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ABSTRACT 
URBAN WATER QUALITY: SOCIO-ECONOMIC DISTRIBUTION OF  
STREAM DEGRADATION, AND THE INFLUENCE OF CLIMATE ON  

BMP PERFORMANCE  
 
 

Isabelle Horvath, M.S. 
 

Marquette University, 2023 
 

 
Urban water quality impairments have long burdened urban aquatic ecosystems in 

a phenomenon termed “urban stream syndrome”. The symptoms of this “syndrome” 
include physical changes in stream morphology and water level, biologically stressed 
environments, and perturbations in ecosystem processes. Despite years of research and 
costly investments in restoration and rehabilitation, urban waterways are still plagued by 
degradation. Improvement in urban water quality will require multi-faceted efforts, 
including progress on 2 key fronts 1) increased understanding of current impairments, 
and 2) increased knowledge about urban stormwater infrastructure like best management 
practices (BMPs). Towards both topics, engineers have quantified the influence of 
controls that can be manipulated in restoration and design to improve water quality, such 
as imperviousness, real time controls, and soil amendments in BMPs. However, urban 
waterways remain degraded, and there are still many unknowns regarding the distribution 
of stream quality impairments. Improvement of urban water quality requires better 
quantification of water quality distribution and quantification of factors that impact 
stormwater infrastructure performance. This dissertation provided a diagnosis of the 
extent of spatial variability in urban stream syndrome in an urban watershed in 
metropolitan Detroit, and informed stormwater infrastructure performance variabilities 
through the execution of three objectives. First, the distribution of stream quality 
variability across socio-economic groups was evaluated through a partnership with 
volunteer science. Second, nutrient management BMP variability was assessed on a 
regional climate scale, and variable performance between climates was quantified. 
Finally, the influence of storm characteristics on BMP nutrient management was assessed 
and performance under different types of storms was quantified. This research showed 
that high poverty areas are disproportionately burdened by poor stream water quality and 
identified phosphorus leaching vulnerability for BMPs in arid climates and during intense 
storm events. 
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1. INTRODUCTION 
 
 

Human activity and environmental systems are interconnected. Over one third of 

Earth’s surface is impacted by anthropogenic landcover alterations (Vitousek, Mooney, 

Lubchenco, & Melillo, 1997) and these landcover changes are connected to water quality 

and river ecosystem health (Allan, 2004). Specifically, urbanization is connected to water 

quality through the generation of non-point source pollution, which exports pollutants 

and elevated stormwater volumes from the landscape into surface water bodies through 

stormwater runoff. After flushing the urban landscape, this pollutant-laden stormwater 

impinges surface water bodies, causing negative effects like altered streambank 

morphology and perturbed biological and ecosystem processes. This harm is not one-

directional. This means that not only does human activity negatively impact urban 

surface waters, but the damage to these waters diminish their value in human systems 

(called “ecosystem services”) (Garcia et al., 2016). The term “urban stream syndrome” 

broadly defines this relationship between dense anthropogenic activity and the negative 

effect on stream quality and diminished ecosystem services provided by urban waterways 

(Booth, Roy, Smith, & Capps, 2016; Walsh et al., 2005; Withers & Jarvie, 2008).  

A foundational review of urban streams imparts the closing message that “the 

challenge for stream ecologists in furthering our understanding of streams in urban areas 

is to not only better understand interactions between catchments and stream processes, 

but to integrate this work with social, economic, and political drivers of the urban 

environment” (Walsh et al., 2005). Interactions between catchments and stream processes 

have been broadly assessed, but less is known about social, economic, and political 

interactions with urban stream degradation. Particularly, there is a lack of information 
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regarding the distribution of stream quality degradation on people of different socio-

economic demographics. In the United States, the Environmental Protection Agency 

(EPA) monitors spatial connections between environmental conditions and demographic 

indicators through the “EJscreen” platform(United States Environmental Protecion 

Agency, 2021). However, establishing these connections between urban water quality 

and socio-economic demographics is challenging because stream systems are highly 

spatially variable, complex connected networks. Therefore, furthering our understanding 

of urban stream quality degradation and the distribution of this degradation across socio-

economic demographics requires tools that both supply robust spatial data, and account 

for the complex connectedness of stream networks. Objective 1 (Chapter 3) of this 

dissertation addresses both challenges to develop increased understanding of the socio-

economic distribution of urban stream quality degradation in the Rouge River watershed 

in metropolitan Detroit.  

Objective 1, titled, Evaluation of the socio-economic distribution of stream quality, 

was a collaboration with the non-profit organization, Friends of the Rouge (FOTR), 

formed to explore a common research interest in socioeconomic and environmental 

patterns in relation to water quality. This objective addressed the aforementioned 

challenges, a need for robust local data and need for a tool appropriate for connected 

networks, by partnering with community science data collection and employing a spatial 

stream network (SSN) model, respectively. Together these methods enabled testing of the 

hypothesis that water quality degradation in metropolitan Detroit is not distributed 

uniformly across communities of varying poverty levels. Additionally, a model was 

developed and used to predict water quality under varying manipulated watershed 
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conditions to evaluate the relationship between poverty and predicted water quality. This 

work provided evidence that urban stream quality degradation in the Rouge River 

watershed inequitably burdens areas with lower household incomes.  

The knowledge gained from Objective 1 leads to the logical next question: “What can 

be done to reduce the burden of stream degradation on areas inequitably affected by it?” 

In the case of the Rouge River watershed, and many other watersheds, nonpoint sources 

are managed with green stormwater infrastructure (Madden, 2010; “River Restoration,” 

n.d.; Sonne, 2014; Tackett, 2010). Green storm water infrastructure is an umbrella term 

encompassing systems like bioretention, rain gardens, and bioswales, that are also called 

stormwater best management practices (BMPs). These infrastructure practices are unified 

by their design goal: to capture stormwater runoff and provide volume storage and or 

water quality treatment. Yet, the reliability of BMP water quality management, especially 

for nutrients, is variable (Clary, Jones, Leisenring, Hobson, & Strecker, 2020; Gold, 

Thompson, & Piehler, 2019; Lintern, McPhillips, Winfrey, Duncan, & Grady, 2020; 

Park, Kang, Jung, & Roesner, 2015). Nonpoint source nutrient management in urban 

areas is essential for preventing urban stream degradation, as elevated nutrients cause 

eutrophic conditions, infamous for odorous algae and unsafe swimming and fishing 

conditions. Therefore, lack of nutrient management reliability from BMPs leads to a 

disconnect between research and financial investments into stormwater BMPs, and 

tangible improvements in water quality from nonpoint source pollution (Lintern et al., 

2020). Increased understanding of stormwater BMP nutrient management function is 

necessary to make these infrastructure practices more effective, and ultimately reduce 

urban water quality degradation.   
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Variable BMP nutrient management is caused by the variety of actors that 

influence nutrient removal and retention processes in BMPs. Compared to other 

engineered water quality treatment systems like a wastewater or drinking water treatment 

plant, green stormwater infrastructure often has little or no energy-supported processes 

and thus has limited control over temperature regulation, retention times (except in the 

case of real-time control), or employment of screening mechanisms that require 

backwash. Further, the physical, chemical and biological treatment processes present in 

BMPs (like sedimentation, ion exchange with soil, and metabolic microbial processes, 

respectively) are subject to the influence of the conditions of the local environment, like 

seasonality, long-term water balances, manifold inflow rates from variable storms and 

associated changes in soil moisture and oxygen properties (Davis, 2007; Horvath, 

Pulvermacher, & Parolari, 2022; Hunt, Davis, & Traver, 2012; Li & Davis, 2014). Many 

studies have examined these climate- and weather-associated conditions on BMP nutrient 

management at the site-level, but few studies have sought to broadly define the influences 

of these conditions across BMPs. Objectives 2 and 3 (Chapters 4 and 5, respectively) fill 

this knowledge gap by using data from the International BMP Database to define 

relationships between climate, storm events, and BMP nutrient management.  

Objective 2, titled, Effects of Regional Climate and BMP Type on Stormwater 

Nutrient Concentrations in BMPs: A Meta-Analysis, evaluated the impact of climate on 

changes in stormwater nutrient concentrations through three types of vegetated BMPs. 

Meta-analysis was applied to aggregate the direction and magnitude of nutrient 

concentration changes induced by BMPs in different climates. It was hypothesized that 

BMP nutrient concentration change was different in wet and dry climates. This 
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hypothesis was tested by analyzing BMP influent and effluent nutrient concentrations 

with data from the International Stormwater BMP Database. To evaluate this hypothesis, 

this objective conducted a meta-analysis of data from the BMP database and evaluated 

changes in N and P concentrations through BMPs in wet and dry climate regimes. This 

objective showed that both climate and BMP type influence nutrient management. 

Specifically, dry climate BMPs leach dissolved inorganic and total phosphorus more 

consistently and at a higher magnitude than wet climate BMPs, and bioretention leaches 

more DIP than grass strips and swales. 

Objective 3, titled, Storm impact on BMP nutrient treatment, quantified the 

water quality performance of BMPs under five distinct types of storms. Clustering 

algorithms were applied to group storms into like groups based on storm event attributes, 

including total precipitation depth, return period, peak hourly intensity, and antecedent 

dry period. It was hypothesized that BMP water quality management is different for 

different types of storm events. To assess this hypothesis, BMP water quality data from 

five BMP types were collected from the International Stormwater BMP database and 

matched with traits of the storm events that generated the stormwater quality data. The 

relationship between the individual storm traits and influent and effluent water quality 

was assessed through metrics of concentration, volume, and load. Then the storm traits 

were used to create clusters of like storms, and the changes in nutrient concentration and 

load between influent and effluent were assessed for different storm groups. This 

objective provided insight into the dominance of storm depth and return period on 

altering influent and effluent volumes and loads, and identified storm conditions that 

make BMPs more vulnerable to poor nutrient removal and retention performance. This 
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research provides evidence that BMPs elevate TP and DIP concentrations across storm 

events and identifies that TN performance is most vulnerable for large storms, DIN and 

TP loss are most vulnerable for arid climate storms, and DIP loss is most vulnerable for 

intense storms.   
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2. STATE OF THE SCIENCE 
 
 

2.1 Urban Water Quality Degradation  

Water quality degradation in surface waters is a high public interest, costly 

environmental challenge that remains a persistent issue despite research and restoration 

efforts. Water quality impairments are numerous, encompassing pollution via heavy 

metals, nutrients, temperature, sediment, and salinity – to name a few (Akhtar, Syakir 

Ishak, Bhawani, & Umar, 2021). Among this non-exhaustive list of impairments, the 

impact of nutrients alone was estimated to cost $2.2B in the U.S. in 2008, where costs 

were incurred through eutrophication impact on property value, recreation revenue loss, 

endangered species conservation costs, and drinking water treatment costs (Dodds et al., 

2009). In addition to high fiscal costs, there are high social costs associated with 

degraded water quality because of public interest in recreational value and safety 

concerns related to fishing, swimming, and drinking from water bodies (Dodds et al., 

2009; Dodds & Smith, 2016; Heisler et al., 2008). High costs of impairment and public 

interest motivate funding via research, restoration, and policy change towards improving 

water quality (Olmstead, 2009). Yet, water bodies remain impaired (Keiser, Kling, & 

Shapiro, 2018; Oliver et al., 2017; Stets et al., 2020). 

Urban areas are particularly susceptible to water quality degradation, a 

phenomenon driven by dense anthropogenic activity and labeled with the term “urban 

stream syndrome” (Walsh et al., 2005). Symptoms of this “syndrome” in urban streams 

include high nutrient loading (Grimm et al., 2005; Meyer, Paul, & Taulbee, 2005; Wahl, 

McKellar, & Williams, 1997; Withers & Jarvie, 2008), biochemical oxygen demand 

loading (Mallin, Johnson, Ensign, & MacPherson, 2006), highly variable flows 
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(Blaszczak, Delesantro, Urban, Doyle, & Bernhardt, 2019), and highly variable 

temperature profiles (Walsh et al., 2005), contributing to hypoxia and other damaging 

impacts that alter urban stream function (Meyer et al., 2005). These symptoms demand 

human attention because of the diminished ecosystem services resulting from urban 

stream syndrome (Booth et al., 2016; Withers & Jarvie, 2008).  

Impairment is so pervasive in urban watersheds that biogeochemical processes in 

urban watersheds are distinct from non-urban watersheds (Hobbie et al., 2017; Kaye, 

Groffman, Grimm, Baker, & Pouyat, 2006; Van Meter, Chowdhury, Byrnes, & Basu, 

2019). Specifically, urban streams are impacted by dissolved pollutants, especially 

orthophosphate, nitrate, sodium, and chloride (Manning, Rosemond, Benstead, Bumpers, 

& Kominoski, 2020; Stets et al., 2020). These urban-sourced pollutants can have severe 

environmental impacts within and beyond urban centers, like impacts on drinking water 

security and treatment (Steffen et al., 2017), and pollutant spread from stormwater 

reaching 100 km2 into coastal waters (Ahn et al., 2005). The culmination of these 

environmental impacts from anthropogenically altered urban biogeochemistry requires 

management practices to mitigate the impacts of human perturbations in the urban 

environment. These disturbances to urban biogeochemical processes can have important 

implications not only on the environment, but on people as well, as historically, 

environmental disturbances are inequitably distributed on socioeconomically and racially 

repressed people (Bullard, 1996). Management of urban pollutants is particularly 

challenging because they do not have clear, direct sources; in other words, they are from 

non-point pollution (Meyer et al., 2005; Walsh et al., 2005).  
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Nonpoint sources of pollutants are a challenge to manage both from a physical 

and regulatory perspective. Nonpoint sources include pollution from sources that have no 

clear direct origin, and do not enter water bodies through an identifiable discharge point, 

like a pipe, making regulation complex under the Clean Water Act (33 U.S.C. §1251). In 

general, non-point sources are not directly regulated by the Clean Water Act, but urban 

stormwater is often regulated through a municipal separate sewer system (MS4) permit if 

stormwater is conveyed separately from sewage. Nonpoint sources of pollution are as 

difficult to treat as they are to regulate, as the dispersed nature of their transport makes 

conventional water treatment difficult. In some regions, stormwater is conveyed to 

treatment plants through combined sewers, leading to overflows of sewage and 

stormwater called combined sewer overflows (CSOs). Where MS4 permits are required, 

stormwater can be treated with decentralized treatment methods like green stormwater 

infrastructure (also called stormwater best management practices, or BMPs). However, 

green stormwater infrastructure water quality treatment performance is complex and 

subject to interactions from many design factors and outside stressors (Jalali & 

Rabotyagov, 2020; Vogel et al., 2015). The ecological, and decentralized nature of green 

storm water infrastructure means that the infrastructure practices are subject to the 

influence of many complex and interacting drivers like vegetation health, maintenance 

(or lack thereof), biological suitability, variable influent composition, and climate 

(Lintern et al., 2020; Valenca et al., 2021).  

If surface water pollution is a disease (as the aptly coined “urban stream 

syndrome” implies), monitoring urban stream conditions and green stormwater 

infrastructure performance are two useful “diagnostics” to identify sources and severity 
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of the syndrome. The subsequent literature review sections present the state of the science 

in urban stream syndrome and green stormwater infrastructure water quality performance 

and identify needs for 1) improved methods of quantifying the distribution of stream 

quality degradation burdens on different socio-economic groups, 2) quantification of 

regional climate impact on BMP water quality treatment, and 3) quantification of storm 

characteristic impact on BMP water quality treatment.  

2.2 Urban Stream Syndrome: Distribution of Burden  

Urban streams provide valuable ecosystem and social services. As of 2005, the 

top five motivations for urban stream restoration projects were 1) water quality 

improvements, 2) riparian zone management, 3) improved in-stream habitat, 4) fish 

passage, and 5) bank stabilization (Bernhardt et al., 2005). Value of urban streams is also 

driven by social value of urban streams, which can provide opportunities for personal 

connections to nature in an otherwise developed landscape, and serve as locations for 

environmental education and recreation (Bernhardt et al., 2005; M. A. Kenney, Wilcock, 

Hobbs, Flores, & Martínez, 2012). It is also notable that local community interests 

regarding urban streams and rivers may vary based on resident location in the watershed 

and income. In Portland Oregon, a positive correlation was found between community 

involvement, higher income, and higher perceived flood risk in lower streams, whereas in 

the headwaters, streams were perceived as being valuable for property protection (Hong 

& Chang, 2020). Thus, urban streams offer both environmental and social values, and 

while there is community interest in urban streams, this interest likely varies among 

members of the community. 
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Just as human interest in streams in diverse, urban streams themselves are also 

diverse, a reality sometimes overlooked by the ubiquity implied by the term “urban 

stream syndrome.” Fundamental groundwork popularizing urban stream syndrome 

outlined symptoms of urban stream syndrome and postulated causes of these symptoms, 

but may overgeneralize the similarities between urban streams (Booth et al., 2016; Walsh 

et al., 2005). The urban stream syndrome framework helped to diagnose a broad universal 

relationship between increasingly degraded stream conditions and increasing impact from 

urbanization. This broad relationship, while helpful in communicating the importance of 

urbanization on stream quality, overgeneralizes the diversity of conditions amongst urban 

streams (Booth et al., 2016; Walsh et al., 2016). Urban streams vary widely from one 

another because of differences in climate (Hale, Scoggins, Smucker, & Suchy, 2016), 

infrastructure (Parr, Smucker, Bentsen, & Neale, 2016), and varying funding priorities 

and social values (Booth et al., 2016; Capps, Bentsen, & Ramírez, 2016). One 

underexplored local context for urban stream quality is the distribution of water quality 

impairments on watershed residents. There is a lack of information about the relationship 

between socio-economic traits and water quality impairments in different communities. 

Understanding disproportionate environmental burdens on the community scale is an 

essential component to understanding the extent and impact of urban stream syndrome.  

Socio-economic factors and environmental conditions are often linked, and urban 

stream conditions are likely to follow a similar relationship. The study of relationships 

between socio-economic and environmental characteristics is referred to as 

“environmental justice”, and this field aims to ensure that environmental burdens are 

distributed on community members justly (United States Environmental Protecion 
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Agency, 2021). Environmental burdens such as degraded air quality (Anderson, Kissel, 

Field, & Mach, 2018; Miranda, Edwards, Keating, & Paul, 2011), harmful chemical 

exposures (Bevc, Marshall, & Picou, 2007), inequitable land use zoning, and 

environmental law and regulation enforcement (Bullard, 1996) have all been shown to 

disproportionately burden racially and economically repressed people. In water-related 

environmental concerns, injustices against racially and economically repressed 

communities are present in flood risk maps (Maantay & Maroko, 2009; Meenar, 

Fromuth, & Soro, 2018), distribution of green infrastructure services (Taguchi et al., 

2020; Wolch, Byrne, & Newell, 2014), drinking water infrastructure risks (VanDerslice, 

2011), and urban stream degradation (Sanchez et al., 2014).  

In urban streams, a series of model developments identified spatial relationships 

between socio-economic parameters and stream quality. Spatial clustering and spatial 

correlations between modeled stream health indicators and socio-economic measures in 

the Saginaw River watershed in Michigan initially revealed mixed correlations, with the 

strongest correlation existing between a stream biological index and household size, at 

0.18 (Sanchez et al., 2014). Other known relationships between socio-economic 

parameters and stream health were correlations of 0.15 between poor water quality and 

diverse communities, and between good water quality and higher education (Sanchez et 

al., 2014). However, these correlations have low magnitudes, which may be a product of 

the way spatially aggregated zones were formed in analysis, or from geographic scale 

(Sanchez et al., 2014). Successive models expanded on the relationships identified by 

Sanchez et al (2014) by improving the predictability between socio-economic factors and 

environmental drivers with spatial clustering via regression and confirmatory factor 
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analysis (Sanchez et al., 2015). Further model improvement was achieved by limiting the 

level of spatial dependency to smaller scales of socio-economic data like census tracts 

and block groups rather than county, resulting in observing a highest correlation of -0.48 

between a biological water stream quality index and single to multi-unit housing ratio 

(Daneshvar et al., 2016). Finally, more robust and consistent relationships between socio-

economic variables and stream quality were found by applying a two-phase approach to 

variable selection in environmental justice modeling, resulting in the highest correlation 

of 0.59 between stream quality and the female-led household metric (Daneshvar, 

Nejadhashemi, Zhang, & Herman, 2018).  

These methodological improvements in environmental justice modeling in urban 

stream networks have contributed toward the identification of strong relationships and 

addressed issues of spatial complexity with various modeling tools, but there are barriers 

to repeating these methods in other watersheds. The models in the Saginaw River 

watershed were built using stream quality data from fish and macroinvertebrate surveys 

collected by the state of Michigan (Daneshvar et al., 2016; Sanchez et al., 2015, 2014). In 

watersheds without state-supported observational datasets, collecting stream quality data 

with enough spatial coverage for effective modeling is a major barrier in adopting these 

environmental justice models. A solution to this data paucity challenge is the partnership 

of advancing methods in stream modeling with volunteer science data collection (also 

called “citizen science”).  

2.2.1 Spatial Stream Networks 

Streams are complex networks, connected both via overland spatial proximity and 

along flow paths. These spatial relationships mean that straightforward regression is 
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insufficient in modeling streams because stream spatial connectedness violates the 

assumptions of independence between data points in a regression. Spatial stream network 

(SSN) modeling offers a solution to this modeling challenge by directly encompassing 

different possible spatial relationships into models. SSNs offer a framework where flow 

connected and flow unconnected streams are fit to a single model, thus allowing for 

hypothesis testing with watershed characteristics as predictor variables (Isaak et al., 2014; 

Peterson & Ver Hoef, 2014; Peterson et al., 2013; Ver Hoef, Peterson, Clifford, & Shah, 

2014). SSN and associated modeling tools have been applied to a range of stream 

modelling applications like surface water isotope variations (McGill, Steel, Brooks, 

Edwards, & Fullerton, 2020), fish genetic diversity in southern France (Paz-Vinas et al., 

2018), and fecal contamination in streams in Northeast Scotland (Neill et al., 2018) and 

central North Carolina (Holcomb, Messier, Serre, Rowny, & Stewart, 2018). Spatial 

stream network methods have been previously applied with citizen science data (Kielstra, 

Chau, & Richardson, 2019) and macroinvertebrates in streams (Frieden, Peterson, Angus 

Webb, & Negus, 2014; Pond, Krock, Cruz, & Ettema, 2017). Thus, SSN models have 

widespread use forming network-cognizant modeling structures and have a precedent of 

being applied with both volunteer science and bioindicator data. However, this type of 

modeling requires a high volume of data with widespread coverage of the stream 

network. Volunteer science is one potential means for collecting the robust datasets SSNs 

require.  

2.2.2 Volunteer Science 

Volunteer science involves the participation of volunteer community members in 

the collection of data in their local community. Other names for this community 
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engagement and data collection process have slightly different implications of intentions. 

“Citizen science” refers to the same process of community members contributing to a 

dataset, but implies that data collectors must be citizens, an unrelated qualification for 

participation (Cooper et al., 2021). The terms “community science,” and “community 

monitoring” may sound similar to this data collection process but are used to describe a 

slightly different scientific process, where a hypothesis or research motive originates 

directly from the community and the process of developing and answering research 

questions is driven primarily by the community. Alternately, “volunteer science” involves 

the participation of community members in data collection towards answering a question 

that they may not have formed themselves, but rather originated from the priority of an 

“outside” group like a not-for-profit group, conservation organization or research group.  

Benefits of collaborative work with volunteer scientists include: development of 

spatially and temporally robust datasets, contribution of local knowledge from residents, 

enhanced community relations by collaboratively addressing research questions that align 

with the goals of volunteer scientists, and additional co-benefits of community 

engagement and education (Buytaert et al., 2014; Jollymore, Haines, Satterfield, & 

Johnson, 2017; Krabbenhoft & Kashian, 2020; Njue et al., 2019; Taylor et al., 2021). In 

addition to these benefits, incorporating community collaboration and community data 

when studying environmental justice topics makes the science more accessible to 

community members with local knowledge. Their contribution and local expertise can 

shape the analysis – a key gap missing from environmental justice work performed 

without direct connection to the community being studied (Lee, 2020; Mah, 2017).  
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2.2.3 Volunteer Science & Bioindicators 

Volunteer science has a long-standing role in aquatic science research through 

bioindicator monitoring. Bioindicator monitoring burgeoned in the 1980s, and was 

consequently adopted in state and federal aquatic quality monitoring programs like 

EPA’s Rapid Bioassessment Protocol (Barbour, Gerritsen, Snyder, & Stribling, 1999; 

Barbour, Stribling, & Verdonschot, 2006). These monitoring programs typically involve 

the observation and collection of benthic macroinvertebrate species as indicators of 

aquatic quality. The frequency and diversity of observed species tell the story of the 

quality of streams through the known tolerances of various benthic macroinvertebrates to 

pollution in their habitat. Bioindicators have been employed in environmental impact 

studies in the Laurentian Great Lakes region (Burlakova et al., 2018) and globally (Bae, 

Kil, & Bae, 2005; Del Arco, Ferreira, & Graca, 2012; Graham & Taylor, 2018; Patang, 

Soegianto, & Hariyanto, 2018).  

The pervasiveness and reliability of bioindicator proxies makes them a fitting 

metric for volunteer science monitoring. Volunteer scientists can be effectively trained to 

collect these organisms and benthic macroinvertebrates act as biological indicators of 

stream health (Bae et al., 2005; M. Kenney, Sutton-Grier, Smith, & Gresens, 2010). 

Volunteer science-collected bioindicator observations have been shown to uphold 

reliability as a means of aquatic quality assessment (Del Arco et al., 2012; M. Kenney et 

al., 2010; Vitousek et al., 1997; Walsh et al., 2005; Walsh, Sharpe, Breen, & Sonneman, 

2001). The precedent of bioindicator monitoring among volunteer scientist groups has 

resulted in the development of indices of aquatic quality composed of weighted scores of 
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species frequency and diversity (Firehock, K. and West, 1995). These indices are 

accepted as reliable indicators of aquatic conditions (Engel & Voshell, 2002). 

Specific benefits of benthic macroinvertebrate indicator data are that they provide 

long-term insight into stream quality, are reliably procured by citizen scientists, and have 

a precedent for use in socio-economic stream quality modeling.  Presence or absence of 

sensitive bioindicator taxa reflect long-term stream conditions, rather than the “snapshot” 

conditions shown by grab samples and chemical analysis (Infante, David Allan, Linke, & 

Norris, 2009; Lenat, 1988). Further, citizen scientists can be effectively trained to collect 

these organisms and benthic macroinvertebrates act as biological indicators of stream 

health (Bae et al., 2005; M. Kenney et al., 2010). Finally, the use of bioindicators as a 

metric for stream quality degradation has a precedent in environmental justice water 

quality modeling (Daneshvar et al., 2018, 2016; Sanchez et al., 2015, 2014).   

Towards the goal of increasing understanding of the nuanced relationships 

between socio-economic and environmental parameters, a combination of spatial 

modeling methods and volunteer science bioindicator monitoring offers a feasible 

approach for the expansion of environmental justice model development in new cities. 

2.3 Green Stormwater Infrastructure Water Quality Performance   

BMPs have become ubiquitous stormwater infrastructure tools, yet performance 

reviews continuously show mixed or failing water quality treatment performance (Carey 

et al., 2013; Clary et al., 2020; Gold et al., 2019; Lintern et al., 2020; Park et al., 2015). 

BMPs are designed to alleviate flood risk and provide water quality treatment through 

biogeochemical retention mechanisms to reduce the impact of non-point source pollution. 

While BMP water quantity management is generally acceptable, water quality treatment 
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has not seen the same broad success. For example, improvement of nutrient 

concentrations in urban BMPs has variable or uncertain impact on the watershed scale 

(Barrett, 2008; Dietz, 2007; Gold et al., 2019; Jefferson et al., 2017; Walsh, Imberger, 

Burns, Fletcher, & Bos, 2022).  

The lack of performance reliability and subsequent lack of impact on urban water 

quality, are due to the many unknowns that persist in BMP function (Lintern et al., 2020). 

