graph G
with node set V and a node u ∈ V , we call radu(G) = max{dG(u, v) : v ∈ V } the radius
of G with respect to u. For a subset of nodes S ⊂ V , we denote with G[S] the subgraph
of G induced by S. By W (H) = maxu,v∈VH{dH(u, v)} we denote the weighted diameter of
H = (VH , EH , `H) and by D(H) = W (H ′) its hop diameter, where H ′ = (VH , EH ,1), i.e., H
with all edges being assigned unit length; again, we omit G from the notation in case H = G.

Model of Computation

Our algorithm works in the standard CONGEST model of computation [28]. In this model,
every node hosts a processor (of unlimited computational power) and is labeled by a unique
O(logn)-bit identifier. The computation proceeds in synchronous rounds, in each of which a
node (1) performs local computations, (2) sends O(logn)-bit messages to its neighbors, and
(3) receives the messages that its neighbors sent. Initially, every node in the input graph
G = (V,E, `) knows its identifier and its incident edges together with their length. At the
end of computation every node needs to know its part of the output. That is every node
needs to know for its incident edges whether or not they belong to the output spanning tree.

Distributed SSSP Computation in Super-Source Graphs

At its heart, our algorithm reduces the problem to a series of single source shortest path
(SSSP) computations. Accordingly, we will need to compute SSSP in graphs Gs that result
from subgraphs of G by adding a (virtual) super-source node s /∈ V .

I Definition 2 (Super-source graphs). Fix a subgraph H = (VH , EH , `|H) of G. Construct
Gs = (VH ∪̇{s}, EH ∪ Es, `Gs) by choosing Es ⊆ VH × {s}, picking `Gs(e) ∈ {1, . . . , nc} for
e ∈ Es, and setting `Gs(e) = `e for all e ∈ EH . We refer to Gs as a super-source graph (of
G) and to s as its super-source. For distributed algorithms, we assume that each node v ∈ V
initially knows which of its incident edges in G are in VH , whether it is connected to s, and,
if so, the length of edge (s, v).

Although both distributed CONGEST algorithms for SSSP that we employ (for the
unweighted and weighted case) assume to be run on the input graph, we observe that it
is straightforward to generalize them to super-source graphs. Both considered algorithms
output a tree T that is a subgraph of Gs, where each node v ∈ VH learns its parent and the
distance dT (v, s) from v to s in T , which is exactly the distance dGs(v, s) from v to s in Gs.

I Lemma 3 (folklore result). SSSP in super-source graphs can be solved in O(W (Gs)) rounds.
In particular, if Gs is unweighted (i.e., `Gs = 1), SSSP can be solved in O(D(Gs)) rounds.

Proof. For unweighted graphs, this is done by standard flooding to construct a BFS tree,
where communication by s is simulated locally based on nodes knowing whether they are
connected to s and by which length. For weighted graphs, one simulates the algorithm on
the unweighted graph obtained by subdividing each edge e into `e many length-1 edges.
Termination is detected via the resulting spanning forest T \ {s} of Gs \ {s}. J

DISC 2019



4:6 Distributed Low Stretch Spanning Trees

I Corollary 4 (of [15]). SSSP in super-source graphs can be solved in Õ(min{
√
nD,
√
nD1/4 +

n3/5 +D}) rounds w.h.p.

I Comment. We comment that the algorithm of Forster and Nanongkai [15] can be directly
extended to the case of super-source graphs.3 In short, the reason is as follows: there are
only two differences between the case considered here and the one of [15]. (1) We cannot
communicate on the virtual edges that connect s to VH , as there are no such physical edges.
(2) We work on a subgraph of the base graph, whose hop diameter may be much larger
than D. Regarding the first point, we note that in the algorithm of [15], besides the initial
coordination message from the source that can be delivered to all nodes in O(D) rounds, the
source s never changes its state. Hence, it does not need to send any message to its neighbors
in VH or to receive a message from them. Regarding the second point, we note that the
algorithm of [15] relies on the hop diameter D only for the purpose of global communication.
In our setting, even though our computation is about a subgraph, we can still use the base
graph to perform computation and in particular we can deliver any B messages to all nodes
in O(D +B) rounds.

Exponential Distribution

By Expβ we denote the exponential distribution with mean 1/β. Its density function is given
by fExpβ (x) = β exp(−βx) ·H(x), where H(·) denotes the Heaviside step function and its
cumulative density function by FExpβ (x) = (1− exp(−βx)) ·H(x).4 First, we observe that
drawing from this distribution results in values of O(logn/β) w.h.p.

