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ABSTRACT 

EVALUATING THE IMPACT OF LAND USE CHANGES, DRIVERS OF TMDL 

DEVELOPMENT, AND GREEN INFRASTRUCTURE  

ON STREAM IMPAIRMENTS 

 

 

Charitha Jayasri Gunawardana 

 

Marquette University, 2023 

 

 

Despite the water quality improvements and regulatory advancements over the 

last 50 years since the enactment of the Clean Water Act, water bodies within the United 

States are still impaired for a broad range of contaminants from non-point source 

pollution. Improving watershed management approaches to meet this challenge will 

require a greater understanding of (1) how changes within a watershed, such as changing 

land use, impact stream water quality, (2) what influence socioeconomic, spatial and 

political factors may have on the progress towards meeting water quality goals, such as 

those set within Total Maximum Daily Loads (TMDLs), and (3) how specific best 

management practices can be designed to address water body impairments. First, land use 

within a watershed is known to have a direct impact on downstream water quality; 

however, temporal dynamics of these relationships are ill-defined. This is an important 

gap as management approaches are largely compartmentalized among land use types. 

Additionally, while management plans can span several decades, the impact of land use 

changes on water quality is often overlooked. Therefore, this dissertation evaluates land-

use changes and their relationship to discharge and water quality trends at stream gages 

across the U.S. Second, the TMDL program is the primary regulatory lever in the U.S. for 

addressing non-point source pollution, but its implementation has been uneven across 

states. This could be due to the diverse socioeconomic, spatial, and political factors of 

each state. This dissertation therefore seeks to define the influence of these factors on 

indicators of TMDL progress. Finally, at the site level, management actions to meet 

regulatory permits include the use of green stormwater infrastructure to capture, treat, and 

infiltrate runoff at the source. One of the largest sources of impairments in the TMDL 

program is temperature; however, it is unclear the degree to which green stormwater 

infrastructure in series mitigates runoff temperatures during summer storms. To address 

this gap, this dissertation analyzes the temperature mitigation potential of interconnected 

green infrastructure practices through field observations. Altogether, the outcomes of this 

dissertation help to advance our understanding of how watershed planning, regulatory, 

and engineering actions affect downstream water quality. 
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1. INTRODUCTION 

Protecting the quality of our surface waters such that they are fishable, 

swimmable, and drinkable has been a key environmental priority, as demonstrated by 

legislation in the U.S. from the 1948 Water Pollution Control act to the 1972 Clean Water 

Act (CWA) and its many addendums (Hines, 2013). Since the time of these acts, focus on 

protecting the water quality of the nation’s water bodies has led to increased expenditures 

on pollution control, reductions of pollutants from point and non-point sources, and a 

subsequent decrease in pollution levels in surface water bodies (Adler et al., 1993). 

However, despite the successes in pollution mitigation, a growing number of our nations 

water bodies are still impaired for a broad range of pollutants, demonstrating a need for 

continued improvements in watershed management efforts. 

Poor water quality has staggering ramifications on humans, plants, and animal 

life. While water quality related outbreaks in the United States has drastically reduced 

since the enactment of the CWA, more than 7 million people are estimated to get sick in 

the U.S. every year due to waterborne diseases caused by exposure to environmental 

sources, recreational activities, and drinking water (Collier et al., 2021). In addition, 70% 

of the nation’s rivers and streams in 2022 are impaired based on the ability to sustain 

their biological diversity (ATTAINS | Water Data and Tools | US EPA, 2022).  For 

example, from 2008 to 2014, the percentage of streams impaired by excessive 

phosphorous has increased by 11% (ATTAINS | Water Data and Tools | US EPA, 2022). 

In addition, for many states temperature is the single largest impairment due to increasing 

stream temperatures that threaten many ecosystem functions that rely on unique 
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temperature thresholds. Temperature in major rivers and streams across United States 

was found to be rising at a rate of 0.08 Celsius per year, largely due to increases in air 

temperatures and urbanization (Kaushal et al., 2010). This rise in stream temperatures can 

have adverse effects on organisms, such as Chinook salmon, whose pre-spawn mortality 

rate increase with increasing stream temperatures (Bowerman et al., 2021). Finally, 

concentrations of emerging contaminants such as PFAS, antibiotics, microplastics, 

pharmaceuticals, and hormones have been rising over the last decade and have been 

shown to have adverse impacts such as cancer and hormonal imbalances in humans, 

fatalities in environmental organisms, and the increase of antibiotic resistant genes 

depending on contaminant concentrations (Baquero et al., 2008; Cole et al., 2011; 

Domingo & Nadal, 2019; Richardson & Ternes, 2018). Solutions to these challenges 

require a greater understanding of the impact planning, management, and best 

management practices have on the water quality of the nation’s water bodies.  

Planning and management are critical steps for improving the water quality of the 

nation’s water bodies. While water quality implementation (management) is usually done 

in watershed scales, planning can span across multiple spatial extents since water quality 

is a global concern. In the United States, the protection of water quality is enforced 

through the CWA section 208 and 303(e) which instructs states to develop and maintain 

continuing planning processes for water quality management. Two of the most impactful 

programs from the CWA are the National Pollution Discharge Elimination System 

(NPDES) and the Total Maximum Daily Loads (TMDL) programs. The NPDES program 

is a permit system that regulates point source pollution, which includes municipal 

separate storm sewer systems (MS4s) that discharge stormwater at outfalls. The TMDL 
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program requires states to assess their water bodies based on designated uses and whether 

the waters meet numerical criteria to enable those uses, list those that are impaired, and 

for those that are impaired, develop a pollutant reduction target and load allocation to all 

sources (point and non-point sources) of the pollutant within the watershed.  While these 

programs allow states to plan and manage watersheds based on current water quality 

conditions, they do not incorporate future projections of changes that could affect water 

quality such as land use or climate. An analysis of 124 water quality management plans 

across the nation found that they lack innovative planning methods that consider future 

watershed conditions such as population growth, climate change, and land use changes 

(Mika et al., 2019). Yet considering changes in these conditions within water quality 

management plans can make them more resilient to changes in climate, land use, or 

socioeconomics, by incorporating future projections of watershed conditions within the 

planning process (Hung et al., 2020; Mashaly & Fernald, 2020; Phan et al., 2021; G. 

Wang et al., 2016). Therefore, it is important to understand how temporal changes in 

watersheds affect water quality for better planning that incorporates future scenarios as 

well as how socioeconomics impact water quality management processes. 

The difficulty of attributing watershed changes to changes in downstream water 

quality is a crucial challenge for watershed planners and managers. Two methods to do so 

include capturing the impact of changes through water quality monitoring and predicting 

the impact of changes through modelling. The largest monitor of water quality in streams 

and rivers is the USGS, which has more than 11,000 continuous in-situ monitoring gages. 

However, despite these gages and others, only about 10% of all the water bodies in the 

nation are monitored in-situ (Sridharan et al., 2022), and this data alone can only help to 
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understand the impact that current and past actions and changes have on water quality. In 

addition, modelling methods can be applied to predict the impact of watershed changes 

on stream water quality. However, modeling approaches vary and a review of 14 

different models used for TMDL studies identified several common limitations including 

large data requirements, spatial limitations, limited water quality parameters, and an 

ability to run limited storm intensities (Borah et al., 2018). Recent advances in artificial 

intelligence applied to modeling complex water quality dynamics within watersheds 

could overcome some, but not all, of these limitations such as limited data availability 

(Tiyasha et al., 2020). An alternative approach to understand the impact of watershed 

changes to stream water quality is to use empirical models and relationships that describe 

water quality behavior based upon characteristics of the watershed. Advantages of 

applying empirical models are their straightforward application and limited 

computational or data needs. They therefore have the potential to provide planning-level 

assessments that watershed planners can utilize to develop resilient and wholistic 

management strategies. 

Development of wholistic watershed management strategies is also impeded by 

resource availability, politics, and socioeconomics. Funding for water resource 

management in the U.S. comes mainly from the federal government and its organizations, 

while states and NGOs also provide limited resources (Effective Funding Frameworks for 

Water Infrastructure | US EPA, 2023). Due to funding limitations, local governments 

have formed collaborative watershed management bodies that together leverage external 

funding opportunities, but have avoided binding water quality goals in their planning due 

to political tensions (Koontz & Newig, 2014; Yoder et al., 2021). Integrated regional 
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water management in California has also shown that funding for water management is 

limited and competitive and decisions are impacted by the political climate (Blomquist & 

Schlager, 2006; Lubell & Lippert, 2011). In addition, socioeconomics can impact 

watershed management due to the role that the public has in the development of 

watershed management plans. The Clean Water Act has clear provisions for public 

involvement in all processes of watershed management that can include assessing water 

quality by citizen scientists, directing agencies to impaired water bodies as within a 

community, commenting on water quality planning drafts (Public Participation in Listing 

Impaired Waters and the TMDL Process | US EPA, 2022) and influencing policy 

development through political activism. To this end, education level and socioeconomic 

status of these participants have shown to be significant factors in influencing watershed 

planning and management (Larson & Lach, 2008; Stanford et al., 2018).  

Finally, nearly every watershed management plan incorporates best management 

practices for reducing pollution, and therefore it is important for planners and managers 

to understand the efficiency of all the tools at their disposal. Green infrastructure is one 

such tool that can mitigate adverse effects of storm water runoff including reduced runoff 

volumes and pollutants (J. Wang & Banzhaf, 2018). However, the potential for 

temperature mitigation is less understood, which may pose a challenge for watershed 

management plans as temperature is one of the leading impairments through the TMDL 

program. As storm water management plans incorporate green infrastructure to meet 

water quality goals, it is important that their impact for addressing a broad range of 

pollutants is understood. 
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Given the above understanding, the overall objective of this thesis is to evaluate 

and improve our understanding of the engineering, regulatory, and socioeconomic 

principles influencing stormwater management actions which affect downstream water 

quality and quantity. To that extent, the following sections discuss three research gaps 

that were identified for further scrutiny: (1) land use changes in watershed and their 

relationship to water quality, (2) impact of spatial and socioeconomic factors on Total 

Maximum Daily Load progress, and (3) temperature mitigation of green infrastructure 

systems. 

1.1. Land Use Changes in Watersheds and Their Relationships to Water Quality. 

Land-use patterns change over time due to social, economic, political, and 

geographical conditions of populations. This includes increasing populations and 

expanding economies that grow the demand for developed land (Creutzig et al., 2019). 

An escalating number of people are moving to cities, and it is projected that 68% (7 

billion) of the global population will live in cities in 2050 compared to the 55% (4 

billion) living in 2018 (Ritchie & Roser, 2018). To meet the increased demand for 

housing, commercial space, infrastructure, industries, and transportation, these cities must 

modify previously undeveloped space for their economic growth. Furthermore, due to 

socio-economic changes, agriculture land and other natural land such as forests 

compositions have and will continue to undergo dramatic changes (Winkler et al., 2021). 

Land use has a complex relationship to water quality in streams (A. Baker, 2006). 

Specifically, anthropogenically modified land adds numerous pollutants to watersheds 

that get transported to downstream waterbodies through stormwater runoff. For example, 

agriculture land releases both natural and manmade nutrients, antibiotics, pesticides, 



7 
 
 

heavy metals, and sediments to downstream waterbodies, which can lead to water quality 

impairments (Giri & Qiu, 2016; Paudel & Crago, 2021); however, the empirical 

relationship between agricultural land use and downstream pollution is variable. In many 

studies, the presence of agricultural land use enhances the sediment and nutrient 

concentrations within receiving water bodies (Delia et al., 2021; Delkash et al., 2018; 

Mello et al., 2020); however this is not always the case. In the United States, it was found 

that flow normalized concentrations of NH4, suspended solids, and total nitrogen actually 

decreased overall in receiving waters from agricultural land from 1982-2012 (Stets et al., 

2020). In Jordan Lake watershed in North Carolina, over a period of 20 years, the annual 

total nitrogen loads were found to be negatively correlated to agriculture land percentages 

(Tasdighi et al., 2017). The variation in the relationship of agricultural land to 

downstream water quality could be due to several factors including the overall watershed 

composition (e.g., majority urbanized, forested, or agriculture) (Tu, 2011). For example, 

the presence of agricultural and natural land uses (wetlands, grasslands, forest, etc.) 

within the watershed where natural land uses can act as a buffer, mitigating the effects of 

nutrient export (Fasching et al., 2019).  

In addition, runoff from urbanized cities is complex and could contain chemicals 

such as heavy metals, micro plastics, tire wear particles, and PFAS, as well as other 

pollutants such as road salts that are applied during winter seasons (Giri & Qiu, 2016; 

McGrane, 2016). Urban runoff therefore can be the primary cause of impairments to 

water bodies that no longer meet applicable water quality standards. While over the years 

nutrient and total suspended solids loading from urban spaces has reduced significantly 

(Stets et al., 2020), many studies have shown that urban sprawl has strong positive 
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correlations to nutrient loads to streams and rivers (Ullah et al., 2018; S. Yao et al., 

2023).  This could contribute to nutrient impairments as in the U.S., 58% of the assessed 

rivers and streams are impaired due to nutrients while 40% of the assessed lakes, 

reservoirs, and ponds have excess nutrients (ATTAINS | Water Data and Tools | US EPA, 

2022). It has also been shown that an increase in imperviousness results in decreased 

stream baseflow (Shuster et al., 2007), yet imperviousness alone may not be the best 

indicator of water quality as land cover has been shown to be a better predictor of 

downstream water quality than imperviousness (Schueler et al., 2009).  It is therefore 

imperative to understand the relationship of land use changes in watersheds to changes in 

water quality of downstream waterbodies.  