These unknowns include, but are not limited to: maintenance (Erickson, Taguchi, & 

Gulliver, 2018), distribution within the watershed (Hung, Harman, Hobbs, & Sivapalan, 

2020), design controls (Costello, Hartung, Stoll, & Jefferson, 2020; Davis, Shokouhian, 

Sharma, & Minami, 2006),  local landscape (Krimsky, Lusk, Abeels, & Seals, 2021; 

Simpson, Winston, & Brooker, 2022), lag times between implementation and impact 

(Meals, Dressing, & Davenport, 2010), and climate (Horvath et al., 2022; Mullins et al., 

2020). Each of these unknowns has been shown to have some impact on BMP water 

quality performance at the site level. Generalizing the broad impact of these factors 

remains difficult because understanding of these individual and interrelated climate and 

design factors on BMP performance must be studied (Lintern et al., 2020). Further, each 

controlling factor includes multiple biotic and abiotic processes (Hsieh, Davis, & 

Needelman, 2007; Li & Davis, 2016). For example, both BMP design and climate 

influence BMP N retention because climate impacts soil moisture content, which drives 

biological removal, but this biological removal is also aided by design of a shallow 

saturated zone and N can be removed by other design factors like high vegetation 

presence (Valenca et al., 2021).   
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Estimating water quality treatment performance is further complicated by the 

unique biogeochemical processes that occur in BMPs to retain the breadth of pollutants 

entering BMPs in stormwater. Generally, particulate contaminants are well removed 

through sedimentation and filtration, and dissolved contaminants are either leached or 

retained via adsorption, precipitation, ion exchange, or biological processes (LeFevre et 

al., 2015; Y. Liu et al., 2017). The type of stormwater contaminant also influences 

removal efficiencies, where metals are well retained, and nutrients are unreliably 

removed depending on the nutrient and its form (LeFevre et al., 2015). Varying removal 

pathways for particulate and dissolved N and P lead to a divergence in removal 

efficiency. For example, particulate P may be removed by sedimentation and filtration, 

but dissolved P requires sorption or plant uptake for removal (Hunt et al., 2012; LeFevre 

et al., 2015). Additionally, effluent P speciation may also depend on shifts between 

dissolved organic and dissolved inorganic forms (Liu & Davis, 2014; Yan et al., 2016). 

Similarly, particulate N may be removed through sedimentation and filtration, but 

dissolved N removal is driven by microbially-mediated nitrification and denitrification 

(Hsieh et al., 2007; LeFevre et al., 2015;  Li & Davis, 2014).  

Understanding the varying removal pathways for target pollutant species is key to 

designing infrastructure that uses these pathways to optimize removal. For example, 

dissolved phosphorus (P) is well removed by sorption, so amendment materials like 

sorptive metals added to soil media can be used in BMP engineered soil media to target 

dissolved P removal (Erickson, Gulliver, & Weiss, 2012; Erickson, Weiss, & Gulliver, 

2007; Marvin, Passeport, & Drake, 2020; Yan et al., 2016). On the other hand, dissolved 

N as nitrate is removed well by denitrification, so nitrate removal can be targeted with 
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BMPs designed with deep internal water storage and selection of engineering soil media 

with low infiltration rates (Hunt et al., 2012). Therefore, studying stormwater nutrient 

speciation can assist in understanding BMP function by revealing potential nutrient 

removal pathways.  

While BMPs can be designed to target pollutants with certain removal pathways, 

these removal pathways are susceptible to perturbations made by the local environment 

of the BMP, namely, the climate and weather of the BMP’s local environment. Climate 

impact on BMP water quality performance has been assessed by studying metrics of 

vastly different scales like seasonality of temperature and soil moisture, seasonal weather 

conditions like freezing and snowmelt, and storm-specific metrics like antecedent 

dryness, and storm size (Buffam, Mitchell, & Durtsche, 2016; Horvath et al., 2022; Hoss, 

Fischbach, & Molina-Perez, 2016; Roseen, Robert et al., 2009; Smith et al., 2020; Sohn, 

Kim, Li, & Brown, 2019; Valenca et al., 2021). Each of these metrics exist at different 

temporal scales, ranging from daily changes in local weather, to seasonal changes, to 

broad assessments of regional climate. Observations from these studies provide evidence 

that changes in storm characteristics or climate at each of these scales contributes to 

alterations in BMP performance. Beyond the inherent importance of understanding the 

nuances of these climate metrics in contributing to water quality treatment of BMPs, the 

context of climate change makes understanding these drivers even more important as the 

water quality performance of BMPs in the face of an altered climate (and associated 

storm conditions) is critical (Pyke et al., 2011; Xie, Chen, & Shen, 2015).  
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2.3.1 Regional Climate  

In natural soil systems, regional climate impacts how nutrients are processed and 

retained. In the context of this dissertation work, regional climate is defined as the ratio 

of decades-long averages of potential evapotranspiration to precipitation, or the Budyko 

aridity index (Yin, Calabrese, Daly, & Porporato, 2019). The influence of regional 

climate on biogeochemical processing has been assessed in natural soils by comparing 

nutrient availability in soils along precipitation gradients. These climate assessments 

showed that nutrient retention and processing of similar soils varies along precipitation 

gradients (Aranibar et al., 2004; Austin & Vitousek, 1998; Austin et al., 2004; Feyissa et 

al., 2021; Hou et al., 2018). Both N (Welter, Fisher, & Grimm, 2005; Yahdjian & Sala, 

2010) and P (Buckingham, Neff, Titiz-Maybach, & Reynolds, 2010; Hou et al., 2018; 

Ippolito et al., 2010) availability vary with regional climate-related variables like annual 

precipitation patterns, temperature, soil characteristics, and vegetation.  

In arid climates, both N and P tend to be more available in more arid soils (Austin 

& Vitousek, 1998; Austin et al., 2004; Emadi, Baghernejad, Bahmanyar, & Morovvat, 

2012; Ippolito et al., 2010; McCulley, Burke, & Lauenroth, 2009). The high availability 

and subsequent leaching of N in arid climates is attributed to the rapid conversion of 

organic N to inorganic N in arid conditions, a form which can be converted to N-oxide 

via denitrification, and lost from soil to the atmosphere (Aranibar et al., 2004). The 

leaching of N was also attributed to the accumulation of N in soils between storm events, 

and precipitation-induced leaching (Austin et al., 2004). The causes of P leaching from 

soils are more complicated, where P availability is controlled differently by temperature 

and precipitation (Hou et al., 2018). Generally, high temperatures are associated with less 
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P availability due to weathering loss and plant demand (Dixon, Chadwick, & Vitousek, 

2016; Hou et al., 2018). Precipitation affects P differently depending on species, where 

higher precipitation is associated with decreasing biologically available P and mineral P, 

but higher organic P (Hou et al., 2018).  P availability is also associated with the presence 

of different P-sorbing compounds in soil and biological processing, both of which can 

vary with changing climates (Buckingham et al., 2010; Emadi et al., 2012; Hou et al., 

2018; Ippolito et al., 2010). This climate-driven variability in nutrient cycling and 

retention in native soils provides evidence that a similar pattern may exist in BMPs that 

rely on soil ecosystems for nutrient treatment. 

The same processes that drive N and P availability in natural soils exist in BMPs. 

N has been shown to leach following dry periods in a stormwater wetland (Horvath et al., 

2022) and N transformations via nitrification and denitrification have been observed in 

infiltration basins (L. McPhillips & Walter, 2015; Morse, McPhillips, Shapleigh, & 

Walter, 2017). P availability in BMPs is influenced by soil media composition, where the 

presence of compost elevates available P concentrations (Hurley, Shrestha, & Cording, 

2017). Further, adsorption of P by P-binding materials is a promising control being 

explored for enhanced P retention, a process that parallels the P absorption occurring in 

natural soils (Erickson et al., 2012; Marvin et al., 2020). Thus, there is evidence of 

processes that vary with climate existing in BMPs, providing a logical foundation to 

hypothesize that climate influences the availability of nutrients in BMPs. 

Site-level observations provide evidence of the influence of climate conditions on 

the individual water quality performance of BMPs. Specifically, BMPs effectiveness has 

been attributed to short-term weather variability, storm intensity, antecedent dryness, and 
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seasonality (Buffam et al., 2016; Chaubey, Chiang, Gitau, & Mohamed, 2010; Horvath et 

al., 2022; Sohn et al., 2019). A Soil and Water Assessment Tool (SWAT) model 

forecasting 25 years of BMP implementation in a pasture-dominated watershed indicated 

that weather can cause BMP nutrient retention performance to vary significantly 

(Chaubey et al., 2010). Another study showed elevated mobile nitrate in soils at an urban 

constructed stormwater wetland following a long inter-storm period (Horvath et al., 

2022). Longer term climatic observations have also been made linking seasonal changes 

to BMP nutrient treatment performance, although reports of the direction of seasonality 

differ. For example, dry summer conditions stimulated depressed summertime nitrate 

levels in a roadside infiltration trench due to water table withdrawal and subsequent 

denitrification (Mullins et al., 2020), but in a green roof, elevated N, P and C levels were 

observed during summer and were attributed to intense summer precipitation events and 

temperatures (Buffam et al., 2016). Despite these site-level observations indicating 

climate impacts BMP water quality treatment, the broad impacts of climate on BMP 

performance through treatment mechanisms are not yet known.  

Evidence of the need for better understanding of the impact of climate on BMP 

nutrient management is the growing body of work indicating that climate is one key 

control on BMP hydrologic effectiveness. Multiple models have shown that regional 

climate impacts BMP hydrologic performance due to the regionality of rainfall and 

temperature regimes (Cook, VanBriesen, & Samaras, 2019; Jennings, 2016; Lammers et 

al., 2022; Voter & Loheide, 2021). These works have shown greater volume and peak 

flow reduction in dry climates (Lammers et al., 2022), rainfall index correlations with 

BMP performance vary depending on the rainfall patterns of a region (Cook et al., 2019), 
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and effectiveness ranging from 51% to 99% among comparable rain gardens due to 

climatic precipitation traits (Jennings, 2016). One model concluded that climate 

frameworks are necessary for understanding BMP functionality as the current basis of 

design, precipitation intensity as return periods, is too simple and BMP function is driven 

by nuanced timing of water and energy availability (Voter & Loheide, 2021). Each of 

these modeling studies focused on the hydrologic function of BMPs rather than the water 

quality function. The same conclusions regarding climate influence on BMP hydrologic 

functionality are not likely to translate directly to water quality because design decisions 

for water quantity and quality management may not align (Hunt et al., 2012; Lammers et 

al., 2022).  

There is evidence that climate impacts the water quality performance of BMPs, 

yet broad relationships between climate and BMP water quality performance are not yet 

defined. Evidence of climate impact on soil-based BMPs includes the known 

relationships between climate and soil nutrient availability, field level assessments of 

climate-related traits impact on BMPs, and modeling assessments of the variable 

hydrologic performance of BMPs in different climates. A review of non-point source 

nutrient management with stormwater BMPs identified climate as one “unknown” in 

BMP performance, and identified the widely ranging means by which climate has been 

assessed in BMPs, calling for a meta-analysis of climate’s influence on BMP water 

quality performance (Lintern et al., 2020). However, there remains a need for a broad 

analysis of the influence of climate, especially on the impact of climate on 

biogeochemical processes of dissolved N and dissolved P removal.  
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2.3.2 Storm Characteristics   

Like regional climate, BMP soil processing mechanisms are also impacted by the 

characteristics of a storm. Storm characteristics may include variables like precipitation 

intensity, duration, storm depth, antecedent dryness, and temperature (Sohn et al., 2019). 

The same soil conditions that are altered by climate, changing soil water content and 

subsurface flow, which in turn affect infiltration time and soil oxygen content, are also 

impacted by different storm characteristics. The key difference between climate and 

storm influence on soil conditions are the time scales that the soil alterations occur 

(Brady & Weil, 1996). Storm-derived changes in soil conditions stimulate changes in soil 

biogeochemistry that either induce or reduce water constituent removal and retention in 

natural and agricultural soils (Wu, Peng, Qiao, & Ma, 2018; Q. Zhu, Castellano, & Yang, 

2018).  For example, rainfall intensity is positively related to erosion and N and P loss in 

agricultural soils in the Mediterranean (Martínez-Mena et al., 2020) and in agricultural, 

grass, and woodland soils in China (Yao et al., 2020). Therefore, the presence and 

prevalence of mechanisms governing nutrient transport in soils, and the evidence of these 

mechanisms being driven by storm characteristics, together provide support that nutrient 

management in soil based BMPs is affected by storm characteristics.  

The pollutant removal and retention capacity of BMP soils in the face of dynamic 

storm characteristics has been explored in observational site-level studies, with 

inconclusive results. For example, a study of 34 storms in vegetated swales in Texas 

found that storm size did not affect the suspended solids removal rate (Barrett, Walsh, 

Joseph F Jr., & Charbeneau, 1998). However, in eight bioretention cells in Burlington, 

VT, high storm size and peak flow rates were strongly correlated with nutrient leaching 
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(Shrestha, Hurley, & Wemple, 2018). Yet another contrary result was observed in 

bioretention test columns, where the impact of rainfall intensity was mixed - high 

intensities sometimes induced denitrification and enhanced nitrate removal (H. Wang, 

Gan, Zhang, Yu, & Zhu, 2021). The impact of storm characteristics on dissolved N 

removal is especially complex, where some studies report that high rainfall intensities 

result in poor removal due to rapid transport though soil, and others indicate that 

dissolved N removal via denitrification is achieved under high intensity, low antecedent 

dryness conditions (He, Qin, Wang, Ding, & Yin, 2020; Lopez-Ponnada, Lynn, Ergas, & 

Mihelcic, 2020; H. Wang et al., 2021).  

Models of the relationship between storm characteristics and BMP water quality 

performance tend to show more consistent results than observational studies. In Beijing, 

China, a model showed that the time to peak within storms of the same intensity and 

duration had a negative relationship with suspended solids removal. This model also 

found that within a 10-year  period, increasing storm duration decreased the percent of 

suspended solids reduction in BMPs (Gong et al., 2021). A model calibrated from BMPs 

in California showed that water quality standards for total suspended solids and total 

copper were more likely to be exceeded at high storm sizes (Ackerman & Stein, 2008). 

Finally, the EPA’s SUSTAIN model was used to show that pollutant removal 

effectiveness of seven BMP types decreased, each at different rates, with increasing 

storm size in a Chesapeake Bay tributary watershed in Maryland (Hoss et al., 2016). 

Generally, models agree that increasing intensity, storm size, and time to peak each 

negatively affected water quality treatment performance of BMPs.  
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In addition to model evidence of storm controls on natural and BMP soils, the 

strong relationship between stormwater concentrations and storm characteristics provides 

further support of an underlying causal structure between storms and BMP performance. 

Stormwater contaminants like suspended solid particle size distribution, gross solids 

weight, and leaf litter mass all increase with increasing storm intensity (Winston & Hunt, 

2017). Runoff particle size distribution is also related to rainfall intensity, storm depth, 

and duration (Charters, Cochrane, & O’Sullivan, 2015). Additionally, rainfall amount and 

intensity were found to be two of the three variables most strongly related to event loads 

in a database of 343 rain events in Minneapolis and St. Paul, MN (Brezonik & 

Stadelmann, 2002). This influence of storm characteristics on stormwater concentrations 

(BMP influent) provides support that BMP water quality treatment performance is likely 

to vary with changing storm characteristics, since influent concentrations are related to 

effluent concentrations (Barrett et al., 1998; Barrett, 2008).  

Support that BMP performance would be influenced by storm-driven controls is 

extensive, there is still not a clear understanding of whether the influence of different 

storm characteristics on BMP performance can be summarized broadly across BMPs 

(Lintern et al., 2020). A meta-analysis summarized the impacts of storm characteristics 

on BMP flood mitigation performance, but noted that while 46 articles pertaining to 

climate relevant traits were identified by the review, only 17% of them contained 

information about pollutant reduction relating to storm characteristics (Sohn et al., 2019). 

Further, extensive storm and BMP water quality performance data in the United States 

are both accessible in public datasets, so data acquisition is not a barrier to studying the 

broad impact of storm characteristics on BMP water quality performance. Clearly 
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defining the relationship between storm characteristics and BMP water quality 

performance is increasingly critical as climate change impacts are realized. Namely, 

storms are expected to grow in intensity and the traditional intensity duration frequency 

(IDF) applied in stormwater engineering is expected to change drastically (J. Zhu, 2013).  

Further, nutrient loading from watersheds are expected to increase due to extreme 

precipitation conditions (Bai, Shen, Wang, Chen, & He, 2020; Ouyang, Parajuli, Feng, 

Leininger, & Wan, 2018). Thus, a comprehensive understanding of the relationship 

between storm characteristics and BMP water quality performance is an essential element 

supporting improved management of stormwater quality in a changing climate.  

2.4 Summary of Research Needs 

This dissertation explored three factors associated with urban surface water 

quality management: 1) urban stream monitoring and socio-economic distribution of 

stream quality, 2) the impact of regional climate on BMP performance and, 3) the impact 

of storm characteristics on BMP performance.  

2.4.1 Objective 1: Evaluate socio-economic distribution of stream quality  

Environmental justice models are a key component of understanding the spatial 

distribution of environmental burdens like urban stream degradation. Previous urban 

stream environmental modeling work has identified that spatial clustering, variable 

selection, and spatial scales are integral to creating valuable models. However, these 

models are difficult to transfer to watersheds beyond the one used to develop them, 

because spatially and temporally robust spatial data are required to develop adequate 

models. Using volunteer science data in combination with spatial modeling methods can 

address this lack of transferability without compromising model applicability.  
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2.4.2 Objectives 2 & 3: Investigate the influence of regional climate on BMP pollutant 
removal performance   
 

BMPs are important controls of water quality as nonpoint source treatment 

mechanisms, but their pollutant removal performance is notoriously unreliable. 

Removing nutrients is a key challenge in urban water quality, and there is evidence that 

nutrient removal mechanisms in BMPs are likely to be influenced by factors driven by 

climate. Climate influence on BMPs can be categorized into 1) the impact of regional 

climate variability, and 2) storm related traits. An increased understanding of the 

influence of these parameters on BMPs would help to inform design of BMPs to perform 

more robustly, with suitable controls for their climate.  
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3. EVALUATION OF THE SOCIO-ECONOMIC DISTRIBUTION OF STREAM 
QUALITY 

 
 
 
3.1 Rationale & Summary 

Urban stream quality is compromised by anthropogenic influence, and the burden 

of this dampened water quality on different community members in a watershed is 

unknown. Understanding the full impact of urban stream degradation and planning for 

restoration action must consider where, and upon whom, the impacts of urban stream 

syndrome are most severe. Previous analyses have found weak trends, with contradictory 

positive and negative relationships between stream quality characteristics and socio-

economic traits (Sanchez et al., 2014). Results from this objective improve on past 

analyses by using a spatial modeling tool designed for stream network analysis and 

partnered with a volunteer science group to together apply advanced modeling techniques 

with a robust stream quality dataset to address a common interest in the socio-economic 

distribution of stream quality degradation.  

This chapter investigated the distribution of urban steam degradation in the Rouge 

River watershed. The Rouge River watershed is in Southeast Michigan, covering parts of 

the city of Detroit and its Western suburbs. Since 2001, stream quality on the Rouge 

Rivers and its tributaries has been monitored by the non-profit group Friends of the 

Rouge (FOTR). The goal of this work was to answer the question asked by FOTR 

volunteers, “who is affected by degraded water quality in the Rouge River”? To address 

this question, water quality was estimated with bioindicators of stream quality (counts of 

benthic macroinvertebrates) from the FOTR volunteer science monitoring program. This 

stream quality data was modeled with a combination of environmental variables and 
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socio-economic variables to assess the explanatory power of socio-economic traits 

towards predicting stream quality and explore the relationships between stream quality 

and environmental and socio-economic traits. It was hypothesized that the distribution of 

stream degradation in the Rouge River watershed is not uniform across communities of 

different socio-economic status.  

The research addressing this objective is published in Journal of Hydrology (Horvath et 

al., 2022).  

3.2 Methods 

3.2.1 Study Area  

The study took place in the Rouge River watershed in part of metropolitan 

Detroit, MI, and its northern and western suburbs. The watershed area is approximately 

1200 km2 and includes 204 km of stream segments composed of the Rouge River and its 

tributaries (Figure 1). The watershed drains into the Detroit River, which connects Lake 

St. Clair and Lake Erie in the Laurentian Great Lakes. The Rouge River watershed is 

highly urbanized, with 85% developed, 4% agricultural, and 6% forested landcover 

(NLCD, 2019). These landcover types are spatially heterogeneous across the watershed, 

with a general trend of increasing urbanization towards the outlet in the southeast.  The 

northernmost and westernmost fringes of the watershed contain the most forested and 

agricultural landcover. The Rouge River twenty-year mean annual discharge is 147 

million m3 year-1 (4.67 m3 second-1) (US Geological Survey, 2016). Landcover and 

hydrologic conditions within the various tributaries in the Rouge River watershed are 

diverse. The relatively undeveloped and rural headwaters contain the least impacted 

streams. The Rouge River stream segments span all levels of anthropomorphic alteration. 
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For example, some Northern streams are from groundwater-fed pristine segments with 

trout habitats (“Our Watershed,” n.d.). However, closer to the outlet, multiple stream 

segments are encased in concrete channels. Johnson Creek on the western edge of the 

watershed (Middle Branch) is a protected trout stream, but creeks near the watershed 

outlet are submerged in pipes underground (Tonquish Creek) or channelized in concrete 

(lower River Rouge). The EPA identified the Rouge River as an Area of Concern under 

the Great Lakes Water Quality Agreement of 1987 and cited nine Beneficial Use 

Impairments in the watershed (Selzer, 2008).  

 

 

Figure 1: Map of the Rouge River watershed. The Rouge River watershed includes 
metropolitan Detroit and its Western suburbs. Volunteer science benthic 
macroinvertebrate data were collected sporadically at 122 observation sites along the 
Rouge River 
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3.2.2 Volunteer Science Stream Quality Index Data  

Benthic macroinvertebrates are bioindicators of stream health and quality, and 

they are relevant in environmental impact studies near the Rouge River (Burlakova et al., 

2018) and globally. Here, volunteer scientists collected benthic macroinvertebrate data as 

a bioindicator of water quality. This bioindicator data was applied as a composite score, 

“bio integrity”, and was used in place of a chemical descriptor of water quality because 

bioindicator monitoring was a longstanding water quality monitoring method practiced 

by the FOTR community partner. Justification of the application of bioindicators as a 

water quality proxy, and their prevalence in volunteer science hydrologic monitoring is 

provided in the State of the Science section.  

Macroinvertebrate species and frequencies were collected by FOTR volunteers. 

FOTR collected benthic macroinvertebrate data with volunteer scientists participating in 

biannual (Spring and Fall) “bug hunts”. FOTR started collecting benthic 

macroinvertebrate data in 2001, and data collection is ongoing. Prior to collection and 

identification events, volunteers were trained as “bug hunt” team leaders in workshops 

led by both FOTR and a local biologist. Samples were collected from a rotating subset of 

122 sampling locations (Figure 1). Trained volunteer scientist leaders surveyed instream 

habitats for benthic macroinvertebrates (riffle, cobble, pool, overhanging vegetation, 

undercut banks) with “D”-frame nets (Brua et al., 2011). Macroinvertebrates were 

preliminarily identified in the field, to order level.  Four to five specimens of all but 

clams, mussels, snails, and crayfish were preserved in ethanol and later identified in the 

lab by FOTR staff and the local biologist to check field identifications and identify to 

family level. This method varies slightly from other benthic macroinvertebrate 
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observation studies wherein protocol dictate that all specimens are saved for post-hoc lab 

identification (Barbour et al., 1999).  

The sensitivity of benthic macroinvertebrates and their frequencies of observation 

were converted to a Stream Quality Index (SQI) using the MiCorps’ Macroinvertebrate 

Datasheet (Appendix Figure A1). SQI categorizes macroinvertebrates (mainly by order) 

into three levels: “sensitive”, “somewhat sensitive” and “tolerant,” based on pollution 

sensitivity and rates them as rare (1-10 individuals) or common (11 or more). Common 

“sensitive” organisms like mayflies are scored higher than common “tolerant” organisms.  

A higher SQI score reflects higher numbers of sensitive species like stonefly nymphs 

(Plecoptera) and hellgrammites (Megaloptera), indicating higher water quality. This 

study considers biannual SQI observations from spring 2001 through spring 2021 

(n=1,655 site visits).  

3.2.2.1 SQI Quality Assurance 

All FOTR volunteer science SQI collection was completed using a quality 

assurance project plan reviewed by the Michigan Department of Environment, Great 

Lakes, and Energy (Michigan EGLE), the Michigan Department of Natural Resources, 

the Michigan Clean Water Corps (MiCorps), the Wayne County Department of Public 

Services, and FOTR (Petrella, 2020). FOTR checked SQI scores year to year and flagged 

data points that differed from past observations. Flagged points were reviewed for human 

error. Yearly observations of SQI were also checked against local knowledge and 

reported biannually. A validation study found that SQI calculated in the Rouge River and 

nearby Clinton River by volunteer scientists produced comparable, but more conservative 

estimates of stream quality than quantitative data collected by professional scientists 
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(Krabbenhoft & Kashian, 2020).  The SQI is a water quality index used by monitoring 

groups in Michigan developed by the Michigan Department of Environmental Quality 

(now, Michigan EGLE) through their grant-funded program to engage volunteer science 

groups in benthic macroinvertebrate monitoring around the state. MiCorps is a statewide 

network that assumed oversight of the state-backed volunteer science monitoring 

program in 2003 (Michigan Clean Water Corps: About, n.d.). The establishment of the 

SQI metric in Michigan follows the popularization of bioindicators for water quality 

monitoring at the state and federal level in the late 1980s due in part to guiding programs 

like EPA’s Rapid Bioassessment Protocol (Barbour et al., 1999, 2006).  

3.2.3 Spatial Stream Network Modeling   

Data paucity was overcome by building a Spatial Stream Network (SSN) model 

for SQI. This modeling step was performed to expand the spatial coverage of SQI data. 

The model was developed with two frameworks each shaped to test the overall 

hypothesis. The modeling frameworks were: 1) socio-economically extrinsic, and 2) 

socio-economically intrinsic, each of which was proceeded by a different statistical 

analysis for appropriate hypothesis testing under the framework. Methods regarding each 

modeling framework are provided in section 3.2.5 Hypothesis Testing. Both modeling 

frameworks use the same environmental variables and socio-economic variable and apply 

the same process of spatial model development and selection. Environmental variables, 

including landcover and stream characteristics, are applied as explanatory variables (for 

both intrinsic and extrinsic modeling frameworks). Poverty data was used for statistical 

comparison in the extrinsic modeling framework and as an additional explanatory 
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variable in the intrinsic modeling framework. Spatial modeling used geospatial modeling 

tools to model potential spatial relationships between points in a stream network system.  

3.2.3.1 Environmental Variables 

Landcover is a strong driver of in-stream conditions, where anthropogenic land 

uses, whether urban or agricultural, degrade stream quality (Brabec et al., 2002; Carlisle 

et al., 2009a; Chen et al., 2016; Epps & Hathaway, 2021; Tong & Chen, 2002).  

Degraded stream quality affects population size and diversity of benthic 

macroinvertebrate communities, which are sensitive to degraded stream conditions 

(Carlisle et al., 2009b; Walsh et al., 2001; Wang et al., 2018). Thus, sediment regulation 

(lack of degradation from sedimentation) and percent imperviousness watershed area 

were used as landcover characteristics to predict invertebrate population derived SQI. 

These parameters were obtained from the U.S. EPA StreamCat database and were 

available for each individual stream segment (Hill et al., 2016). Three different poverty 

metrics were weakly positively correlated with another water quality index in the 

neighboring watershed of the Saginaw Bay basin (Sanchez et al., 2014). Poverty was 

obtained from the U.S. Census Bureau’s 2016 American Community Survey data. 

Imperviousness is a measured value indicating the mean percent of landcover that 

is classified as an anthropogenic surface such as pavement, roads, and buildings (Figure 

2b). The imperviousness variable is an average of the mean percent of impervious 

landcover within a stream segment’s immediate and upstream drainage area as reported 

for all available yearly landcover datasets in the National Land Cover Database (NLCD) 

during the timeframe of water quality observations (2001, 2004, 2006,  2008, 2011, 2013, 

2016, and 2019) (Dewitz & U.S. Geological Survey, 2021).    
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Sediment regulation is a modeled parameter on a scale of 0 to 1 that was 

developed to summarize sedimentation using instream and out-of-stream parameters in 

the StreamCat database (Hill et al., 2016; Thornbrugh et al., 2018) (Figure 2a). 

Sedimentation describes inorganic particle retention and size alteration due to transport to 

and within streams (Flotemersch et al., 2016; Thornbrugh et al., 2018). The sediment 

regulation parameter was calculated considering observed values of stressors relative to 

maximum stress level for five major stressors: 1) presence and volume of reservoirs; 2) 

stream channelization and levee construction; 3) alteration and changes to riparian 

vegetation; 4) frequency of mines, frequency of forest cover loss, and density of roads; 

and 5) agriculture presence weighted by soil erodibility (Flotemersch et al., 2016; Hill et 

al., 2016; Thornbrugh et al., 2018). This variable was developed for all streams and rivers 

in the conterminous United States, so it is expected that variability of this parameter 

within a single region would not express a high range of variability on the 0-1 scale 

developed for the full dataset, however, this does not mean that variability does not exist 

within a smaller region like a watershed (Thornbrugh et al., 2018).  
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Figure 2: Relevant characteristics in the Rouge River watershed. Sedimentation (a) is a 
modeled parameter from 0-1 where 0 indicates low impact of sediment within a sub 
watershed, imperviousness (b) as the average percent of landcover identified as 
impervious, and percent of the population living under the poverty line (c) plotted in 
original data format as percentages within census tracts. 