I Lemma 5. For parameters 0 < ε < 1, β > 0, and a sufficiently large constant c > 0, let
t := c logn/(4(1 + ε)β) and X ∼ Expβ. Then P [X ≥ t] ∈ n−Ω(c), i.e., X < t w.h.p.

Proof. The proof is a simple calculation:

P [X ≥ t] =
∫∞
t
e−βx dx∫∞

0 e−βx dx
=
e−βt

∫∞
0 e−βx dx∫∞

0 e−βx dx
∈ e−Ω(c logn) = n−Ω(c) . J

Intuitively, the next lemma (taken from [27]) is used as follows. Imagine that ball centers
u ∈ S ⊆ V each grow a ball independently and in parallel, but with starting times shifted
by −δu. Then, no matter how far exactly the ball centers are from a given edge e in the
graph, the arrival times of the first and second ball differ by at least 2`e with probability
1 − O(β`e) = 1 − O( `e logn

εr ), using β = Θ( logn
εr ). For any edge e of length `e, this means

that the ball arriving first at one endpoint of the edge also is the first to arrive at the other
endpoint with probability at least 1−O( `e logn

εr ).

I Lemma 6 (Lemma 4.4 in [27]). Let d1 ≤ . . . ≤ ds be arbitrary values and δ1, . . . , δs be
independent random variables picked from Expβ. Then the probability that the smallest and
the second smallest values of di − δi are within c of each other is at most O(βc).

3 Verified through personal communication with Sebastian Forster and Danupon Nanongkai.
4 Here the Heaviside step function is defined as H(x) = 0 if x < 0 and H(x) = 1 otherwise.
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3 Computing a (1/3, ε)-Star Decomposition

We formally introduce (δ, ε)-star decompositions following their presentation in [12].

I Definition 7. We call a partition V0, . . . , Vk of V that satisfies
(a) for all i ∈ [k] ∪ {0} : G[Vi] is connected,
(b) for all i ∈ [k] there is ei = (xi, yi) ∈ E with xi ∈ Vi, yi ∈ V0
a (δ, ε)-star decomposition, if, in addition,
(1) r0 ≤ (1− δ)r, using the notation ri = radxi(G[Vi]) and r = radx0(G)
(2) for all i ∈ [k] : d(x0, xi) ≥ δr
(3) for all i ∈ [k] : d(x0, xi) + ri ≤ (1 + ε)r.
We call the nodes x1, . . . , xk the anchor nodes of the parts V1, . . . , Vk and the edges e1, . . . , ek
are called the bridge edges. We refer the reader to Figure 1 for an illustration. Note also
that properties (2) and (3) imply that the radius of each of the graphs G[V1], . . . , G[Vk] is
upper bounded by (1 + ε− δ) · r.

V0

V1

V2V3

r0

r1

x0

v

e1

x1y1

e2

e3

Px0v

Figure 1 An illustration of a (δ, ε)-star decomposition. The center part V0 of radius r0 ≤ (1− δ)r
is connected to each part Vi via a bridge edge ei = (xi, yi). The anchor nodes xi have distance
at least δr to x0. Moreover, the distance of x0 to xi with i ≥ 1 plus the radius ri of the part Vi

is at most (1 + ε) times the radius r of the original graph. Note that the decomposition that we
construct leads the stronger property that, for any node v ∈ Vi, the length of the path from x0 to v
over the bridge edge ei (drawn in yellow) is at most εr longer than the shortest path Px0v from x0

to v (drawn in green).

Given a root node x0 ∈ V and a radius r0, let V0 := B(x0, r0). We let S := {u ∈ V \ V0 :
∃v ∈ V0, (u, v) ∈ E and d(x0, u) = d(x0, v) + `(u,v)} be the so-called ball-shell of V0, i.e.,
the nodes u outside V0 that have a neighbor v in V0 such that a shortest path from x0 to
u passes through v. For a node u ∈ S, we fix vu0 to be some neighbor of u in V0 such that
d(x0, u) = d(x0, v

u
0 ) + `(vu0 ,u).

Now, let δ : S → R≥0 be a function that assigns a non-negative real to every node on the
ball-shell. For every node u ∈ S, we define the adjusted δ-shifted distance of u as

ad−δx0
(u) := d(x0, u) + max

v∈S
{δv} − δu .