To that end, while the spatial relationships between land use patterns and 

downstream water quality have been widely studied (Wan et al., 2014; F. Zhang et al., 

2018), it is less clear how temporal changes in land use impact observed trends in 

downstream water quality. This is partly because existing empirical studies that do 

investigate temporal associations between land use change and downstream water quality 

have limitations that influence the generalization of their findings. For example, many are 

geographically constrained to either a single watershed or smaller geographic regions 

(Meneses et al., 2015; Pandey et al., 2023; Risal et al., 2020; J. Smith et al., 2015; L. 

Wang et al., 2023; Wijesiri et al., 2018). While these geographically limited studies 

provide valuable insights, their applicability is constrained to their unique 

geomorphologic, anthropogenic, and climatic contexts. Furthermore, most of these 

studies use field data to assess how water quality relates to the land use of that watershed 

at a defined time using a model form similar to water quality = f (land use)  (Haidary et 
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al., 2013; S. Li et al., 2009). While these correlations provide valuable information for 

understanding the impact of land use on stream water quality in ungaged basins, they are 

not applicable to predicting water quality based on future expected land use changes. This 

is because they could be biased towards historical land development practices that do not 

represent the hydrologic impact of contemporary land use changes. For example, 

contemporary urban land development will have to adhere to stricter stormwater 

treatment regulations that were not required for historical development. Defining the 

impact of recent land use changes on water quality is an important gap because this 

understanding is needed in developing watershed management plans that can reach long-

term water quality goals.  

In some cases, the impact of land use change on water quality can be estimated 

through modeling approaches that are able to consider land and its impact on pollutant 

transport across broad spatial scales (Fan & Shibata, 2015; R. Wang & Kalin, 2018); 

however, models are constrained by data availability and model assumptions necessary 

for simulating the complex physiochemical processes involved in pollutant buildup and 

transport in stormwater runoff.  For example, one of the most commonly used physical 

models for water quality studies is the Soil and Water Assessment tool (SWAT) (Astuti et 

al., 2019; Hovenga et al., 2016; Risal et al., 2020). However, this model and others 

require large amounts of data for proper parameterization and model calibration (Akoko 

et al., 2021), which in most cases are not extensively available for large temporal and 

spatial scales. An evaluation of SWATs ability to simulate E. coli concentrations based 

on land cover data in a watershed in Georgia, USA, resulted in simulated bacterial 

concentrations with a low R2 range of 0.32 – 0.34 (Sowah et al., 2020). This low 



10 
 
 

predictability is largely due to limitations and assumptions made using current knowledge 

that resulted in uncertainties in the model outputs. Furthermore, most modelling software 

relies on assumptions and empirical relationships that are limited by current knowledge. 

Therefore, modeling approaches have limited value in delineating between diverse and 

distributed pollutant sources and their subsequent transport and impact on downstream 

pollution. Given these limitations, it is not surprising that the impact of land use changes 

on trends in downstream water quality from monitoring and modeling studies is unclear. 

For example, while some have shown that increases in agricultural and urban land-uses 

results in a subsequent increase of total suspended solid (TSS) loads in downstream water 

bodies (Ahearn et al., 2005; Hovenga et al., 2016), others have found the opposite effect, 

likely due to the impact that best management practices in agricultural and urban land 

areas have on reducing pollution from runoff (J. C. Murphy, 2020; Stets et al., 2020).  

A lack of empirical studies that evaluate the impact that changes within 

watersheds have on changes in water quality, in addition to modeling limitations, has 

limited our ability to develop wholistic management plans. To overcome this limitation, 

generalized models that relate water quality changes to land use changes could be used to 

project how water quality of a watershed might change based on limited data (current 

water quality and expected land use percentage). Doing so can improve watershed 

management and planning efforts by making management actions more resilient and 

economically efficient. Specifically, watershed actions could be designed and developed 

to incorporate future needs, thereby reducing risk associated with the impact of land use 

changes on water quality.  This would limit the need to make excessive changes to 

management plans and solutions due to future land use changes, reducing economic 
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burdens. Therefore, there is a need to understand the correlations between land use 

change and water quality of the nation’s water bodies at a broad spatial scale. 

1.2. Total Maximum Daily Loads for Water Quality Management 

Within the United States, the quality of most freshwater bodies is regulated 

through the Clean Water Act (CWA). Section 303(d) of the CWA requires states to 

assess their water bodies and establish Total Maximum Daily Loads (TMDLs) for water 

bodies that are identified as impaired. This program, while imperfect, is the only federal 

statutory method capable of addressing non-point source pollution in the nation’s water 

bodies and relies on a system of policy implementation where the federal government 

delegates primary authority to agencies at the state level. The TMDL development 

process, federally mandated by EPA, has three distinct steps that need to be implemented 

in sequence: (1) assessment of surface water bodies, (2) listing impaired water bodies, 

and (3) development of Total Maximum Daily Loads to impaired water bodies. Once 

TMDLs are developed, these limits can only be reached by reducing both point source 

and non-point source pollution. Point source pollution is limited through National 

Pollutant Discharge Elimination System (NPDES) permits which are regulated by section 

402 of the CWA. However, no federal regulation or authority exists to enforce pollutant 

reductions against non-point sources, including the enforcement of implementing TMDLs 

to achieve these target loads. Rather, the implementation of TMDLs are incentivized. For 

example, the CWA section 319 grant programs provide funding for  non-point source 

pollution controls when the control of point source pollution through NPDES alone 

doesn’t achieve TMDL goals (S. Jones, 2014).  
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Achieving water quality goals of a TMDL is a challenge for any watershed. For 

example, a TMDL was developed for the Neuse River and Estuary in North Carolina in 

1999, which has since led to a reduction in nitrate and nitrites but an increase in organic 

nitrogen (Lebo et al., 2012). Perhaps the largest efforts are towards the TMDLs for 

Chesapeake Bay that were approved by the EPA in 2010 and required more than 24% 

reduction of both nitrogen and phosphorus loading. This TMDL is unique in that it spans 

5 states – Maryland, Pennsylvania, Virginia, New York, and West Virginia – who were 

mandated to reduce 60% of the target reductions by 2017, however, only West Virginia 

has achieved it (Ritter, 2019). In contrary, an analysis of 63 watersheds in Ohio and West 

Virginia revealed that 65% of them had TMDL implementation projects and 38% of 

those had observed non-point source pollutant load reductions (Hoornbeek et al., 2013). 

These examples show that, while the implementation of TMDL within watersheds may 

vary, if done well it can result in improved water quality.  

Though the TMDL is approved by the EPA, TMDL development is the 

responsibility of state agencies therefore, the extent to which states assess water bodies, 

identify impairments, and develop TMDLs can vary from state to state. It has been almost 

30 years since EPA published regulations establishing TMDL requirements (Houck, 

1997) and therefore presents an opportune time to reflect on the progress of the TMDL 

programs across the U.S.. This reflection is valuable in understanding what factors may 

contribute to advancing or prohibiting the progress of TMDLs. U.S. states vary in their 

populations, geography, demographics, and economic output, which may influence both 

the approach and extent to which they enact water quality programs. To that end, there 

are a diversity of approaches to assessing and implementing TMDLs through monitoring 
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and modeling technologies. This includes assessment methods to monitor water quality 

parameters that range from detailed monitoring requiring scientific expertise to those that 

can be carried out by volunteer citizens (Loperfido et al., 2010; Nation & Johnson, 2016). 

For example, stream water quality assessments can be developed using in-situ gages from 

agencies such as USGS that continually collect multiple discharge and water quality 

parameters; however, these monitoring networks are not available in every stream, or 

every location within a stream, that would be needed for robust assessments. Therefore, 

the CWA allows the use of “all readily available and existing” data, which can include  

data gathered by diverse sources, such as universities and volunteer organizations (Brett, 

2017). For example, in the Chesapeake Bay watershed, citizen scientists have collected 

data that has been directly used to develop TMDLs and inform management decisions 

(Webster & Dennison, 2022). If citizen scientists and voluntary groups are properly 

trained and managed, they can help to improve TMDL development by water bodies 

(Brett, 2017; Nation & Johnson, 2016).  

In addition, due to the scarcity of watershed wide data for every pollutant of 

concern, a common method to develop TMDLs is using mathematical models. There are 

a wide array of methods to model TMDLs that require various levels of technical 

expertise for implementation (Frost et al., 2019; Sridharan et al., 2021). For example, 

models are developed using dissolved oxygen, turbidity, and chlorophyll distributions to 

assess habitat quality of streams (Hernandez Cordero et al., 2020). These models allow 

managers to assess habitat without frequent field visits and standardize habitat quality 

across multiple watersheds. Analyzing the 14 most current watershed models used in 

TMDL development shows that they vary in complexity and applicability (Borah et al., 
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2018). Most of these models are developed specifically for use in agricultural watersheds, 

while models such as HEC-HMS and SWMM can model mixed use watersheds. 

Furthermore, while these 14 models do not readily integrate with GIS software, remote 

sensing and GIS technologies have been used for watershed modeling successfully 

(Quinn, Kumar, & Imen, 2019). Using hyperspectral sensing data and spatial and 

modelling capabilities of GIS software, TMDLs for pollutants such as temperature, 

suspended sediments and algal biomass (through surrogates) have been developed 

(Quinn, Kumar, & Imen, 2019). Linking GIS to computational models such as SWMM 

can improve the TMDL process throughout all modeling, planning, and managing stages. 

The most recent developments in watershed modelling for TMDL include the use of 

machine learning techniques. An attempt to use five different machine learning methods 

to develop predictive models for water quality parameters such as nutrients, DO, and 

suspended sediments based on limited data that is publicly available have been 

successfully validated against field data (Adedeji et al., 2022). While machine learning 

models are being developed to predict water quality for different scenarios (R. Wang et 

al., 2021), they are yet to be used for TMDL development. 

While technical approaches to assessing water bodies and applying models to 

develop TMDLs are well defined and available for use, it is less clear the extent to which 

different states have implemented TMDL programs and the factors that contribute to their 

progress. This is important because understanding the factors that impact the progress of 

protecting the nations water bodies can help to improve TMDL methods and ultimately 

reach the designated goal of obtaining fishable, swimmable, and/or drinkable waters. One 

of the main challenges in developing TMDLs is the lack of data and uncertainties related 
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to various models used. Therefore, model calibration, verification, and validation steps 

are crucial components of this process. The ASCE Environmental and Water Resources 

Institute TMDL Analysis and Modeling Task Committee recently published a review of 

14 different models and their calibration and validation methodologies, uncertainty 

analysis, and future recommendations (Ahmadisharaf et al., 2019). The authors 

recommend that model selection should be carefully analyzed to fit the needs of the 

watershed and pollutants, and future research should be done to optimize validation and 

uncertainty analysis processes. To that end, machine learning has been utilized to 

quantify uncertainties in water quality index models (Uddin et al., 2023) and utilization 

of these methods in models such as SWAT and SWMM could be imminent in the near 

future. Apart from data and modelling challenges, institutional and socioeconomic 

challenges that impede the TMDL development have not been thoroughly studied. 

However, it has been shown that funding, public and stakeholder engagement, and 

agency interest and involvement have a considerable impact on TMDL implementation 

(Benham et al., 2008; Hoornbeek et al., 2013). Therefore, socioeconomic factors may 

also impact the process of TMDL development. 

However, the extent to which socioeconomics or the geography of a state 

influences the implementation of TMDLs is underexplored. This is a critical gap as 

socioeconomics, land use and environmental dynamics have been shown to be important 

factors in developing effective TMDL plans (Mirchi & WatkinsJr., 2012) and in 

implementing other aspects of the CWA, such as the National Pollutant Discharge 

Elimination System (NPDES) program (McDonald & Naughton, 2019). It has also been 

shown that water quality impairments have a negative impact on housing prices 
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(Papenfus, 2019). Water quality perception surveys of randomly selected 8,772 people in 

West Virginia has shown that per capita income has a positive correlation with 

environmental concerns (Andrew et al., 2019). Since the TMDL process has a public 

involvement component, the positive correlation between income and environment 

concerns of the public could mean that per capita income has an impact on TMDL 

development as well. In 20 urban watersheds in Iowa, USA, conductivity of the stream 

was positively correlated with population density, which itself was correlated to higher 

road densities, and phosphorus concentrations were negatively correlated with college 

degree attainment, which could have been due to lower solid-derived nutrient inputs from 

watersheds dominated with impervious surfaces (Wu et al., 2015). Finally, education, 

ethnic composition, age structure, land use, population density, and watershed area were 

all found to be significantly correlated with the water quality parameters in California 

streams (Farzin & Grogan, 2013). While these correlation studies do not necessarily 

reflect causation, these examples demonstrate how water quality may be impacted by the 

socioeconomic and spatial factors of a watershed; however, no studies have evaluated 

how they relate to the efforts to improve those impairments through TMDL development. 

This is important as the social context and economic resources could influence the ability 

and willingness of a state to pursue TMDL progress. 

There may also be regional similarities among states in their approach to 

managing water quality due to common geomorphologic or climatic similarities, or their 

presence in similar EPA regions. The US EPA is divided into 10 different regions with a 

regional office associated with each that is responsible for enforcing implementation of 

TMDL programs within their states. This regionalization of enforcement offices may 
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therefore lead to different levels of program development, as these regions have largely 

developed independently due to different factors such as water body priorities, litigation, 

and resource availability (Neilson & Stevens, 2002). However, no nationwide studies 

have evaluated the relationship between socioeconomics, regionalization, and TMDL 

implementation. Understanding these relationships could allow watershed managers and 

planners to better allocate resources and guide efforts to improve upon TMDL 

development programs. 