 
 
3.2.3.2 Socio-Economic Variable: Poverty 

Poverty associated with each stream segment reflects census-tract level 

percentages of households living below the poverty line, an annual household income of 

$31,661 (U.S. Census Bureau (US Census), 2020). Poverty information was obtained as 

census tract-based and converted to the average poverty in the topographical boundary 

(catchment) of each stream segment. These catchment-level values were then averaged 

with upstream catchments to express the percentage of households below the poverty line 

in the entire upstream drainage area of each stream segment. Poverty as census tract-

based measurements ranged from 0% to 91%, and when converted to upstream 

watershed-based, ranged from 0.2% to 24.5% of households in the catchment and 

upstream watershed residing below the poverty line. 
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3.2.3.3 Spatial Modeling Considerations 

In addition to multiple explanatory variables, the SSN also considers spatial 

relationships between sites in models. Spatial relationships are categorized into either 

flow-connected or flow-unconnected relationships, based on whether there is a direct 

flow path connecting two sites. These relationships consider three autocovariance 

functions: tail-up, tail-down, and Euclidean distance. Tail-up autocovariance exists only 

between flow-connected sites, and they represent a weighted moving average function in 

the upstream direction. Tail-down autocovariance may exist under either flow-connected 

or flow-unconnected conditions, and they represent a weighted moving average function 

in the downstream direction. Euclidean distance may be considered in flow-unconnected 

relationships when autocovariance is not restricted to in-channel distances between sites 

(Garreta et al., 2010; Isaak et al., 2014; Ver Hoef & Erin, 2010). The weighting model for 

these tail-up and tail-down autocovariances can be calculated with linear, exponential, 

spherical, Mariah, and Epanech weights (Garreta et al., 2010; Ver Hoef & Erin, 2010). 

Euclidean autocovariance weighting included standard spatial covariance models: 

spherical, exponential, Gaussian, and Cauchy. The suitability of these various spatial 

autocovariances differs depending on the nature of the stream metric. For example, 

chemical data would be most likely to follow flow-connected tail-down autocovariance 

because chemical transport in a stream network is driven by transport in the channel, and 

in the downstream direction. However, macroinvertebrate-derived data may be 

represented with both flow-connected and flow-unconnected relationships since benthic 

macroinvertebrates have preferential travel along stream channels, but they can travel in 
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both in upstream and downstream directions and can also move outside of the 

confinement of stream channels (Isaak et al., 2014).  

The SSN was implemented by using the Spatial Tools for the Analysis of River 

Systems (STARS) and SSN tools in ArcMap 10.8.1, R version 3.6.1, and RStudio version 

1.2.5019, respectively (Peterson & Ver Hoef, 2014; Ver Hoef et al., 2014). SSN models 

were made with sediment regulation, imperviousness, and poverty as independent 

variables. The dependent variable was log mean SQI. Mean SQI was calculated as the 

mean SQI observation at a site through time. Means were taken to simplify temporally 

diverse data, because only 9% of sites observed a linear change (p < 0.05) in SQI over 

time, and this change was mixed, with 7 sites increasing and 4 sites decreasing SQI.  

Mean SQIs were logged to ensure normal distribution. All explanatory variables were 

normalized using min-max normalization to redistribute values from 0-1 based on the 

ranges of these variables measured at observation sites. This was done to standardize 

model covariates to the same scale.  SSN models were constructed with multiple 

combinations of tail up, tail down, and Euclidean distance autocovariances to encompass 

the three possible spatial relationships between observation sites (Isaak et al., 2014; Ver 

Hoef et al., 2014). A final SSN model was then selected by comparing models with the 

evaluators: Akaike information criterion (AIC), coefficient of determination (R2), and 

root mean square error (RMSE) calculated from leave one out cross validation (LOOCV). 

The best performing SSN of SQI as a function of the environmental variables and socio-

economic variables was further evaluated by comparing it to two simpler models. The 

first simple model omitted the spatial component of the SSN and the second simple 

model omitted the socio-economic variable. Additionally, SQI could decrease 
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downstream along flowlines because of physical stream attributes associated with high 

flows and greater depth. To account for this, the best performing model was 

reparametrized with a random effect for stream order. Again, models with and without 

the stream order random effect were compared via AIC, R2, and RMSE.   

3.2.4 Hypothesis Testing  

The hypothesis, that stream quality is not distributed uniformly across areas of 

variable poverty rates, was tested under both socio-economically extrinsic and intrinsic 

modeling frameworks. The principal difference between the modeling frameworks (and 

their associated statistical analyses) is the inclusion or exclusion of a socio-economic 

variable, percent of households below the poverty line (poverty), as an explanatory 

variable in the SSN model. The socio-economically extrinsic model does not use poverty 

as a model variable, but instead predicts stream quality then compares stream quality 

predictions in areas of high poverty and low poverty to evaluate the relationship between 

stream quality and poverty. This method uses a principal component analysis to ensure 

that only streams with similar landcover characteristics are compared. The socio-

economically intrinsic method uses poverty as an explanatory variable in the model, then 

examines the statical value of the poverty variable in predicting stream quality. The 

relationship between poverty and stream quality is then explored by predicting water 

quality under different watershed conditions, where the same poverty conditions true to 

the Rouge River watershed are used to exemplify the degree of variability in stream 

quality that is associated solely with variable poverty rates.  
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3.2.4.1 Socio-Economically Extrinsic Hypothesis Testing  

To test the hypothesis in a socio-economically extrinsic framework, modeled 

stream quality was compared between poverty segments in relatively rich and relatively 

poor areas, for streams classified as having similar land use attributes (Figure 3).  

First, subsets of stream segments were made based on the classification of a 

stream segment into either a rich or poor poverty group. Poverty data (percentage of 

households below the poverty line in the land draining to a steam segment) was defined 

as rich or poor based on the distribution of poverty rates observed in the Rouge River 

watershed. Those stream segments whose drainage areas were classified as falling within 

the 90th percentile of the range of poverty were considered high poverty, or poor stream 

segments. Similarly, stream segments with drainage areas classified within the 10 th 

percentile of the range of poverty were considered low poverty, or rich stream segments.  

After quantifying the spatial distribution and range of percentages of household 

below the poverty line, stream segments with similar landcover attributes were identified. 

This step was included to isolate the influence of poverty. In other words, this step was 

added to reduce the influence of landcover on the comparison of stream segments so that, 

for example, forested rural segments were not inadvertently compared to developed urban 

stream segments.  Forest cover, urban open space, low intensity urbanization, medium 

intensity urbanization, and high intensity urbanization as defined by NLCD were used to 

characterize each river segment. NLCD landcover categories are highly correlated, thus 

landcover for each stream segment catchment was reprojected as orthogonal principal 

components via PCA. The use of a PCA allowed for multivariate similarity and does not 

require assumptions of landcover data distribution. Thus, the PCA was able to identify 
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data points useful towards assessing the hypothesis, by identifying stream segments with 

like land use between the high and low poverty groups. Similar stream segments were 

identified with a plot of the first two PCs of stream segment catchment landcover and 

used for hypothesis testing. The extent of high poverty points and low poverty points 

were used to form polygons bounding poverty groups. The low poverty and high poverty 

sites located within the two intersecting polygons were defined as having sufficiently 

similar landcover for comparison. Finally, ANOVA was used to estimate the difference 

in SQI between those intersecting high poverty segments and low poverty sites.  
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Figure 3: Flow diagram of socio-economically extrinsic methods, highlighting data 
inputs and analysis methods.   

 
 
3.2.4.2 Socio-economically Intrinsic Method 

To test the hypothesis in a socio-economically intrinsic framework, stream quality 

was modeled with three explanatory variables, two environmental variables and one 

socio-economic variable. The hypothesis was tested by evaluating the statistical power of 

the socio-economic variable within the model. The extent of the relationship between the 

socio-economic variable and water quality was then demonstrated by predicting water 
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quality under different plausible environmental conditions in the watershed, with the 

socio-economic variable held constant.  

First, a model was selected and evaluated. Models were built with three 

explanatory variables, applying different flow path and spatial relationship combinations. 

The pre-determined model selection (detailed in section 3.2.4.3) was used to identify the 

best fitting spatial socio-economically intrinsic model. The p-value of the socio-economic 

variable was used to determine the value of the relationship between the socio-economic 

variable and stream quality, where a p-value <0.1 indicates a moderate relationship and a 

p-value <0.05 indicates a strong relationship.   

After testing the hypothesis, the extent of the relationship was evaluated by 

applying the model to make predictions under varying environmental conditions in the 

watershed (subsequently, hypothetical watershed conditions). SQI was predicted every 

800 m of all stream segments in the Rouge River watershed. SQI predictions were made 

under four watershed conditions: true (observed) conditions, and three levels of 

hypothetical watershed conditions – good, standard, and poor conditions (Figure 4). Each 

hypothetical watershed condition used manipulated values of imperviousness and 

sediment regulation and observed values of poverty. The values of imperviousness and 

sediment regulation conditions assigned to the “good”, “standard” and “poor” labels were 

selected to represent a range of values that are realistic for the watershed. Good 

conditions were defined as imperviousness at 25% of the range of imperviousness 

observations (18% imperviousness) and 75% of the range of sediment regulation (0.96). 

Standard conditions were defined as imperviousness at 50% of the range of 

imperviousness observations (35% imperviousness) and 50% of the range of sediment 
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regulation (0.94). Poor conditions were defined as imperviousness at 75% of the range of 

imperviousness (53% imperviousness) and 25% of the range of sediment regulation 

(0.92). Imperviousness and sediment regulation intervals were opposite one another 

because increasing imperviousness is associated with poor environmental conditions, 

while increasing sediment regulation indicates higher integrity, or lack of impact from 

sedimentation, and is thus associated with better environmental conditions. These 

intervals were made to demonstrate the impact of poverty on SQI under different 

environmental conditions that were reasonable in the context of the ranges of 

imperviousness and sediment regulation observed in the watershed. Linear models of 

predicted SQI and poverty were generated based on the four conditions above. The slopes 

of these linear models were then compared.  
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Figure 4: Flow diagram of socio-economically intrinsic methods, highlighting data 
inputs and analysis methods.  
 
 

3.3 Results  

There was a total of 1,655 SQI observations from 122 sites over 20 years of 

biannual observation. Average SQI measurements per site ranged from 14 to 48 (Figure 

5a). Stream quality was generally worse on the main branch and near the watershed 

outlet. However, poor quality was also observed in some headwater streams. The highest 

quality was observed in headwater streams on the western edge of the watershed.  
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Figure 5: Observed and modeled SQI data. SQI measures were collected for sites in the 
Rouge River watershed by the volunteer science organization Friends of the Rouge. 
Observations of SQI (a) compared to modeled SQI along every 800 m of stream (b). 

 
 
3.3.1 Socio-Economically Extrinsic Model Performance  

The selected extrinsic SSN model used sedimentation regulation and 

imperviousness in a multivariate spatial regression model with tail up and Euclidean 

correlations (AIC = -86.68, R2 = 0.64, RMSE = 3.14). This model outperformed a model 

with stream order as a random effect and imperviousness and sedimentation as fixed 

effects (AIC = -84.68, R2 = 0.64, RMSE = 3.14), and a model with stream order, 

sedimentation, and imperviousness as fixed effects (AIC = -80.30, R2 = 0.63, RMSE = 

3.17).  The SSN model was used to predict SQI at 868 prediction points in the Rouge 

River watershed (roughly one prediction point for every 800 m of stream segment). 

Predicted SQI ranged from 15.76 to 44.83 (Figure 5b), a narrower range than observed 

SQI. The average prediction standard error was 1.18. The model yielded a negative 

coefficient with imperviousness (-0.66 ± 0.23), indicating lower SQI with higher 
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imperviousness. The model had a positive coefficient with sedimentation regulation (8.53 

± 3.66), indicating higher SQI where sedimentation is less prevalent. Sedimentation 

regulation and imperviousness were weakly correlated (Pearson’s correlation coefficient 

= 0.12).  

 
 

 
Figure 6: Principal components one and two from a PCA of land cover types in the 
Rouge River watershed. The five land cover classifications used for the PCA were 
reprojected as composite variables via PCA for each stream segment in the Rouge River 
watershed (grey circles). The segments were then classified as rich or poor based on their 
distribution, so that stream segments in the 10th percentile of houses below the poverty 
rate were labeled “low poverty” (or rich, labeled with blue squares). Segments with 
poverty percentages in the 90th percentile of the distribution of percentage of households 
below the poverty rate among all stream segments in the watershed were labeled as “high 
poverty” (or poor, labeled with red triangles). The extent of the high and low poverty 
segments was then outlined for both groups with a polygon. The intersection of the 
polygons defines stream segments with like landcover, thus outlines the high and low 
poverty segments suitable for comparison. 
 
 

The PCA of the Rouge River watershed landcover reprojected the five most 

dominant NLCD categories: forest, urban open space, low intensity urbanization, 

medium intensity urbanization and high intensity urbanization. These categories were 
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condensed because the less common landcover types results in a PCA with low 

cumulative variance coverage from the first two principal components (PCs), thus over 

amplifying the influence of landcover with little spatial coverage.  The PCA with the five 

primary landcover types had a cumulative 70% of the variance in the data represented by 

the first two PCs (36% by the first and 34% by the second). Each PC represented a 

different compression (i.e., dimension reduction) of landcover descriptor composite 

variables. There were 27 stream segments belonging in the poverty groups of interest 

(high or low poverty) with similar landcover types. There were 16 high poverty stream 

segments and 11 low poverty streams stream segments (Figure 6). The high poverty 

streams had a median SQI value of 26.0 (Q25 = 24.3, Q75 = 31.4), classified as fair 

stream conditions. The low poverty streams had a median SQI value of 32.5 (Q25 = 29.8, 

Q75 = 34.4), on the threshold of fair and good stream condition (Appendix Figure 1). The 

ANOVA between these high and low poverty segments of like landcover estimated that 

low poverty segments have an SQI 4.1 ± 3.6 index points greater than high poverty 

segments (Figure 7). Additionally, the p-value indicates that this difference in SQI has a 

low likelihood of being produced by chance (3%).  
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Figure 7: Comparison of SQI between high and low poverty stream segments of like 
landcover. Different numbers of stars indicate statistical difference between box plots. 

 
 
3.3.2 Socio-economically Intrinsic Model Performance  

The best performing SSN model used sediment regulation, imperviousness, and 

poverty in a multivariate spatial regression model with a linear-sill tail-down 

autocovariance and no random effect on stream order (Supplementary Table 1). This 

model captures 36% of the variability in SQI (R2 = 0.36). The model AIC was the lowest 

of all attempted variants of the model (Table 1). The RMSE indicates that prediction 

error is 3.14 SQI points, or about 10% of the range of observed SQI values. The 

explanatory variables are correlated with one another, however, variance inflation factors 

(VIF, (Helsel & Hirsch, 1992) for sedimentation, imperviousness, and poverty were low 

(1.23, 1.23, and 1.16, respectively). These are close to the ideal value (VIF ~1, Helsel & 

Hirsch, 1992) and below the cutoff value applicable for SSN models (VIF <5, Isaak et al., 

2017), thus suitable for hypothesis testing. Imperviousness and poverty had negative 
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relationships with SQI with model coefficients -0.28 (p = 0.01) and -0.23 (p = 0.05), 

respectively. Sediment regulation had a positive relationship, model coefficient 0.30 (p = 

0.07), which can be interpreted as a mild positive relationship between higher stream 

quality and high stream integrity from sedimentation. The linear sill tail-down 

autocovariance indicates that both flow-connected and flow unconnected relationships 

exist in the SQI data, and that these relationships are linear and point downstream. This 

means that between two SQI observations the downstream point is influenced by the 

upstream point and that relationship decreases linearly with increasing distance between 

the points.  

 
 
Table 1: Model selection parameters for the best performing model and parallel models 
excluding spatial modeling methods, socio-economic data, and including stream order.  

Model Name 
Spatial 

Relationship 
Variables 

Random 
Effect 

AIC R2 RMSE 

Simple - 

Imperviousness 
Sediment 

Regulation 
Poverty 

- -48.01 0.40 4.11 

Spatial 
Environmental 

Only 

Linear Sill 
Tail-down 

Imperviousness 
Sediment 

Regulation 
- -83.33 0.31 3.16 

Spatial 
Random 
Effects 

Linear Sill 
Tail-down 

Imperviousness 
Sediment 

Regulation 
Poverty 

Stream 
Order 

-81.77 0.36 3.16 

Spatial 
Linear Sill 
Tail-down 

Imperviousness 
Sediment 

Regulation 
Poverty 

- -83.77 0.36 3.14 

 
 

This spatial socio-economic environmental model outperformed the simple 

model, spatial model fit with only environmental predictors, and spatial model with a 

random effect for stream order. The simple model had a higher R2 value (Table 1), but 
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lower AIC and RMSE. The spatial environmental-only model had a slightly higher AIC, 

lower R2, and higher RMSE compared to the best model (Table 1). The random effects 

spatial model had the same R2 as the spatial model without random effects, but it had 

worse AIC and RMSE metrics. Comparing the RMSE values across models highlights 

the value of modeling SQI with SSN models, as the RMSE for the simple model was 

about one SQI index point higher than the RMSE for either of the spatial models, 

indicating worse ability of the simple model to capture the true variability in SQI data 

(Figure 8). This difference in model performance indicated by the RMSE value justifies 

that the spatial model outperforms the simple model, despite the higher R2 of the simple 

model, as the simple model makes predictions with less accuracy than the spatial model. 

Poverty adds predictive power to the model, as demonstrated by the improvement in all 

model evaluators when poverty is included in the spatial model compared to the spatial 

environmental only model.  
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Figure 8: Leave one out cross validation (LOOCV) results compared for a non-spatial 
model (a) containing the same predictor variables as a spatial model with socio-economic 
and environmental variables (b). Root mean square error (RMSE) and the standard 
deviation of this calculation is printed on each plot, showing higher RMSE and standard 
deviation for the simple non-spatial model than for the spatial model.  
 
  

Adding stream order as a random effect did not improve model performance. The 

stream order random effect model had a higher AIC and RMSE, and a comparable R2 as 

the best performing model. This showed that the relationship between SQI and 

explanatory variables did not vary based on the stream order. In other words, small 

streams should not be modeled differently than larger branches. This provides support 

that stream order and associated downstream trends do not explain water quality in the 

watershed better than sediment regulation, imperviousness, and poverty without stream 

positioning information. 

3.3.3 Predictions Under Potential Scenarios 

The spatial environmentally intrinsic SSN model was used to predict SQI every 

800 m of stream segment in the Rouge River watershed under both true and hypothetical 

watershed conditions. Under true (observed) sediment regulation and imperviousness 
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conditions, SQI predictions ranged from 15.76 (poor) to 44.83 (good). This range is 

slightly more conservative than the observed SQIs. The average prediction standard error 

was 1.17. The slope between poverty and predicted SQI was negative and indicated that a 

stream segment with 10% higher poverty in its upstream watershed drainage area would 

have a 3.62 lower SQI. This 3.62 change in SQI is equivalent to a 10% change in the 

observed range of water quality, which translates to about a 1% decrease in water quality 

for every 1% increase in poverty.   

Under observed and hypothetical (poor, standard, and good) watershed 

conditions, poverty and predicted SQI also had negative relationships (Figure 9). The 

magnitude of this negative relationship increased with increasingly positive watershed 

conditions. Under poor watershed conditions (53% imperviousness, 0.92 sediment 

regulation) a 10% increase in poverty would result in a decrease in SQI by 2.87. Under 

standard watershed conditions (35% imperviousness, 0.94 sediment regulation) a 10% 

increase in poverty would decrease SQI by 3.61. Finally, under good watershed 

conditions (18% imperviousness, sediment regulation = 0.96) a 10% increase in poverty 

would decrease SQI by 4.53.  

The slope between poverty and SQI is the same for the manipulated standard 

conditions and true conditions because the standard conditions were selected as the 

median values of true conditions. The poor, standard, and good condition scenarios have 

high precision amongst predictions compared to the true conditions. This difference in 

precision is due to the homogenous assignment of watershed conditions in the 

manipulated scenarios, compared to the naturally varying environmental observations for 

the true condition predictions.  
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Figure 9: Relationships between predicted SQI and poverty under hypothetical poor (a), 
standard (b) and good (c) watershed conditions, compared to the relationship under true 
watershed conditions (d). The slope of the linear relationship between predicted SQI and 
poverty is plotted under each scenario.  

 
 

3.4 Discussion   

3.4.1 Socio-Economically Intrinsic vs. Extrinsic Modeling Approach 

The socio-economically extrinsic and intrinsic models both arrived at similar 

conclusions, demonstrating that there is a general relationship of higher poverty 

catchments containing less healthy stream quality. However, the socio-economically 

intrinsic model arrives at this conclusion with simple hypothesis testing and less 

propagation of error, whereas the extrinsic model requires complex hypothesis testing, 

potentially ambiguous categorization of poverty, additional variable introduction, and 

generally more complex methodology.  

The primary difference between the model approaches is the inclusion or 

exclusion of poverty from the model. The benefit of the inclusion of poverty in the model 

is that the p value for the coefficient of poverty can be used to directly gauge the 

relationship between poverty and stream quality (within the context of other 

environmental variables known to be important drivers of urban stream quality). 
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However, without the inclusion of poverty in the model, the relationship between poverty 

and stream quality must be assessed using the model predictions with other statistical 

analyses (PCA and t-test). Thus, despite the similar outcomes, the socio-economically 

extrinsic model introduces more complexity and potential for error propagation from one 

statistical analysis to the next, potentially convoluting the interpretation of results.  

The statistical methods introduced to test the hypothesis in the socio-economically 

extrinsic model introduces ambiguity and assumptions to the method. First, the process of 

comparing model predictions in rich and poor areas requires a method to define poverty 

groups. Here, the 90th and 10th percentile interval of the poverty range were used to define 

high poverty and low poverty groups, respectively. This assumption helps define distinct 

groups but reduces direct interpretability of the results. For example, the context to 

understand whether this statistical distinction is meaningful from an economic standpoint 

is not explored in this work. A second fault introduced by the extrinsic modeling method 

is the introduction of landcover types for use in the PCA. This method was added to 

identify similar stream segments, so by using landcover types in the PCA it is assumed 

that landcover is what defines similarity and differences amongst stream segments in the 

Rouge River watershed. This assumption may not be true, especially in a watershed with 

diverse stream orders (1-6), and diverse channel conditions (from natural streams to 

channelized river). Thus, while the PCA and t-test methods of hypothesis testing are valid 

analyses, their associated ambiguity and assumptions are best avoided.  

The socio-economically intrinsic model avoids complication and assumption from 

complex hypothesis testing, does not propagate error between statistical methods, and is 
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overall simpler to conduct and interpret. The duration of the discussion focuses on the 

interpretation and impact of the socio-economically intrinsic model.  

3.4.2 Degraded Water Quality in Higher Poverty Areas 

The identified negative relationship between water quality and poverty provides 

information about the spatial distribution of water quality degradation. The negative 

(socio-economically intrinsic) model coefficient between stream quality and poverty 

provides statistical evidence that stream quality is associated with socioeconomic factors, 

in addition to known relationships between stream quality and environmental factors like 

sediment regulation and imperviousness.  

The observed decrease of stream quality in higher poverty catchments provides 

support that urban stream degradation is inequitably distributed. It is important to 

emphasize that the negative relationship does not prove a causal relationship; it provides 

statistical support that environmental degradation of water quality disproportionately 

affects impoverished communities. Explicitly, it is incorrect to interpret that high poverty 

causes poor water quality. While a cause-effect relationship may exist, this analysis does 

not articulate an underlying causal structure. Previous research provides support for 

potential casual structures. For example, inequity in access and proximity to parks has 

been shown for poor communities (Rigolon, Browning, & Jennings, 2018), and park land 

is one tool used to impede stormwater runoff from polluting streams (Cettner, Ashley, 

Viklander, & Nilsson, 2013). Further, communities of color and of low income are 

disproportionally located near highest-intensity chemical polluters (Collins, Munoz, & 

Jaja, 2016), and proximity to pollution generation may also explain stream conditions in 

high poverty areas of the Rouge River watershed as well.  
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Local knowledge and spatial setting contextualize the relationship between 

poverty and water quality, highlighting the co-occurrence of high poverty and high 

density of combined sewer overflows (CSOs) and low stream density in the same region. 

The highest poverty area in the watershed is in the Southeast region of the watershed 

(Figure 10). Observations of SQI in this area included 23 sites, with an average SQI of 

24, a “fair” rating. While this SQI score is relatively low, it fails to express other stream 

quality issues in this area. The segment of the Rouge River bordering the highest density 

poverty area contains 21 uncontrolled CSO outfalls, making this area subject to flashy 

water levels and at risk to acute degradation events post rainfall as is true in cities with 

similar drainage systems, like Philadelphia, PA, and Chicago, IL (Miskewitz & Uchrin, 

2013; Quijano, Zhu, Morales, Landry, & Garcia, 2017). Further, tributary streams in this 

area are sparse, having been removed from their historical locations and remaining only 

in historical records, now called “ghost streams” (Figure 10). The lack of tributary 

streams in this area is an example of water inequality, as this high poverty area is 

deprived of natural stream presence entirely.  

 



60 
 

 
Figure 10: Map of poverty rates in census tracts in the Southeast portion of the Rouge 
River watershed. Locations of uncontrolled Combined Sewer Overflow (CSO) outfalls 
and historic locations of ghost streams are shown.  
 

 
This lack of naturally formed stream channels is also a limit of the analysis – lack 

of natural drainage boundaries in high poverty areas, as well as highly urbanized areas, 

compromise the catchment-level units of analysis. In these areas, measurements of 

sediment regulation and imperviousness may not properly represent the land being 

drained to stream segments since stormwater infrastructure in a combined sewer system 

would carry stormwater to a wastewater treatment plant, or in an overflow event, may 

convey water to stream segments that would not have naturally received that water. To 
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estimate water quality more accurately in the high poverty area of the Rouge River, 

future work would need to consider conversion of naturally delineated drainage areas 

(delineation by elevation) to drainage areas defined by stormwater infrastructure 

(Achleitner, Möderl, & Rauch, 2007; House et al., 1993; Tscheikner-Gratl et al., 2019).  

Other limits of the poverty analysis are the quality of U.S. Census data, and the 

assumptions made in converting poverty data from census tract to catchment-based units. 

A limitation of environmental justice datasets is low survey responses and lack of internal 

community involvement in surveying (Lee, 2020; Mah, 2017). Increased involvement of 

local community members in environmental justice data collection is necessary for 

increased understanding of the disproportionate water quality burdens across 

socioeconomic groups. A second layer of potential error in U.S. Census data was 

introduced when this data was converted from census tracts to drainage area. This 

conversion was made by assuming that poverty was distributed homogenously within 

census tracts. This assumption is an over-generalization that could lead to inaccuracy in 

calculating poverty rates in units of catchments. Scales of socioeconomic data resolution 

are influential in improving stream health modeling performance (Daneshvar et al., 

2016), so future modeling efforts would benefit from a more realistic conversion of 

socioeconomic data from census-area to area units more conducive to water quality 

modeling.  

3.4.3 Volunteer Science Data Applicability 

Volunteer science-collected water quality data was key to executing this work.  

The term volunteer science was selected intentionally over similar titles (i.e., citizen 

science, community science, community-based monitoring) because volunteers collected 
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data and volunteerism was entirely unrelated to citizen status (contrary to the implication 

of the term citizen science), and the community was not involved in all stages of the 

research (as is common in community science), but rather, was primarily involved in data 

collection (Cooper et al., 2021).   

Our work serves as an example of a mutually beneficial partnership between 

formal research and volunteer science. Labor, cost, time, and local knowledge would 

have prevented this research without volunteer science collaboration, which provided a 

temporally and spatially robust dataset. For the volunteer science data collecting group 

FOTR, technical and resource hurdles stand in the way of the spatial model building and 

analysis needed to interpret complex spatial correlation in river data. This mutually 

beneficial partnership between scientists and the local community offers the exchange of 

knowledge and perspective from interested parties who come from diverse backgrounds 

and motivations (Taylor et al., 2021), and is one reason why volunteer science has 

recently become more prevalent in aquatic science and hydrology research (Kielstra et 

al., 2019; Krabbenhoft & Kashian, 2020; Maguire & Mundle, 2020). An additional co-

benefit of FOTR volunteer science is that data collection events are used to engage 

volunteer scientists in the watershed, raise awareness about river conditions, and 

advocate for the need to clean up the Rouge River. 

Despite the benefits offered to both scientists and volunteer science groups, there 

are obstacles that prevent the widespread use of volunteer science data.  These obstacles 

include scientific community acceptance, data validity and governance, research problem 

definition, and in the case of water quality – observation tool expense and access 

(Buytaert, Dewulf, De Bièvre, Clark, & Hannah, 2016; Buytaert et al., 2014). The most 
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common critique of volunteer science is data validity (Jollymore et al., 2017). Means to 

overcome this obstacle include volunteer scientist training and understanding of volunteer 

science volunteerism motivation, which increases the reliability (Alender, 2016; Buytaert 

et al., 2014; Jollymore et al., 2017).  