We remark that the shift by maxv∈S{δv} is simply used in order to ensure non-negativity.
These numbers define the delay after which u starts to grow its ball (if it has not yet joined
another ball), which we adjust compared to [27] by the distance of u to x0. This adjustment
allows us to treat the general weighted case; in the unweighted setting, all of these distances
would be identical as u is a node on the ball-shell of V0 and thus the resulting decomposition
would remain unaffected by the adjustment.

DISC 2019



4:8 Distributed Low Stretch Spanning Trees

Algorithm 1 star_decompose(G, x0, ε).

Input : graph G = (V,E, `), node x0 ∈ V , ε > 0
Output : (1/3, ε)-star decomposition of G w.h.p.

1 Compute r = radx0(G).
2 Set β := c logn

εr , sample r0 ∈ [ r2 ,
2r
3 ] u.a.r. // c is a suff. large constant

3 Let V0 = B(x0, r0) and H := G[V \ V0].
4 Let S := {u ∈ V \ V0 : ∃v ∈ V0, (u, v) ∈ E and d(x0, u) = d(x0, v) + `(u,v)}.
5 For each u ∈ S, pick δu ∼ Expβ independently.
6 Gs := super-source graph obtained from H by attaching u ∈ S to s with length

ad−δx0
(u).

7 Compute SSSP tree T of Gs rooted at s.
8 Let x1, . . . , xk be the children of s in T and V1, . . . , Vk be the node sets of their

subtrees.
9 For each xi let yi = vxi0 ∈ V0

10 return sets V0, V1, . . . , Vk, anchors x1, . . . , xk, nodes y1, . . . , yk

We now describe Algorithm 1, which computes a (1/3, ε)-star decomposition. The
algorithm starts by carving out the center ball around x0, which has a randomized radius
r0 to ensure that edges e are cut with probability O(`e/r). It then grows balls in G[V \ V0]
around the shell nodes S, where the starting times are delayed according to random shifts
δv ∼ Expβ (this is the technique from [27]). Here, β ∈ Θ̃(1/r) with r being the radius of G
w.r.t. x0, so that the probability to cut an edge e of length `e is Õ(`e/r). This is implemented
by an SSSP computation with super-source s, which is attached to shell node u by an edge
of length ad−δx0

(u), which results in the desired behavior. The subtrees rooted at children of
s then correspond to the balls, and the algorithm can return the desired decomposition.

For ease of presentation, we assume in our analysis the non-integrality of the δu’s is not
an issue for the single source shortest path computations used; it is straightforward to use
values that are rounded to integers.5

I Corollary 8. Algorithm 1 can be implemented in Õ(min{
√
nD,
√
nD1/4 +n3/5 +D}) rounds

w.h.p. If G is unweighted, it can be implemented in O(D) rounds w.h.p.

Proof. From the pseudo-code of the algorithm, it is immediate that all computations are
local except (i) determining radx0(G), (ii) finding B(x0, r0), (iii) determining T , and (iv)
determining the subtrees of T \ {s}. (i) and (ii) can be performed by a call to an SSSP
algorithm (a single call suffices, in fact) and making r0 known to all nodes. The same holds
true for (iii). Regarding (iv), in order to determine the connected components of T \ {s},
we can invoke a variant of the minimum spanning tree algorithm by Garay, Kutten and
Peleg [17, 24], which runs in Õ(

√
n+D). Applying Corollary 4, the first claim follows.

5 This can be interpreted as distorting edge lengths by O(1) in our analysis (possibly even inconsistenly
in different bounds). As all probability bounds involving edge lengths `e are asymptotic and linear in `e

and the minimum edge length is 1, there is no change in the asymptotic results.
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If G is unweighted, the first SSSP computation has running time O(D) by Lemma 3.
The same holds for the second, provided that W (Gs) ∈ O(D). By Lemma 5, maxu∈S{δu} ∈
O(logn/β) ⊂ O(D) w.h.p. Thus,

W (Gs) ≤ 2 rads(Gs) ≤ 2(max
u∈S
{δu}+ radx0(G)) ∈ O(D)

w.h.p. As the depth of T is at most W (Gs), the naive algorithm for finding the connectivity
components of T \ {s} completes in O(D) rounds w.h.p. as well. J

3.1 Correctness
We now show that Algorithm 1 indeed returns a (1/3, ε)-star decomposition of G w.h.p.

I Theorem 9. Algorithm 1 outputs a (1/3, ε)-star decomposition w.h.p.