1.3. Runoff Temperature Mitigation by Green Infrastructure 

Temperatures in streams and rivers are increasing across the world, especially in 

streams that are impacted by urbanization (Kaushal et al., 2010). Within the U.S. TMDL 

program, temperature is second to bacteria as the most frequent number one cause of 

impairment in a state’s streams and rivers. While climate change plays a major role, this 

is exacerbated by anthropogenic land cover, such as impervious surfaces, that have a 

greater thermal absorptivity than natural land covers and a direct hydrologic connection 

to surface water bodies. These impervious surfaces capture solar radiation and transfer 

that energy to stormwater runoff and subsequent downstream water bodies (Herb et al., 

2008; Zeiger & Hubbart, 2015). This creates hydrologic urban heat islands, where urban 

streams have comparatively higher baseflow temperatures and are subject to greater 

temperature surges from stormwater runoff (Zahn et al., 2021) . Coupled with rising 

global air temperatures (Pachauri & Reisinger, 2007) and uncertainty in the hydrologic 

cycle (Huntington, 2006), this is likely to influence ecological processes and community 

shifts in freshwater bodies (Nelson & Palmer, 2007). This includes negative impacts to 

temperature-sensitive species (Caissie, 2006), increased contaminant toxicity (Patra et al., 
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2015) and a proliferation of toxic algal blooms (Griffith & Gobler, 2020). It is therefore 

imperative that stormwater is managed in a way that mitigates the temperature of 

stormwater runoff to protect human and environmental health. 

One potential management approach to increasing urban runoff temperatures is 

green stormwater infrastructure that captures, treats, and infiltrates stormwater runoff at 

the source. Green stormwater infrastructure has been shown to be an effective approach 

to manage stormwater volumes and pollutants in urban and agricultural settings (Clary et 

al., 2020; Regier & McDonald, 2022). Recently, it has been shown that a combination of 

green infrastructure (GI) practices at larger scales could achieve runoff reduction goals 

more effectively (J. Chen et al., 2019; Staccione et al., 2022; Y. Yao et al., 2022; J. 

Zhang & Peralta, 2019) and that a combination of rain cisterns, porous pavements, and 

bio retentions are the most cost effective considering space requirements, cost of 

implementation, and runoff reduction in urban spaces (Boening-Ulman et al., 2022; F. Li 

et al., 2021). Apart from runoff reductions, green infrastructure has also been proven to 

reduce runoff pollutants including total suspended sediments, total nitrogen, and total 

phosphorous (J. Chen et al., 2019; Choi et al., 2021) and improve air pollution (Kumar et 

al., 2019). In addition, it has been demonstrated as an effective means of reducing the 

urban heat island effect through lower ambient air temperatures (Balany et al., 2020). 

Green infrastructure can also reduce runoff temperatures through heat exchange 

that occurs when runoff filters through cooler green infrastructure plants and media. In 

the context of green infrastructure, there are several ways in which energy is transported 

and transferred including conduction (transfer of thermal energy by direct contact 

between molecules), advection (transfer of thermal energy by the bulk movement of 
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fluids), transpiration (process by which water is taken up by plant roots and then released 

into the atmosphere through leaves of plants), and evaporation (transfer of thermal energy 

through phase change of a substance). The most direct pathways to cooling stormwater 

runoff with high temperatures are through conduction, advection, and evapotranspiration 

(combination of evaporation and transpiration).  

When runoff enters a green infrastructure practice during warm summer months, 

it is filtered through a media that is likely cooler than the surface of surrounding 

watershed. This is because the media below the surface is not subject to direct thermal 

radiation; furthermore, the media or soil surface itself could be cooler than the 

surrounding watershed due to surface material, shading, and soil moisture evaporation. 

During filtration through the media, heat is primarily transferred through advective and 

conductive processes. Because of this, the physical parameters of the soil media, such as 

volumetric heat capacity and thermal conductivity, are important parameters that control 

the rates of conduction and advection (de Vries, 1975). GI also promotes runoff reduction 

through exfiltration, further reducing the total thermal energy received by water bodies. 

In addition, when considering timescales larger than storm events, evaporation acting in 

the uppermost layer of the soil surface and transpiration from the root uptake of water 

may contribute to heat exchange of runoff captured by green infrastructure. Temperature 

itself is also an important component to the hydraulic performance of green infrastructure 

as temperature of stormwater runoff entering a green infrastructure practice influences 

the infiltration rate due to temperature-dependent changes in viscosity (Lewellyn et al., 

2016). However, despite the potential for green infrastructure to reduce runoff 

temperatures and its importance in their overall performance, the impact of specific green 
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stormwater infrastructure types on temperature mitigation of urban stormwater runoff is 

underexplored.  

One type of green stormwater infrastructure that has potential for reducing the 

temperature of stormwater runoff is permeable pavements. These systems, which capture 

stormwater runoff through gaps between concrete or brick pavers on the surface and then 

filter and infiltrate through a trench filled with crushed aggregate, are effective at 

reducing stormwater runoff volumes and reducing pollutant concentrations (Sambito et 

al., 2021). Permeable pavements may mitigate runoff temperatures by redirecting 

stormwater through cooler permeable pavement media and soils. In addition, they have 

been shown to have lower surface temperatures than other permeable surfaces such as 

porous asphalt(Cheng et al., 2019); however, the comparative surface temperatures of 

permeable to impermeable pavers are unclear, with studies finding permeable pavers to 

be both lower (Cheng et al., 2019) and higher (LeBleu et al., 2019) than impermeable 

surfaces. This divergence could be due to variations in surface roughness or heat capture 

within saturated pore spaces that influence temperatures of these surfaces.  

Bioretention practices are perhaps the most studied green stormwater 

infrastructure practice for thermal mitigation; however, the most appropriate way to use 

them to meet downstream temperature goals is unclear. Bioretention practices have 

produced statistically significant reductions in both peak and mean temperatures during 

simulated rainfall events for watersheds that contain streams with temperature-sensitive 

trout species (Long & Dymond, 2014). Design components that influence temperature 

reductions in bioretention include the vegetated surface, the soil depth of effluent pipes, 

as well as the size of the contributing watershed area (M. Jones & Hunt, 2009). However, 
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bioretention alone may not be enough to reduce runoff temperatures to levels needed for 

temperature-sensitive species (H. Y. Chen et al., 2021; Ketabchy et al., 2019), and in fact 

at a watershed scale have been correlated to higher downstream water temperatures due 

to green infrastructures such as retention ponds with larger surface areas and shallow 

depths that absorb thermal energy (Jalali & Rabotyagov, 2020).  

One potential solution is connecting green infrastructure in series in a treatment 

train that can effectively reduce pollutants to acceptable levels. Connected green 

infrastructure in series have been shown to improve volume-based reduction goals 

(Wadzuk et al., 2017; Woznicki et al., 2018), and improve the removal of pollutants from 

stormwater runoff (Brodeur-Doucet et al., 2021; Winston et al., 2020). However, the 

impact of green infrastructure connected in series for reducing thermal pollution in urban 

stormwater runoff is underexplored. While research has demonstrated the cumulative 

effect of rain gardens and riparian buffers on receiving stream temperatures (R. M. 

Martin et al., 2021), there are no studies evaluating the impact of green infrastructure 

directly connected in series.  

Therefore, more research is needed to determine comparative thermal mitigation 

among practices, the appropriate design of those individual practices for optimizing 

temperature reductions, and the best placement and configuration for achieving 

watershed-level outcomes (R. M. Martin et al., 2021; Timm et al., 2020). Doing so can 

help inform watershed planners, managers, designers, landscape architects, and policy 

makers as they consider the benefit of using GIs in networks to mitigate the temperature 

of runoff that is discharged into urban water bodies.  
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2. RESEARCH GAPS AND OBJECTIVES 

The overall objective of this dissertation is to evaluate and improve our 

understanding of the engineering, regulatory, and socioeconomic principles influencing 

stormwater management actions which affect downstream water quality and quantity. 

Based on the literature review above, three main knowledge gaps were identified. The 

objectives of this dissertation to meet these gaps are: 

Objective 1. Analyze land-use changes and their relationship to discharge and water 

quality trends in the United States. 

In many cases, water management plans lack a wholistic approach that considers 

the impact of future land use projections. This may partly be due to the difficulty in 

attributing changes in land use to expected changes in stream water quality as modeling 

approaches to do so are constrained by data availability and model assumptions necessary 

for simulating the complex physiochemical processes involved in pollutant buildup and 

transport in stormwater runoff.  Empirical approaches that overcome these limitations are 

largely constrained to single watersheds or correlation studies based on a single point in 

time. This objective seeks to fill this gap by defining the relationships between changes in 

land use and changes in water quality based on USGS stream gage data (discharge, 

specific conductance, dissolved oxygen, and turbidity) data for multiple watersheds (60) 

over 9 years. 

Objective 2. Define the influence of socioeconomic and spatial variables on TMDL 

progress in the United States.  

The TMDL program is the federal statutory method of addressing non-point 

source pollution in the nation’s water bodies and relies on a system of policy 
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implementation where the federal government delegates primary authority to agencies at 

the state level. Therefore, the extent to which states assess water bodies, identify 

impairments, and develop TMDLs varies from state to state. While it is known that 

spatial factors, socioeconomics, and politics can influence management decisions and are 

correlated to water quality impairments, the effect of these indicators on TMDL progress 

is unknown. This is an important gap in knowledge as future planning for TMDL 

development would benefit from understanding what factors may contribute to advancing 

or prohibiting the progress of TMDLs.  Therefore, this objective assesses the progress of 

TMDLs across all U.S. states and defines the relationship between indicators of TMDL 

progress and socioeconomic, spatial, and political factors. 

Objective 3.  Monitor and analyze the temperature mitigation potential of 

interconnected green infrastructure practices. 

Temperature is a leading cause of stream impairments through TMDL 

assessments. This is due in part to runoff from urban watersheds that is heated from 

anthropogenic surfaces and subsequently increases the temperatures of receiving waters 

that it flows into. Green infrastructure may be a tool that can reduce runoff temperatures 

before they reach downstream water bodies. However, no studies have evaluated the 

ability of green infrastructure connected within a network to mitigate runoff 

temperatures. This objective meets this gap by monitoring and evaluating the temperature 

mitigation potential of green infrastructure connected in series. 

 

In addition to these objectives, a study focused on the development of low-cost 

active controls to improve volume and peak flow mitigation of green infrastructure is 
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provided in Appendix 4. Green infrastructures are used extensively to aid in managing 

urban runoff volumes and pollution. While they provide a vital service to our urban 

ecosystem, their efficiency may be increased by actively controlling the water balance of 

these systems. Therefore, this study explores the hydrologic performance of a real-time 

control system through field applications and computer modelling. While this work is not 

part of the main objective of the dissertation, its results are included in Appendix 4.   
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3. ANALYZE LAND-USE CHANGES AND THEIR RELATIONSHIPS TO 

DISCHARGE AND WATER QUALITY TRENDS IN THE UNITED STATES 

3.1. Rationale 

Watershed management programs enforced by regulations in USA do not 

mandate a wholistic planning approach based upon future watershed changes. However, 

studies have proven that a more wholistic approach to watershed management can 

improve water quality over time and utilize financial resources more efficiently (Stoker et 

al., 2022). Anthropogenic land use changes over time due to population, economic, 

cultural, and environmental shifts thus impacting water quality of our water bodies. 

While many empirical studies investigate how watershed scale land uses impact water 

quality (Wan et al., 2014; F. Zhang et al., 2018), they have several limitations including 

their application for predicting future land use changes due to the bias that historical land 

development may have on the model generation. Most studies that assess the relationship 

between land use and water quality are model based, which are limited by current 

knowledge, and are simulated to one point in time. Understanding temporal relationships 

between land use changes and water quality changes based on measured data can better 

inform water quality management planning by incorporating future projections in 

developing solutions to water quality issues. This objective seeks to fill this gap by 

evaluating the relationship between changes in land use and water quality and quantity 

parameters at USGS stream gages (Figure 3-3) over the period of 2008 to 2016. To this 

extent, I (1) analyzed temporal changes of water quality parameters and discharge of 

selected watersheds, (2) analyzed land use changes over the said period for all 
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watersheds, and (3) statistically analyzed the relationships between land use and water 

quality temporal changes.  

I hypothesize that the changes in land use categories over time can explain the 

variations in water quality changes over the same period. 

3.2. Methodology 

3.2.1. Study Area 

This study evaluated the watersheds from a candidate list of 72 USGS stream 

gages across the contiguous United States (Figure 3-1). In selecting gages, they had to 

meet the criteria of having continuous mean daily discharge and water quality data from 

2008 to 2016, corresponding to the date range in which national land-use data is 

available. While land use data is available up to the year 2001, water quality data for 

most of the gages are not available beyond the selected period. The final set of selected 

gages had watersheds that ranged in area between 22 km2 and 36,927 km2, had diverse 

land use characteristics, and covered most geographic regions of the United States, as 

illustrated in Figure 3-1. 
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Figure 3-1 Locations of all 60 gages used in the study. 

 

3.2.2. Data Sets 

Mean daily discharge and water quality (turbidity, dissolved oxygen, and specific 

conductance) data were collected over the study period (2008-2016) from each of the 

selected USGS gages (USGS, 2014). Turbidity, dissolved oxygen, and specific 

conductance were chosen as parameters based upon their availability across a wide range 

of USGS gages over the years of the study period. A total of 72 gages were initially 

selected; however, some were removed due to characteristics of the watershed that 

influenced their hydrologic response.  Four of the gages were removed due to their 

location less than 3 miles downstream of a regulated dam. This is because gages affected 

by regulation exhibit varied flows dominated by controlled dam releases, which also 

affects water quality (de Necker et al., 2019; Zuo et al., 2015). In addition, eight gages 
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were removed because the watersheds had no land use diversity or changes throughout 

the study period, or encompassed many of the other watersheds analyzed in the study, 

resulting in nested watersheds. Streamflow behavior is highly dependent upon watersheds 

size with markedly different hydrologic response in watersheds with areas that are several 

orders of magnitude apart (Romshoo et al., 2012). The study incorporates watersheds of 

different magnitudes thus, allowing to generalize the relationships found in the study to 

varying watershed characteristics. After removing these gages, there were a total of 60 

gages that fit the criteria for the final analysis. 