In volunteer science organized by FOTR, volunteer training and internal quality 

assurance checks are the primary means of data quality assurance. Volunteer training 

consists of two tiers of volunteers, those being trained for general assistance and those 

trained as team leaders. Team leaders are trained in the classroom on field sampling 

methods and identification to genus or species. To become a team leader, a volunteer 

must first attend a sampling day as a regular volunteer, proceeded by the classroom 

training, then the volunteer attends multiple sampling events with an experienced team 

leader to ensure thorough sampling and proper adherence to procedure. Team leaders 

repeat classroom trainings after a few years to stay refreshed on methodology. On 

sampling events, team leaders conduct all sampling, and general volunteers assist in 

picking through samples. Team leaders also collect some specimens as vouchers, to 

verify identification in the lab.  

Quality assurance of collected data occurs by comparison to historical 

observations. Newly collected SQI data are compared to historical observations of SQI at 

the same site, and large deviations are investigated by returning to voucher species and 

field notes, to determine potential error. A reliability study on FOTR volunteer science 

data concluded the SQI data used here is a conservative estimate of water quality as 

traditionally measured numerically by scientists (Krabbenhoft & Kashian, 2020). The 

macroinvertebrate preservation method used by FOTR may be one potential source of 
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this discrepancy, as only 4-5 representative specimens are preserved for post-hoc 

identification rather than preserving all samples, as recommended by other benthic 

macroinvertebrate sampling (Barbour et al., 1999).  

3.4.3.1 Lessons from Friends of the Rouge  

The long-term operation of volunteer science at FOTR has resulted in many 

learned experiences that can benefit other communities, including the scientific 

community. FOTR volunteer science has three take-aways from the success of their on-

going sampling initiative: an effective sampling model for their community, accessible 

data sharing, and openness to exploring and supporting co-benefits from the sampling 

process.  

Over the 20+ years of volunteer science events, FOTR has explored different 

sampling efforts, arriving on large, concentrated sampling days as the most successful 

model. Initially, FOTR provided training and equipment and expected trained volunteers 

to monitor sites on their own time and report findings to FOTR. This model failed to 

engage volunteers, and consequently FOTR altered their sampling events to group 

sampling days with the trainees leading untrained volunteers. This structure allows for 

wide community participation, with over 100 volunteers attending monitoring days. 

Success of this method is measured through volunteer retention, and influence of 

volunteering experience on community members. Many volunteers return year after year, 

some for as long as 20 years. Volunteers have reported that at these group sampling 

events they learn about stream ecology and urban rivers. A valued metric reported by 

volunteers is the impact of these volunteering events on children, where multiple children 
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who participated in sampling events with their parents indicated a desire to pursue a 

degree in sciences because of the experience. 

FOTR also attributes their success to their commitment to ensure that the data is 

useful and made available to stakeholders. Following each monitoring event, a report is 

made available to all volunteers, and state and local agencies, including the communities 

who are now providing some of the funding to support monitoring.  FOTR makes the 

data freely available to academic institutions for research use, which has resulted in 

multiple journal publications (Krabbenhoft & Kashian, 2020; Maguire & Mundle, 2020) 

and several Master’s students theses.   

Volunteer science events conducted by FOTR have also resulted in unsuspected 

co-benefits that arose because of the observations made by community members 

spending time in streams. Inspired by questions from volunteers about pipes while 

sampling, team leaders are now trained in illicit discharge elimination and have been 

responsible for reporting spills, sewage leaks, erosion issues, and more that might have 

never been noticed otherwise. In addition to these stream condition observations, 

volunteers have also observed the presence of species beyond the benthic 

macroinvertebrates they intended to study. These observations have included the 

observation of a native species that was not known to be present in the area, and 

observations of multiple species invasive to the state of Michigan. These observations 

have been used to help track the spread of species, especially invasive species.   

3.4.4 Spatial Modeling 

The SSN and STARS tools were useful in modeling stream water quality in the 

Rouge River from volunteer science water quality data, and spatial relationships in 
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stream systems. STARS and SSN tools have been applied to a range of stream modeling 

applications like surface water isotope variations (McGill et al., 2020), fish genetic 

diversity in southern France (Paz-Vinas et al., 2018), and fecal contamination in streams 

in Northeast Scotland (Neill et al., 2018) and central North Carolina (Holcomb et al., 

2018). SSN methods have been previously applied with volunteer science data (Kielstra 

et al., 2019) and macroinvertebrates in streams (Frieden et al., 2014; Pond et al., 2017). 

This project uniquely combines volunteer science-collected macroinvertebrate data into a 

spatial model, which together were able to overcome challenges in data paucity and 

stream connectivity.  

Water quality in the Rouge River was modeled with two environmental 

explanatory variables: imperviousness and sediment regulation. Both variables reflect 

some degree of anthropogenic activity; and together they show that human behavior 

affects stream quality through different avenues. Imperviousness is directly related to 

human populations and densities, where high imperviousness is associated with high 

human density and is known to cause streamlined pollution conveyance via stormwater 

and increased flashiness, elevated temperatures, and higher BOD (Blaszczak et al., 2019; 

Grabowski, Watson, & Chang, 2016; Mallin, Johnson, & Ensign, 2009). The negative 

imperviousness coefficient modeled here aligns with the emphasis placed on impervious 

sources as a key driver of water resources impacts in previous research (Arnold & 

Gibbons, 1996; McGrane, 2016; Salerno, Viviano, & Tartari, 2018). Sediment regulation 

is estimated through factors directly or indirectly driven by humans, like reservoir 

presence and volume, stream channelization, riparian vegetation, and agriculture 

weighted by soil erodibility (Thornbrugh et al., 2018). The positive coefficient associated 
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with sediment regulation indicates an increase in sensitive benthic macroinvertebrate 

species associated with high sediment regulation. This relationship was expected as 

benthic macroinvertebrates thrive in well oxygenated water, with low proportions of fine 

substrate (Kaller & Hartman, 2004; Von Bertrab, Krein, Stendera, Thielen, & Hering, 

2013). The use of imperviousness and sediment regulation helped to build the stream 

quality SSN model. 

Our methodology using an SSN model to explore the relationship between stream 

quality and poverty builds upon existing analyses of the socioeconomic influence of 

stream quality. Previous analyses explored regression relationships and spatial clustering 

between stream environment indicators and variables describing historically 

disadvantaged populations. These studies found mixed correlation results, revealing 

negative trends between a stream health index and both household size and poverty 

(Daneshvar et al., 2016; Sanchez et al., 2014). The strength of correlations between 

socioeconomic and stream health indices was improved by applying spatial clustering 

(Sanchez et al., 2015) and tailoring the resolution of spatial analysis (Daneshvar et al., 

2016). In general, higher resolution data produced higher correlations (Daneshvar et al., 

2016; Sanchez et al., 2015). The method of parameter estimation for environmental 

justice modeling has also been performed with many explanatory variables categorized as 

ecological, socioeconomic, and physiological (Daneshvar et al., 2018). This work’s 

methodology avoided the ambiguity associated with correlation calculations and 

complexity of clustering methods by using both socioeconomic and environmental 

variables, and a spatial model designed for stream networks. The spatial modeling 

framework applied in past models was conditional autoregressive modeling, which 
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considers the spatial influence of neighboring points (Daneshvar et al., 2016; Sanchez et 

al., 2015, 2014). The modeling approach with SSN expands on this consideration of 

neighboring points, by including relationships that exist on stream flow paths. While the 

model identifies weaker statistical relationships than those observed in past models 

(Sanchez et al., 2015, 2014), the simplicity and interpretability of the SSN model 

provides a straightforward means of expressing the complex relationship between 

socioeconomic parameters and urban stream quality. Ultimately, this work aligns with 

previous environmental justice models, all finding negative relationships between 

historically underserved groups and water quality via stream health indices.  

3.5 Conclusions    

Urban stream syndrome remains a prevalent environmental concern, and this 

work shows how degraded stream water quality disproportionately burdens higher 

poverty areas in metropolitan Detroit. These results show that under similar 

environmental conditions, streams in higher poverty areas have lower stream quality. 

Volunteer science-collected data provided a robust understanding of stream quality in the 

Rouge River, and spatial modeling methods enabled the incorporation of stream 

interdependencies in stream quality modeling. In further analyses of the socioeconomic 

distribution of water quality degradation, partnership with volunteer science groups 

should be explored, as these groups may have shared interests in understanding water 

quality in their community and this work can provide fruitful new insights into the 

dynamic relationship between streams and the environmental and anthropogenic 

communities through which they run.  
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 These findings highlight that disparate stream conditions exist in the Rouge River 

watershed in a manner that disproportionally burdens high poverty areas. Remedying this 

inequitable stream syndrome will require targeted use of water quality management tools 

to induce stream quality improvements in areas of impairment. Stormwater best 

management practices (BMPs) are infrastructure able to provide this targeted 

management. FOTR have already embraced the implementation of BMPs in their 

mission, supporting community members through stormwater trainings, rain barrel and 

rain garden design classes and rain barrel construction workshops (“River Restoration,” 

n.d.).  However, as presented in the state of the science, urban stormwater BMPs have 

variable management performance driven in part by the yet unknown influence of 

environmental factors. Chapters 2 and 3 contribute to the larger picture of improving 

conditions in urban waterways by investigating the influence of regional climate and 

storm characteristics on BMP water quality management.  
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4.  EFFECTS OF REGIONAL CLIMATE AND BMP TYPE ON STORMWATER 
NUTRIENT CONCENTRATIONS IN BMPS: A META-ANALYSIS 

 
 
4.1 Rationale & Summary  

Stormwater BMPs are common infrastructure tools for nonpoint source pollutant 

treatment, however, their performance is unreliable due to the many factors influencing 

treatment performance. Climate is one of these factors that may influence nutrient 

removal processes in stormwater BMPs, but the influence of climate is not yet quantified 

broadly (Lintern et al 2020). Climate impacts the flood mitigation function of BMPs 

(Lammers et al., 2022; Sohn et al., 2019; Voter & Loheide, 2021), but its impact on 

nutrient treatment function is not well understood (Gold et al., 2019; Lintern et al., 2020; 

Sohn et al., 2019). Previous research has evaluated site-level BMP response to climate-

driven factors such as storm characteristics (e.g., storm volume), soil responses (e.g., 

antecedent moisture content) and seasonality (e.g., freezing patterns and temperature 

changes) (Buffam et al., 2016; E Daly, Deletic, Hatt, & Fletcher, 2012; Hoss et al., 2016; 

Lintern et al., 2020; Roseen, Robert et al., 2009; Valenca et al., 2021). This chapter 

presents predominate patterns in BMP nutrient removal performance under different 

climate regimes, thus furthering the field of stormwater infrastructure by 1) assessing 

performance of BMPs on a large scale, and 2) providing information about the impact of 

regional climate on BMP nutrient treatment performance.  

The goal of this chapter was to evaluate the impact of climate on changes in 

stormwater nutrient concentrations and speciation through three types of soil-based 

BMPs. Meta-analysis was applied to address high heterogeneity in nutrient concentration 

changes across storms and sites and to generalize the direction and magnitude of nutrient 
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concentration changes induced by BMPs in different climates. Large-scale climate was 

defined by the Budyko dryness index, the ratio of annual potential evapotranspiration to 

precipitation that quantifies the relative aridity (or humidity) of a site. It was 

hypothesized that BMP nutrient removal performance was different in wet and dry 

climates. This hypothesis was tested by analyzing BMP influent and effluent nutrient 

concentrations with data from the International Stormwater BMP Database. The 

objectives were 1) to conduct a meta-analysis of data from the BMP database and 

evaluate changes in N and P species and 2) to compare BMP nutrient transformations 

between sites in different wet and dry climate regimes. To support these objectives, 

multiple sources of the climatic patterns observed were contextualized.  

Components of this objective are reprinted with permission from Environ. Sci. 

Technol. 2023, 57, 5079−5088. Copyright 2023 American Chemical Society.  

4.2 Methods 

4.2.1 Data Acquisition 

Stormwater event influent and effluent concentrations were obtained from the 

International Stormwater BMP Database (http://www.bmpdatabase.org). The BMP 

database was initialized in 1996, and this work applies version 12-29-2019 obtained in 

2019. In addition to water quality data, BMP information such as latitude and longitude, 

type, purpose, and soil media data were retrieved. Data in the International BMP 

Database is reported through a combination of literature review and self-reporting, such 

that data quality assurance is beyond the control of research applying the Database.  

Data was filtered by geography, BMP type, and pollutant type. Only sites in the 

contiguous United States were considered. BMP types with N and P concentrations 
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reported for the influent to effluent were identified in the BMP Database, then narrowed 

to bioinfiltration, grass strip, and grass swale BMP types because they share common 

vegetated soil ecosystem features for stormwater treatment (Clary et al., 2020). These 

three types of BMPs are subsequently referred to as vegetated BMPs.  BMP selection was 

also restricted by the number of available paired influent and effluent concentrations (n > 

2). Data was restricted to the nutrients N and P (total and dissolved inorganic measures). 

N species selected from the Database were total N (TN), nitrate (NO3
-) as N, nitrite (NO2

-

) as N, NO2
- + NO3

- as N, NOx as N (referring to the sum of NO3
- and NO2

-), ammonia 

(NH3) as NH3, ammonia as N, and ammonium (NH4
+) as N. P species selected were total 

P (TP), orthophosphate as P, orthophosphate as PO4
3-, and dissolved orthophosphate as P. 

Concentrations of these analytes may not reflect loads, as flow data were sparse in the 

International BMP Database. This limits interpretation of overall water quality impact, 

but concentration is an informative measure because it can 1) inform interpretation of 

BMP treatment processes and 2) have important ecological implications. 

N and P species were translated into parameters of interest by converting units to 

mg/L as N or as P, removing overlaps, and categorizing as: TN, dissolved inorganic N 

(DIN), TP, dissolved inorganic phosphorus (DIP), DIN:TN, DIP:TP, DIN:DIP and 

TN:TP. TN and TP were simply all entries of paired influent and effluent TN and TP. 

DIN was calculated by summing nitrate, nitrite, and ammonium or ammonia that co-

occurred on the same date and time at the same BMP. Orthophosphate was considered to 

be equivalent to DIP. Dissolved inorganic fractions were calculated as DIN divided by 

TN, and DIP divided by TP (DIN:TN and DIP:TP, respectively). N:P ratios were 

calculated as DIN divided by DIP (DIN:DIP) to represent a dissolved N:P ratio, and TN 
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divided by TP as a total N:P ratio (TN:TP). Dissolved inorganic fractions and N:P ratios 

were calculated by pairing observations at the same site, during the same storm event, for 

both influent and effluent.  

The difference between the means of all influent and effluent observations at a 

BMP (called the within-group mean difference, MD) was calculated for each analyte at 

each BMP as 

𝑀𝐷 =  𝑥 −  𝑥  

where 𝑥  is the mean of the effluent values and 𝑥  is the mean of the effluent values 

(Harrer, Cuijpers, Furukawa, & Ebert, 2021). The MD for dissolved inorganic ratios and 

N:P ratios were standardized, and thus labeled as SMD, calculated by 

𝑆𝑀𝐷 =  
𝑥 −  𝑥

𝑠
 

where 𝑠  is the standard deviation of the influent (Harrer et al., 2021). This 

standardization accounted for differences in scale in the measurement of dissolved 

inorganic and total N and P, and between N and P. Hedge’s g correction was applied to 

the SMD to correct for systematic overestimation caused by standardization of sites with 

20 or fewer paired observations (Harrer et al., 2021). The standard error of each MD and 

SMD was calculated for within-group MDs as  

𝑆𝐸 =  
𝑠 + 𝑠 − (2 𝑟 ,  𝑠  𝑠 ) 

𝑛
 

where  𝑠   and 𝑠  are the standard deviations of influent and effluent, respectively; 

𝑟 ,  is the correlation between the influent and effluent groups at a BMP; and n is the 
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number of paired observations of influent and effluent (Borenstein, Hedges, Higgins, & 

Rothstein, 2009; Harrer et al., 2021). For SMDs the standard error was calculated as  

𝑆𝐸 =  
2(1 − 𝑟 , ) 

𝑛
+  

𝑆𝑀𝐷

2𝑛
 

(Becker, 1988; Harrer et al., 2021).  

4.2.2 Climate Definition and Assignment  

Regional climate for each site was classified as either water-limited or energy-

limited, as determined with the Budyko dryness index. The Budyko dryness index is an 

indicator of aridity, calculated as the ratio of annual average potential evapotranspiration 

to precipitation, i.e., PET/P (Edoardo Daly, Calabrese, Yin, & Porporato, 2019a). A 

Budyko index greater than 1 indicates a water-limited, or dry climate, and a value less 

than 1 indicates an energy-limited, or wet climate. Budyko dryness index values were 

calculated using PET and P values from the Climate Research Unit gridded Time Series 

(CRU TS) monthly gridded climate dataset with a spatial resolution of 0.5° latitude by 

0.5° longitude (Harris, Osborn, Jones, & Lister, 2020). The BMP sites were assigned the 

Budyko dryness index values of the spatial grids in which they were located.  

Correlation tests were applied to parse the contributions of climate and influent 

concentration on BMP nutrient removal. The influence of climate on stormwater influent 

concentrations was assessed by comparing influent and effluent concentrations between 

wet and dry climates. Additionally, the relationship between climate index and influent 

concentration was measured with Kendall’s rank correlation (τ).  
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4.2.3 Meta Analysis and Subgroup Analysis 

A meta-analysis was conducted to determine the effect of BMPs on nutrient 

concentrations aggregated across sites. In this work, meta-analysis refers to a statistical 

analysis used to pool quantitative information regarding a treatment across many studies 

into a single numerical estimate. Agglomeration across studies is done by calculating a 

treatment effect, called effect size, at each site then using a weighted average to calculate 

the single estimate of the treatment, called a pooled effect size (Harrer et al., 2021). Here, 

the effect size is the change in concentration between influent and effluent at a BMP, and 

the treatments being investigated are vegetated BMPs. Meta-analysis has been previously 

employed in a stormwater context to study hydrologic responses of low impact 

development (LID) to storm frequency (Sohn et al., 2019).  Effect sizes were calculated 

as within-group MD or SMD and the standard error of within-group MD (SEMD, SESMD) 

because influent and effluent data is not independent, and these metrics account for their 

dependency (Equations 1-4). For DIN, TN, DIP and TP, a positive effect size indicates 

higher effluent versus influent concentrations, and a negative effect size indicates lower 

effluent versus influent concentrations, in units of mg/L. The term leaching described 

positive effect sizes, and retention was used to describe negative effect sizes. These terms 

refer only to changes in concentration between influent and effluent and not net mass 

change, as influent and effluent flow data were not available for all datapoints and thus 

restrict the size of the dataset. For DIN:TN, DIP:TP, DIN: DIP, and TN:TP, the effect 

size is unitless and reflects the effect of BMPs on relative speciation of the stormwater 

from influent to effluent. In general, SMD = 0.2, 0.5, and 0.8 indicate small, moderate, 

and high effect, respectively (Cohen, 1988; Harrer et al., 2021).  
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The pooled effect size describes the overall difference between influent and 

effluent across all k number of BMPs in the study. Effect sizes were pooled with a 

random effects model because high heterogeneity was expected due to the multiple 

known sources of variance between BMPs. For example, engineered soil media types, 

drainage area ratios, drainage area land use, vegetation type and health, influent 

concentrations, maintenance, and inlet/forebay pretreatment are a few attributes that may 

vary among BMPs classified within the same type of BMP. The random effects model 

assumes that these real (but difficult to simultaneously summarize) differences between 

BMPs also contribute to the overall effect (Harrer et al., 2021). The variance associated 

with the random effects model (τ2) was estimated with the Paule-Mendel method. It was 

selected as an alternative to the common Restricted Maximum Likelihood estimator, 

which can be biased when the number of studies is small and bias is high (Harrer et al., 

2021; Jackson, Angeliki, Martin, Andrea, & Baker, 2017; Veroniki et al., 2016). The 

Knapp-Hartung adjustment of τ2 was applied to correct for false positives within highly 

heterogeneous data (Harrer et al., 2021; Inthout, Ioannidis, & Borm, 2014). Pooled effect 

was calculated using a weighted average, where the weight was an inverse variance 

weight for random-effect models  (Harrer et al., 2021). The weight of an individual site 

(𝑤 ) was calculated as 

𝑤 =  
1

𝑠 +  𝜏
 

where 𝑠  is the variance at a site (SEMD or SESMD) and 𝜏  is the variance associated with 

the random effects model. The weighting factor reduces the influence of sites with a low 

number of paired influent and effluent observations (n), and low precision (high 

variance).  
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In addition to reporting the pooled effect size for each analyte, additional statistics 

were calculated to contextualize the result. A 95% confidence interval (95% CI) for the 

pooled effect size, and p value of the effect size are calculated. A measure of the variance 

in pooled effect sizes was reported as Higgins and Thompson’s I2 statistic of between-

study heterogeneity, where I2 = 25, 50, and 75% indicate low, medium, and high 

heterogeneity, respectively (Higgins & Thompson, 2002). These I2 values measure the 

percentage of variability caused by true difference in effect between studies (not 

sampling error).  

The impact of climate on nutrient retention in BMPs was measured using 

subgroup analysis. Subgroup analysis investigates heterogeneity in meta-analysis results 

by testing whether observational differences between subgroups align with a scientific 

hypothesis. Subgroup analysis provides statistical evidence (in the form of an omnibus Q-

test between subgroups (Cochran, 1954; Harrer et al., 2021)) to accept or reject a 

hypothesis that questions if two groups are distinct. The hypothesis was tested with a 

subgroup analysis between climate subgroups (wet and dry) and among BMP types 

(bioretention, grass strip, grass swale) to investigate if unequal weighting of BMP types 

coincided with climate groups to create a confounding effect. The subgroup analysis used 

the same statistical parameter as the initial meta-analysis but was expanded to include a 

fixed effects model. Pooled effect sizes within subgroups were calculated identically to 

meta-analysis pooled effect size, then the pooled effect sizes between subgroups were 

compared (Borenstein & Higgins, 2013) and results between climate and BMP type 

subgroups were analyzed. Subgroup analysis was applied to all eight analytes described 

above. A visual overview of the approach is provided in Figure 11.  
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Figure 11: Process used to compile and analyze water quality data from the International 
Stormwater BMP Database. Paired influent and effluent data from the International 
Stormwater BMP Database were obtained and analytes were grouped and summed as 
necessary to calculate DIN and DIP. Then dissolved to total ratios and N:P ratios were 
calculated. Influent and effluent concentrations of each analyte were averaged per site, 
and the standard error and number of storms were recorded. Meta-analysis was then 
conducted to pool influent and effluent averages across BMPs, and finally meta-analysis 
was repeated for wet and dry climate subgroups of BMPs. 

 
 
4.3 Results  

4.3.1 Data Composition 

The BMP data was temporally and spatially diverse, covering 91 sites in 15 states, 

from 1982 to 2018. Observations were most dense in the mid-Atlantic, where 27 sites 

were in North Carolina alone (Figure 12). However, Budyko dryness indices were diverse 

even within state boundaries (i.e., range 0.77 – 1.0 in North Carolina). There was a close 

climatic distribution of sites, where 42 sites were in dry climates, and 49 sites were in wet 

climates (Appendix figure A1). This provides a suitable distribution of data between 
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climate groups for subgroup analysis. There were 2692 paired influent and effluent 

observations (n) in total. Influent and effluent concentrations for TN and TP were of 

similar magnitudes but with slightly more conservative quartile ranges and median values 

compared to the International BMP Database 2020 summary (Table 2). 

 
  

 

Figure 12: Map of Budyko Dryness index in the contiguous United States with all BMP 
sites used in the meta-analysis plotted by assigning them into the wet or dry climate 
grouping.  
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Table 2: Summary of data composition as influent and effluent. Counts of paired 
observations (n) and number of BMPs (k) are provided for DIN, TN, DIP, and TP.  The 
ranges of nutrient observations in influent and effluent are provided for the interquartile 
range (25th to 7th percentile), and the median is provided with a 95% confidence interval. 
Asterisks indicate data from the 2020 International BMP Database Summary Report, 
reflecting data for grass swales, grass strips, and bioretention (Clary et al. 2020).  

Analyte 
# Paired 

Observations 
(n) 

# BMPs  
(k) 

Interquartile Range 
Median 

(95% CI) 
Influent 
(mg/L) 

Effluent 
(mg/L) 

Influent 
(mg/L) 

Effluent 
(mg/L) 

DIN 537 40 0.30 – 1.11 0.20 – 0.93 
0.54 

(0.49 – 0.60) 
0.41 

(0.36 – 0.47) 

TN 522 37 0.60 – 1.83 0.56 – 1.67 
1.0 

(0.92 – 1.11) 
0.96 

(0.56 – 1.67) 

DIP 543 45 0.01 – 0.10 0.03 – 0.33 
0.04 

(0.03 – 0.04) 
0.10 

(0.08 – 0.12) 

TP 1090 86 0.09 – 0.30 0.11 – 0.48 
0.17 

(0.15 – 0.18) 
0.22 

(0.21 – 0.23) 

TN* 
913 (influent) 
937 (effluent) 

51 
(influent) 

54 
(effluent) 

0.70 – 1.95 0.60 – 1.64 1.15 0.95 

TP* 
2317 (influent) 
2004 (effluent) 

131 
(influent) 

133 
(effluent) 

0.08-0.34 0.10 – 0.44 0.17 0.22 

 
 
4.3.2 Meta-Analysis Results 

Meta-analysis revealed varying degrees of change in nutrient concentrations 

between influent and effluent for each nutrient species, as well as for nutrient ratios. All 

eight nutrient types examined had moderate to high heterogeneity among the BMP 

practices analyzed, indicating that the majority of the variation in effect sizes was due to 

between-site heterogeneity, such that meta-analysis was an appropriate tool (Higgins & 

Thompson, 2002).   

Meta-analysis showed that BMPs are likely to leach DIP and TP and are likely to 

either leach or retain DIN and TN (Figure 13). The DIP and TP effect sizes were positive 

(indicating leaching) and significantly different from zero (p < 0.01). The DIP leaching 
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effect was larger than the TP leaching effect (Table 3). In contrast, both DIN and TN 

effect sizes were negative and not significantly different from zero (p = 0.65, 0.75, 

respectively), indicating a weak tendency toward retention. The pooled retention effect 

for DIN and TN were similar in magnitude, and the confidence interval for both analytes 

indicates both net leaching and retention are likely for different sites (Table 3).  

 
 

  
Figure 13: Pooled nutrient effect sizes (g) and site-level effect sizes for (a) DIN, (b) TN, 
(c) DIP and (d) TP, ranging from net retention to leaching (green to red). Sites with larger 
weights in the pooled effect size calculation are shown with larger markers, while lower 
weights are shown with smaller marker sizes.  
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Table 3: Meta-analysis and subgroup meta-analysis results for change in DIN, TN, DIP 
and TP through BMPs. The nutrient retention performance was estimated as the inverse 
variance weighted mean difference within BMP influent and effluent concentrations with 
a random effects model. The number of paired observations (n), sites (k), effect size 
(MD), 95% confidence interval of MD (95% CI), likelihood of a MD result being due to 
chance (p, MD), likelihood that the difference between two subgroups is due to chance 
(p, between subgroups), and heterogeneity (I2) are listed for each constituent combined 
and separated into climate subgroups. NA indicates data no available because one 
subgroup composes 80% or more of the total data.   

 n k MD 95% CI p, 
 MD 

p,  
between  

I2 

DIN Combined 537 40 -0.05 -0.27 to 0.17 0.65  89.6% 

 Wet 391 27 -0.04 -0.34 to 0.26 0.79 
0.89 

91.4% 

 Dry 146 13 -0.07 -0.43 to 0.29 0.68 81.9% 

 Grass Strip 164 14 -0.10 -0.44 to 0.25 0.56 

0.20 

76.7% 

 Bioretention 173 17 0.16 -0.28 to 0.60 0.45 88.6% 

 Grass Swale 200 9 -0.29 -0.61 to 0.04 0.08 95.5% 

TN Combined 522 37 -0.06 -0.41 to 0.30 0.75  84.6% 

 Wet 429 31 NA NA NA 
NA 

81.2% 

 Dry 93 6 NA NA NA 93.2% 

 Grass Strip 84 7 0.32 -1.52 to 2.17 0.68 

0.80 

62.4 % 

 Bioretention 205 19 0.03 -0.68 to 0.73 0.94 86.9 % 

 Grass Swale 233 11 -0.11 -0.26 to 0.05 0.17 79.6 % 

DIP Combined 543 45 0.15 0.06 to 0.23 <0.01  96.2% 

 Wet 318 25 0.06 -0.01 to 0.13 0.07 
0.03 

91.3% 

 Dry 225 20 0.24 0.09 to 0.40 <0.01 97.8% 

 Grass Strip 184 17 0.12 0.04 to 0.19 <0.01 

0.01 

95.1% 

 Bioretention 213 19 0.22 0.01 to 0.42 0.04 97.5% 

 Grass Swale 146 9 0.03 -0.01 to 0.06 0.12 88.3% 

TP Combined 1090 86 0.12 0.05 to 0.19 <0.01  91.7 % 

 Wet 575 46 0.03 -0.02 to 0.08 0.21 
0.01 

86.9 % 

 Dry 515 40 0.21 0.08 to 0.35 <0.01 91.7 % 

 Grass Strip 307 26 0.12 0.03 to 0.22 0.01 

0.79 

90.9 % 

 Bioretention 436 33 0.13 -0.02 to 0.28 0.10 92.0 % 

 Grass Swale 347 27 0.08 -0.02 to 0.18 0.11 89.8 % 

 
 

BMPs increased the ratio of DIP:TP and had no statistically meaningful change 

on DIN:TN in aggregate (Table 3). BMPs had a strong positive pooled effect on DIP:TP 

(p < 0.01), indicating that DIP comprised a higher fraction of TP in effluent than influent 
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(Table 3). Heterogeneity was high among BMPs measuring DIP:TP change, indicating a 

relatively wide range of effect sizes that BMPs had on DIP:TP ratios.  