In order to prove the theorem, we examine the conditions in Definition 7. First, observe
that the graphs G[Vi] are spanned by the components of T \ {s} ⊂ V and thus connected
(in G). Therefore, condition (a) of the (δ, ε)-star decomposition holds by construction. In
particular, ri := radxi(G[Vi]) is well-defined for every i ∈ [k]. Similarly, (b) is immediate
from the construction, (1) holds since r0 ≤ 2r/3, and (2) holds since r0 ≥ r/2 > r/3. We
show that condition (3) holds w.h.p., the proof is based on Lemma 5.

I Lemma 10. Let x0 ∈ V be the root node given to the algorithm. Moreover, let V0, V1, . . . , Vk,
S, and x0, x1, . . . , xk, as well as y1, . . . , yk be as in Algorithm 1. Let r = radx0(G) and G′
be the subgraph of G in which all edges in Vi × Vj for i 6= j ∈ {0, . . . , k} are deleted except
for the bridge edges (x1, y1), . . . , (xk, yk). Then radx0(G′) ≤ (1 + ε) · r w.h.p., i.e., property
(3) of Definition 7 holds.

Proof. For arbitrary v ∈ V \ V0, denote by xi ∈ S a shell node such that v ∈ Vi. As
H = G[V \ V0] is a subgraph of Gs and d(xi, v) = dH(xi, v) by construction, we have that

dG′(x0, v) = d(x0, yi) + `(xi,yi) + d(xi, v) = d(x0, xi) + dH(xi, v) ≤ dGs(x0, v) .

By Lemma 5 and a union bound, maxw∈S{δw} < c logn/β ≤ εr w.h.p. Let u ∈ S be a
shell-node on a shortest path from x0 to v, i.e., d(x0, v) = d(x0, u) + d(u, v). Then, w.h.p.,

dGs(x0, v) ≤ dGs(x0, u) + dGs(u, v) ≤ d(x0, u) + max
w∈S
{δw} − δu + dH(u, v)

< d(x0, u) + εr + d(u, v) = d(x0, v) + εr ≤ (1 + ε)r ,

where we again used that H = G[V \ V0] is a subgraph of Gs and d(u, v) = dH(u, v) by
construction. As G′ preserves distances to all nodes in V0 ∪ S, the claimed bound on the
radius follows. Note that property (3) of Definition 7 follows as well, as in G′ the edges
(x1, y1), . . . , (xk, yk) are bridges and thus

radx0(G′) = max
i∈[k]
{d(x0, xi) + radxi(G[Vi])} . J

3.2 Probability To Cut an Edge
Given a (δ, ε)-star decomposition V0, . . . , Vk, we say that an edge is cut if its endpoints belong
to different parts Vi of the decomposition. There are two different ways in which an edge can
be cut by Algorithm 1. (1) It can be cut by the process of growing the center V0 or (2) it is
cut during the procedure in lines 5-8. We call Ecut

◦ := {(u, v) ∈ E : u ∈ V0, v ∈ Vi, i ∈ [k]},
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i.e. edges between V0, Vi for i ∈ [k] the edges resulting from (1) and Ecut
4 := {(u, v) ∈ E : u ∈

Vi, v ∈ Vj , i, 6= j ∈ [k]}, i.e. edges between Vi, Vj for i, j ∈ [k] the cut edges resulting from (2).
Moreover we let Ecut = Ecut

◦ ∪ Ecut
4 . The goal of this subsection is to prove the following

lemma. Its proof is split in two lemmata, Lemma 12 and Lemma 13.

I Lemma 11. For an edge e = (u, v) ∈ E, it holds that Pr[e ∈ Ecut] = O( `e logn
εr ).

It is simple to bound the probability of an edge e being in Ecut
◦ :

I Lemma 12. For an edge e = (u, v) ∈ E, it holds that Pr[e ∈ Ecut
◦ ] ≤ 6`e

r = O( `er ).

Proof. W.l.o.g. assume that d(x0, u) ≤ d(x0, v). It then follows that

Pr[e ∈ Ecut
◦ ] ≤ Pr[r0 ∈ [d(x0, u),d(x0, u) + `e)] = 6`e

r
= O

(`e
r

)
,

since r0 was picked u.a.r. from the interval [r/2, 2r/3] of width r/6. J

We now wish to bound the probability that an edge e = (u, v) ∈ E belongs to Ecut
4 .