Land use data from the National Land Cover Database (NLCD) were obtained for 

the contiguous from the U.S. Multi-Resolution Land Characteristics Consortium 

(https://www.mrlc.gov/data) for the years of 2008 and 2016. This data set contains 16 

distinct land use categories in 30 m resolution. In addition, impervious land use data in 

1% increments were obtained in the same resolution from MRLC for the years of 2006 

and 2016.  

3.2.3. Data Preparation 

3.2.3.1. Water Quality Data 

USGS data sets sometimes have periods of missing data due to environmental 

interference with the sensors or technical malfunctions of the gage. Therefore, to evaluate 

trends over a continuous data set, I applied methods to interpolate data (Baddoo et al., 

2021; Han et al., 2023) where there were gaps within time series of discharge and water 

quality. However, data sets from gages with more than 40% missing data in any one 

category – discharge, turbidity, dissolved oxygen, and specific conductivity – were 

removed from the analysis. General guidance suggests limiting data imputation up to 
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40% if the resultant data is used for predictions (Madley-Dowd et al., 2019). 

Furthermore, it has been shown that even higher missing percentages of more than 50% 

can be successfully imputed for trend analysis given the use of proper imputation 

methods (Aguilera et al., 2020; Milleana Shaharudin et al., 2020).  Proper imputation 

methods can reduce biases in datasets with missing percentages larger than 50% 

(Madley-Dowd et al., 2019). Furthermore, Kalman filtering methods for imputation of 

hourly evapotranspiration data with 44% missing data, have approximated the original 

data within acceptable margins (greater than 70% agreement and less than 5% bias)  and 

annual and monthly averages (as is analyzed in this study) calculated by imputed hourly 

data resulted in even lower errors (85% agreement) (Alavi et al., 2006). 

Where data gaps were observed, benchmark tests were performed over the 

complete data set of each parameter to identify the most appropriate imputation method. 

Specifically, I used the R package ‘imputeTestbench’ (Beck et al., 2018) and ‘imputeTS’, 

which provides a wide variety of statistical methods to analyze and impute univariate 

data sets (Moritz & Bartz-Beielstein, 2017). The best imputation method for a specific 

data set depends on the characteristics of the missing data such as percentage of missing 

data and gap size. Therefore, the distribution of missing data, average gap size, and 

percentage of missing data were computed for each data set. This information for each 

gage was then summarized and the overall average gap sizes for each water quality 

parameter were used in testing imputation methods. 

Several imputation methods were then applied to the data, including linear 

interpolation, spline interpolation, structural model & Kalman smoothing, simple moving 

average, imputation by mean, and exponential moving average, among others. To do so, 
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first a data set with no missing data was used to generate 30 random testing samples for 

each parameter (discharge, turbidity, dissolved oxygen, and specific conductivity). These 

samples were then imputed using each method and the methods were compared using the 

Mean Absolute Error (MAE). The imputation method with the lowest MAE was then 

selected to impute data for the specific parameter. While data imputation adds a certain 

error to the data set, it allows me to include much of the available USGS data in our 

analysis. Imputation results are shown in Appendix 1. After imputation, daily data were 

used to compute the monthly averages, further reducing the influence of imputation error, 

which were then applied to evaluate trends. Limitations of this method are acknowledged 

in Section 3.4.4. 

Water quality data is available in a daily frequency; however, land use data for the 

entire USA is temporally limited to every 2-4 years and land use over the last decade has 

changed at a slow pace (Homer et al., 2020). In this study, the land use change between 

the years of 2008 and 2016 is calculated as a percentage and assumed to have changed at 

a constant rate over the study period. Given the temporal resolution of available land use 

data, it is only possible to perform trend analysis that spans several years (2008-2016). 

While the water quality and discharge data is available as a daily dataset, reducing the 

temporal frequency to monthly data is better suited for long term trend analysis (Mcleod 

et al., 1991). This is because serial correlation of daily data increases the chance of type 

II error by Mann-Kendall test (von Storch, 1999).  Furthermore, since this study looks at 

long term impact of land use change, monthly data allows removing seasonality effects 

from the data as land use have varying impacts through seasons. Influence of land use 

during wet and dry periods on water quality was studied in the Dan River basin in China 



31 
 
 

showing that total suspended solids were significantly higher in wet periods while 

dissolved oxygen was much higher on dry periods (P. Shi et al., 2017). Furthermore, 

agriculture land plays a key role in seasonal changes of water quality depending on 

agricultural crops. For example, seasonal crops and perennial crops require different 

patterns of irrigation and fertilization, which can impact the seasonal water balance and 

pollutant loads within a watershed (Schilling et al., 2008). 

3.2.3.2. Land-use data 

Watersheds for each of the 60 stream gages were delineated using ESRI’s ArcGIS 

online and validated using watershed areas listed on the USGS stream gage site 

(https://waterwatch.usgs.gov/). The NLCD provides land use data in 16 categories; 

however, these were condensed to 7 categories for ease of analysis and included open 

water, developed (developed, open space; developed, low intensity; developed, medium 

intensity; and developed, high intensity), barren land, forest (deciduous forest, evergreen 

forest, and mixed forest), shrub/grassland (shrub/scrub, herbaceous, and hay/pasture), 

cultivated, and wetland (woody wetlands and emergent herbaceous wetlands). Using 

these land use categories and the delineated watersheds, land-use data for each year 

(2008, and 2016) were extracted from each respective watershed.  

3.2.4. Statistical Methods 

3.2.4.1. Water Quality and Land Use Trends 

Simple descriptive statistics were performed to visualize and evaluate the central 

tendency and distribution of land use, flow rate and water quality data. Land use changes 

for each watershed were computed as the percent change in each land use category from 

2008 to 2016 for each watershed. In addition, two methods were used to identify and 
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quantify temporal trends within the water quality and quantity data: Seasonal Mann 

Kendall tests and Theil-Sen slope. The Seasonal Mann Kendall test was selected to 

quantify temporal trends in water quality and quantity parameters over time due to 

seasonal autocorrelation and non-normality of residuals in the USGS gage data. This test 

is a nonparametric method commonly used to quantify and analyze the significance of a 

timeseries trend (Helsel et al., 2020). Using this test, correction for serial-correlation due 

to seasonality is done by removing the seasonal trend from the data by statistical methods 

introduced by Hirsch (Hirsch & Slack, 1984). While the Mann-Kendall test determines 

the existence or significance of a monotonic trend, the Theil-Sen slope can provide a 

robust estimate of the slope or magnitude of this trend (Helsel et al., 2020).  Theil-Sen 

slope is frequently used to compute the magnitude of trends in environmental studies (He 

et al., 2015; Mahmoodi et al., 2021; Rozemeijer et al., 2014; Ryberg & Chanat, 2022) and 

represents the change in discharge or water quality parameters over time as shown in the 

following equation: 

𝑇ℎ𝑒𝑖𝑙 − 𝑆𝑒𝑛 𝑆𝑙𝑜𝑝𝑒 = 𝑀𝑒𝑑𝑖𝑎𝑛 
𝑋𝑖−𝑋𝑗

𝑡𝑖−𝑡𝑗
 𝑤ℎ𝑒𝑟𝑒, 𝑗 >  𝑖    Equation 1 

where 𝑋𝑖 and 𝑋𝑗 are gage data at times 𝑡𝑖 and 𝑡𝑗, respectively. Gages with 

significant trends based on a p-statistic of less than 0.1 (α = 10%) were selected for 

further analysis. 

3.2.4.2. Relationship between water quality and land use changes 

Robust regression was carried out to analyze how change in water quality and 

quantity over time (represented by the Theil-Sen slopes) are related to the change in land-

use over the same period. Robust regression is a non-parametric technique that reduces 

the influence of extreme outliers, which are common in streamflow and other 
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environmental data, and therefore results in better representative slope coefficients 

(Helsel et al., 2020).  

To do so, first single variable regressions were developed to observe the direct 

relationships between the explanatory variables and the change in discharge and water 

quality. This relationship is represented by the following equation:  

𝑦 = 𝑏0 + 𝑏1𝑥                                      Equation 2 

where 𝑦 is the dependent variable (discharge and water quality changes), 𝑥 is the 

explanatory variable (land use change), 𝑏0 is the intercept, and 𝑏1 is the slope coefficient. 

Second, multiple robust regressions were carried out to determine if multiple 

variables (i.e., land use changes) could provide better predictions of discharge and water 

quality trends. Due to correlations between some explanatory variables, a backwards 

elimination method coupled with variance inflation factor (VIF) was used to generate 

final multiple regression models. These relationships generated by robust regression are 

represented by the following equation: 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛     Equation 3 

where, 𝑦  represents the change in water quality parameter, b0 represents the 

intercept, and bn represents the regression coefficient for 𝑛 land use changes represented 

by 𝑥𝑛 . The final results include explanatory variables with a VIF value less than 10. 

Once regression models for monthly data vs. land use percentage changes over 9 

years are developed, the resulting b coefficients are converted (multiplied by 12*9) to 

represent relationships between yearly water quality data vs. yearly land use percentage 

changes.  
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Lastly, the slopes of water quality and quantity parameters were categorized as 

increasing, decreasing, or no trend for each gage based upon the Mann-Kendall test. Then 

the Kruskal-Wallis (one-way ANOVA on ranks) test was performed to identify whether 

the categorical increasing or decreasing trends were due to specific land use changes. The 

hypothesis of the Kruskal-Wallis test is that there is a significant difference between the 

medians of the groups being compared. 

3.3. Results  

3.3.1. Land Use Characteristics of the Watersheds 

The land use characteristics across all 60 of the watersheds used in this study are 

summarized in Table 3-1 and their overall distribution is illustrated in Figure 3-2. From 

the table, forested land use is the most common with an average coverage of 38% that 

ranges between 3.5% - 93.9% of the total watershed area. This is followed by developed 

and cultivated land uses, with no other land use making up more than 10% of the 

watershed coverage on average. The variation in land uses across watersheds in this study 

is further illustrated in Figure 3-2, which shows the distribution of land cover for each 

individual watershed. As illustrated, there is a wide distribution in the dominant land use 

across each watershed, with many land uses – forest, agriculture, developed, and shrub – 

making up over 50% of an individual watersheds’ composition. Examples of this 

diversity in land use composition is further illustrated in Figure 3-3, which provides four 

examples of watersheds characterized by a diversity of land cover that dominate the 

watershed areas.   
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Table 3-1. Overall land use characteristics of 60 watersheds selected for analysis for the year 

2016. 

Land Use type Mean % Median % Standard Deviation Minimum % Maximum % 

Open Water 1.21 0.39 3.00 0.02 21.89 

Developed 28.36 12.05 30.49 0.68 90.40 

Barren Land 0.21 0.12 0.26 0.00 1.13 

Forest 38.38 33.33 26.02 3.51 93.88 

Shrub/Grass Land 8.96 2.44 13.76 0.13 62.91 

Cultivated 18.08 11.07 20.96 0.00 71.80 

Wetland 4.80 0.70 10.25 0.00 42.84 

Imperviousness 9.65 3.03 12.45 0.07 41.03 

 

 

 

Figure 3-2. Land use composition of the 60 watersheds used for analysis for the year of 2016. 

Vertical axis is the percentage of the land use category within the watershed while horizontal axis 

is the list of gages. 
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Figure 3-3. Example of the land use distribution within watersheds for four USGS stream gages 

((a) 453004122510301 OR, (b) 14209710 OR, (c) 02336000 GA, (d) 07143672 KS) used within 

this study for year 2008.  

 

 

3.3.2. Land-Use Changes 

A summary of the land-use changes from 2006 to 2016 across all watersheds in 

this study is shown in Figure 3-4. This figure shows box and whisker plots that represent 

the distribution of the land cover change in each watershed as a percentage of the overall 

watershed area. As illustrated, impervious land area and developed land area increased in 
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every watershed in the study with a mean increase of 0.41% (impervious) and 0.73% 

(developed) between 2008 and 2016. Mean changes to open water, barren land and 

wetlands are all under 0.03%, while shrubland declined by the largest amount of 0.62%. 

Forest land percentages increased on average across all watersheds; however, the median 

value is negative, indicating a skewed distribution.  

This is further elucidated by Figure 3-5, which summarizes the overall change in 

land use across all watersheds in this study, as well as the overall change across the U.S.  

As illustrated, the total area of forest land both across the case study watersheds and the 

U.S. as a whole have reduced. Therefore, the mean increase in forest as a percent of 

watershed area is likely due to the varying size of the watersheds, with positive changes 

in smaller watersheds skewing the distribution. The same pattern can be seen in 

cultivated land with a mean decrease of -0.17% (Figure 3-4), yet an increase in the 

overall cultivated land cover of over 3% (Figure 3-5). 
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Figure 3-4. Percent land-use change distribution in boxplots within watersheds over the period of 

2006-2016 (the highlighted value is the mean of each distribution) 

 

 

 

Figure 3-5. Percent land-use change comparison between the 60 watersheds in this study and the 

contiguous USA. 
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Figure 3-5 also compares the overall changes in land cover composition from the 

watersheds in this study to that of the entire contiguous U.S. As illustrated, except for 

wetland and open water, all other land use changes follow the same increasing or 

decreasing pattern. Therefore, the land use changes (positive or negative) captured within 

this study are largely reflective of what has happened across the contiguous U.S.. While 

wetlands and open water are not reflective of the changes in the country as a whole, they 

are both under 5% of the total watershed areas on average.  