BMPs decreased DIN:DIP, but did not significantly affect TN:TP ratios, 

indicating higher dissolved inorganic P relative to N in effluent than influent (p < 0.01 

Table 3). The magnitude of the DIN:DIP decrease (SMD = -0.44) was small to moderate 

(Table 3).  

4.3.3 Climate Effect on Stormwater Influent 

Stormwater influent in arid climates was higher in DIN (p ≤ 0.01), DIP (p = 0.03), 

and TP (p = 0.02) than influent in wet climates (Figure 14). The majority (77 to 91%) of 

the lowest quantile of influent concentrations were observed in wet climates. A majority 

(59-70%) of the highest quantile of influent concentrations were observed in dry climates 

for DIN, TP, and DIP. However, TN had the opposite trend where only 30% of the 

highest quantile influent concentrations were observed in dry climates. Correlations 

between standardized Budyko dryness indices and influent concentrations suggested that 

these parameters are not strongly related (Kendall’s τ = 0.18, 0.37, 0.11, 0.27 for TN, 

DIN, TP, and DIP, respectively). 
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Figure 14: Average influent concentrations per BMP in wet and dry climates for DIN (27 
wet, 13 dry), TN (31 wet, 6 dry), DIP (25 wet, 20 dry), and TP (46 wet, 40 dry). 

 
 
4.3.4 Climate and BMP Type Effect on BMP nutrients 

Climate had a strong effect on TP and DIP retention in BMPs, inconclusive 

results for TN, and no observed effect on DIN. Climate classifications were composed by 

unbalanced BMP types for dry climate DIN, TN, and DIP (Figure 15).  

BMPs in dry climates had higher DIP and TP leaching than BMPs in wet climates 

(p = 0.03 and p = 0.01, respectively, Table 3). The positive MD for DIP and TP indicated 

leaching in both wet and dry climates (Figure 16a). The climate effect on TN retention 

was inconclusive due to the low number of sites with TN data in dry climates. DIN effect 

sizes spanned the positive and negative ranges in both wet and dry climates, with a higher 

tendency of leaching in dry climates. However, this difference was not distinguishable 

from a difference caused by chance (p = 0.89). In summary, N retention differences were 

not observed, but DIP and TP both leached to a higher degree in dry climates than wet 
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climates. Visual summaries of subgroup analysis are provided with forest plots in the 

Appendix (Appendix Figures B1.1-B1.4).  

 
 

 

Figure 15: Distribution of the three BMP types reporting DIN, TN, DIP, or TP: grass 
strips (BI), bioretention (BR), and grass swales (BS), between wet and dry climates.  
 

 
BMP types had distinct effect sizes for DIP removal, but not for DIN, TN, or TP.  

All three BMP types had a general leaching effect on DIP, but this effect was the most 

severe for bioretention with a MD of 0.22 mg/L leached DIP. Grass strips leached the 

next most (MD = 0.12 m/L), followed by grass swales (0.03 mg/L). Notably, grass swales 

were the least observed BMP type for DIP (k = 9) and all observations were in wet 
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climates. The dry climate group did not contain balanced composition of BMP types for 

DIN (underrepresented grass swales), TN (underrepresented grass strips) and DIN 

(underrepresented grass swales) (Figure 15).  
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Table 4: Meta-analysis and subgroup meta-analysis results for change in DIN:TN, 
DIP:TP, DIN:DIP, and TN:TP through BMPs.  The number of paired observations (n), 
sites (k), effect size (SMD), 95% confidence interval of SMD (95% CI), likelihood of a 
SMD result being due to chance (p, SMD), likelihood that the difference between two 
subgroups is due to chance (p, between subgroups), and heterogeneity (I2) are listed for 
each constituent combined and separated into climate subgroups. NA indicates data no 
available because one subgroup composes 80% or more of the total data.  

 Climate n k 
SM
D 

95% CI 
p, 

SMD 

p, 
between 

subgroup 
I2 

DIN:TN Combined 426 29 -0.18 -0.69 to 0.32 0.47  84.7 % 

 Wet 386 27 NA NA NA 
NA 

85.0 % 

 Dry 40 2 NA NA NA 0 % 

 Grass Strip 76 6 -0.70 -2.59 to 1.18 0.38 

0.03 

86.8 % 

 Bioretention 154 14 0.39 -0.21 to 0.99 0.18 75.6 % 

 Grass Swale 196 9 -0.78 -1.70 to -0.78 0.09 88.5 % 

DIP:TP Combined 541 45 0.67 0.38 to 0.97 <0.01  81.5% 

 Wet 331 26 0.59 0.21 to 0.97 <0.01 
0.49 

71.5 % 

 Dry 210 19 0.80 0.29 to 1.32 <0.01 86.7 % 

 Grass Strip 172 17 0.38 0.10 to 0.67 0.01 

0.10 

68.4 % 

 Bioretention 208 18 1.26 0.45 to 2.07 <0.01 83.8 % 

 Grass Swale 161 10 0.42 0.14 to 0.71 0.01 55.9 % 

DIN:DIP Combined 285 25 -0.44 -0.74 to -0.15 <0.01  64.3 % 

 Wet 227 16 -0.38 -0.85 to 0.08 0.10 
0.59 

75.8 % 

 Dry 58 9 -0.52 -0.77 to -0.26 <0.01 0 

 Grass Strip 78 10 -0.13 -0.72 to 0.47 0.64 

0.01 

72.4 % 

 Bioretention 108 11 -0.44 -0.79 to -0.08 0.02 32.0% 

 Grass Swale 99 4 -0.98 -1.59 to -0.38 0.01 50.9% 

TN:TP Combined 484 36 -0.15 -0.59 to 0.29 0.50  84.3 % 

 Wet 411 30 NA NA NA 
NA 

84.2 % 

 Dry 73 6 NA NA NA 84.1 % 

 Grass Strip 84 7 -0.13 -1.01 to 0.74 0.73 

0.15 

80.4 % 

 Bioretention 204 19 0.15 -0.71 to 1.01 0.71 85.7 % 

 Grass Swale 196 10 -0.56 -0.84 to -0.29 <0.01 55.9 % 
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Figure 16:  Effect of BMPs on a) retention of nutrients (DIN, TN, DIP, and TP), b) 
dissolved fraction (DIN:TN and DIP:TP), and c) N:P ratio (DIN:DIP and TN:TP) 
between influent and effluent. Effect of climate on nutrient retention effect size is shown 
with clustered boxplots of all sites (grey), wet climate sites (blue), and dry climate sites 
(red), grouped as defined by Budyko climate definitions. The number of sites per group 
(k) is labeled above each boxplot. MD and SMD are thresholds for direction of change 
between effect > 0 and effect < 0. Positive and negative values correspond with (a) 
leaching and retention, (b) more and less dissolved N or P in effluent than influent, and 
(c) higher or lower N:P ratio in effluent than influent, respectively.  Translucent boxes 
indicate limitations of analysis because one subgroup composes 80% or more of the total 
data.  
 
 

DIP:TP increased through BMPs in both wet and dry climates (Figure 16b). The 

wet and dry subgroup SMDs were comparable to the SMD for the two climate regimes 
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combined and there was no difference in the effect of P speciation change between wet 

and dry climates (  
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Table 4). Therefore, climate was not detected as a driver of the shift of DIP:TP 

through BMPs. A similar result was observed for BMP type, where all three BMP types 

favored more DIP in effluent than influent. This shift was highest for bioretention, and 

moderate for grass swales and grass strips. It is more likely that DIP:TP differences align 

with BMP type (p = 0.10) than climate groups (p = 0.49).  

The effect size of DIN:DIP ratio change in wet and dry climates were both 

negative, indicating lower DIN:DIP ratios in effluent (Figure 16c). The effect size for wet 

climates was slightly lower in magnitude than in dry climates, but this difference may be 

due to chance (p = 0.59,   
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Table 4). However, there is a clear difference in DIN:DIP change among BMP 

types. All three BMP types shift towards lower DIN:DIP ratios, but this change is 

strongest in grass swales (followed by bioretention, then grass strips). Grass swales and 

bioretention indicate DIN:DIP decreases for the whole 95% CI, but grass strips 

encompass DIN:DIP ratio increase as well as decrease, with higher heterogeneity and 

ambiguity in the MD, indicated by the higher I2 and high p value, respectively.  

There was no conclusive shift in DIN:TN (Figure 16b) and TN:TP (Figure 16c) 

between influent and effluent.  There were insufficient observations of both DIN and TN, 

or both TN and TP in dry sites for conclusive results (k < 5) (  
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Table 4).  Both DIN:TN and TN:TP analyses yielded noticeable differences in 

MDs among BMP types, particularly for DIN:TN. Despite the measured differences 

among BMP types, the MDs of the BMP types themselves have low confidence, 

obscuring the interpretation of these effect sizes as truly different from one another. For 

example, DIN:TN is different among BMP types (p = 0.03), but the effect sizes for the 

BMP groups themselves have low confidence (p = 0.38, 0.18, 0.09 for grass strips, 

bioretention and grass swale, respectively) so the influence of BMP type is uncertain.   

N speciation transformations from influent to effluent did not vary by climate 

regime. Broadly, DIN composition shifted towards nitrate (+ nitrite) as a larger 

component of DIN in effluent (Figure 17). In both wet and dry climates, influent 

ammonia/ammonium constituted just under half of the DIN concentration (46% and 48% 

in wet and dry climates, respectively). In effluent, ammonia/ammonium composed about 

36% of DIN in both wet and dry climates. The pooled effect size across both climate 

groups indicated that BMPs shift DIN towards higher nitrate (+nitrite) composition in 

effluent (p = 0.01). This effect was present in both wet (p = 0.06) and dry (p = 0.06) 

climates at similar magnitudes (SMD = -0.36, -0.46, wet and dry, respectively). Thus, 

there was no meaningful distinction in DIN composition shift between wet and dry 

climates (p = 0.75).  
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Figure 17: Shift in DIN composition from influent to effluent in wet and dry climates 
illustrated by (a) effect sizes, g, as box plots and (b) pie charts. NH4 indicates either NH4

+ 
or NH3 and NO3

- is the sum of NO3
- and NO2

-, condensed for simplicity as NH4
+ and 

NO3
- are the dominate species of their respective DIN subgroups. 

 
 
4.4 Discussion  

4.4.1 Drivers of Climate-Varying Performance  

BMPs leach DIP and TP more frequently in arid climates than in wet climates. 

Meta-analysis revealed this observational trend but cannot attribute a definitive cause to 

this difference. The pattern of arid BMP DIP and TP leaching aligns with distinct patterns 

in arid climate P cycling, a direct driver related to climate–driven biogeochemistry. The 

results also align with indirect explanations, including elevated stormwater nutrient 

influent concentrations in dry climates, BMP type differences, and regional stormwater 

design goals. Each of these respective explanatory structures are explained in detail in 

sections 4.4.1.1 – 4.4.1.4.  

4.4.1.1 Arid Climate Biogeochemistry 

In arid climates, biogeochemical cycling is driven by low soil moisture and long 

inter-storm periods (Austin et al., 2004). For natural soils of similar composition and 
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geography, this arid soil hydrology and climatology induce different cycling of N and P, 

ultimately leading to higher availability and leaching of both N and P from arid soils. 

Results indicate higher leaching of DIP and TP from arid soils; therefore, patterns of 

leaching P species may be due to this arid climate biogeochemistry.  

Natural soils have higher availability of inorganic P in lower precipitation regimes 

(Austin & Vitousek, 1998; Emadi et al., 2012; Ippolito et al., 2010). Soil P availability 

depends on whether aridity is temperature- or precipitation-driven (Hou et al., 2018). 

Temperature is negatively related to soil P availability, where higher temperatures are 

associated with more weathered soils and plant uptake (Dixon et al., 2016; Hou et al., 

2018). The relationship between precipitation and available soil P is more complex, 

where higher precipitation is associated with lower available P and mineral P, but higher 

organic P (Hou et al., 2018). Attributing a cause to this pattern has proven difficult, 

where weathering and plant uptake (Austin & Vitousek, 1998; Hou et al., 2018; Ippolito 

et al., 2010), presence of different P-binding soil compounds (i.e., calcium, iron, 

aluminum, manganese, or the oxides of these cations) (Buckingham et al., 2010; Emadi et 

al., 2012), and biological processes influencing organic transformations (Hou et al., 2018; 

Siebers, Sumann, Kaiser, & Amelung, 2017) have all been hypothesized as causes 

independently and in combination.  

Soil P mineralization and cation compound binding in BMP soils were not 

explicitly explored here; however, parallels may be drawn between these processes and 

BMP performance. Increased P leaching has been observed for BMPs using media 

containing high P (Hatt, Fletcher, & Deletic, 2009; Hunt, Jarrett, Smith, & Sharkey, 

2006; L. McPhillips, Goodale, & Walter, 2018), especially compost, which can act as a P 
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source in BMPs (Hurley et al., 2017; Kranz, Heitman, Rivers, & Mclaughlin, 2022).  

Thus, if BMPs have heightened P content in soil media, and temperature-driven arid 

climates are known to leach P in native soils, then it is foreseeable that BMPs in 

temperature-stressed arid climates that also use high P-containing engineered media may 

export P at higher rates. On the other hand, the sorption of P on cations, such as iron, has 

been found to enhance P retention in BMPs (Erickson et al., 2012, 2007). Therefore, 

leaching of DIP in arid climates can be explained by either lack of P-binding materials or 

the saturation of these materials in engineered soil media. None of the BMPs reporting 

engineered soil media in this study included details about the presence of enhanced P–

binding soil media, so this explanation could not be pursued further. Overall, the potential 

drivers of higher arid climate P leaching, mineralization and varying cation compound 

availability, are both explanations that align with existing knowledge of BMP processes 

and support the general trend of P leaching observed in arid climates.  

4.4.1.2 Influent Concentrations 

In addition to the biogeochemical precedent for elevated DIP and TP leaching in 

dry climates, influent concentration may have a separate or compounding role in BMP 

performance. Both nutrient forms that leached more in arid climates (DIP and TP) also 

have higher influent concentrations than wet climate BMPs (Figure 3). Elevated 

stormwater influent concentrations in dry climates may be a co-occurring driver with 

climate or a derivative of climate. Influent concentration has been shown to drive BMP 

removal efficiency (Barrett, 2008). This suggests that influent concentration is an 

underlying cause of different BMP removal in different climates. However, the low 

correlations between climate and influent concentration in this study indicate that influent 
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alone cannot fully explain the observation of varying BMP removal in different climates. 

In fact, the tendency for dry climates to have higher influent concentrations may be a 

product of the arid-climate biogeochemical drivers influencing stormwater influent 

concentrations. Thus, the observed effect of DIP and TP leaching in dry climates may be 

due to the compounding effects of poor dry climate nutrient retention in BMP soils and 

elevated influent concentrations in arid climates.  

4.4.1.3 BMP Type 

The attributes of individual BMPs may vary greatly, and the cumulative influence 

of these attributes is likely to cause variance in overall nutrient treatment performance. 

By grouping BMPs by type, some of these attributes may be considered en masse. For 

example, rather than examining underdrain size, vegetation species, or longitudinal slope 

as independent variables, examining BMP type groups together the dozens of specific 

design attributes into similar groups based on the infrastructure goal and typical design. 

The BMP Database defines grass swales as shallow and vegetated, grass strips as 

vegetated areas designed for lateral flow conveyance, and bioretention as shallow 

vegetated basins with an underdrain (Clary et al., 2020).  

Difference in performance by BMP type is evident in DIP data from both the 

International BMP Database and in this dataset. In the 2020 database summary, 

difference in median of all recorded (unpaired) influent and effluent DIP concentrations 

was greatest for bioretention (leached 0.24 mg/L), followed by grass swales (0.07 mg/L), 

then grass strips (0.06 mg/L) (Clary et al., 2020). In this analysis, bioretention also 

leached the most DIP on average (0.22 mg/L), although relative leaching from grass 

strips and swales were flipped compared to the Database report. This observation of DIP 
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leaching from bioretention is also evident in the effect size changes for nutrient ratios 

involving DIP, where DIP:TN and DIN:DIP indicate shifts toward more DIP in effluent 

being strongest for bioretention. Decreased bioretention performance aligns with design 

attributes of bioretention such as soil media high in P and high potential for biomass 

(vegetation) decomposition, both of which are associated with variable or poor nutrient 

removal (Hunt et al., 2006; Muerdter, Wong, & LeFevre, 2018; Shrestha et al., 2018; 

Skorobogatov, He, Chu, Valeo, & Duin, 2020). Design details in this study provide 

support that the engineered soil media selection may fall along either divisions by BMP 

type or climate, as ten studies report a detailed account of soil media selection, eight of 

which contained high organic media (compost, loamy fill, organics, or peat). Of these 

eight, six were bioretention and two were grass strips, where all bioretention and one of 

the strips were in wet climates (seven wet, one dry). 

The influence of BMP type on removal performance may confound the climate 

observations because of the coinciding occurrence of a BMP type in a single climate 

regime. This is the case for the observation of higher DIP leaching in dry climates. Only 

grass strips and bioretention BMPs observed DIP leaching in dry climates (Figure 15). 

Grass swales had the lowest DIP removal among the three BMP types. Therefore, the 

overlapping BMP type and climate group observations preclude distinguishing whether 

the absence of high performing grass swale BMPs from the dry climate groups 

overinflates their leaching or if dry climates drive reduced DIP removal performance and 

the performance of grass swales is overinflated by the absence of dry climate swales.  
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4.4.1.4 Regional BMP Design Goals 

The observed trends in performance by climate may also reflect human priorities 

and designs. Different regions may have different design standards, stormwater 

regulations, and performance goals adjusted to the needs of their region. For example, in 

New Mexico’s Middle Rio Grande Municipal Separate Storm Sewer System (MS4) 

permit, standards require that storms up to the 90th percentile must be retained for newly 

developed sites and up to 80th percentile for reconstructed sites (Environmental Protecion 

Agency, 2016). In contrast, Vermont requires both volume management for 90% of 

storms, and water quality treatment of 80% total suspended solids (TSS) and 60% TP 

(Environmental Protecion Agency, 2016). Thus, stormwater infrastructure practices in 

New Mexico, a state entirely classified as dry climate in this work, may focus on volume 

retention to meet this regulation whereas Vermont, a state classified entirely as wet, may 

design BMPs with considerations for both volume retention and water quality treatment. 

However, it is notable that there are many exceptions to this trend with states requiring 

both volumetric water retention and water quality treatment in majority wet (New York, 

Massachusetts, Delaware, Connecticut, New Jersey) and dry (Wisconsin, Minnesota, 

Colorado) climates (Environmental Protecion Agency, 2016). In this dataset, ~45% (41) 

of BMPs specified a design goal or purpose, 11 of which only explicitly mention water 

quality goals, and 30 of which directly mention water quantity as well as quality 

treatment goals. Of these 41 BMPs, 15 were in dry climates, indicating that some dry 

climate BMPs in this study specified water quality treatment goals. 
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4.4.2 Meta-Analysis Application 

The application of meta-analysis for investigating BMP performance allows for 

the compilation of data from many BMPs with a method commonly used in many 

scientific fields. There are limitations to meta-analysis which pertain to the interpretation 

of this analysis. These limitations are provided in section 4.4.2.1. Despite limitations, this 

methodology should be adopted by other researchers studying BMP treatment 

performance. Recommendations for future applications of meta-analysis for the study of 

BMPs are provided in section 4.4.2.2.  

4.4.2.1 Interpretations of Meta-Analysis Limitations   

First, meta-analysis quality is limited by the quality of the data being pooled, and 

data quality may be impacted by publishing bias and geographic limitations. International 

BMP Database entries can be self-reported, so there is potential for both positive and 

negative bias from researchers submitting data by dampening the true severity of leaching 

or overstating retention capacity. While there is no evidence to show unpublished data in 

the International BMP Database is less reliable than published data, research bias is 

possible in both published and unpublished work. In this study, 69 of the 91 total 

individual sites included data that was published either in a report or journal article. 

Geographic distribution of data limited the ability to execute analysis of TN (or TN 

containing ratios) in dry climates.  

Second, heterogeneity is calculated, but not attributed to a cause. A pillar of meta-

analysis is that a true effect size exists across studies, and that the measured effect 

deviates from the true effect size due to heterogeneity. In the context of BMP water 

quality treatment this means that a BMP would be expected to have a consistent treatment 
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effect on influent, and that any deviation from this true effect must be due to factors that 

impact the treatment mechanisms in BMPs. Meta-analysis quantifies the amount of 

deviation that exists (via I2) but it does not give insight into the sources of that variability 

(Higgins & Thompson, 2002).  To ascribe causation of variability, hypotheses can be 

formed based on the attributes of sites which have a logical foundation to be a driver of 

variable performance. Subgroup analysis can then test hypotheses, and rejection or failed 

rejection of the hypotheses can provide support that the attribute investigated caused 

variability in the treatment effect. It is therefore important to clarify that BMP treatment 

is different in wet and dry climates for DIP and TP and that treatment is different among 

grass swale, grass strip, and bioretention BMP types for DIP, DIN:TN, and DIN: DIP, but 

meta-analysis cannot conclude that these differences are caused by climate or BMP type. 

Any causational explanations may only be supported by meta-analysis results, not proven 

by them.  

4.4.2.2 Recommendations for Future Meta-Analysis Applications for BMPs 

Meta-analysis is an effective tool to analyze overall performance of BMPs. Meta-

analysis allows for the compilation of multiple observations relating to an overarching 

research question (Harrer et al., 2021). Three major benefits of meta-analysis in a 

stormwater BMP application are 1) use for finding a pooled effect over many studies 2) 

encompassing between-study heterogeneity in the calculation of an effect size, and 3) 

simplicity of use.  

First, there is extensive documentation of BMP-level performance in the 

International BMP Database (Clary et al., 2020). Data submission instructions and data 

storage formatting ensure clear record of relevant data, including the influent and effluent 
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concentrations necessary for meta-analysis of removal performance. It is useful to 

estimate overall treatment effects of BMPs, and additional information logged in the 

database like design, age, and maintenance can help analyze factors that may drive 

differences in a true effect between BMPs. This can be done with tools that help parse out 

contributors of variability in true effect sizes, like subgroup analysis or meta-regression.  

Second, variable removal performance, ranging from net removal to net leaching, 

is common in BMP nutrient removal studies (LeFevre et al., 2015). There is evidence that 

site-level intrinsic BMP characteristics and extrinsic factors are both important for 

understanding BMP nutrient removal, and meta-analysis acknowledges and quantifies 

this between-site heterogeneity (Lintern et al., 2020; Valenca et al., 2021).  

Third, the meta-analysis process is accessible and widely used. The availability of 

free meta-analysis packages in R make the method approachable and accessible. This R 

package is paired with easily accessible documentation and interpretation assistance. 

Further, the wide use of meta-analysis in a range of scientific fields make this tool 

recognizable for a broad audience.  

Meta-analysis, however, is not without limitations, which impact potential future 

use of meta-analysis for BMPs. Researchers looking to apply meta-analysis for BMPs are 

limited in what removal performance drivers are suitable for subgroup analysis. Meta-

analysis is limited in its application to BMPs, where only variables that are homogenous 

at a BMP are appropriate as sub-group analysis groups. Since random effects models in 

meta-analysis consider variability within a study (here, BMP) level, it is assumed that 

variables inherent to individual sites contribute to the variability in effect and is 

addressed in meta-analysis. However, only some of this variability can be assessed 
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further with subgroup analysis. Subgroups can be defined for factors that are the same for 

all observations at one BMP, like the regional climate of a site, fill material used, or 

drainage area ratio (DAR), all of which are constant for all paired observations at a BMP. 

However, factors that vary within a BMP, like seasonal changes in temperature or 

precipitation characteristics, cannot be directly investigated with subgroup analysis.  

4.4.3 Implications 

These results have implications on our understanding of the impact of BMPs in 

the urban landscape. First, decreased N and increased P concentration in BMP effluent is 

a result with important ecological implications because of the significance of N:P ratios 

on biological growth limitations. Second, results regarding BMP performance in different 

climates may be built upon to develop a stronger understanding of how BMP nutrient 

management will be affected by a changing climate. Finally, by examining paired 

concentration change of analytes with different removal pathways, these results provide 

insight about the varying nutrient transformation processes driving the observed changes 

in concentration.  

4.4.3.1 N:P Ratio Implications 

BMPs tend to decrease both dissolved and total N:P ratios from influent to 

effluent. The ratio of N and P is an important ecological parameter as N:P ratios can 

indicate biological growth limitation (Koerselman & Meuleman, 1996). Globally, N:P 

ratios have increased due to anthropogenic perturbations (anthropogenic inputs at 19:1 in 

1980s increased to 30:1 in 2020) and varying mobilities of N and P in the environment 

(Penuelas, Janssens, Ciais, Obersteiner, & Sardans, 2020; Penuelas & Sardans, 2022). 



103 
 

Results here show that BMPs decrease N:P ratios in stormwater, indicating that BMPs 

may partially offset increased N:P ratios in surface waters.  

However, N:P ratio of BMP effluent may have ecological consequences for 

downstream bodies of water because BMP effluent observed here contained N:P ratios 

lower than those typically observed in water bodies. N:P ratios of US streams and rivers 

are diverse, with the interquartile range (IQR) of DIN:DIP ranging from 22:1 to 187:1, 

and IQR of TN:TP ranging from 18:1 to 59:1 (Manning et al., 2020). These ranges may 

also vary based on climate (Grimm et al., 2005) and disturbance level (Green & Finlay, 

2010). Reported observations of N:P ratios in streams and rivers from four different 

sources report median and mean DIN:DIP of 45:1 to 51:1, and median N:P ratios of 24:1 

to 55:1 (Figure 18). Each of these estimations are above the N:P ratios found in BMP 

effluent (DIN: DIP = 20:1, TN:TP =15:1) (Figure 18). Thus, discharge of low N:P BMP 

effluent may supply P to P-limited streams and rivers, potentially stimulating 

eutrophication. To estimate the extent of impact of low N:P BMP effluent on streams 

with higher N:P ratio, the context of load must be considered. N:P ratios alone reflect 

ratios of concentrations, therefore, the mass of N and P in streams may exist on a 

magnitude much larger or smaller than the mass of N and P discharged from BMP 

effluent, giving the effluent variable likelihood of altering the N:P ratio of the stream. For 

example, a stream with high masses of N and P would not likely be ecologically altered 

by BMP effluent entering with low masses of N:P, but a stream with low existing N and 

P mass may be highly perturbed by high masses of N and P entering via BMP effluent.  
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Figure 18: Comparison of N:P ratios in natural waters [1] (Manning et al., 2020) [2] 
(Grimm et al., 2005), [3] (Green & Finlay, 2010), [4] (Maranger, Jones, & Cotner, 2018) 
and BMP influent and effluent in this study. M and µ indicate measures of many N:P 
ratios as either a median or mean, respectively. Colored points indicate the Budyko 
dryness index classification of sites in this study as either wet (blue) or dry (red).  

 
 

4.4.3.2 Climate Change  

This work investigates the differences in BMP nutrient management in different 

climates, but it does not directly address how climate change may have an impact on the 

nutrient management of BMPs. Climate change directly impacts two key factors related 

to BMP water quality treatment performance: altering stormwater runoff characteristics 

(e.g., volume, intensity, frequency), and nutrient volumes. It is predicted that climate 

change will drive more intense, frequent extreme precipitation events, and that urban 

watershed level impacts will include elevated nutrient loading (Alamdari, Sample, 

Steinberg, Ross, & Easton, 2017; Marshall & Randhir, 2008). Translating these 

watershed-level changes to impacts on BMP nutrient management remains a challenge 

because BMPs are not typically designed for extreme storms, and little monitoring data is 
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available regarding BMP water quantity or quality performance (L. E. McPhillips, 

Matsler, Rosenzweig, & Kim, 2021).  