Essentially, the desired bound is implicit in [27], but due to our modifications for the weighted
setting we cannot apply the statements from this work as a black box entirely. However, the
statement follows without much effort from Lemma 6.

I Lemma 13. For an edge e = (u, v) ∈ E, it holds that Pr[e ∈ Ecut
4 ] ∈ O( `e logn

εr ).

Proof. Recall that H = G[V \ V0]. If (u, v) /∈ EH , then (u, v) /∈ Ecut
4 , so assume that

e = (u, v) ∈ EH . Denote by xu ∈ S the anchor node of the part u belongs to, i.e.,
dGs(x0, u) = d(x0, xu) + maxx∈S{δx} − δxu + d(xu, u). We apply Lemma 6 to the values
dx = d(x0, x)+d(x, u) and δx chosen in line 5, where x ∈ S. This shows that with probability
1−O(β`e), we have for all x 6= xu that

d(x0, x) + d(x, u)− δx > d(x0, xu) + d(xu, u)− δxu + 2`e .

Adding maxx∈S{δx}− `e on both sides of this inequality and applying the triangle inequality,
this entails that

ad−δx0
(xu) + d(xu, v) ≤ d(x0, xu)− δxu + max

x∈S
{δx}+ d(xu, u) + `e

< d(x0, x) + d(x, u)− δx − `e + max
x∈S
{δx} ≤ ad−δx0

(x) + d(x, v)

for all x ∈ S \ {xu}. It follows that the shortest path from x0 to v in Gs passes through xu,
i.e., v is in the same part as u and e is not cut. Accordingly, the probability that e ∈ Ecut

4 is
bounded by O(β`e) = O( `e logn

εr ), as claimed. J

4 Building the Low-Stretch Spanning Tree

We now give an algorithm that uses our (1/3, ε)-star decomposition algorithm recursively in
order to compute a spanning tree of low expected stretch, see Algorithm 2. As described
above, the algorithm takes as input the graph G = (V,E, `) with n nodes and a root node
x0 ∈ V (x0 can be chosen arbitrarily) and outputs a tree T such that E[strT (e)] = O(log3 n)
for any edge e ∈ E.

Consider an invocation of Algorithm 2 on an input graph G with root node x0 ∈ V . Let
(H(0), x(0)), (H(1), x(1)), . . . with G = H(0) and x0 = x(0) be a sequence of graphs and root
nodes corresponding to a path in the recursion tree. Moreover, let r(k) = radx(k)(H(k)) be
the radius of the k’th graph in this sequence with respect to x(k).
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Algorithm 2 low_stretch_tree(G, x0).

Input : graph G = (V,E, `) with n nodes, root node x0 ∈ V
Output : spanning tree T s.t. E[strT (e)] = O(log3 n) for every edge e ∈ E

1 ε = min{ 1
12 ,

1
logn}

2 if |V | ≤ 2 then
3 return G

4 else
5 (V0, . . . , Vk, x1, . . . , xk, y1, . . . , yk) = star_decompose(G, x0, ε)
6 for i ∈ [k] ∪ {0} do
7 Ti = low_stretch_tree(G[Vi], xi)
8 return T =

⋃
i∈[k]∪{0} Ti ∪

⋃
i∈[k]{(xi, yi)}

I Corollary 14. The recursion depth of Algorithm 2 is O(logn) w.h.p.

Proof. By Theorem 9, each call to Algorithm 1 returns a (1/3, ε)-star decomposition w.h.p.
Condition on these events. Denoting r = radx0(G), from properties (1) and (2) of a (1/3, ε)-
star decomposition we get by induction that ( 2

3 )ir = max{1− δ, δ}ir is a bound on the radius
of subgraphs the algorithm is called on in recursion depth i. As edge lenghts are polynomially
bounded, we have that r ∈ nO(1), implying that there is imax ∈ O(logn) so that ( 2

3 )ir < 1.
As the minimum edge length is 1, this entails that such a graph contains no edge and the
recursion stops. As the number of recursive calls in depth i is trivially bounded by n (the
maximum number of disjoint, non-empty subgraphs of G), we conditioned on O(n logn)
events that occur w.h.p. By a union bound, the claim follows. J

We will now shift focus towards the following sequence of recursively defined graphs

R(0)(G) := G, and R(t)(G) :=
⋃

i∈[k]∪{0}

R(t−1)(G)[Vi] ∪
⋃
i∈[k]

{(xi, yi)} for t ≥ 1,

for some graph G and partition V0, . . . , Vk of its node set. Note that the defined sequence of
R(i)(G) becomes sparser and sparser until the final one is the tree returned by the algorithm.
As opposed to the sequence H(0), H(1), . . . that we considered previously (corresponding to
a recursive path in the recursion tree) however, each of the graphs in R(0)(G), R(1)(G), . . .
contains all the nodes of G. In fact, R(`)(G) is the graph that we would obtain when
interrupting Algorithm 2 at recursion level `.