3.3.3. Trends in Water Quality 

Theil-Sen slope was generated for all the gage data sets and those with 

statistically significant trends (p < 0.10) were selected for further analysis. The number of 

gages with significant trends included 23 gages for discharge (40%), 18 gages for 

dissolved oxygen (35%), 24 gages for specific conductance (44%), and 28 gages for 

turbidity (44%). The distribution of the Theil-Sen slope for each water quality parameter 

across all gages used in this study is shown in Figure 3-6. As illustrated, the change in 

discharge and specific conductance are normally distributed and while discharge is 

spread equally among positive and negative trends with both mean and median values 

near zero, specific conductance has a positive average and median trend. For dissolved 

oxygen, the majority of trends were negative, with the exception of three gages. In 

addition, for turbidity all gages except for one indicated a decrease in turbidity.  
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Figure 3-6. Theil-Sen slope distribution of parameters over the period of 2006-2016 with 

highlighted mean values (Discharge: cfs/miles2, DO: mg/l, Specific Conductance: µS/cm-1 at 25 

Celsius, and Turbidity: FNU). 

 

 

3.3.4. Relationships Between Land-Use and Water Quality Changes 

Robust regression was performed to relate the Theil-Sen slopes of the water 

quality parameter (dependent variable) to the change in land use (independent variable). 

The significant relationships (p<0.05) generated by robust regression are shown in Table 

3-2. For all models, the change in land use type explains between 12% and 25% of the 

variance in discharge and water quality changes. All discharge and water quality 

variables were linearly related to a change in land use except for dissolved oxygen. 

Discharge is inversely related to shrub/grass land changes while directly related to 

changes in cultivated land area. Specific conductance on the other hand is inversely 
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related to changes in cultivated land and open water while directly related to changes in 

developed land area. Turbidity is directly related to changes in developed land and 

impervious area while inversely related to changes in cultivated and wetlands.  

 
Table 3-2. Simple robust regression coefficients with a p statistic less than 0.05 for yearly water 

parameters as dependent variables and yearly land use percentage changes as independent 

variables (discharge n = 24, specific conductance n = 24, turbidity n = 28). 

Water Quality Parameter Land Use Type Slope Coefficient R2 

Discharge (ft3s-1mile-2) Shrub/Grass land -4.55 0.21 

Discharge (ft3s-1mile-2) Cultivated 4.88 0.22 

Specific Conductivity (μS cm-1 @ 25 Celsius) Open water -7009.8 0.30 

Specific Conductivity (μS cm-1 @ 25 Celsius) Developed 426.68 0.12 

Specific Conductivity (μS cm-1 @ 25 Celsius) Cultivated -589.38 0.22 

Turbidity (FNU) Developed -20.25 0.25 

Turbidity (FNU) Cultivated 95.72 0.23 

Turbidity (FNU) Wetland 69.64 0.14 

Turbidity (FNU) Impervious -56.21 0.23 

 

 

To explore if a combination of these land use types could further explain the 

variance in water quality changes, multiple robust regression was performed as 

summarized in Table 3-3. Both discharge and specific conductivity resulted in 

multivariable equations that improved the goodness of fit, while also ensuring no 

multicollinearity among the data. According to these models, 58% of the variance in 

discharge trends can be explained by changes in barren, shrub/grass, and cultivated land 

uses. Using the watersheds that had statistically significant changes in discharge, 

developed land and cultivated land were inversely correlated with a spearman correlation 

of -0.75 (p<0.001). Finally, open water, cultivated and developed land were able to 

explain 46% of the variance in specific conductance.   
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Turbidity did not result in a statistically significant multivariable equation, most 

likely due to multicollinearity among explanatory variables. Each regression analysis was 

restricted to watersheds for which there were statistically significant Theil-Sen slope 

slopes in the water quality data. In the case of turbidity, the 28 watersheds had significant 

positive correlations between developed land impervious land (0.93) and negative 

correlations cultivated (-0.82) and wetlands (-0.46) land uses. 

 
Table 3-3. Multiple Robust regression parameters. This shows how yearly water quality 

changes relate to yearly land use percentage changes. 

Water Quality Parameter Land Use Category Slope Coefficient (p < 0.05) R2 

Discharge (ft3s-1mile-2) 

Cultivated 4.59 

0.58 Barren Land -35.67 

Shrub/Grass Land -4.56 

Specific Conductance (μS 

cm-1 @ 25 Celsius) 

Open Water -5411.0 

0.47 Developed -216.2 

Cultivated -1443.3 

Turbidity (FNU) Developed -20.25 0.25 

 

 

3.3.4.1. Kruskal-Wallis test 

The relationship between land cover changes and changes in discharge and water 

quality were further analyzed using the Kruskal-Wallis test. Figure 3-7 illustrates the 

distribution in land cover changes, which are categorized based upon whether the stream 

gage at that watershed had an increasing or decreasing trend in discharge. A Kruskal-

Wallis p-statistic of less than 0.05 means that there is a significant difference (with 95% 

confidence) in land use changes between watersheds with upward and downward 

discharge trends. Only discharge was found to have statistically significant differences 
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between gages with increasing and decreasing trends (Figure 3-7). From this figure, 

watersheds with increasing discharge were likely to have a greater decrease in 

shrub/grassland (p = 0.002), barren land (p = 0.045) and wetlands (p = 0.04) than those 

that had a decreasing trend in discharge. This is consistent with the regression results that 

found a negative correlation between discharge and shrub/grassland and barren land. 

Although not significant at the 0.05 level (p = 0.2), increases in discharge may 

correspond to increases in impervious area. 

 

 

Figure 3-7. Kruskal - Wallis test on water discharge trend direction as the categorical variable 

and land use types as explanatory variables. Y-axis shows the percentage change in each land use 

type. 
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3.4. Discussion 

This study evaluated the land use and water quality changes in 60 watersheds over 

2008 to 2016. The watersheds used represent a balanced variability in land-use types, 

with dominant land uses including developed, forest, agriculture, and shrub/grass across 

all watersheds.  In terms of water quality, specific conductance generally increased, and 

turbidity decreased; while there was little to no overall trend in discharge, there was a 

large variation in discharge trends across all watersheds. While almost all gages saw 

negative trends in dissolved oxygen, they were relatively small changes (median of -0.05 

%). Furthermore, in evaluating the relationship between land use changes and water 

quality, it was clear from the Kruskal-Wallis test that changes in barren land, 

shrub/grasslands and wetlands corresponded to a change in discharge. To that end, there 

are several implications of these results. 

3.4.1. Land Use Changes 

In this study, the watersheds on average had increases in imperviousness and 

cultivated areas, with decreases in shrub/grasslands and forest lands. This is consistent 

with other studies that found increasing imperviousness and decreasing forest within the 

United States (Sleeter et al., 2013; Theobald, 2005; Wilson, 2015). Additionally, on 

average, imperviousness and cultivated areas increased the most over the study period, 

with shrub/grassland land use having the greatest decrease. The overall changes are 

relatively small with the highest median percentage change of any land-use type of 0.45% 

over the 9 year study period (Figure 3-4).   This is not surprising as the rate of change of 

land use has been decreasing since 2005 (Winkler et al., 2021). As a whole, these land 
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use changes within the watersheds were found to be similar to the changes observed 

across the U.S. over the same time period. 

3.4.2. Water Quality Trends  

Specific conductance concentrations increased in a majority of watersheds for 

which a significant trend was detected. This is consistent with other findings that have 

found mean increases in the specific conductance in rivers and streams within human 

dominated landscapes across the U.S. (M. E. Baker et al., 2019; Stets et al., 2020). 

Specific conductance is representative of the amount of dissolved ions in water, and in 

streams is largely impacted by dissolved salts. This can come from point source pollution 

from industrial and residential discharges, but it is largely comprised of non-point source 

pollution from agricultural land use and activities such as tilling, deforestation, and 

fertilizer/pesticide application (Stets et al., 2020), as well as urban land uses and activities 

such as road de-icing (Shoda et al., 2019).  

 Dissolved oxygen decreased in a majority of watersheds for which a significant 

trend was detected. This could partly be due to the observed increase in specific 

conductance, as higher ionic strengths reduce oxygen solubility (Heddam, 2014). In 

addition, low dissolved oxygen in streams can be caused by other factors such as 

increases in nutrients, oxygen demand, temperature, ionic strength, and sediments, as 

well as reductions in aeration (Allan et al., 2021). Nutrients have reduced in urban 

streams in United States, with no change in agricultural streams over a 30 year time 

period from 1982 – 2012 (Stets et al., 2020); therefore, oxygen demand caused by 

increasing nutrient loads might not be the cause of reducing dissolved oxygen across 

watersheds. However, most streams are impounded by dams and other flow controlling 
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infrastructure that reduce dissolved oxygen within the structures, which could impact 

downstream oxygen levels absent of aeration at the outlet of the structures (Zaidel, 2018).  

Furthermore, temperature in streams in US has been rising (Kaushal et al., 2010) and 

increase in stream temperature reduces oxygen solubility.  

Turbidity decreased in more than 85% of the watersheds with significant trends. 

Reduction in turbidity could be due to management of surface runoff, as stormwater 

regulations in the U.S. largely focus on reductions in total suspended solids as the 

primary regulatory criteria (Naughton et al., 2021). For example, the watershed of USGS 

gage 01480870 is located in Chester County, PA which has a county specific 

comprehensive stormwater management ordinance (2022 County-Wide Act 167 

Stormwater Management Model Ordinance | Chester County, PA - Official Website, 

2022) and a plan that requires best management practices to control storm water 

pollutants, especially total suspended solids. In my analysis, this gage saw a monthly 

decreasing rate of 0.33 FNU/month (p value of 0.006) for turbidity. This suggests total 

suspended solids concentrations in streams and rivers may have reduced due to the 

implementation of best management practices, even if there is an increase in 

anthropogenic disturbances (J. C. Murphy, 2020; Stets et al., 2020). 

Discharge had both positive and negative trends throughout the study period. The 

lack of an overall trend could be due to a few reasons, including varying precipitation 

patterns across the dispersed watersheds in this study. For example, precipitation trends 

in the United States vary with some regions experiences increasing trends and others 

decreasing trends in precipitation (Easterling et al., 2017). The reasons for this are 

complex but could be due to climate change, which has been shown to have a 
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considerable impact on discharge both negatively and positively (Croitoru & Minea, 

2015; Leppi et al., 2012). However, it has been further shown that increase in extreme 

precipitation due to climate change does not necessarily correlate with increases in stream 

discharges due to the complex nature of factors impacting stream volumes such as 

antecedent moisture conditions based on climate regions (Ivancic & Shaw, 2015). 

Regional variations in stream/river discharge has been seen in other parts of the world 

such as Canada and South American countries as well and they can be attributed to 

climatic variations and anthropogenic activities such as flow diversions (Déry et al., 

2016; Pasquini & Depetris, 2007). Therefore, due to the dispersed nature of the gages 

across regions where precipitation and other factors vary, there may not be a consistent 

pattern in discharge trends.  

3.4.3. Impact of Land Use Change on Discharge and Water Quality Trends  

Changes in discharge were negatively correlated to changes in shrub/grassland 

and barren land uses and positively correlated to changes in cultivated land use. Loss of 

vegetated ground cover due to an increase in agricultural land has generally been found to 

increase ground water recharge and reduce evapotranspiration, which leads to increases 

in stream baseflows (Ahiablame et al., 2017; Astuti et al., 2019; Y. K. Zhang & Schilling, 

2006). Artificial irrigation of agriculture land contributes to a considerable increase in the 

water budget of the watershed. Evapotranspiration is generally lower on agriculture land 

as compared to compared to shrub/grass lands due to the use of seasonal crops in the 

USA (Schilling et al., 2008); however, a study in India, where most crops are perennial, 

has found that agriculture land increases ET considerably while also increasing the base 

stream flows caused by artificial irrigation (Shah et al., 2019). Similar increases in 
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baseflows may explain the observed trends in this study, as I used average monthly area 

adjusted flow, encompassing both baseflow and stormflow. Increases in discharge were 

also moderately correlated with reductions in wetlands using the Kruskal-Wallis test (p 

<0.1). This could be due to the higher water retention capacity of wetlands compared to 

the other land use types (Procházka et al., 2019).  

Trends in discharge were not correlated to developed land use changes. While it is 

established that developed land increases peak discharge and runoff (P. J. Shi et al., 

2007), this might not be seen in monthly averaged data which also encompasses 

baseflow. The annual temporal scale these models represent, and monthly data used for 

trend generation, do not capture discharge differences caused by urban runoff which 

happens at a much smaller time scale (hours, days). While increase in imperviousness 

and urban land cover has shown to increase stream discharge variation at hourly and daily 

time scales (Simmons & Reynolds, 1982), this might not be seeing in annual and monthly 

scales. Furthermore, many studies have found that groundwater infiltration is reduced due 

to imperviousness of developed land thus reducing base flow in streams (Aboelnour et 

al., 2020; Chithra et al., 2015; Kauffman et al., 2009). For example, in Long Island, New 

York an increase in imperviousness over 30 years reduced base flow to 20% of total 

annual stream flow compared to 95% before urbanization and a continuous reduction of 

average base flow with high fluctuations in stream flow (Simmons & Reynolds, 1982). 

Contradicting these observations, 5 watersheds in the Delaware river basin has not seen a 

reduction in baseflows despite heavy urbanization and increase of imperviousness 

(Brandes et al., 2005). 
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Turbidity was found to be positively correlated with cultivated land use changes 

and negatively correlated to developed land use changes. Cultivated lands often result in 

runoff of sediments to streams (Mello et al., 2020), which may explain this relationship. 