Models offer insight into how BMPs may perform under projected climate 

scenarios through modeling BMP hydrologic performance under various extreme storm 

conditions, and through watershed-level investigations of agricultural nutrient 

management. First, the hydrologic performance of BMPs is expected to yield increased 

discharge volume and discharge peaks, the degree of which is expected to vary by BMP 

type (M. Wang, Zhang, Cheng, & Keat, 2019). Second, models of agricultural watersheds 

show mixed predictions about BMP treatment effectiveness under anticipated elevated 

loads depending on the climate scenario, agricultural land use type, and BMP type 

(Jayakody, Parajuli, & Cathcart, 2014; Jeon, Ki, Cha, Park, & Kim, 2018; Teshager, 

Gassman, Secchi, & Schoof, 2017). For example, a Soil and Water Assessment Tool 

(SWAT) model of a watershed in Iowa estimated that climate change would undermine 

nitrate reductions by 65% (Teshager et al., 2017), but a similar SWAT model in 

Mississippi indicated that TN removal was unaffected by climate change and TP removal 

efficiency increased (Jeon et al., 2018), and a third SWAT analysis of watersheds 

draining to Lake Erie showed that BMPs became less effective at TP retention 3 of 4 

agricultural watersheds (Bosch, Evans, Scavia, & Allan, 2014). Thus, models have yet to 

establish a clear understanding of the impact of climate change on BMP effectiveness.  

The results of this chapter contribute foundational knowledge about nutrient 

management of BMPs in different climates, necessary information to assess the impact of 

climate change on BMP water quality treatment. The context that BMP P management 

varies by regional climate provides a baseline of expectations for BMP performance. This 
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information is necessary to compare BMP performance to future climate scenarios and 

establishes that varying P management in different climate regions is expected under 

future climate conditions. Further. since definition of climate region was established 

through the Budyko aridity index, this result may also indicate that as a region’s climate 

shifts towards a high Budyko index (more PET than P over long timescales) then 

decreased P management efficiency may be expected.  

4.5 Conclusions   

Towards the first objective, meta-analysis found variability of N removal through 

BMPs as well as increases in DIP composition of TP and decreased DIN:DIP ratios 

across climate boundaries. Addressing the second objective confirmed the hypothesis that 

nutrient treatment is different for BMPs in wet and dry climates for the analytes DIP and 

TP. Contextualizing these observations with analyses of BMP type, influent 

concentrations, and regional design goals provided evidence of potential causational 

explanations for this lower relative P performance in dry climates.  

This objective highlighted that vegetated BMPs are vulnerable to DIP and TP 

concentration increases in dry climates, a vulnerability that can be addressed to make 

vegetated BMP P treatment performance more reliable and watershed-level nutrient 

reductions more attainable (Lintern et al., 2020). First. BMPs have a key role in altering 

stormwater P composition toward DIP and decreasing DIN:DIP ratios across both wet 

and dry climates. Second, P treatment in BMPs is distinct between wet and dry climates, 

indicating a functional difference in how BMPs process DIP and TP between wet and dry 

climates. Identifying the drivers behind this arid-intensified P leaching remains a 

challenge for assessing and designing for BMPs across diverse climates. Further 
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investigation into driving mechanisms, especially parsing the contributions of 

biogeochemical processes, elevated influent, and regulations in arid climates, will inform 

more robust and reliable BMP design. 

 The influence of regional climate on BMP nutrient management illustrates one 

impact of the external environment on BMP function. In this section, regional climate 

was examined through the lens of the Budyko index, and thus reflects an energy and 

water balance over extended periods of time. However, influences of the external 

environment on BMP nutrient management may also exist on shorter timescales. In 

objective 3, the influence of weather is examined by exploring the relationship between 

storm characteristics and storm-level water quality performance.  
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5. STORM IMPACT ON BMP NUTRIENT TREATMENT 
 
 
5.1 Rationale & Summary  

Storm characteristics impact factors key to BMP performance, like soil moisture, 

soil oxygen, filter bypass, and vegetative activity. Current literature has synthesized the 

impact of storm characteristics on flood mitigation but notes the lack of literature about 

the influence of storm characteristics on BMP water quality treatment (Sohn et al., 2019), 

noting that hydrologic and water quality performance likely differ (Lammers et al., 

2022).   

Studying the impact of storm characteristics across many BMPs requires methods 

that summarize highly variable storm data and pair storm data with BMP performance 

metrics. Statistical clustering methods have begun to be applied to urban precipitation 

data to characterize like storm events (Kajewska-Szkudlarek, 2020; Mikołajewski et al., 

2022). The combined prevalence of statistical cluster methodology for storm data and 

wealth of stormwater quality data before and after treatment in BMPs together provide 

the means and medium for robust analysis of the impact of storm characteristics on BMP 

water quality treatment performance. Quantifying the impact of different storm types on 

BMP water quality performance is an important gap in knowledge of BMP function and 

must be addressed to design more robust BMPs for the current and future diversity of 

storm events.  

This chapter quantifies the impact of storm characteristics on BMP water quality 

performance through the lenses of concentration change and load treatment. This is done 

through two tasks: (1) identifying relationships between storm characteristics and 

concentration, volume, and load; and (2) comparing concentration and load treatment 
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performance of BMPs among storm groups identified by statistical clustering. Both tasks 

were performed on influent and effluent concentration, volume, and load data, and on the 

removal fraction, measuring the paired change in these water quality metrics. It was 

hypothesized that BMPs perform water quality treatment differently for distinct storm 

groups. The first task showed that influent and effluent volumes and loads increase with 

increasing storm depth and return period. The second task identified five distinct storm 

clusters, where vulnerabilities to certain storm groups were identified for each nutrient 

analyte. To contextualize the results, the value of viewing storm characteristics as 

clustered storm groups was discussed, the context of concentration and load analyses 

were presented with a comparison of volume reduction in this work compared to other 

published work, and finally, potential explanatory drivers of storm-group performance 

susceptibility for specific analytes were presented.  

5.2 Methods 

5.2.1 Data Curation  

 Two different groups of data were curated for this objective, water quality 

treatment performance data from BMPs and storm characteristics data.  

5.2.1.1 BMP Performance  

BMP performance data was obtained from the International Stormwater BMP 

Database (https://bmpdatabase.org/), the same large-scale database of stormwater BMPs 

used in Objective 2 (henceforth, Database). For this objective, version 02-08-2021 was 

used, obtained in 2022. Water quality data and details pertaining to the location and type 

of BMP were obtained, including influent and effluent concentration and volumes, site 

latitude and longitude and multiple BMP site descriptors. Data characterizing storm 



110 
 

events associated with each BMP performance measurement entry were also obtained 

from the BMP database.  

Data selection was filtered by geography, stormwater pollutant type, sample 

method, and BMP type. Data was restricted to BMPs located in the contiguous United 

Sates. Water quality data selected included total and dissolved inorganic species of 

nitrogen (N) and phosphorus (P). Like methods applied in Objective 2, Total N (TN) and 

Total P (TP) were taken directly from the Database. Dissolved inorganic N (DIN) was 

calculating by summing nitrate and nitrite measures (recorded in the Database as “nitrate 

(NO3
-) as N”, “nitrite (NO2

-) as N”, “NO2
- + NO3

- as N”, “NOx as N (referring to the sum 

of NO3
- and NO2

-)”) with an ammonia or ammonium measure (in the Database as 

“ammonia (NH3) as NH3”, “ammonia as N”, and “ammonium (NH4
+) as N”). Dissolved 

inorganic phosphorus (DIP) was taken from the Database as analytes labeled either 

“orthophosphate as P”, “orthophosphate as PO4
3-”, or “dissolved orthophosphate as P”.  

Influent and effluent volume type was restricted to surface runoff, and water quality 

sample measures were restricted to flow-weighted event mean concentrations. Entries 

were only considered if they contained both concentration and volume data for influent 

and effluent. BMP types considered were grass swales, grass strips, bioretention, 

detention basins, and wetland channels. Grass swales, grass strips and bioretention were 

selected as BMP types common in their application of engineered soil media as a primary 

design component, and because of known susceptibility to nutrient leaching, as identified 

in previous database reports (Barrett, 2008; Clary et al., 2020), and in Objective 2. 

Detention basins and wetland channels were added to the analysis to provide comparisons 

of effects on BMP types with distinct designs from the three soil-based types.  
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BMP performance was analyzed by examining influent and effluent directly, as 

well as the difference between the two. Influent and effluent concentration, volume, and 

loads were examined. Concentration and volume data were taken directly from the 

Database, and load was calculated as the product of concentration and volume. The 

metric reflecting the difference between influent, and effluent was the effluent fraction, 

computed independently as concentration, volume, and load effluent over influent 

fractions. Effluent fraction was used as a BMP performance metric because this metric 

does not assume correlation between influent an effluent. Assumption of correlation 

between influent and effluent water quality is presumed if percent change is used to 

evaluate change in water quality, thus making percent change metrics poor determinants 

of performance (Davis, 2007; McNett, Hunt, & Davis, 2011). In general, a smaller 

effluent fraction indicates higher removal whereas a large effluent fraction indicates low 

removal or leaching for effluent fractions > 1. In figures, effluent fraction is presented in 

log scale such that negative log effluent fractions indicate net removal and positive log 

effluent fractions indicate leaching.  

Influent and effluent and effluent fractions are presented for each concentration, 

volume, and load. Both concentration and load were studied because water quality 

performance can be considered through either concentration or load, depending on the 

goal of the BMP. Generally, concentrations are easier to compare to other water quality 

regulations like point source discharge permits, and can be important ecological 

thresholds (Balderas Guzman, Wang, Muellerklein, Smith, & Eger, 2022). Loads, on the 

other hand, are often more useful for quantifying the contribution of BMPs towards 
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watershed-level nutrient management (Hobbie et al., 2017). Volume was studied to assist 

in contextualizing divergences between concentration and load.  

Storm characteristics were also downloaded from the Database when available. 

These metrics included total storm depth and peak hourly intensity. Storm events that 

generated influent and effluent concentration and volume data but did not have storm 

depth or peak hourly intensity data recorded were filled in with data external to the 

Database, presented in section 5.2.1.2 below. 

5.2.1.2 Storm Characteristics  

Storm characteristics considered in this analysis included total storm depth, peak 

hourly intensity, return period, and antecedent dry period. Storm depth and peak hourly 

intensity data were taken from the Database when available and supplemented with the 

National Oceanic and Atmospheric Administration (NOAA) U.S. hourly precipitation 

data, and Automated Surface Observing System (ASOS) hourly precipitation data. The 

antecedent dry period was calculated entirely from NOAA hourly precipitation data. 

NOAA hourly precipitation data was retrieved from the three precipitation gauges closest 

to a BMP (by Euclidean distance) and within 100 km. If only 1 or 2 gauges were within 

100 km of the BMP, only 1 or 2 gauges were used. At each gauge, a 3-day window (the 

day of the reported storm event, and 1 day before and after) was applied, and the total 

depth was recorded as the highest sum of 24-hour data (midnight to midnight) of the 

three days in the window. The final total depth value was calculated by applying a 

weighted average to the reported data, with weights assigned by the Euclidean distance 

between the BMP and reporting precipitation gauge so that closer gauges had heavier 

weights. Peak hourly intensity was calculated as the highest hourly precipitation interval 
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reported within the 24-hour window selected for the total depth calculation. Final peak 

hourly precipitation intensity was calculated as a distance-weighted average of the gauges 

used.  

Return period was calculated using an event’s total depth to interpolate a return 

period from reported intensity duration frequency (IDF) curves. IDF curves were 

retrieved from the NOAA Precipitation Frequency Data Sever.  The nearest 24 hr IDF 

curve was identified, and the return period of the storm was calculated by linearly 

interpolating between the reported storm depths for the 1-, 2-, 5-, 10-, 25-, 50-, 100-, 500-

, and 1000-year storms. The return period was calculated for the depth reported directly 

in the Database when available, with the NOAA retrieved depth if reported depth was not 

available. IDF curves for the states of Washington and Oregon were not available in the 

NOAA Precipitation Frequency Data Server, so they were taken from tabulated return 

period values in a regional report in Washington (Demissie & Mortuza, 2016) and the 

NOAA Atlas 2 report for Oregon (Miller, Frederick, & Tracey, 1973). Finally, the 

calculated return period values were summarized in a final value with a distance-

weighted average.  

Both return period and retrieved depth may be overestimated. The moving 3-day 

window used to retrieve storm depths selected the largest recorded 24-hour depth in the 

window. It is possible that there was more than one true storm to occur within the 3-day 

window, in which case, the larger event would be favored. As return period was 

calculated using depth, both depth and return period values may be overestimated.   

The antecedent dry period was calculated as the difference between the date of the 

selected storm event in the total depth calculation and the last previously recorded rainfall 
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event, with adjustments for the 3-day window. Rainfall was considered an event if there 

was 0.05 cm or greater total precipitation within a day (24 hours, midnight to midnight). 

If two storm events occurred within the 3-day window applied to find total depth, then 

the antecedent dry period was recorded as 0.1. For antecedent storms outside the window, 

the number of antecedent dry days was recorded as the number of days between the 

recorded storm date and the previous event, minus 0.5 days, since the data may have been 

taken from the 0-1 range of the dryness window and 0.5 is the mean of this range. The 

final antecedent dry period was calculated as a distance-weighted average of the three 

nearest precipitation gauges within 100 km. Gaps in recorded hourly data were identified 

and overcome using standard deviation of antecedent dry period for long dry periods. 

Any storm events with an antecedent dry period identified as a statical outlier (> 8.7 

days) and whose standard deviation was greater than the mean antecedent dry period 

value, was recalculated by dropping the gauge responsible for the long dry period, as this 

value may be representing absence of recorded data rather than a true dry period. This 

process proceeded until either the standard deviation fell below the outlier value and the 

standard deviation was lower than the mean dry period, or until only one dry day value 

remained. There were 177 storms for which antecedent dry period estimates were 

dropped due to suspected period of inactivity at the precipitation gauge. This process may 

result in underestimating the length of dry days, especially if the true antecedent dry 

period was long and variable between nearby gauges. 

5.2.1.3 Climate Consideration 

Regional climate and storm characteristics are intertwined variables, where 

climate is represented by long-term averages of precipitation and evapotranspiration, and 
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storm characteristics describe single, short-term weather events, but whose statistics are 

related to the regional climate. Therefore, climate in this analysis is not considered when 

evaluating storm characteristics themselves but is used in the clustering analysis to assist 

in the clustering of like storm events. Climate was quantified through the Budyko aridity 

index, a ratio of annual potential evapotranspiration to precipitation, i.e., PET/P (Edoardo 

Daly, Calabrese, Yin, & Porporato, 2019b). The dryness index for each BMP was 

calculated using the Climate Research Unit gridded Time Series (CRU TS) monthly 

gridded climate dataset with a spatial resolution of 0.5° latitude by 0.5° longitude (Harris 

et al., 2020), the same method applied in Objective 2.  

5.2.2 Water Quality Analysis  

 The impact of storm characteristics on BMP nutrient management was quantified 

through a two-step process. First water quality parameters (concentration, volume, and 

load) observed in influent and effluent were examined, and second the paired change 

between these water quality parameters were examined. This two-step framework 

displayed ranges of expected concentrations, volumes, and loads of nutrients in influent 

and effluent of BMPs and demonstrated how influent and effluent changed 

independently. In contrast, the second method, examining paired change through the 

removal fraction, analyzed the actual degree of change observed between paired influent 

and effluent from the same storm at the same BMP.  

This two-step framework was repeated under two different means of examining 

storm characteristics, 1) isolated storm traits, and 2) storm groups. Isolated storm traits 

include the four factors: storm depth, return period, peak hourly intensity, and antecedent 

dry period. Storm groups classify storms by their similarity among the four isolated traits, 
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and their regional climate index. Thus, the two-step framework of water quality analysis 

is repeated for two means of examining storm characteristics, resulting in 4 major 

components of water quality performance analysis. Methods to perform water quality 

analysis by isolated storm traits are presented in methods section 5.2.2.1, and methods for 

analysis by storm group are presented in methods section 5.2.2.2.  

5.2.2.1 Water Quality Analysis for Isolated Storm Traits  

Water quality analysis by isolated storm trait was evaluated with boxplots of 

increasing magnitude of each storm trait. Groups of storm characteristics were defined 

using the quantiles of each storm characteristic. Each storm characteristic was broken 

into five bins, representing the first, second, third, and fourth quantiles (Q1, Q2, Q3, and 

Q4, respectively), as well as high-range outliers High range outliers were defined using 

the equation:  

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ≥  𝑄3 +  (1.5 × 𝐼𝑄𝑅) 

Where Q3 is the third quartile and IQR is the interquartile range (i.e., the 

difference between the first and third quantile). The bounds of each quantile bin for each 

storm characteristics are presented in Table 5.  
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Table 5: Boxplot group boundaries for the storm characteristics depth, return period, 
peak hourly intensity, and antecedent dry period based on quantile distributions.  

Trait Q1 Q2 Q3 Q4 Outliers 

Depth 
(cm) 

< 1.03 1.03 - 1.8 1.8 - 3.12 
3.12 – 
36.26 

≥ 36.27 

Return Period 
(yr) 

< 0.17 0.17 - 0.30 0.30 - 0.46 
0.46 – 
0.90 

≥ 0.90 

Peak Hourly 
Intensity 
(cm/hr) 

< 0.36 0.36 - 0.68 0.68 - 1.23 
1.23 – 
2.53 

≥ 2.53 

Antecedent Dry 
Period 
(days) 

≤ 0.50 0.50 - 1.86 1.86 - 4.94 
4.94 - 
11.61 

≥ 11.61 

 
 
Assessment of influent and effluent water quality parameters by isolated storm 

traits was conducted by examining presence and direction of change across boxplots of 

increasing trait magnitude. These trends were examined for influent and effluent 

measures of concentration, volume, and load for TN, DIN, TP, and DIP. For example, 

general positive or negative relationships between water quality parameters (i.e., influent 

concentration of DIP) and increasing quantile bins (first quantile to second quantile of 

total storm depth) were noted. 

Assessment of the paired change in concentration, volume, and load of each 

nutrient was performed with boxplots of the log removal faction. Boxplots were used to 

determine the general change in concentration, volume, and load as leaching or retention 

for the subsequent interquartile range bins of isolated storm traits. Further, a Tukey test at 

α =0.05 was used to compare the log removal faction of each analyte across the binned 

intervals of storm traits.  
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5.2.2.2 Water Quality Analysis for Clustered Storm Groups  

Water quality analysis by storm groups were also evaluated with boxplots of 

increasing magnitude of each storm trait. However, where the boxplots of isolated storm 

groups needed to be repeated for each storm group separately, and bins were created by 

quantile, here, all storm traits are assessed together through storm groups identified with 

clustering methods. Two clustering algorithms were applied: k-means and hierarchical 

clustering. The selected clustering assignment was used to separate the BMP water 

quality treatment performance data by the type of storm that generated the storm event. 

Finally, the water quality treatment performance of BMPs for each of the four nutrient 

analytes was assessed for each storm group.  

Clustering algorithms are common unsupervised machine learning tools used to 

partition multivariate data into groups (Steinley, 2006). The goal of clustering algorithms 

is to separate data into groups, called clusters, that share more similar attributes between 

samples within clusters than samples in different clusters (James, Witten, Hastie, & 

Tibshirani, 2021). It is assumed that the clusters follow a natural but hidden structure (Xu 

& Wunsch, 2005). In this analysis, k-means and hierarchical clustering algorithms were 

used to cluster 5-dimensional storm attribute data into distinct clusters subsequently 

called storm groups. K-means creates clusters by assigning k number of centroid points, 

and assigning the samples to the nearest centroid, then moving the centroid points and re-

assigning clusters iteratively to reduce the within-cluster variation for all clusters (James 

et al., 2021). Hierarchical clustering applies a different approach, forming similar groups 

in subsequent steps by starting at groups of size 1 and building larger groups (i.e. 

agglomerative nesting), or by starting with a single group of all observations and splitting 
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into smaller groups (i.e. divisive analysis) (Murtagh, 2017; Murtagh & Contreras, 2012). 

These clustering algorithms were selected because both are common, and comparisons 

between the methods can be made easily by comparing cluster assignments for the same k 

number of clusters (James et al., 2021).  

Storm characteristic and climate data were prepared for clustering by evaluating 

collinearity and standardizing all values. Collinearity between storm characteristics was 

compared to ensure distinct information contributions from each metric. Collinearity was 

evaluated with a correlation matrix of the storm characteristics: depth, peak hourly 

intensity, return period, antecedent dry period, and Budyko aridity index. Storm metrics 

were then standardized using z-score standardization:   

𝑍 =  
𝑥 − 𝜇

𝜎
 

Where 𝑍 is the standardized value of sample n, 𝑥  is the value of sample n, 𝜇 is the mean 

of samples, and 𝜎 is the standard deviation of the samples. This standardization was 

performed to reduce the influence of difference of scales on the development of clusters.   

Multiple options are available for optimizing the formation of k-means and 

hierarchical clustering, including a distance calculation, hierarchical linkage method, and 

the desired number of clusters, k. In this analysis, Euclidean distance was used as the 

distance measure to determine similarity for k-means and both agglomerative and 

divisive hierarchical clustering. The hierarchical linkage was selected from four common 

methods including: average, single, complete and Ward’s (Murtagh, 2014). Ward’s 

hierarchical linkage method was selected because it produced the best clustering structure 

(as measured by the agglomerative coefficient). Each algorithm was run with 2 to 7 

desired final clusters. Outliers were handled by manually designating storms to an outlier 
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cluster if they were repeatedly identified as a distinct cluster away from all other 

observations with both hierarchical and k-mean algorithms (Gan & Kwok-Po Ng, 2017). 

Selection of a final clustering algorithm and optimal k value were determined by 

assessing the agreement of k-selection values between two optimal cluster selection 

methods: elbow method and silhouette method (Shahapure & Nicholas, 2020; Syakur, 

Khotimah, Rochman, & Satoto, 2018).  

The result of the clustering analysis was an assignment of every storm entry in the 

dataset into a group of like storms. The storm groups were then compared to assess 

influent and effluent water quality for each storm group, and the changes in water quality 

parameters between storm groups. Assessment of influent and effluent water quality 

parameters by storm groups was conducted by examining the ranges median of 

concentrations, volumes, and loads across storms, and noting any observations that varied 

from other storm groups. Assessment of the paired change in concentration, volume, and 

load of each nutrient was performed with boxplots of the removal faction. For this 

analysis, each boxplot was tested with a one-sample, two-tailed Wilcoxon sign rank test 

for statistical difference from 1, the removal fraction indicating no change between 

influent and effluent. Difference from 1 was evaluated where α < 0.05 was interpreted as 

significant difference and α <0.10 was interpreted as marginal difference, so that a 

distribution statistically different from one (either smaller or larger) indicates a 

meaningful change from influent to effluent (retention, or leching, respectively).  
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5.3 Results  

5.3.1 Water Quality Data Characterization  

In total, 1871 water quality entries met the BMP data curation conditions. These 

entries came from 90 BMPs across 82 sites (Figure 19). Sites had a wide geographic 

spread, spanning 58 cities in 18 states. The stormwater quality entries were composed of 

887 unique storm events, meaning many storms contained measurements for more than 

one of the four considered analytes, as each analyte was considered a different water 

quality entry. TP was the most observed analyte, then DIP, then TN, and DIN was the 

least observed analyte. Bioretention was the most observed BMP type, followed by 

detention basins, wetland channels and grass swale, then grass strips (Table 6).  

 
 

 

Figure 19: Map of BMP sites used, showing larger point sizes for sites with more water 
quality data entries.   
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Table 6: Counts of BMP water quality entries in total (ALL), and by analyte (TN, DIN, 
TP, and DIP) for each of the 5 BMP types considered: grass strips (BI), bioretention 
(BR), grass swales (BS), detention basins (DB) and wetland channels (WC).  

Analyte 
Total Entries BI BR BS DB WC 

TN 330 6 125 38 108 53 

DIN 301 20 147 54 55 25 

TP 785 56 244 126 263 96 

DIP 455 68 164 43 93 87 

ALL 1871 150 680 261 519 261 

 
 

The magnitudes of concentrations, volumes, and loads fell into similar groups for 

bioretention, grass strips, and grass swales, while detention basins and wetlands each had 

much higher magnitudes of volumes and loads. This prompted the compilation of the 

bioretention, grass strip and grass swale BMP types into a single BMP type labeled “bio-

composite” BMPs. This compilation is justified not only by the common ranges of 

volumes and loads received by these BMP types, but also by the common design and 

nutrient treatment. Bioretention, grass swales, and grass strips all share common design 

features, relying on soil biogeochemistry and vegetation for water quality treatment, and 

commonly are referred to with other, overlapping terms (e.g., “bioswales”, “rain garden”) 

(Choat & Bhaskar, 2020). Further, these BMP types are alike in their variable nutrient 

processing, resulting in increasing nutrient concentrations from influent to effluent 

especially for P species (Objective 2, and Clary et al., 2020). These ample similarities 

justify the presentation of these three BMP types in subsequent section of this objective 

as a single agglomerated BMP type.   
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5.3.2 Storm Characteristic Characterization  

Storm characteristics were generally right skewed with a long right tail, showing 

high frequency of low-magnitude data by the zero-bound (Figure 20). Such distributions 

are expected for storm data, for which small rain events and low intensities are more 

common than large, intense events. Depth data was reported for 86% of entries, so only 

14% of entries were filled in with retrieved precipitation data. For the 14% (262) of 

entries with retrieved depths, 226 entries used three precipitation gauges to develop the 

average, nine entries used two gauges and 27 entries used one gauge. The distance-

weighted average distance between a BMP and the precipitation gauge(s) used ranged 

from 5.6 to 91.0 km (median = 23.9 km, mean = 35.5 km). Peak hourly intensity, 

however, was only reported for 18% of entries. The other 82% (1539 entries) used three 

precipitation gauges for 1332 storms, two gauges for 70 storms, and one gauge for 147 

storms. The distance-weighted average distance between gauge(s) and a BMP ranged 

from 3.0 to 94.9 km (median = 41.0 km, mean = 41.1 km). Return periods were 

calculated with the reported or retrieved depth values and tabulated returns from IDF 

curves. The distance between BMPs and the location of the tabulated IDF values ranged 

from 0.40 to 5.6 km. Finally, all antecedent dry period entries were calculated from 

precipitation gauges, where 24% of entries required reduced gauge counts because of 

unavailable data in the time preceding the observed event. With this adjustment, 66.8% of 

entries used three precipitation gauges, 16.6% used two precipitation gauges, and the 

remaining 16.6% used one precipitation gauge. The average weighted distance between 

BMPs and precipitation gauges used for antecedent dry period estimations was 3.06 - 

92.2 km (median = 38.8 km, mean = 39.6 km).  
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Figure 20: Maps of the distribution of 1) depth, 2) return period, 3) peak hourly intensity, 
and 4) antecedent dry period. Points indicate distribution of storm traits as falling within 
the first, second, third, or fourth quantile or outliers, with increasingly dark shading for 
higher values. Histograms below maps present the range of the storm trait observations in 
log scale, with vertical lines indicating the mean and median values (in orange, and 
purple, respectively). 

 
 
 There were no strong correlations among storm characteristics or the regional 

dryness index. The highest correlation was 0.50 between depth and return period. A high 

correlation between these variables was expected because return period was calculated 

using depth. However, the relatively low correlation coefficient between these two 

variables indicates that return period has distinct information from depth, brought about 

from the IDF curves which added the context of regionality to precipitation depth values. 
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Since none of the storm traits or regional dryness index were highly correlated, all traits 

were used in the clustering algorithms.  

5.3.3 Influent and Effluent Evaluation by Isolated Storm Traits  

There was a general positive relationship between both influent and effluent loads 

and increasing storm depth and return period for all BMP types and analytes. No broad 

trends were clear across all BMP types and analytes for peak hourly intensity and 

antecedent dry period. No clear unidirectional change in the load reduction was observed 

across grouped stormwater traits. However, there were some distinctions between certain 

quantile and outlier groups indicative of varying removal performance for different 

storms depth and return period ranges.  
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Figure 21: Boxplots of log-scaled influent and effluent concentrations, volumes, and 
loads at increasing quantiles of storm depth for each of the analytes: TN, DIN, TP, and 
DIP, at each of the three condensed BMP types: bio-composite (BC), detention basin 
(DB) and wetland channel (WC). Storm depth is displayed with boxplots of increasing 
depth values through five groups: four quantiles and a high-range outlier group, where 
darker shaded boxplots indicate higher depth. Boxplots show the interquartile range of 
each water quality parameter shaded in a box with whiskers extending to the minimum 
and maximum water quality values without outliers. 

 
 
 Depth had a clear relationship with each analyte, where increasing depth was 

associated with increasing volumes and loads for both influent and effluent. 

Concentrations of TP and DIP did not change with increasing depth, but influent and 

effluent TN concentrations in detention basins and DIN concentrations of bio-composite 

BMPs both decreased with increasing storm depth (Figure 21). These negative 

relationships between depth and concentrations may be due to dilution as stormwater 

volume increases. Volumes of influent and effluent had positive relationships with 

increasing depth for all BMP types. These relationships are expected as storm depth is a 
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direct source of influent volume. Finally influent and effluent loads follow the same 

positive relationship as volume with higher loads for higher storm depths.  