I Lemma 15. For a graph G and the sequence R(i)(G) as defined above, let ρ(k) :=
radx0(R(k)(G)) and let γ(k) = ρ(k)/ρ(k−1). Then

E[γ(k)] ≤ 1 + 2ε and E[ρ(k)] ≤ (1 + 2ε)k · radx0(G) .

Proof. By Lemma 10, we have Pr[ρ(k) ≤ (1 + ε)ρ(k−1)] = Pr[γ(k) ≤ 1 + ε] ≥ 1− n−c for a
constant c under our control. Choosing c sufficiently large, thus

E[γ(k)] ≤ (1 + ε) + n · n−c ≤ 1 + 2ε, using ε = 1/ logn ≥ n−c+1 .

For the second claim, we get

E[ρ(k)] = E
[
ρ(0) ·

k∏
i=1

γ(k)
]

= ρ(0) ·
k∏
i=1

E[γ(k)] ≤ (1 + 2ε)k · radx0(G) ,

since the events are independent. J
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I Lemma 16. E[strT (e)] = O(log3 n) for the expected stretch of each edge e = (u, v) ∈ E.

Proof. By Corollary 14, the recursion depth λ of Algorithm 2 satisfies λ ∈ O(logn) w.h.p.
W.l.o.g., condition on this event.6 Let us denote with Ek the set of edges being cut at
recursive level k and let d := dT (u, v) for notational convenience. Note that the event that
edge e is cut in depth i of the recursion is disjoint from the event that it is cut in depth j 6= i.
Hence, using the law of total expectation and Lemma 11, we get that

E[d] = E[d | e ∈ T ] +
λ∑
k=0

E[d | e ∈ Ek] · Pr[e ∈ Ek] = `e +
λ∑
k=0

E[d | e ∈ Ek] · Pr[e ∈ Ek] .

Consider the special case that e ∈ E0. Clearly, E[d | e ∈ E0] ≤ E[2 radx0 R
λ(G)] (i.e., twice

the radius of the computed spanning tree) in the notation of Lemma 15. By the lemma and
the fact that ε ≤ 1/ logn, we get that

E[d | e ∈ E0] ≤ E[2 radx0(Rλ(G))] ≤ 2(1 + 2ε)λ · radx0(G) ∈ O(radx0(G)) .

Applying Lemma 11, we arrive at E[d | e ∈ E0] · Pr[e ∈ E0] ∈ O
(
`e logn

ε

)
= O(`e log2 n).

Now consider the case that e ∈ Ek for some k 6= 0. Thus, e was contained in some connected
subgraph H of G that Algorithm 2 was called on recursively. The same reasoning hence
shows that E[d | e ∈ Ek] · Pr[e ∈ Ek] ∈ O(`e log2 n). We conclude that

E[strT (e)] = E[d]
`e

= 1 +
∑λ
k=0 E[d | e ∈ Ek] · Pr[e ∈ Ek]

`e
∈ 1 +O(λ log2 n) ⊆ O(log3 n) .J

We now have everything in place to infer Theorem 1.

Proof of Theorem 1. By Lemma 16, Algorithm 2 achieves the stated guarantee on the
stretch. By Corollary 14, its recursion depth is O(logn) w.h.p. Each call performs a call to
Algorithm 1, which can be implemented with the stated running time bound by Corollary 8.
Observe that we can perform for each SSSP computation step of Algorithm 1 on recursion
level i the computation for all instances on this recursion level with a single instance of
the SSSP algorithm we use: we perform the computation on the union of the subgraphs
induced by disjoint sets, yielding for each subgraph the correct tree T by deleting all nodes
not belonging to the induced subgraph. By Corollary 8, the stated running time bounds
follow, where in the unweighted case we exploit that radii (and thus diameters) decrease
exponentially with the recursion depth (cf. Corollary 14). J
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