In addition, a negative relationship of turbidity with developed land could be due to better 

pollution control practices within urban landscapes (Stets et al., 2020). This is because 

new developments and redevelopments in the U.S. are largely now subject to much more 

stringent stormwater control measures and regulations than those in the past (J. Murphy 

& Sprague, 2019). Therefore, even if urban land uses produce a greater pollutant runoff 

than their pre-development conditions, the implementation of best management practices 

to capture and treat this runoff could lead to downstream pollutant reductions.  

Finally, specific conductance was negatively correlated to cultivated and open 

water land uses and positively correlated to developed land use. Open water variation 

within selected watersheds is minute, with an average change of 0.008%. Thus, the 

impact of open water change relative to other land-use change might not be as influential. 

However, reduction in open water land could mean increase in ionic concentrations due 

to land alterations and volume reductions. The negative correlation between specific 

conductance and cultivated land could be due to improved management of agricultural 

runoff or the conversion of agricultural land to other land uses that increase the runoff of 

dissolved ions. The latter is supported by the positive correlation between specific 

conductance and developed land observed in this study. This has also been observed in 

regional studies (Tu, 2013) and is likely due to the influence of urban land uses and 

activities on salt and dissolved ions in runoff as discussed previously. 
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3.4.4. Implications and Limitations of the Study 

The main outcomes of this study are the correlations found between land use 

changes over time and water quality changes at a larger spatial scale. Understanding these 

relationships has implications for the development and implementation of watershed 

management plans. This study demonstrates that land use changes that occurred over a 

decade, however small, are correlated to discharge and water quality. While water quality 

management plans are developed and updated frequently (e.g. TMDLs need to be done 

every 2 years and section 303(e) of the Clean Water Act requires a continuing planning 

process), implementation of best management practices to reduce pollution through non-

point source runoff takes decades; however, in most cases, water management plans do 

not project land use changes and their future impacts on water quality. For example, none 

of the 2017 water management plans for Wisconsin watersheds certified by the EPA and 

the approved 2020 TMDL report for Upper Fox and Wolf Basins have future land use 

projections and their impacts on water quality (Wisconsin Department of Natural 

Resources, 2017). However, the handbook for developing watershed plans by EPA does 

suggest the use of future land use projections. But doing so is largely constrained to 

loading estimations from models that may be resource-intensive to develop and limited to 

prior knowledge. Incorporating predictions of land use change and their subsequent 

impact on the water quality changes through an empirical model, such as the one 

developed in this study, could improve the planning process which currently is relied 

upon margins of safety and current or older water quality and land use data. 

One advantage of the approach presented is in the form of the model and therefore 

what the data represents and how it can be applied. The empirical model developed in 
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this study takes the form of water quality change = f (land use change).  However, the 

majority of empirical studies evaluating the relationship between stream water quality 

and land use develop a model in the form of water quality = f (land use), which 

represents a relationship at one point in time and therefore does not capture the degree to 

which changes in land use might influence changes in water quality. This could make the 

models biased towards the composition of historical land uses that may not have the same 

impact on discharge or water quality as contemporary land development. For example, a 

model that captures the impact of urban land use on water quality at one point in time 

might be biased by historical development within that watershed that did not have to 

adhere to water quality requirements derived from programs after the Clean Water Act. 

However, the model in this study only looks at recent changes where the implementation 

of BMPs and modern drainage designs are captured.  Furthermore, while the form of the 

model water quality = f (land use) may be good for estimating water quality in ungaged 

basins, for applications where water quality is known, such as streams that are already 

listed as impaired in the TMDL program, there is no way to calibrate the model to current 

conditions. However, the model proposed in this study can be applied to data 

representing current water quality or discharge, to estimate what the subsequent change 

in water quality or discharge might be due to land use changes.  In addition, the model 

proposed in this study is independent of current land use conditions and therefore can be 

applied based only on expected land use changes (as a percentage of the overall 

watershed) without having to define the existing land use composition.  

While the models in this study were able to explain 11% to 57% of the variance in 

water quality and discharge trends, there are several unobserved factors that also 
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influence water quality and discharge in rivers. These include changes to policy, land-use 

patterns, stormwater control measures, legacy effects, and other human interventions, 

such as treatment plants, irrigation, and fertilization. For example, changes to watersheds 

that do not modify a land use category, such as increases in population density, 

conversions of grazing land into crop agriculture, and improvements to waste 

management methods have been shown to have a significant effect on water quality 

(Panthi et al., 2017; Vrebos et al., 2017; Wijesiri et al., 2018; Wilson, 2015). 

Furthermore, watershed management approaches, such as best management practices 

installed to address Total Maximum Daily Loads (TMDLs), also can decrease pollutant 

levels in downstream water bodies by prevention and mitigation of pollutants (J. Murphy 

& Sprague, 2019; Stets et al., 2020). While this study looks at changes in land use 

composition, the pattern and scale of that land use (Chiang et al., 2021; Shehab et al., 

2021; P. Shi et al., 2017; G. Wang et al., 2014), topography (Lei et al., 2021), and point 

sources (Pak et al., 2021) may also play a considerable role in affecting stream water 

quality and quantity. 

The temporal scale of land use change impact on water quality and quantity varies 

due to factors such as the topographical characteristics of the watersheds and pollutant in 

question. While overland flow reaches streams in a considerably shorter time period 

(within days) ground water flow contributes to a legacy effect based on the topography 

(S. L. Martin et al., 2011), anthropogenic environments such as artificial lakes and 

landfills, and natural environments (Basu et al., 2022). However, it has been shown that 

current land use explains the current water quality just as well as legacy land use and is 

mostly dependent on the pollutant in question (S. L. Martin et al., 2017).  For example, 
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conservative pollutants (i.e., those that are less reactive in the environment) such as Cl-, 

Na+, total nitrogen, and NO3
-, have a higher mobility within watersheds such that current 

land use patterns describe the variation as well as or even better than legacy land use. But 

pollutants such as NH4
- seem to be explained better when legacy land use is incorporated 

in models since these are much more biogeochemically active. With regards to legacy 

effect on the parameters used in this study: specific conductance is an indicator of ionic 

pollutants, and the above study shows that most ionic compounds can be better modeled 

by current land use patterns. Therefore, specific conductance is not impacted by legacy 

effects as much. Turbidity is an indicator of total suspended sediments and other visible 

pollutants such as dyes and colored organic matter. Suspended sediments such as clay 

and silt has shown complicated transport dynamics therefore, the relationships developed 

should be interpreted within the temporal scale used in the study (Vercruysse et al., 

2017). Temporal studies evaluating the legacy effect on dissolved oxygen are lacking. 

However, legacy effects of nutrient loadings could impact the effect of land use change 

on dissolved oxygen since nutrients are correlated to it. Furthermore, temperature and 

specific conductance are also directly correlated to dissolved oxygen concentration. 

These complicated interactions of dissolved oxygen might have been the cause for this 

study to not find any relationships between land use and DO. 

Finally, the imputation of daily data using structural timeseries and Kalman 

smoothing is commonly used with environmental data (Afrifa-Yamoah et al., 2020; Alavi 

et al., 2006; Hadeed et al., 2020). However, there may be impacts of using imputed data 

on the statistical significance of a model, depending upon the characteristics of the data 

and models used. For example, imputed data increases the significance of trend analysis 
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of the same data if the same regression methods are used for quantifying the trends 

(Enders, 2022). However, this study is different in two respects. First, the imputation 

method and the regression models used are different in that the imputations are done 

using a Kalman smoothing, while the regressions are done using non-parametric linear 

regression. Secondly, the time scale of the data is different in that the imputations are 

performed on daily data (with a maximum average data gap of 10 days for all parameters) 

and linear regression are performed on averaged monthly data. Averaging the daily data 

helps maintain the variability of monthly data by reducing the bias of imputed data on 

trend analysis. 

3.5. Conclusion 

This study quantified and evaluated the relationships between land-use and water 

quality trends for 60 watersheds across U.S. over a 9-year period from 2006 to 2016. 

Developed land use had the largest increase across all watersheds with a median of 

0.26% (mean of 0.73%) of the total watershed area, while shrub and grass land had the 

largest decrease with a median of -0.22% (mean of -0.62%). Regarding water quality, 

specific conductance had an increasing trend in 63% of the watersheds with significant 

trends, while dissolved oxygen and turbidity had a decreasing trend in 83% and 86% of 

the watersheds with significant trends. Discharge trends varied among watersheds and 

observed changes were comparatively small (less than ± 0.1%). In terms of relationships 

between land use change and trends in hydrologic data, discharge was found to be 

positively corelated with cultivated land and negatively corelated with shrub/grass and 

barren land. Surprisingly, discharge was not correlated with developed land use changes 

at a statistically significant level (p < 0.05), which could be because the daily discharge 
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data is influenced by stream baseflow. Turbidity trends were positively correlated with 

changes in cultivated land and negatively correlated with changes in developed land. This 

perhaps suggests that current stormwater management regulations that focus on solids 

removal have a positive impact on downstream water quality. Finally, specific 

conductance trends were negatively correlated to cultivated land, perhaps due to the 

conversion of agricultural land to other land uses that increase the runoff of dissolved 

ions rather than improved management of runoff. As a whole, this case study provides 

broad analysis trends in land use and water quality, providing an improved understanding 

of the complex relationships between human land development activity and its 

subsequent effect on downstream hydrology and water quality which can be used for 

water management planning and decision making. 
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4. DEFINE THE INFLUENCE OF SOCIOECONOMIC AND SPATIAL 

VARIABLES ON TMDL PROGRESS IN THE UNITED STATES 

4.1. Rationale 

The Total Maximum Daily Load (TMDL) program is the federal statutory method 

of addressing non-point source pollution in the nation’s water bodies, where states in the 

U.S. are required to assess their water bodies and establish TMDLs for water bodies that 

are identified as impaired. This program relies on a system of policy implementation 

known as cooperative federalism where the federal government delegates primary 

authority to agencies at the state level and therefore the extent to which states assess 

water bodies, identify impairments, and develop TMDLs can vary from state to state. 

Therefore, socioeconomic, political, and spatial variations between states could 

potentially impact how TMDLs are developed. Furthermore, socioeconomic factors 

within water management regions have shown to have correlations to its water quality. 

While technical aspects of the TMDL program are well researched, the socioeconomic, 

political, and regional impact on the TMDL development process is unknown. 

Understanding this impact will allow water managers and planners to utilize the 

relationships between socioeconomics and TMDL progress to inform the development of 

TMDLs. This objective seeks to fill this gap through a nation-wide analysis of the 

relationships between TMDL progress and socioeconomic, political, and regional 

variables.  

I hypothesize that socioeconomic, political, and spatial factors are correlated to 

the progress of the TMDL process. 
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4.2. Methodology 

4.2.1. Data Collection 

TMDL assessment data were extracted from EPA Assessment and Total 

Maximum Daily Load Tracking and Implementation System (ATTAINS) archived data 

(ATTAINS | Water Data and Tools | US EPA, 2022). For each State, ATTAINS includes 

data on the status of TMDL for surface water bodies including the miles of water body 

that are assessed, miles unassessed, specific impairment, miles impaired, and miles with a 

completed TMDL. In addition, U.S. Census data was obtained for each state including 

the population, gross domestic product, percentage without high school diplomas, 

bachelor’s degree percentage, and per capita earnings (Census Bureau Data, 2017). 

Finally, other spatial information, namely state land area, elevation gain, average slope, 

average annual rainfall, and remote land percentage was derived using various sources 

which are all listed in Table Appendix 2-1. 

Elevation gain and average geographical slopes were used with the intent of 

generating relationships between TMDL progress, such as percent of streams that are 

impaired, and dominant geographical nature of the states, and they have been used 

successfully in water quality studies where slope has been shown to be a significant 

factor impacting stream water quality (Connolly et al., 2018). Annual rainfall is used as a 

parameter because it is directly related to water quality of surface water bodies 

(Coulliette & Noble, 2008; Prathumratana et al., 2008). Remote land percentage (Frontier 

and remote land area) developed by Economic Research Service (Cromartie & Nulph, 

2019), is a remoteness index developed based on frontier communities, defined by 

population, and travel times from those communities. This index has been used for 
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comparative studies of socioeconomic patterns such as health care services in remote 

populations (Mueller et al., 2016), and in this study it will be used to generate remote 

land area percentages within each state. Disparities between rural and urban water quality 

and air quality has been found in the United States over the last decade (Strosnider et al., 

2017). In the case of assessing streams, it may be that the more remote areas the state has, 

the more effort and resources it takes to travel to and assess stream quality. Furthermore, 

remoteness may also provide an indication of the level of interest in better water quality 

among citizens, as water quality perceptions have been linked to income level and 

location (Andrew et al., 2019). 

4.2.2. Data Preparation 

Once data was obtained from ATTAINS, it was processed to ensure consistency 

across each state. Because TMDLs are implemented at the state-level, each state operates 

independently and may have different ways in which they classify pollutants, perform 

monitoring and testing, and report their results.  This can make it challenging to 

summarize data across all states due to differences in methodology and reporting. For 

example, in evaluating the suspended matter in water, states may list this as Total 

Suspended Solids (TSS) or turbidity. Therefore, to enable comparisons among states, the 

data was aggregated into common categories as shown in Table 4-1. 
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Table 4-1. Summarized stream and river impairment causes. 