 
 

 

Figure 22: Boxplots of log-scaled influent and effluent concentrations, volumes, and 
loads at increasing return periods for each of the analytes: TN, DIN, TP, and DIP, at each 
of the three condensed BMP types: bio-composite (BC), detention basin (DB) and 
wetland channel (WC). Return period is displayed with boxplots of increasing return 
period through five groups: four quantiles and a high-range outlier group, where darker 
shaded boxplots indicate higher return period. Boxplots show the interquartile range of 
each water quality parameter shaded in a box with whiskers extending to the minimum 
and maximum water quality values without outliers.  
 
 
 The relationships between water quality metrics and return period follow many of 

the same relationships illustrated in the plots of water quality metrics against depth, 

where generally influent and effluent concentrations are largely unaffected by increasing 

return period, but both volume and loads of influent and effluent increase with increasing 

return period. In detention basins, TN influent concentrations decreased with increasing 

return period, and decreased for TN effluent concentrations, and the difference in 
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concentrations was smaller for effluent than influent (Figure 22). DIN influent 

concentrations at bio-composite BMPs decreased with increasing return period, and at the 

same BMPs, effluent also decreased from Q1 to Q3, but Q4 and return period outliers 

have similar concentrations as Q3. Both DIN and DIP influent and effluent in detention 

basins appeared to form a “u” shape between boxplots, showing a decrease in 

concentration until the third quantile (a return period of 0.30 – 0.46 years), after which, 

concentrations increased with increasing return period. This “u” shape may be the result 

of dilution bringing down influent concentrations as storms grow larger, then crossing an 

inflection point where nutrient accumulation surpasses any accumulation from increased 

storm volume associated with increase return period. Finally, for TP and DIP at bio-

composite and wetland channel BMPs there was no apparent relationship between return 

period and influent or effluent concentration. Volume and load for influent and effluent 

had positive relationships with return period for all three BMP types.   



129 
 

 

Figure 23: Boxplots of log-scaled influent and effluent concentrations, volumes, and 
loads at increasing peak hourly intensity for each of the analytes: TN, DIN, TP, and DIP, 
at each of the three condensed BMP types: bio-composite (BC), detention basin (DB) and 
wetland channel (WC). Peak hourly intensity is displayed with boxplots of increasing 
intensity through five groups: four quantiles and a high-range outlier group, where darker 
shaded boxplots indicate higher intensity. Boxplots show the interquartile range of each 
water quality parameter shaded in a box with whiskers extending to the minimum and 
maximum water quality values without outliers.    

 
 
 Relationships between water quality metrics and peak hourly intensity were not 

unidirectional or shared between multiple analytes or BMP types. Some individual trends 

are discernible. For example, influent TN concentration for detention basins forms a “u” 

shape of decreasing concentration from Q1 to Q3, then increasing from Q3 to outliers 

(Figure 23). Effluent TN concentrations for detention basins form a different relationship, 

with deceasing concentrations with increasing intensity across all 5 groups. Detention 

basins also have a positive relationship with influent and effluent volume for TP 

observations. However, even such specific patterns are not discernable for many boxplot 
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groups. For example, the boxplot whiskers of the effluent concentrations and loads for TP 

in bio-composite BMPs are largely overlapping amongst boxes, showing data with 

similar ranges, even if the median values may appear to follow an “n” shape, with 

increasing concentration from Q1 to Q3 and decreasing again from Q3 to outliers. 

Overall, the relationships between peak hourly precipitation intensity and analyte 

concentrations, volumes and loads are complex without clear universal trends.  

Relationships observed between antecedent dry periods and water quality 

parameters had no clear or re-occurring relationships across BMP types and analytes. 

However, there were some distinct relationships for specific analytes and BMPs. DIN 

effluent concentration for detention basins, and TP concentrations of influent and effluent 

for bio-composite and detentions basins all generally increased with increasing 

antecedent dry periods (Figure 24). However, these observations are not true for every 

sequential boxplot. For example, TP effluent concentrations decreased from Q3 to Q4 

despite otherwise increasing with increasing dry period. Effluent volume for TP 

observations also tended to decease with increasing dry period, although this did not 

occur for every subsequent boxplot, and the whiskers for many plots cover a similar 

range indicating no distinct changes in volume range by increasing antecedent dry period. 

There were no clear relationships between load and antecedent dry period length.  
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Figure 24: Boxplots of log-scaled influent and effluent concentrations, volumes, and 
loads at increasing antecedent dry periods for each of the analytes: TN, DIN, TP, and 
DIP, at each of the three condensed BMP types: bio-composite (BC), detention basin 
(DB) and wetland channel (WC). Antecedent dry period is displayed with boxplots of 
increasing dry days through five groups: four quantiles and a high-range outlier group, 
where darker shaded boxplots indicate longer dry periods. Boxplots show the 
interquartile range of each water quality parameter shaded in a box with whiskers 
extending to the minimum and maximum water quality values without outliers.   
 
 
 The investigation of relationships between isolated storm traits and BMP water 

quality parameters resulted in three major take-aways. First, relationships between depth 

and load and return period and load more closely resemble the relationships between 

these storm traits and volume than they resemble the concentration relationships. This 

observation provides justification that volume change, and the factors that drive variable 

volumes are controls of influent and effluent loads. Second, many of the trends that 

appear in influent are also present in effluent. This consistency makes it difficult to 

distinguish the influence of storm characteristics on the changes between influent and 
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effluent. Finally, only depth and return period had clear universal impacts on water 

quality parameters, where peak hourly intensity and antecedent dry period did not.  

5.3.4 Water Quality Treatment by Isolated Storm Traits  

The five quantile-based precipitation depth groups did not have shared trends in 

differences from influent to effluent across increasing precipitation depths groups. TN 

had different volumes and TN loads between precipitation outliers and all other 

precipitation groups for bio-composite BMPs, where the outlier precipitation group had 

higher log removal fractions than the other groups (indicating more occurrences of 

effluent volume and load greater than influent volume and load). For TN there was no 

difference between any precipitation groups for detention basins and wetland channels. 

The same observation was made with TP, where TP volume and load in the outlier 

groups were different from all other groups (again, lower reduction of volume and load). 

DIN also had different volume and load changes for outlier precipitation than all other 

precipitation groups for bio-composite BMPs. However, DIN also had a notable 

difference between Q1 and Q4 for detention basins, where precipitation in Q4 (3.12-

36.27 cm) had a higher log removal fraction than in Q1 (<1.03 cm). This difference is 

visible in the Figure 25, where the boxplot for Q4 for DIN in detention basins is above 

the threshold of no change between influent and effluent, indicating net increases in 

volume and load from influent to effluent. Comparatively, the entire interquartile range 

for the corresponding Q1 is below this threshold, indicating confidence that volume and 

load are reduced for storm depths in Q1. Finally, DIP was not significantly different 

between any depth groups at any BMP types.  
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Figure 25: Boxplots comparing the log concentration, volume, and load removal 
fractions across groups of increasing storm depth for each analyte: TN, DIN, TP, and 
DIP, at each of the three condensed BMP types: bio-composite (BC), detention basin 
(DB) and wetland channel (WC). Precipitation depth is displayed with boxplots of 
increasing dry days through five groups: four quantiles and a high-range outlier group, 
where darker shaded boxplots indicate higher depths. Boxplots show the interquartile 
range of each water quality parameter shaded in a box with whiskers extending to the 
minimum and maximum water quality values without outliers.  Black circles represent all 
observed points, which are plotted on top of boxplots to convey the counts and 
distribution of data summarized within each boxplot. The red horizontal line is the logged 
removal threshold, above which effluent values are higher than influent values, indicating 
leaching; and below which effluent values are lower than influent values, indicating 
retention. 
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 The other three storm characteristics also did not reveal broad trends in 

differences across boxplots, but some isolated differences for certain analyte and BMP 

type combinations were observed. These specific cases of differences in performance 

within boxplot groups are presented below. As the format for these plots is largely the 

same, figures parallel to Figure 25 for depth are included in Appendix C1 for return 

period (Appendix C1.1), peak hourly intensity (Appendix C1.2), and antecedent dry 

period (Appendix C1.3).  

 Removal fractions varied between the low and high return period groups for 

specific analyte and BMP type combinations. The removal fractions for TN concentration 

were not distinct amongst return periods for any BMP types and was only distinct 

between outlier return periods (> 0.9 years) and all other groups of return periods for 

volume and load removal fractions in bio-composite BMPs (Appendix C1.1). In these 

cases, the outlier return period group had higher log removal fractions than all other 

return period groups. Despite displaying the highest removal fractions of any return 

period group, even this outlier return period group had a majority of observed log 

removal fractions less than 0, indicating net retention. DIN concentrations in bio-

composite BMPs were similar across all return period groups, but for DIN volume and 

load change, outliers had higher log removal (greater tendency towards leaching) for bio-

composite BMPs. While only outliers were different from other return period groups in a 

statistically meaningful way, there is an observed trend of increasing log removal fraction 

(progressively worse DIN load removal) across groups of increasing return period. For 

DIN in detention basins, volume change with DIN measurements had a higher log 

removal fraction than the other return period groups. No wetland channel DIN-related 
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changes were different among return period groups. For both TP and DIP, the only 

difference between return period groups was between Q1 and Q4, and Q1 and outliers for 

volume reductions in bio-composite BMPs. In this case, both Q4 and outliers had higher 

log removal fractions than Q1, but Q4 and outliers were not different from each other or 

from any other groups.  

 Removal fractions were not distinct between peak hourly intensity groups for 

concentration removal, but sometimes varied for volume and load removal. TN load and 

volume removal was different for outlier peak intensities than across the other peak 

intensity groups for bio-composite BMPs. Detentions basin TN volume and load 

reduction did not vary by peak intensity group, but volume associated with TN 

measurements in wetland channels was different between Q1 (<0.36 cm/hr) and Q4 (1.23 

– 2.53 cm/hr), where there was net volume removal for more events in Q4. The wetland 

channel volume changes associated with TN measurements also displayed a general trend 

of improved volume reductions with higher peak hourly intensity rates. DIN volume and 

load removal fractions in bio-composite BMPs in the outlier group had higher DIN load 

leaching than for any other quantile group. In detention basins, DIN load removal was 

different between Q2 and outliers, Q3 and Q4, and Q4 and outliers. There was no 

difference in DIN removal fractions in wetland channels by peak intensity group. TP for 

bio-composite BMPs, like TN and DIN, displayed different removal fractions between 

outliers and all other peak intensity groups for volume and load. TP did not vary between 

any group of intensity for detention basins, but in wetland channels volumes associated 

with TP removal were different between Q1 and Q3, and Q1 and Q4. In both these cases, 

Q1 peak intensities were associated with higher volume leaching tendencies than Q3 or 
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Q4, a pattern of higher volume leaching for lower peak intensity values that can be seen 

in the slight negative trend across boxplots for DIN volume removal in wetland channels. 

Finally, DIP was not different between any peak intensity groups for any BMP type.  

Differences in removal fraction by antecedent dry period groups were scarce, and 

most differences were for DIN. No TN or TP removal fractions of concentration, volume, 

or load varied among any antecedent dry period groups for any BMP type. DIN 

concentration in bio-composite BMPs varied among outlier antecedent dryness (>11.61 

days) and all other dry period groups. In detention basins, DIN varied among different 

dryness groups for concentration, volume, and load, where concentration removal varied 

between Q1 and Q4, volume removal varied between Q3 and Q4, and load removal 

varied between Q1 and Q4, Q2 and Q4 and Q3 and Q4. In each of these cases, the group 

associated with shorter antecedent dryness period had a strong tendency toward higher 

removal than Q4, indicating worse removal at dryness periods falling in the Q4 group 

(4.94 - 11.61 days). DIN did not vary between any dry period groups in wetland 

channels. DIP only had a different removal fraction for DIP concentration removal in bio-

composite BMPs, where Q3 and outlier boxplots were different with outliers having a 

higher tendency towards increasing BIP concentrations through bio-composite BMPs.    

5.3.4 Storm Cluster Assignment 

 A clustering assignment created by the k-mean algorithm with k = 5 was selected. 

Two outliers were manually labeled as outliers because they were identified as their own 

cluster with k-means at k = 2, and 4-7, and by hierarchical clustering at k = 2 – 7. These 

storms also displayed clear extreme values of storm characteristics used in the algorithm, 

notably their average depth was 17.5 cm and average return period was 82.21 years 
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(Table 7). These storms were labeled as outliers and were removed from the clustering 

analysis. The remaining storms were assigned into storm groups using the k-means 

algorithm at k = 5 because both the elbow and silhouette method identified 5 as the 

optimal number of clusters (Appendix Figure C2.1). Comparatively, the hierarchical 

algorithm recommended k = 4 with the elbow method and k = 5 with the silhouette 

method. The silhouette coefficient for the selected clustering method (k-means at k = 5) 

was 0.40.  

The storm cluster assignments were visualized with a principal component 

analysis to reduce the 5 dimensions used to create the clusters into 2 dimensions for 

comprehensible observations of clusters. PC1 was composed primarily of depth, return 

period and peak intensity, and is thus labeled as the precipitation dimension. PC2 was 

composed of the climate index and antecedent dry period and was named the dryness 

dimension. Thus, plotting with these two dimensions as axes reveals that most storms are 

low in both dimensions, and clusters are formed as characteristics ascribed to either 

dimension increase (Figure 26).  
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Figure 26: Labeling of storm clusters using PCA visualization to simplify dimensionality 
in two dimensions: precipitation and dryness.  Each storm cluster assignment from the k-
means clustering algorithm with k = 5 is labeled. The intense storm group is in red 
circles, dry climate storm group in gold triangles, large & frequent storms in green 
squares, small & frequent storms in blue plusses and long dry period storms in unfilled 
pink squares.   

 
 

 The storm cluster groups followed logical groupings summarized by the titles: 

intense, dry climate, large & infrequent, small & common, and long dry period (Table 7). 

The intense storm group contained the second highest storm depth and the lowest number 

of antecedent dry days, as well as the highest average peak hourly intensity. The dry 

climate group contained the highest average Budyko aridity index, a higher return period 

than other groups with similar depths, and the second lowest peak hourly intensity. The 

large & infrequent group contained both the largest depth and return period averages and 

the second highest peak hourly intensity. Conversely, the small & common storm group 

contained a low storm depth and return period and had most wet-climate leaning dryness 

index. Finally, the last storm group, long dry period, contained the longest antecedent dry 

period, and second driest average climate close behind the dry climate group. The most 
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frequently observed storm type was the small & frequent storm group. Intense and dry 

climate groups were more like the small & frequent storm groups than the large & 

infrequent group and the long dry period group. Both the large & infrequent group and 

the long dry period group were more variable within their traits than the other clusters 

(Figure 26).  

 
 
Table 7: Average characteristics of clustered storm groups for each of the five clustered 
groups and the manually labeled outliers. Counts of the number of unique storm events in 
each cluster (n) and the average depth, return period, peak hourly intensity, antecedent 
dry days, and climate index are provided for each storm group. A summary name is 
provided for each group based on its defining attributes.   

Group n 
Depth 

(cm) 

Return 
Period 

(yr) 

Peak 
Hourly 

Intensity 
(cm/hr) 

Antecedent 
Dry Days 

(days) 

Climate 
Index 

Summary 
Name 

1 170 3.22 0.46 1.81 2.52 1.17 Intense 

2 163 1.74 0.55 0.51 2.88 2.87 Dry Climate 

3 31 10.05 5.25 1.51 3.26 1.11 
Large & 

Infrequent 

4 493 1.71 0.29 0.55 3.22 0.95 
Small & 
Common 

5 28 1.68 0.35 0.47 30.38 2.45 
Long Dry 

Period 

Outlier 2 17.50 82.21 2.40 5.53 1.69 Outlier 

 
 
5.3.5 Influent and Effluent Evaluation by Storm Group 

The concentration, volume, and load variability were compared among the five 

identified storm groups for each nutrient analyte, revealing a general trend of high 

influent and effluent volumes and loads for large & infrequent storms. This analysis was 

conducted on all three of the BMP type groups (bio-composite, detention basin, and 

wetland channel). However, only results pertaining to bio-composite BMPs are presented 
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in main text (Figure 27) as these BMP types were also explore in Objective 2. Figures 

containing for the other BMP types are provided in Appendix C3, Figure C3.1 for 

detention basins and Figure C3.2 for wetland channels.  

Large & infrequent storms had the most different volume and TN loads in influent 

and effluent from any other storm group (Figure 27). Concentrations of TN ranged from 

0.8 mg/L to 3 mg/L across influent and effluent in for all storm groups. Long dry period 

storms had the highest median TN influent concentration (2.1 mg/L) and effluent 

concentration (1.6 mg/L) among storms groups. However, this result was based on only 

two observations of long dry period storms, and thus may be a product of low sample 

size. The volume of storms monitoring TN was more variable among storm groups for 

influent than effluent. For example, median influent volumes ranged from ~11,000 L 

(long dry period storms) to ~136,000 L (large & infrequent storms), while effluent 

volumes tended to be smaller in magnitude and range, with a lowest median effluent 

volume of ~4,000 L (long dry period storms) and highest median volume of ~29,000 L 

(large & infrequent storms). Like volumes, TN loads were also generally largest for large 

& infrequent storms and smallest for long dry period storms, for both influent and 

effluent. Median loads for the intense storm group and small & common storms were 

similar in effluent (median 15 g for intense storms and 16 g for small & common storms), 

despite having varied influent loads (63 g in intense storms, 45 g in small & common 

storms). Overall, TN volumes and loads from large & infrequent storms were notably 

higher than other storms’ influent and effluent observations.   
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Figure 27: Comparison of TN, DIN, TP and DIP concentrations, volumes, and loads in 
influent and effluent by storm groups for bio-composite BMPs. Counts of the number of 
paired influent and effluent data points per storm group are also provided in 
accompanying tables. Storm group labels 1-5 represent the 5 storm groups assigned by 
the clustering algorithm: 1) intense, 2) dry climate, 3) large & infrequent, 4) small & 
common, and 5) long dry period. Boxplots display the interquartile range of observations 
with whiskers indicating minimum and maximum values without outliers. 

 
 
Storm groups with the highest water quality measures of DIN varied for 

concentration, volume, and load. Median concentrations of DIN ranged from 0.2 - 1.2 

mg/L across all influent storm groups, and three of the four observed effluent storm 

groups. Effluent concentrations in dry climate storms were the sole storm group with 

higher concentrations than the other storm groups, with a median concentration of 2.5 
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mg/L, roughly double the median influent concentration for dry storms. Volume 

observations also indicated one storm group with higher values than other groups, the 

large & infrequent storm group. Large & infrequent storms had a median influent volume 

around four times as large as median influent volumes for the other storm groups 

(200,000 L for large and infrequent, compared to 53,000, 68,000, and 49,000 for intense, 

dry climate, and small & common storms, respectively). This trend was even more 

extreme for effluent volumes than influent, as the median effluent volume for large & 

infrequent storms was roughly 8 times larger than the effluent volumes of the other three 

monitored storms (192,000 L for large and infrequent, compared to 25,000 L, 22,000 L, 

and 15,000 L for intense, dry climate, and small & common storms, respectively). Unlike 

TN where the highest volume storm groups yielded the highest loads, for DIN the storm 

group with the highest loads was the storm group with the highest concentrations, the dry 

climate group. While dry climate storms had the highest median DIN load for influent 

(92g) and effluent (56g), this storm group was closely followed by the large & infrequent 

storm group (influent DIN load 54g, effluent 40g). In contrast, both intense and small & 

frequent storms had influent loads of ~20g, and effluent loads ~5g. In general, the dry 

climate storms had highest influent and effluent DIN concentrations, large & infrequent 

storm had highest influent and effluent storm volumes, and both these storm groups had 

elevated loads compared to the other 2 observed storm groups.  

TP observations were like TN observations in that concentrations were variable 

by storm group, but large & infrequent storms had the highest influent and effluent 

volumes and loads. Median concentrations of TP influent (range 0.12 – 0.24 mg/L) were 

generally lower than the range of median effluent concentrations (0.16-0.43 mg/L). Dry 
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climate storm TP concentrations had the highest influent and effluent median 

concentration, but the interquartile range of the long dry period storm group effluent 

concentration exceeded the interquartile range of the dry climate storm group effluent TP 

concentrations. The median influent volume for TP measurement was highest for large & 

infrequent storms at 136,000 L, more than double the volume of the next largest median 

volume from a storm group (63,000 L for dry climate storms). However, the median 

effluent volume for large & infrequent storms was similar to the median volumes of the 

other storm groups (21,000 L for large & infrequent storm, other groups ranged from 

8,000 to 24,000 L). Loads of TP were higher in influent and effluent of dry climate and 

large & infrequent storms than the other 3 storm types. Influent TP loads were 24 g and 

13 g and effluent loads were 11 g and 10 g for the large & infrequent and dry climate 

storms respectively. Median influent loads in intense, small & common storm groups, 

and long dry period storms were all ~5g, and median effluent loads were all ~3g. Overall, 

TP had higher concentrations in effluent than influent, high volumes in large & frequent 

storms, and high loads in dry climate and large & infrequent storms.  

DIP concentrations and loads were the lowest of the 4 analytes, and large & 

infrequent storms generally had the highest concentrations, volumes, and loads. Median 

DIP concentrations for all storms but long dry period (which had only one storm 

observation) varied from 0.02 to 0.05 mg/L in influent and 0.05 to 0.11 mg/L in effluent. 

In both influent and effluent ranges, large & infrequent storms had the highest median 

concentrations. Large and infrequent storms also had the highest influent volume 

associated with DIP (median 228,000 L), which was much higher than the other median 

influent volumes (22,000 – 68,000 L). Effluent volumes were much smaller and more to 
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each other similar, ranging from 6,000 L (small & common storms) to 22,000 L (dry 

climate storms). Finally, median DIP loads were highest in large and infrequent storms 

for both influent (7.5 g) and effluent (2.7 g). Influent loads for large & infrequent storms 

were more variable than the other storm groups, with an interquartile range of 2.0 to 39.9 

g. In summary, the large & infrequent storm group most frequently had the highest and 

most variable concentration, volumes, and loads of DIP.  

5.3.6 Water Quality Treatment by Storm Group 

The five storm groups performed similar concentration, volume, and load removal 

except for the large & infrequent storm group which had lower volume removal, and 

subsequent lower load reductions than the other storms for TN, DIN, and TP.  

Concentration removal fractions were highly variable within storm clusters, and 

although median values of removal fraction varied, the overall distribution of removal 

fractions was not significantly different for any storm group for any analyte (Figure 28). 

While there was consistency in removal fractions across storms measuring the same 

analyte, there were differences in what that removal fraction was by analyte. TN and DIN 

concentrations were closely split by the threshold between retention and leaching while 

TP and DIP concentrations had more consistently high effluent concentration removal 

fractions indicating more frequent elevated effluent concentrations compared to influent 

concentrations.  

The median effluent volume fraction was consistently less than 1 for all storms 

and analytes, indicating consistent median volume reduction across storms. Notably, 

some storm events did indicate higher effluent volume than influent volume. The two 

most severe combinations of volume leaching were for DIP volume measurements in 
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intense storms, where 75.5% of entries had higher flow volumes measured for effluent 

than influent, and DIN observations of large & infrequent storms, where 46.2% of entries 

had higher flow volumes measured for effluent than influent.  

The load reduction of TN, DIN, and TP was different for large, infrequent storms 

(group 3) vs. all other storm groups (except for long dry period group for TN, which was 

similar). Like median effluent volume fractions, all median effluent load fractions were 

less than 1, indicating a tendency to remove nutrient loads across all storms and analytes. 

However, leaching of load was more common than leaching of volume by a small margin 

for DIN and TN, and by a larger margin for DIP and TP. For example, out of 426 TP 

events, 24% leached volume, and 36% leached TP load (Appendix Table C4.2). Across 

most storms, concentration removal was the least reduced metric with variable leaching 

and retention; volume and load were consistently reduced, but to different degrees for 

different storms.  
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Figure 28: Comparison of removal fractions by storm groups for TN, DIN, TP, and DIP 
by concentration, volume, and load measures for bio-composite BMPs. Boxplots of the 
distribution of removal fraction for each storm group display the interquartile range with 
whiskers extending to the minimum and maximum values without outliers. All removal 
fractions are plotted over boxplots in black filled circles to display the frequency and 
distribution of observations. Markers over boxplots indicate p-values results of a 
statistical test that a distribution is not equal to 1, the threshold of leaching and retention.  
 

  
Intense storms reduced TN and DIN concentrations but increased DIP and TP 

concentrations. Volume under intense storms was reduced by slightly less than half for all 
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analyte entries (effluent reduced to 52 – 58% of influent volume, Appendix Table C4.3). 

Loads under intense storms were reduced for TN, DIN, and TN. However, intense storms 

increased DIP load, the only storm group to have a median increase in load (Table 8). For 

DIP, intense storms were responsible for both the worst median concentration change, 

and median load change, where there was leaching of DIP both through concentration 

and load.  

Dry climate storms induced the worst concentration reduction for DIN and TP and 

the worst TP load reduction. Dry climate storms approximately doubled the DIN and TP 

and more than tripled the DIP concentration in effluent compared to influent (Table 8). 

However, volume for these storms was consistently reduced by more than half. This 

resulted in load reductions for all measured analytes, although compared to load 

reductions for other storms groups, the dry climate storms load reduction was worst for 

TP and second worst for DIP and DIN. This highlights a tendency of concentration 

increase and low P load reductions for dry climate storms. There were no observations of 

a dry climate group storm with TN data.  

 Large & infrequent storms induced the worst observed N load removals but was 

one of the better P load removal storm groups (Table 8). TN and DIN concentrations 

decreased during large and infrequent storm events, while TP and DIP concentrations 

both increased. Volume change was highly variable for large and intense storms between 

the different analytes. Load reductions were worst across any storms for both TN and 

DIN, but for TP this storm group had the second-best load reduction and DIP had the best 

reduction of any storm group.  
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Table 8: Median removal fractions by storm group for concentration, volume, and load 
of each analyte. Removal fractions greater than one indicate median leaching tendency 
(effluent values higher than influent values) while removal fractions less than one 
indicate median retention tendency (effluent values lower than influent values).  A dash 
indicates no storms observed, and NA indicates less than 3 storms were observed. 

 

 

 
 

Storms with long antecedent dry periods could only be analyzed for TP. 

Concentration was increased by long antecedent dry period storms, and this increase was 

the second most severe TP concentration leaching, behind only dry climate storms (Table 

8). Volume was reduced to less than half of the influent volume, and TP load was 

subsequently reduced to about half of the influent load. 

5.4 Discussion 

5.4.1 Quantile vs. Clustering  

 While the isolated storm trait analysis and clustering analysis are similar methods 

to study the impact of storms on BMP nutrient management, the clustering analysis 

Analyte Metric 1: 
Intense 

2: Dry 
Climate 

3: Large & 
Infrequent 

4: Small 
& 

Common 

5: Long Dry 
Period 

TN Concentration 0.77 - 0.93 0.97 NA 
 

Volume 0.57 - 0.39 0.35 NA 
 

Load 0.32 - 0.46 0.30 NA 

DIN Concentration 0.98 2.10 0.67 0.95 - 
 

Volume 0.59 0.34 0.85 0.49 - 
 

Load 0.45 0.64 0.81 0.41 - 

TP Concentration 1.33 1.87 1.53 0.95 1.62 
 

Volume 0.58 0.47 0.39 0.53 0.40 
 

Load 0.58 0.87 0.54 0.44 0.53 

DIP Concentration 4.20 3.22 1.68 2.17 NA 
 

Volume 0.52 0.34 0.18 0.34 NA 
 

Load 1.06 0.98 0.35 0.79 NA 
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accomplished both a simpler and more realistic means of studying the impact of storms 

on BMP nutrient management. The clustering analysis reduced the number of 

components to track statistical relationships from the four used in this analysis to one 

composite grouping that encompassed all four storm traits plus consideration of climate. 

The number of statistical tests applied for each method demonstrates the impact of this 

simplification. For the isolated storm trait (quantile boxplot) analysis, Tukey’s test 

comparing each of the 5 bins (4 quantiles and an outlier bin) against each other, 

accounted for 10 statistical tests of difference for each of 4 storm traits, summing to 40 

statistical tests to understand one analyte at one BMP type. The clustering method only 

required a maximum of 10 statistical tests to compare each of the five storm groups.  

Clustering not only simplified the number of relationships and statistical 

differences to consider, but clustered storm groups are also more realistic for true storm 

conditions. True storms in practice cannot be simplified through one sole driver, as their 

other attributes would never be held constant to view that attribute in isolation. For 

example, examining precipitation depth alone across multiple storms cannot provide 

reliable information about the influence of precipitation depth as these storms inherently 

have different intensities, times-to-peak, antecedent dry periods, or other weather or 

climatic attributes that are relevant to BMP performance (Voter & Loheide, 2021). While 

these attributes have been the primary focus of past research, this framework was 

developed to align with the BMP design process of fitting infrastructure to design storms 

which are typically return period- or depth-based. This method may not reflect true storm 

conditions (Voter & Loheide, 2021). Clustering encompasses the true complex multi-
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dimensionality of storms by creating groups that encompass multiple storm 

characteristics.  

Analysis of isolated storm characteristics helped to provide baseline expectations 

of how these characteristics contribute to overall storm performance. Most notably, 

analysis of isolated traits revealed strong positive relationships between both precipitation 

depth and return period, and increasing volumes and loads of both influent and effluent. 