Cause Included causes 

Ammonia Ammonia, Ammonia (Un-ionized), Ammonia Total 

Arsenic Arsenic 

Bacteria 

Bacteria, E. Coli, Enterococcus Bacteria, Fecal Coliform, Total 

Coliform, Pathogens 

Chloride Chloride 

Dissolved Oxygen 

(DO) 

Dissolved Oxygen, Organic Enrichment / Low Dissolved Oxygen, 

Dissolved Oxygen Saturation, Organic Enrichment 

Flow Alterations 

Flow Alterations, Other Flow Regime Alterations, Low Flow 

Alterations, Instream Flow, Water/Flow Variability, Changes in 

Stream Depth and Velocity Patterns, Change in Flow Patterns 

Habitat Alterations 

Alteration in Streamside or Littoral Vegetation, Direct Habitat 

Alterations, Other Habitat Alterations, Physical Substrate Habitat 

Alterations, Alteration in Stream-Side or Littoral Vegetative 

Covers, Physical Substrate Habitat Alterations, Other 

Anthropogenic Habitat Alterations, Loss of Instream Cover, Habitat 

Assessment (Streams) Alterations in Wetland Habitats, Fish 

Habitat, Other Anthropogenic Substrate Alterations, Direct Habitat 

Alterations 

Impaired Biota 

Biological Impairment, Fish Bioassessments, Cause Unknown- 

Biological Integrity, Ecological/Biological Integrity Benthos, 

Benthic Macroinvertebrates Bioassessments, Fish Bio Assessments, 

Fish Bioassessments (Streams), Combination Benthic/Fishes 

Bioassessment, Unknown Biologic Stressor, Aquatic 

Macroinvertebrate Bioassessments, Combined Biota/Habitat 

Assessments, Biology, Impaired Fish Community, Impaired 

Microbenthos Community 

Lead Lead 

Mercury Mercury 

Metals Metals, Copper, Iron, Zinc, Aluminum, Manganese, Nickel 

Nutrients 

Nutrients, Phosphorus, Total Phosphorus, Nutrient Eutrophication, 

Nitrogen, Total Nitrogen, Total Kjehldahl Nitrogen, 

Nitrate/Nitrites, Biostimulatory Conditions 

PCBs PCBs, PCB in Water Column, PCBs in Fish Tissue 

pH pH 

Sediments Sedimentation/Siltation, Siltation, Sedimentation 

Selenium Selenium 

Temperature Temperature, Water Temperature 

Turbidity Turbidity, Total Suspended Solids 
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4.2.3. Data Analysis 

To analyze the data, I performed three types of analysis: summary statistics, 

clustering, and linear regression. To summarize data across all states, descriptive statistics 

(mean, median, and standard deviation) were performed on the TMDL and 

socioeconomic data. Two types of clustering were used to evaluate the TMDL progress 

and socioeconomic data and how they spatially aggregate. Clustering is a common 

method to allocate objects (e.g., States) with multiple data sets (e.g., water quality 

parameters of each state) into groups that have similar attributes across datasets (Javadi et 

al., 2017). For TMDL progress, k-means clustering (Hartigan & Wong, 1979) was used 

to identify if states had any common groupings considering the percent of streams that 

were assessed, those that were impaired, and those in which a TMDL was completed. K-

means clustering is one of the most commonly used clustering method and it can be used 

to generate an optimally defined number of clusters (Ali & Kadhum, 2017). The 

hypothesis for k-means cluster analysis was that, given an optimal k-value (number of 

clusters), the data set will reveal meaningful groupings that could represent the progress 

of the TMDL process. In other words, I assume that clustering will allow to group states 

based on the performance of TMDL process in to high, mid, and low (when k = 3 is 

used). 

For socioeconomic data, a hierarchical clustering (Murtagh & Contreras, 2012) 

based on Euclidean distance and complete linkage method was used to determine 

different levels of clustering among socioeconomic variables. Unlike k-means method, 

hierarchical method does not require prior knowledge of the number of clusters. It is a 

stepwise clustering method that merges the most similar data points together into groups 
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at each level and depending on the number of steps analyzed, several different groupings 

will result in this method and can be used for making observations regarding the 

relationships between states based on socioeconomic data. Hierarchical clustering is the 

most used clustering method in analyzing socioeconomic data. For example, this method 

has been applied to identify differences in the socioeconomical status of immigrants and 

domestic populations in Chile (Cabieses et al., 2015). Furthermore, hierarchical cluster 

analysis has been used to assess the socioeconomics of sustainable development among 

European Union countries and the cluster analysis has shown that based on the selected 

factors, Germany has the most sustainable socioeconomic development within the region 

(Skvarciany et al., 2020). The objective of using this method to analyze socioeconomic 

data between states is to generate spatial information to compare with TMDL progress 

and EPA region information. I hypothesis that hierarchical clustering will generate 

groupings of states based on similarities among socioeconomic data that will emulate 

EPA groupings, TMDL performance groupings, or similar. 

Once clustering was done, I observed that, spatially, the clusters appeared to 

mirror the boundaries of the EPA regions or a collection of them.  Therefore, rather than 

evaluate the data based upon clusters, they were evaluated based upon the EPA regions 

that they fell within. Use of EPA regions in the analysis is important since the EPA 

regional offices have developed independently (Neilson & Stevens, 2002) and have the 

potential to influence the TMDL process. It is the EPA’s responsibility to guide and 

enforce the development of TMDLs by the states, and I therefore hypothesized that 

TMDL process differs significantly based on EPA regions. Descriptive statistics were 

performed on subsets of the data including those within certain clusters described below 
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or within specific EPA regions. ANOVA tests were performed between these multiple 

subsets of data to test the above hypothesis. 

In addition, linear regressions, both multiple and simple, were performed to find 

statistical relationships between dependent (percentage of TMDL completed, percentage 

of assessed streams, etc.) and independent variables (socioeconomic variables and 

regional clusters). The relationship generated by the regression can be represented as: 

𝑦 = 𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒       Equation 1 

where 𝑦  represents the dependent variable, 𝑏0 represents the intercept, and 𝑏(1−𝑛) 

represents the independent variables represented by 𝑥(1−𝑛). All regression models were 

checked for assumptions of linear regression including normality of the residuals, 

multicollinearity among independent variables, and homoscedasticity and normality of 

the residuals. Stepwise model selection using bidirectional elimination was carried out for 

multiple linear regression based on a significance level to entry of 0.10 and a significance 

level to stay of 0.05. Stepwise method allows me to analyze all possible regression 

models and was carried out using SAS software. The parameters used for regression 

analysis are given in Table 4-2. The hypothesis of the regression analysis is that the 

socioeconomic parameters have a significant relationship to the TMDL progress 

parameters.  
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Table 4-2. Parameters used in regression analysis of the TMDL study 

Dependent Variable Independent Variable 

Assessed percent Total stream miles 

Impaired percent Stream Density 

TMDL Complete percent State Land Area (Miles) 

Assessed miles Average Area Rainfall 

Impaired miles Elevation Gain feet 

TMDL complete miles Average Slope 

 Population 

 Population Density 

 GDP (Billion USD) 

 No High School Diploma percentage 

 Bachelor’s Degree or higher percentage 

 Per-Capita Earnings 

 Remote area percentage 

  

Finally, to assess the influence of politics, the average representation of the party 

that holds the legislative chambers and governorship was calculated for the last decade 

(NCSL, 2020). If both the legislative chambers and the governorship are held by a single 

party for the particular year, the state is considered controlled by that political party, 

otherwise it was considered as neutral. Once the average composition is computed, 

TMDL parameters were categorized, and non-parametric Wilcoxon Rank-Sum test was 

carried out to test the hypothesis that TMDL progress significantly different between 

state legislative biases (Republican Vs. Democrat). Wilcoxon Rank-Sum test is used to 

compare samples when the data used is not normally distributed (Mann & Whitney, 

1947).  
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4.3. Results and Discussion 

4.3.1. TMDL Assessment  

Within the ATTAINS database, summary data is reported as (1) the percent of 

streams and rivers that have been assessed, (2) the percentage of the assessed rivers that 

are listed as impaired, and (3) the percentage of impaired rivers for which a TMDL has 

been completed. The distribution of these statistics across all states is illustrated in Figure 

4-1. The wide range of the whiskers for all three of these parameters highlights the extent 

of the variation in the progress of states in implementing the TMDL program.  For 

example, the mean percent of streams with assessments complete is 43% with a standard 

deviation of 33.1%, illustrating a vast range in the percentage of streams that have been 

assessed. Of those assessed water bodies, on average 61% were impaired and of those 

impaired, on average 25% had a TMDL completed. Similar statistics for miles are in 

Figure 4-1 and they state that on average 22,165 miles are assessed, 13,256 miles are 

impaired, and 3,348 miles have TMDLs developed in each state. 
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Figure 4-1. Distribution of the percent of streams (left) and total stream miles (right) within a 

state that have been assessed, listed as impaired, and have had a completed TMDL. 

 

To determine if there were any groupings in the progress of TMDLs among states, 

I performed K-means clustering, considering the three variables in Figure 4-1, and three 

distinct groups were identified. Figure 4-2 (left) illustrates how each cluster behaves in 

terms of each TMDL percentage parameter. As illustrated, there appear to be three 

distinct groups of states, with cluster 1 (blue) which has the lowest percentage of 

assessments done. Even though most of these assessed streams are impaired, these states 

have the least amount of completed TMDLs as well. Cluster 2 (red) comparatively 

performs the best as they have performed the most assessments and have completed the 

most TMDLs. Though states in cluster 3 (green) have not completed many TMDLs, they 

have assessed almost the same amount of streams as cluster 2 yet, their streams are the 

least impaired.  

North Carolina stands out as the only state that has done 100% of the assessments 

(32,000 miles) and has completed 93.5% of the TMDL preparation. It is also notable that 

99.99% of the assessed streams in North Carolina were listed as impaired. New 
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Hampshire also stands out as an outlier, which with 16,962 miles of streams assessed has 

assessed 100% of their streams, found 100% of them to be impaired, and completed 

TMDLs on 75% of their streams. The lowest point in the bottom left is Alaska, which has 

assessed 4,409 miles of streams representing only 1.2 % of their total streams, finding 

9.4% to be impaired and completing a TMDL on none of their streams. The spatial 

distribution of these clusters is illustrated in Figure 4-2 (right), which demonstrates that 

there are some states, especially within the northeast, that appear to cluster together. 

These northeastern states that cluster together are mostly from EPA regions 1, 2, and 3. 

The performance comparison between states is shown in Figure 4-3 where each state is 

color coded based on groupings of EPA regions. 

 

  

Figure 4-2. K-means clustering of assessed, impaired, and TMDL complete percentages. Groups 

1 (blue), 2 (red), and 3 (green) represent clusters of states that behave similarly in terms of TMDL 

progress. 



67 
 
 

 

Figure 4-3. Performance comparison of the states measured by assessed water body percentage 

and percent TMDL completions. 

 

Once it was identified that the states cluster together in terms of TMDL progress 

and some clusters fall under specific EPA regions, it was hypothesized that indicators of 

TMDL progress will differ between EPA regions. Therefore, to further explore this 

potential spatial relationship, the data was categorized into EPA regions (Figure 4-4 d) to 

identify any common trends in TMDL progress among these regions. Figure 4-4 

illustrates the distribution of the percentage of streams assessed, streams impaired, and 

those streams with a TMDL complete. As illustrated, there is noticeable variance among 

all categories within EPA regions; therefore, a grouped analysis of variance (ANOVA) 
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was applied and it found a p-value of 0.005 for assessed streams, suggesting some EPA 

regions are significantly different than others based upon the percent of streams they have 

assessed. Furthermore, using paired ANOVA, it was observed that Region 6 is 

significantly different from Regions 1 and 3 (p < 0.05) and Region 7 is significantly 

different from Region 3 (p < 0.05). This may be because both Region 6 and 7 have 

assessed less than 25% of their streams. 

 

  

Figure 4-4. Assessed percentage (a), impaired percentage (b) and TMDL completed percentage 

(c) for streams by EPA region. EPA regions are shown in (d). 
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Disparities between EPA regions have been observed in other studies as well. For 

example, it has been found that in EPA region 6 and 7, the racial inequality in industrial 

toxic air exposure is significantly higher compared to other EPA regions (Zwickl et al., 

2014). A study of exposure to polychlorinated biphenyls (PCBs) in EPA regions 1, 2, 4, 

and 5 has found significant differences of sampling and monitoring methodologies, and 

guidelines and their basis between these regions. EPA regions have different levels of 

resources (e.g., laboratories) due to historic political fluctuations and differences, funding 

limitations, and different organizational philosophies (Williams, 1993). Though no 

studies can be found regarding internal funding differences between EPA regions, the 

financial report of the EPA for year 2022 shows that funding allocations are based on the 

interests of regional offices and they perform differently from one another (Fiscal Year 

2022 Agency Financial Report, 2022). Finally, newspaper articles based on EPA 

personnel interviews have alluded to funding and resources disparities between EPA 

regional units (A. Smith, 2018) which could potentially result in performance differences. 

4.3.2. Impairment Types 

The ATTAINS database ranks the top impairments within each state and lists the 

total miles of streams impaired for each pollutant or impairment cause. The 

categorization of the top four impairments across all states is illustrated in Figure 4-5. In 

this figure, a first-level impairment is the largest impairment cause in terms of miles of 

rivers and streams that are impaired within an individual state. As illustrated, bacteria are 

the most frequent first-level and second-level impairment across the nation and is 

followed as the top impairment by temperature, sediments, and nutrients.  
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Figure 4-5. Summary of the top four impairments across each state with the number of states on 

the y-axis.  

 

Figure 4-6a further illustrates the top impairments across the U.S. and represents 

the number of states for which an impairment appears at any level. As illustrated, 

bacteria, which was the most frequent level-one impairment, is also the most frequent 

impairment overall at any level. Interestingly, while temperature is a level-one 

impairment in 14.3% (7 out of 49) states, it only shows up in 15 states in total as an 

impairment. Finally, Figure 4-6b represents the distribution of the percentage of assessed 

 

(a) (b) 

(c) (d) 

First level impairment Second level impairment 

Third level impairment Fourth level impairment 
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streams that are listed as impaired for each individual pollutant. As illustrated, bacteria 

are the largest impairment with a median of 20% of assessed streams having a bacteria 

impairment cause.  