This relationship, and other relationships specific to individual BMP types and analytes, 

helped to provide context to the observations in the storm clusters based on the 

contribution of the different storm traits to their storm cluster group. For example, storm 

group 1, defined by its high intensity, has notably poor volume reduction for DIP 

observations (volume leached for 75.5% of storms with DIP observations, Appendix 

C4.3). This observation is supported by the boxplot of volume removal fraction for DIP 

volumes, which shows a general trend of progressively worse volume removal for 

increasing peak hourly intensity across quantiles.  

5.4.2 Unexpectedly Consistent Volume Treatment 

 Volume is an important component of water quality treatment, responsible for 

load reductions through infiltration. Previous research has agreed that increasing storm 

size, viewed either though increasing total precipitation depth (Giese, Rockler, 

Shirmohammadi, & Pavao-zuckerman, 2019; Hoss et al., 2016; Lammers et al., 2022; 

Shrestha et al., 2018) or increasing return period (Fry & Maxwell, 2017; Hu, Zhang, Li, 

Yang, & Tanaka, 2019) is negatively related to BMP volume reduction performance on 

the site, catchment, or watershed scale. However, in the quantile distributions of both 

depth and return period examined here, there was little change in percent volume 
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reduction with increasing depth or return period (Table 9).  For example, all ranges of 

storm depth (quantiles 1-4 and outliers) volume reduction percent ranged from mid-

twenty percent volume reduction (or lower) to about 80% volume reduction.   

 
 
Table 9: The interquartile range (25-75%) of volume reduction percentages for quantile 
groups of depth, return period, peak hourly intensity, and antecedent dry period. Quantile 
groups are assigned based on the range of values observed for each storm characteristics, 
as presented in section 5.2.2.1.  

 Q1 Q2 Q3 Q4 OUTLIERS 

Depth 3 – 81% 14 – 84% 27 – 84% 20 – 84% 15 – 84% 

Return Period 23 – 80% 14 – 84% 30 – 86% 20 – 85% 33 – 82% 

Peak Hourly 
Intensity 

22 – 82% 8 – 79% 18 – 86% 16 – 86% -132 – 65% 

Antecedent 
Dry Period 

9 – 78% 11– 84% 14– 85% 21 – 88% 57 – 88% 

 
 
 This contrasting observation may be indicative that the negative relationship 

observed in other studies does not follow a linear trend when applied across BMPs or that 

volume reduction is so different at different BMPs that this trend is lost to the influence 

of other BMP attributes.  

While many studies report a negative trend with increasing storm size and 

decreasing volume reduction performance, these conclusions tend to be clear linear or 

exponentially decreasing relationships for model studies of the impact of BMPs at the 

catchment or watershed scale (Giese et al., 2019; Lammers et al., 2022; Palla & Gnecco, 

2015). These models may rely on a process-based framework that oversimplifies the 

storage depth or pore water saturation of BMPs, key means of  BMP volume reduction 

(Palla & Gnecco, 2015; Qin, Li, & Fu, 2013). For studies forming this conclusion from 
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field observations, a threshold is generally used to separate large and small storms and 

summarize performance between these groups. Such thresholds have included storms 

above and below 2 cm (Woznicki, Hondula, & Jarnagin, 2018), 1 cm, (Shrestha et al., 

2018), or comparison of a 2- and 100-year storm (Hu et al., 2019). These studies may 

have found differences across their stated thresholds indicating that larger storms have 

lower volume reduction than small storms. However, this does not mean that there is a 

stepwise decrease in performance with increasing storm depth or return period. Thus, 

model inaccuracy and simplified field observations may be responsible for repeated 

reporting of overgeneralized relationships between volume reduction and storm depth or 

return period.  

The absence of evidence of difference in volume reduction in this study may also 

be due to the comparison of many different BMPs. While bio-composite BMPs share 

common traits like soil media fill, and vegetative features, they likely vary in specific 

design parameters, soil median characteristics, drainage area characteristics, vegetation 

species, maintenance, and ages, all of which have been shown to play a role in BMP 

hydrologic performance (Ahiablame, Engel, & Chaubey, 2012; Skorobogatov et al., 

2020; Vijayaraghavan et al., 2021). Thus, while the influence of storm size may be seen 

at the site level, or across controlled models, it is possible that this relationship is not 

strong enough to be observed in volume removal rates alone when comparing multiple 

sites with varying other design and local attributes. This explanation can be explored in 

future work, where individual sites in the BMP database could be isolated and analyzed 

with the same framework applied in this work to evaluate if the anticipated relationships 
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between storm depth and return period are apparent within observations of the same 

BMP.  

5.4.3 Water Quality Performance Drivers Associated with Storm Groups 

 Examining the removal fractions and percent of leaching storm events through the 

lenses of concentration and load revealed certain storm types for which each analyte was 

most vulnerable to leaching conditions (Table 10). Potential drivers of these poor water 

quality treatment conditions are discussed by each analyte. 

   
 
Table 10: Comparison of the storm groups that caused the poorest treatment condition 
for each analyte through different metrics: concentration removal, load removal, 
frequency of concentration increase event, and frequency of load leaching event.  

 TN DIN TP DIP 
Concentration Removal 4 2 2 1 

Load Removal 3 3 2 1 
Frequency of Concentration Leaching Event 3 2 2 2 

Frequency of Load Leaching Event 3 3 2 1 
 
 
5.4.3.1 TN Vulnerability to Large & Infrequent Storms  

TN was most vulnerable to large & infrequent storms. TN had the lowest 

concentration reduction for small & common storms, but under large & infrequent storm 

conditions, TN had its lowest load reduction and the highest likelihood of a concentration 

or volume leaching event. This is likely due to the hinderance of volume reduction for 

large & infrequent storms, which were also the storms with volumes reduced the least for 

TN. As TN is primarily reduced through sedimentation, hydraulic retention time is key to 

TN removal (Mai et al., 2022; Valenca et al., 2021). Thus, these large & infrequent 

storms may overflow bioretention systems, which are designed for small & frequent 
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storms (L. E. McPhillips et al., 2021), and therefore not allow for sufficient retention time 

to induce sedimentation as flow instead bypasses to piped drainage.  

5.4.3.2 DIN Concentration and Load Divergence  

DIN concentration and load removal metrics were both most susceptible to 

leaching for different storm types. DIN concentration had the lowest removal margin and 

was most frequently found to have net concentration increases in dry climate storms. Like 

TN, DIN loads leached most, and leaching events were most likely to occur in large & 

infrequent storms.  

DIN concentration increases in dry climate storms may be due to the influence of 

arid climate biogeochemistry, which promotes a higher of partitioning of N as the highly 

mobile DIN form than humid climate soils (Austin et al., 1999; Austin & Vitousek, 1998; 

McCulley et al., 2009). This DIN accessibility is attributed to the rapid conversion of 

organic N to inorganic N in arid climates (Aranibar et al., 2004). Additionally, arid 

climate soils have reduced N-oxide gas emissions due to extended dry periods preventing 

prolonged anoxic conditions for denitrification (Aranibar et al., 2004). This hampered 

arid-climate denitrification would hamper a major pathway for nitrate removal in BMPs 

(Morse et al., 2017; Norton, Harrison, Keller, & Moffett, 2017), and result in an 

accumulation of nitrate in soils, a highly mobile form of N susceptible to leaching. Thus, 

the combined climatic effects of increased organic to inorganic N conversion and 

dampened denitrification likely lead to more DIN concentration leaching for arid climate 

storms. This concentration risk likely does not translate to load because of high-

performing volume reduction for arid climate storms, which had the highest volume 

reduction of any DIN storm group.  
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DIN load leaching is likely a product of high inflow volumes from large storm 

events. Volume reduction for the large storm group was lowest of any storm group, and 

there was a positive relationship between increasing storm depth and DIN load in 

influent, highlighting that more DIN enters bio-composite BMPs during large storm 

events, and that volume reduction is dampened compared to other storms. Further, DIN is 

composed in part by nitrate, an anion well known to be labile in soils. Thus, the DIN 

leaching from large storms may be caused by the mobilization of DIN from the drainage 

area and flushing of DIN from the BMP engineered soil media, the reduced volume 

reduction from large storms, or the compounding effect of the two.  

5.4.3.3 TP Dry Climate Vulnerability 

All four metrics of storm group performance indicated worst TP removal from 

arid climate storms. The observation of poor TP removal in arid climate storms agrees 

with the results from Objective 2, finding higher DIP and TP concentration increases 

through arid-climate BMPs. Therefore, the same explanations of those concentration 

increases are likely also true here, where P is higher in arid climate effluent than influent 

because of arid climate P weathering or reduced plant uptake, higher P in arid climate 

influent than humid climate influent, or the influence of designs with high P-containing 

engineered fill media confounding the results in arid-climate BMPs. Unlike the DIN 

observations where high volume reductions negate elevated DIN concentrations, TP 

volume reductions were similar in arid climate storms to the other storm groups. This is 

unexpected as volume reduction for similar storms should not be different depending on 

which analyte was measured in a storm event. Further work is needed to determine why 

volume reduction for TP-monitoring storms in the arid climate storms group did not see 
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increased volume reduction as expected both from other analytes in this work, and in 

other work (Lammers et al., 2022).  

5.4.3.4 DIP High Intensity Vulnerability   

 DIP was most likely to have events with leaching DIP concentrations in arid 

climate storms, but all other performance metrics indicated the worst leaching and most 

likely DIP leaching events in intense storms. The high frequency of DIP leaching in arid 

storms is likely due to many of the same drivers discussed for TP in section 5.4.3.3. 

Interestingly, only DIP had lowest performance metrics for the intense storm group. DIP 

retention in BMPs is closely related to the engineered soil media’s soil P index (or soil P 

content) and cation exchange potential of soil, as adsorption is widely regarded as the 

best means of DIP retention (Hunt et al., 2006; LeFevre et al., 2015; Li & Davis, 2016). It 

is therefore likely that high intensity storm groups either contribute to elevated P loss of 

soil P from the engineered media, or that reversible surface-level adsorbed DIP is 

released in high-intensity storm events. The elevated DIP load leaching and higher 

frequency of load leaching for intense storms may also have to do with the compounding 

effects of poor hydrologic treatment in intense storm events, as volume reduction for 

DIP-observing storms in this study was lowest for intense storms, and many other studies 

have noted a negative relationship between intensity and BMP hydrologic performance 

(Jennings, 2016; Lammers et al., 2022; Sun, Pomeroy, Li, & Xu, 2019).  

5.4.4 Water Quality as Concentration vs. Load  

When contextualizing the water quality vulnerabilities here, it is important to 

highlight the different patterns and vulnerabilities when water quality is viewed through 

the context of concentration versus load. Federal and state permits restricting pollution 
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discharge to water bodies from point sources typically provide limits as concentrations, 

and concentrations are also typically used when stating thresholds of aquatic ecological 

impact. In the larger goal of protecting water bodies, total maximum daily loads 

(TMDLs) are used to assist in developing point source discharge limits, and as motivation 

of BMP implementation. Point source regulations as concentrations are feasible because 

they can easily be converted to loads because of consistent or monitored effluent 

volumes. However, stormwater volumes in influent and effluent are variable, so 

concentrations are not as easily indicative of loads. For stormwater BMPs, quantifying 

water quality performance through load reduction is directly beneficial because 

quantification of loads more easily translates to contributions towards TMDL goals. 

Further, stormwater post construction standards (often expected to be achieved through 

BMPs) use vague language when stating water quality standards. For example, in 

Wisconsin, 80% total suspended solids reduction is required without specifying 

concentration or load, and in Michigan the requirement is to treat the first inch of runoff 

or 90% of all runoff, with no definition of what “treat” means. Thus, both concentration 

and load measurements of BMP performance are important for assessing BMPs from a 

regulatory and systematic perspective.  

This work demonstrates that BMP performance efficiencies and vulnerabilities 

differ depending on the context of concentration or load. The preliminary plot of 

concentration, volume and load against individual storm traits showed clear relationships 

with volume and load to depth and return period, but no relationship with concentration. 

Further, the storms most likely to cause leaching varied depending on if that leaching was 

considered as concentration elevation or load elevation for TN and DIN. Therefore, 
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future work should monitor water quality through both frameworks, or be very explicit 

about which framework is being used as conclusions regarding concentration and load 

cannot be assumed to be the same.  

5.5 Conclusions 

 Results from this objective show that storm conditions impact stormwater 

influent, effluent, and treatment efficiency for nutrient concentrations, volumes, and 

loads. This conclusion was reached by addressing two tasks, analyzing stormwater 

influent and effluent concentrations, volumes, loads, and the changes in these metrics 

across variable storm traits, and among 5 clustered storm groups. Performing both tasks 

demonstrated that clustering methods can reduce the quantity of statistical tests and offer 

more realistic means of comparing BMP performance under varying storm conditions. 

Towards the objective’s goal of quantifying the impact of storm characteristics on BMP 

nutrient management, this work revealed consistent volume treatment across diverse 

storm conditions, and a divergence of performance trends depending on the water quality 

framework of concentration or load. Finally, this objective identifies and contextualizes 

the storm condition where nutrient treatment is least effective, , identifying TN 

vulnerability to large & infrequent storms, DIN and TP vulnerability to arid climate 

storms, and DIP vulnerability to intense storms.  
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6. CONCLUSIONS 
 
 

Water is essential to life. Yet in urban areas where most of the world’s population 

resides, waterways are plagued by urban stream syndrome. As with any syndrome, 

combatting it must entail both knowledge of a syndrome’s spread, and understanding of 

treatments. This dissertation increases scientific understanding of the spread of urban 

stream syndrome in a socio-economic context and contributes to increased understanding 

of the treatment of urban stream syndrome with stormwater BMPs in diverse 

environmental conditions.  

6.1  Key Findings 

Objective 1 explored anthropogenic effects on water quality and the 

heterogeneous distribution of degraded streams in the urban watershed of the Rouge 

River in metropolitan Detroit, Michigan. Benthic macroinvertebrate data collected by 

volunteer scientists was aggregated into a Stream Quality Index (SQI) to define long-term 

water quality patterns. Spatial dependence of the data was assessed with spatial stream 

network models incorporating socio-economic and environmental predictors. The best 

model included poverty as an explanatory variable with a negative relationship with 

stream quality. SQI predictions under true watershed conditions revealed a 1% decrease 

in SQI associated with 1% increase in poverty. This work demonstrated the benefits of 

volunteer science and spatial modeling methods for urban stream modeling. The finding 

of inequitably distributed water quality impairment in urban streams underscores the 

importance of focused restoration in economically oppressed urban areas. 

Objective 2 conducted a meta-analysis of vegetated BMPs in the International 

Stormwater BMP Database and compared influent and effluent nitrogen and phosphorus 
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concentrations to quantify BMP effect on nutrient management across climates. BMP 

effect on nutrient concentration change was compared between vegetated BMPs in wet 

and dry climates. Meta-analysis with subgroup analysis determined differences between 

wet and dry climates and among vegetated BMP types. Across both wet and dry climates 

BMPs leached DIP and TP, increased the fraction of dissolved inorganic P (DIP:TP), and 

decreased dissolved N:P ratios. Dry climate BMPs leached DIP and TP more consistently 

and at a higher magnitude than wet climate BMPs, and bioretention leached more DIP 

than grass strips and swales.  

 Objective 3 quantified the impact of diverse storm conditions on BMP water 

quality performance through both a concentration and load framework. Like Objective 2, 

water quality treatment performance data from the International Stormwater Database 

was used in conjunction with external storm characteristic data. Quantile-based 

comparisons of water quality metrics and storm characteristics showed that depth and 

return periods increased volumes and loads of influent and effluent for all N and P 

species. Clustering storm characteristics revealed five distinct storm types, which 

featured different BMP treatment between large & infrequent storm event and all other 

storms. However, closer investigation of the removal performance and likelihood of 

leaching events revealed that each analyte had a distinct vulnerability to a storm group. 

This objective revealed that arid climate storms are most likely to produce elevated DIN 

and TP concentrations relative to load, but that high hydrologic performance for these 

storms negated the concentration leaching effect. Further, TN, DIN, and TP load removal 

is achieved for all storm types, but is least effective for large & infrequent storms for N 
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species and for arid climate storms for TP. The worst storm condition for DIP was intense 

storm, which tended to leach DIP load.   

6.2  Future Work  

Urban water quality degradation is a complex problem, and this work advances 

our understanding of the socio-economic distribution of urban stream syndrome, and the 

reliability of BMPs in diverse climates and storm conditions. However, this work offered 

three major preliminary findings and further work is necessary to contextualize their 

impact, and ultimately work to apply this knowledge toward improving urban water 

quality.  

First, objective one provided new information about the disparate distribution of 

degraded stream quality in high poverty areas. A model showed that this relationship 

existed across multiple future watershed scenarios, where watershed characteristics 

(sedimentation clarity and impervious land use) were universally improved across the 

watershed. However, it would be a worthwhile task to model the resulting water quality if 

watershed conditions were improved in targeted high-poverty areas. This could be done 

by modeling higher quality sedimentation and impervious land use conditions specifically 

in high poverty areas and examining the modeled change in stream quality under these 

improved conditions. This research could also integrate socio-economic water quality 

disparities with watershed-level BMP implementation. Existing modeling efforts have 

studies the impact of BMP placement for watershed- level water quality improvements 

(Hung et al., 2020; Pennino, McDonald, & Jaffe, 2016), but modeling hot-spot BMP 

implementation with socio-economic considerations would be a beneficial next step 

towards creating more equitable watersheds.   
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The second objective illustrated that phosphorus concentrations in stormwater 

increase through BMPs and shows that this increase is more severe in dry climates. 

Defining this sensitivity of P concentration management in dry climates is an important 

contribution towards understanding urban nutrient management in stormwater under a 

changing climate. However, understanding the climate variability of BMP water quality 

performance is complex and much work is still needed to fully understand this topic. 

Namely, water quality management should also consider the load reduction of BMPs, and 

more information is needed about the causational drivers behind the observations 

presented in Objective two. First, objective two focuses entirely on concentrations as the 

water quality metric and does not make any conclusions regarding load change. 

Concentrations are impacted by volume reduction and nutrient retention mechanisms and 

can’t be assumed to indicate trends in load treatment and reduction. Therefore, it would 

be beneficial to repeat the work presented in objective two with load data to determine 

the impact of climate on BMP load performance, a water quality metric important to 

monitor for total maximum daily load regulations. Second, objective two presented 

multiple causational structures that may explain the concentration changes observed 

including elevated influent concentrations, arid climate biogeochemistry, and varying 

BMP goals, designs, and regional dominance. However, distinguishing between these 

causational structures remains difficult, thus further research regarding BMP nutrient 

treatment performance is needed, especially for nitrogen species in arid climates, where 

data was limited in this study. In particular, ample data already exists to characterize 

stormwater quality by region, and could be extended to a study of variable stormwater 
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chemical composition by regional aridity (Balderas Guzman et al., 2022; Voter & 

Loheide, 2021).  

Finally, objective three addressed a key gap from objective two – by presenting 

results about varying concentrations, loads, and changes in both concentration, load, and 

volume in different storm conditions. This objective contains two major contributions, 

both of which require further research. First, this objective showed that while 

concentration increase is common in multiple different storm types, this leaching of 

concentration largely did not translate to loads. This conversation of stormwater 

treatment through both the lenses of concentration and load is present in some literature 

regarding site-level performance but not yet presented explicitly for a large regional study 

(Hunt et al., 2012; Selbig, 2016; Smith et al., 2020). Second, objective three also presents 

a storm condition most vulnerable to poor nutrient removal performance for each analyte 

examined, but this data summarizes the performance of many BMPs of different ages, 

designs, types, drainage area characteristics, to name a few factors which may influence 

BMP nutrient management (Lintern et al., 2020). Thus, the conclusions of this objective 

should be compared to case studies of BMPs with many records of water quality 

treatment performance in diverse storm conditions, to determine whether the same 

conclusions are visible at the site level, where many of these conditions would be 

ubiquitous across storms.  

Overall, this dissertation presented multiple contributions that further our 

understanding of urban water quality distribution and BMP nutrient treatment 

performance. The future work suggested in this section offers multiple next steps to 

further contextualize the implications and implementation of this work.  
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APPENDIX 
 
 

Appendix A: Objective 1 Supplemental Information  

Appendix A1: Stream Quality Index Scorecard 
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Figure A29: SQI calculation sheet developed by the Michigan Clean Water Corps from 
their Macroinvertebrate Datasheet (pre 2020) (“Stream Macroinvertebrate Datasheet,” 
n.d.).   
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Appendix B: Objective 2 Supplemental Information 

Appendix B1: Forest plots of meta-analysis results.   

Figure B1.1: Forest plot of DIN subgroup analysis.  
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Figure B1.2: Forest plot of TN subgroup analysis 
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Figure B1.3: Forest plot of DIP subgroup analysis 
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Figure B1.4: Forest plot of TP subgroup analysis.  
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Appendix C: Objective 3 Supplemental Information 

Appendix C1: Performance of BMP concentration, volume, and load removal against 

isolate storm traits.   
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Figure C1.1. Boxplots comparing the log concentration, volume, and load removal 
fractions across groups of increasing return period for each analyte: TN, DIN, TP, and 
DIP, at each of the three condensed BMP types: bio-composite (BC), detention basin 
(DB) and wetland channel (WC). Return period is displayed with boxplots of increasing 
return interval through 5 groups: 4 quantiles and a high-range outlier group, where darker 
shaded boxplots indicate higher return intervals. Boxplots show the interquartile range of 
each water quality parameter shaded in a box with whiskers extending to the minimum 
and maximum water quality values without outliers.  Black circles represent all observed 
points, which are plotted on top of boxplots to convey the counts and distribution of data 
summarized within each boxplot. The red horizontal line is the logged removal threshold, 
above which effluent values are higher than influent values, indicating leaching; and 
below which effluent values are lower than influent values, indicating retention.  



193 
 

 

Figure C1.2: Boxplots comparing the log concentration, volume, and load removal 
fractions across groups of increasing peak hourly intensity for each analyte: TN, DIN, 
TP, and DIP, at each of the three condensed BMP types: bio-composite (BC), detention 
basin (DB) and wetland channel (WC). Peak hourly intensity is displayed with boxplots 
of increasing return interval through 5 groups: 4 quantiles and a high-range outlier group, 
where darker shaded BOXPLOTS indicate higher intensities. Boxplots show the 
interquartile range of each water quality parameter shaded in a box with whiskers 
extending to the minimum and maximum water quality values without outliers.  Black 
circles represent all observed points, which are plotted on top of boxplots to convey the 
counts and distribution of data summarized within each boxplot. The red horizontal line 
is the logged removal threshold, above which effluent values are higher than influent 
values, indicating leaching; and below which effluent values are lower than influent 
values, indicating retention. 
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Figure C1.3: Boxplots comparing the log concentration, volume, and load removal 
fractions across groups of increasing antecedent dry period for each analyte: TN, DIN, 
TP, and DIP, at each of the three condensed BMP types: bio-composite (BC), detention 
basin (DB) and wetland channel (WC). Antecedent dry period is displayed with boxplots 
of increasing return interval through 5 groups: 4 quantiles and a high-range outlier group, 
where darker shaded boxplots indicate longer dry periods. Boxplots show the 
interquartile range of each water quality parameter shaded in a box with whiskers 
extending to the minimum and maximum water quality values without outliers.  Black 
circles represent all observed points, which are plotted on top of boxplots to convey the 
counts and distribution of data summarized within each boxplot. The red horizontal line 
is the logged removal threshold, above which effluent values are higher than influent 
values, indicating leaching; and below which effluent values are lower than influent 
values, indicating retention. 
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Appendix C2: Clustering Selection.  

 
Figure C2.1: Elbow plot (A) and silhouette plot (B) indicating the ideal selection of a k-
value for use in statistical clustering.  
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Appendix C3: Influent and effluent comparison by storm group for detention basin and 

wetland channels.  

Figure C3.1 Comparison of TN, DIN, TP and DIP concentrations, volumes, and loads in 
influent and effluent by storm groups for detention basins. Counts of the number of 
paired influent and effluent data points per storm group are also provided in 
accompanying tables. Storm group labels 1-5 represent the 5 storm groups assigned by 
the clustering algorithm: intense, dry climate, large & infrequent, small & common, and 
long dry period. Boxplots display the interquartile range of observations with whiskers 
indicating minimum and maximum values without outliers. 
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Figure C3.2 Comparison of TN, DIN, TP and DIP concentrations, volumes, and loads in 
influent and effluent by storm groups for wetland channels. Counts of the number of 
paired influent and effluent data points per storm group are also provided in 
accompanying tables. Storm group labels 1-5 represent the 5 storm groups assigned by 
the clustering algorithm: intense, dry climate, large & infrequent, small & common, and 
long dry period. Boxplots display the interquartile range of observations with whiskers 
indicating minimum and maximum values without outliers.  
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Appendix C4: Tables providing summary statistics about of removal fraction for bio-
composite BMPs.  
Table C4.1: P-values for one-sample Wilcoxon sign rank test indicating the likelihood 
that a distribution of concentration, volume, or load removal fraction's true mean value is 
not equal to one. P-values are provided for each analyte TN, DIN, TP, and DIP, for each 
storm group. Green shaded boxes indicate strong or marginal likelihood of retention 
(removal fraction statistically less than 1) and orange shaded boxes indicate strong or 
marginal likelihood of leaching (removal fraction statistically higher than 1). Strong 
likelihood is considered p-values <0.05, and marginal likelihood is considered p-values 
<0.10.   

Analyte Metric 
1: 

Intense 
2: Dry 

Climate 

3: Large 
& 

Infrequent 

4: Small 
& 

Common 

5: Long 
Dry 

Period 

TN Concentration 0.19 - 0.45 0.49 NA 

 Volume <0.01 - 0.30 <0.01 NA 

 Load <0.01 - 0.27 <0.01 NA 

DIN Concentration 0.73 <0.01 1 0.60 - 

 Volume <0.01 0.02 0.64 <0.01 - 

 Load <0.01 0.87 0.95 <0.01 - 

TP Concentration <0.01 <0.01 0.03 <0.01 0.06 

 Volume <0.01 <0.01 0.08 <0.01 <0.01 

 Load 0.48 0.15 0.47 <0.01 0.59 

DIP Concentration <0.01 <0.01 0.12 <0.01 NA 

 Volume <0.01 0.02 <0.01 <0.01 NA 
 Load 0.08 0.80 0.72 0.05 NA 
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Table C4.2: Percentages of events that resulted in net leaching or removal of 
concentration, volume, and load for each of the 4 analytes: TN, DIN, TP, and DIP.  

Analyte n WQ Metric % Leaching % Retain 

TN 169 

Concentration 43 57 

Volume 11 89 

Load 12 88 

DIN 221 

Concentration 50 50 

Volume 21 79 

Load 22 78 

TP 426 

Concentration 58 42 

Volume 24 76 

Load 33 67 

DIP 275 

Concentration 80 20 

Volume 19 81 

Load 45 55 
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Table C4.3: Percentages of entries that caused leaching and retention by storm group for 
each of analyte: TN, DIN, TP, and DIP.  
Analyte WQ Metric 1: 

Intense 
2: Dry 
Climate 

3: Large 
& 
Infrequent 

4: Small 
& 
Common 

5: Long 
Dry 
Period 

  
Leach/ 
Retain 

Leach/ 
Retain 

Leach/ 
Retain 

Leach/ 
Retain 

Leach/ 
Retain 

TN Concentration 32.7 / 
67.3 

- 50.0 / 50.0 48.5 / 
51.5 

0 / 100 

 
Volume 13.5 / 

86.5 
- 25.0 / 75.0 8.7 / 91.3 0 / 100 

 
Load 11.5 / 

88.5 
- 25.0 / 75.0 11.7 / 

88.3 
0 / 100 

DIN Concentration 45.5 / 
54.5 

94.4 / 5.6 30.8 / 69.2 48.1 / 
51.9 

- 

 
Volume 16.4 / 

83.6 
22.2 / 
77.8 

46.2 / 53.8 20.7 / 
79.3 

- 

 
Load 21.8 / 

78.2 
33.3 / 
66.7 

38.5 / 61.5 18.5 / 
81.5 

- 

TP Concentration 67.6 / 
32.4 

77.9 / 
22.1 

66.7 / 33.3 49.0 / 
51.0 

61.5 / 
38.5 

 
Volume 24.3 / 

75.7 
13.2 / 
86.8 

22.2 / 77.8 27.7 / 
72.3 

0 / 100 

 
Load 36.5 / 

63.5 
48.5 / 
51.5 

27.8 / 72.2 28.5 / 
71.5 

30.8 / 
69.2 

DIP Concentration 81.6 / 
18.4 

88.9 / 
11.1 

41.7 / 58.3 79.5 / 
20.5 

100 / 0 

 
Volume 75.5 / 

24.5 
22.2 / 
77.8 

0 / 100 17.9 / 
82.1 

0 /100 

 
Load 53.1 / 

46.9 
50.0 / 
50.0 

33.3 / 66.7 43.6 / 
56.4 

 0 / 100 
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