 

 

Figure 4-6. Total number of states with each impairment cause (a); Distribution of the percent of 

assessed streams that are listed as impaired within each state for each impairment cause (b).  

 

4.3.3. Socioeconomics 

Socioeconomic data was collected from the U.S. Census for each state and the 

distribution of some selected variables is illustrated within Figure 4-7. This figure 

demonstrates the variation within the land area, population, gross domestic product 

(GDP), percent with no high school diploma, percent of population with a bachelor’s 

degree or higher, and per capita earnings. As illustrated, there is a large degree of 

variation in socioeconomic variables with a few large outliers for several of the 

parameters.  

 

(b) (a) 
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Figure 4-7. Boxplot distribution of the socioeconomic data used in the study across all U.S. states 

(rainfall in mm, slope as a percentage, GDP in Billions of USD, and remoteness as a percentage).   

 

To determine if there were any groupings among states with common 

socioeconomic variables, I performed hierarchical clustering as illustrated in Figure 4-8. 

This figure represents various levels of clusters, with the states color coded based upon 

their EPA region. For simplicity, the most northeast EPA regions (1, 2, and 3), west EPA 

regions (8, 9, and 10), and southwest / great plains regions (6,7) are coded the same color. 

As illustrated, Texas and California are grouped together as a single cluster, as they have 

the largest land areas, population, GDP, and percent population without high school 

diplomas. The District of Columbia is the smallest region considered and has the highest 
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population with bachelor’s degrees or higher (55.4%); therefore, it stands apart as its own 

second-level cluster. Finally, notably most of the northeastern states are also clustered 

together.  

 
 

 

Figure 4-8. Cluster analysis of socioeconomic data color coded by EPA regions: Black – 1, 2, 3. 

Red – 4. Green – 5. Blue – 6, 7. Light blue – 8, 9, 10. 

 

4.3.4. Relationship between TMDLs and Socioeconomics 

Response screening was performed to determine if there are any correlations 

among TMDL progress and socioeconomic variables. The results in Table 4-3 and 

Figures A2-1 – A2-2 indicate that the percent of streams that are assessed are negatively 

correlated to state land area, total stream miles, and percentage of population without 

high school diplomas while positively correlated to percent of population with a 

bachelor’s degree or higher, and per capita earnings (p < 0.05). This suggests that the 

larger the land area and length of streams to assess, the lower the percentage of streams 

that are actually assessed, likely due to the sheer size and length of streams and rivers 
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within the state. In addition, the positive correlations with per capita earnings and 

bachelor’s degree or higher suggests that the economic output of a state has an influence 

on the percentage of streams that are assessed. This implies that state economic resources 

are a contributing factor to TMDL progress. Funding for the development of TMDLs 

mainly comes from state taxes and to a certain degree from nonprofit organizations 

directly involved with the water quality concerns of the regions. Therefore, per capita 

earnings have a direct relationship to these processes.  

CWA mandates and highlights the need for community involvement in all stages 

of the TMDL. A more educated community will be more aware of environmental issues 

and the available options to mitigate them. They will be more inclined to participate in 

water quality monitoring programs and commenting on impairment lists and draft TMDL 

reports which are mandatory stages in the TMDL development process. Furthermore, the 

collective correlation of economic and education parameters may also suggest that a more 

educated population could devote more resources and effort to addressing environmental 

issues. This could be a result of the Maslow's Hierarchy of Needs, where more educated 

and financially stable populations strive for self-esteem and self-actualization (Maslow & 

Lewis, 1987). This observation has been seen in regional water quality studies (Farzin & 

Grogan, 2013; Stanford et al., 2018), where educated communities are more aware and 

have the means to address water quality issues within their localities. 

Finally, the percent of TMDLs that are complete has a low positive correlation (p 

< 0.1) to percentage of population without high school diplomas and negative correlation 

to per capita earnings, and despite having a moderate significance of the slope also have 

the lowest model fits (R2 < 0.7) These trends are opposite to what is observed with the 
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percent that are assessed and is unclear how these variables would act in such a way to 

influence the completion of TMDLs. Finally, there were no correlations between any 

socioeconomic variables or the percentage of streams that are impaired or to specific 

impairments themselves.  

 
Table 4-3. Single variable regression (n = 50 states) analysis for all relationships with a p < 0.1  

Dependent (y) Independent (x) Equation P-value R2 

Assessed (%) Total stream length (mi) y = 66.6 - 0.00035 * x 0.0006 0.22 

Assessed (%) State land area (km2) y = 61.3 - 0.0003*x 0.0019 0.19 

Assessed (%) Bachelor or higher degree (%) y = -12.5 + 1.94 * x 0.01 0.13 

Assessed (%) Per capita earnings ($) y = -27.3 + 0.0015 * x 0.0116 0.13 

Assessed (%) No high school diploma (%) y = 77.4 - 2.75 * x 0.0001 0.07 

TMDL complete (%) No high school diploma (%) y = 3 + 1.80 * x 0.08 0.07 

TMDL complete (%) Per capita earnings ($) y = 59 - 0.0007 * x 0.08 0.06 

 

 

To understand how multiple variables might better predict TMDL progress I 

performed multivariable linear regression using a stepwise bidirectional elimination 

approach. Results demonstrated that the prediction of the percentage of assessed streams 

could be improved by combining the total stream length and per capita earnings, with an 

adjusted R2 of 0.26 (Table 4-4). No multivariable equations were statistically significant 

for the percent of impairments or TMDLs completed. Furthermore, un-normalized 

dependent variables did not improve on the regression’s effort. 

 
Table 4-4. Multiple linear regression model output for percentage of streams that are assessed. 

Estimate is the slope coefficient for each independent variable. 

Variables Estimate P value 

Intercept 11.07 0.7 

Per capita earnings ($) 0.0011 0.04 

Total stream length (mi) -0.003 0.002 
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I also sought to evaluate how these particular variables might be influenced by the 

EPA region. To do so, I plotted the mean TMDL progress variables (assessed, impaired, 

and TMDL complete percentages) against the mean socioeconomic variables for each 

EPA region. In doing so, only one statistically significant relationship was found: the 

mean percent of assessed streams and per capita earnings of each EPA region as 

illustrated in Figure 4-9c. Mean per capita earnings of each EPA region can explain the 

variation of mean assessed stream/river percentage of each EPA region. Figure 4-9b is 

plotted in descending order based upon the mean per capita earnings, and as illustrated in 

Figure 4-9a, the percentage of assessed streams follows a similar trend. This indicates 

that the resources available within each region may have an influence on the progress of 

TMDL implementation within the states. This could be due to the distribution of 

resources at the regional level, as federal funding is dispersed to regions for 

implementation of TMDL programs and is dependent upon revenue from point-source 

discharges within the region, among other sources (Neilson & Stevens, 2002). 

 

 

Figure 4-9. Comparison of (a) mean assessed miles and (b) per capita earnings (plotted in 

descending order) in each EPA region and their correlation (c). 
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4.3.5. Relationship between TMDLs and Politics 

Figure 4-10 represents the historic (10 years) political inclination of each state for 

reference, and the categorical distribution of TMDL parameters based on political 

inclination. Both impaired stream and completed TMDL percentages are distributed 

similarly and therefore their differences are not statistically significant; however, the 

Wilcoxon Rank-Sum test which test whether two populations are equal in median, found 

that the difference in percentage of assessed streams are moderately significant (p value 

of 0.09). However, the states that seem to have a higher number of streams assessed and a 

higher number of TMDLs completed include the east coast states (Figure 4-2) that have 

older cities that historically were heavily industrialized, which resulted in heavy 

environmental pollution from point sources (Tarr, 1996). Most of these states have very 

high impairment levels. For example, streams in New Hampshire, District of Columbia, 

Delaware, New Jersey, and North Carolina are all more than 90% impaired, Due to this 

reason, their concern might be driven by the level of historical and current pollution, and 

less by the party that controls state-level politics. More analysis on how political 

influence impact funding, public involvement and consensus, and state regulations and 

policies would be needed to draw further conclusions and is discussed in future research 

section. 
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Figure 4-10. Political inclination of each state for averaged over the last decade (left). 

Categorical distribution for TMDL performance parameters (right): Red – Republican, Blue – 

Democratic. 

 

4.4. Implications of Results 

This study presents TMDL progress across the country and the influence that 

spatial and socioeconomic factors have on the percent of streams that are assessed, those 

that are impaired, and those for which a TMDL is complete. The outcomes of this work 

demonstrate that not all states have implemented their TMDL programs to the same 

degree. While some of this can be attributed to the difference in state land areas and 

stream miles that must be assessed, there are other socioeconomic factors that have a 

similar degree of explanatory power.  

To that end, per capita earnings had a significant relationship with the percentage 

of streams that are assessed within a state. Without financial resources, states may not 

have the necessary personnel to collect the data that is needed for assessing streams. 

Arguments have been made that this lack of funding inhibits progress and should be 

addressed by permitting states to calculate TMDLs with alternative and less costly 

assessment methods, such as using proxies (e.g., impervious cover or stormwater 

volume) that are correlated with water quality (DeGioia, 2019). Other policy changes to 
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advance TMDL progress could include more direct obligations to limit pollution with 

discretion and flexibility on how to do so, rather than whether and how much to do so 

(Stephenson et al., 2022). In addition, there may be an economic case that there are 

returns to investments to improve water quality. These returns can be quantified by 

economic models to determine the cost and benefits of water quality improvements; 

however, uncertainties in these models regarding pollution damages and economic 

benefits make them difficult to apply (D. J. Bosch et al., 2006).  

Public participation is an important part in the TMDL development process as 

they can provide information regarding impairments, collect water quality data, and 

review and comment on impairment lists and TMDL drafts. Public participation is 

mandated through the CWA. This study shows that education, both population with 

college degrees and population without high school diplomas, have a considerable impact 

on the assessment of streams and rivers. Efforts to improve public awareness of water 

quality issues and their implications could improve their participation in various stages of 

the TMDL process. Furthermore, it has been shown that citizen scientist programs not 

only allow states to collect water quality data but also to educate socioeconomically 

underprivileged communities through information dissemination (Webster & Dennison, 

2022). 

One limitation in this study is that I was unable to evaluate the methodology for 

which streams are assessed, which could also vary depending upon what resources are 

available. For example, a robust assessment would have large amounts of data that 

demonstrate an impairment, while others could have a “drive by” assessment (Neilson & 

Stevens, 2002). Furthermore, some states may list a large number of impairments due to a 
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large amount of data, while others could have impaired streams that are not listed due to a 

lack of assessment data. As a matter of practical implementation, states with more 

streams have a greater workload and therefore the results indicate that these states have 

not assessed as many streams as a percentage of their overall stream lengths.  

It is also clear that EPA regions themselves tend to have a similar level of TMDL 

progress. Some of this can be attributed to spatial similarities as demonstrated in the 

clustering analysis; however, as Figure 4-8 indicates, there could be economic factors 

common to certain regions that influence TMDL progress. The fact that EPA regions 

have a significant influence on the implementation of programs is not surprising as they 

are the office charged with enforcing and overseeing state adherence to the Clean Water 

Act. The findings suggest that progress towards assessing streams and completing 

TMDLs varies depending upon the EPA region, with those with higher amounts of per 

capita earnings having a larger percentage of their streams assessed. This is aligned with 

other studies that have found similar differences among EPA regions in implementing 

elements of the Clean Water Act, including the NPDES program (Woods, 2021). 

This study demonstrates the variability in TMDL progress across states and what 

factors may contribute to it; however, how to bridge the gap between states is unclear. As 

the TMDL programs continue to mature, modeling approaches and technologies may 

accelerate assessment and TMDL development for waters of the United States. For 

example, modeling approaches have evolved over time and different impairment types 

may require different modeling tools  (Quinn, Kumar, La Plante, et al., 2019), which can 

be selected based upon the unique technical criteria and management constraints of a 

watershed (Sridharan et al., 2021). Furthermore, advancements in remote sensing and 
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geospatial analysis can be used to support TMDL assessment and modeling (Quinn, 

Kumar, & Imen, 2019; Sridharan et al., 2022). In addition, there may be ways to further 

improve the process of developing TMDLs with modelers, stakeholders, and regulatory 

entities. This is important as in many cases, the TMDL serves as the framework for 

contextualizing watershed science and regulatory policies towards stakeholders and the 

general public through collaboration and coordination of watershed management (Slota, 

2021).  

4.5. Conclusions 

This study evaluated the relationship that socioeconomics and regionalization 

have on TMDL progress and implementation. Outcomes indicate that TMDL progress 

and impairments had a large degree of variation, some of which could be explained by 

EPA region, spatial clustering, and socioeconomic variables. To that end, results suggest 

that the size of a state, the length of total streams, education, and the economic output are 

related to the percentage of streams that are assessed within a state. In addition, states 

largely followed similar patterns based upon the EPA region that they were within, 

indicating that regions play a large role in TMDL progress. Overall, this study highlights 

the diversity in implementation of TMDLs across states and highlights some of the 

factors that may explain variation in TMDL approaches to date. The outcomes of this 

study can be used to inform water resource decision makers to better strategize their 

approach and increase efficiencies of the TMDL development process mandated by the 

federal government. For example, for states or regions with higher economic capacities 

but low education levels, it might be efficient to reallocate resources to educate 

communities about the need for public participation in the TMDL process. Furthermore, 
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while the TMDL is a federally mandated national requirement, this study demonstrates 

progress towards meeting TMDL requirements differ among EPA regions. Therefore, it 

may be beneficial to investigate how to reallocate resources to EPA regions such that 

these discrepancies could be alleviated. To that extent, the use of new federal funding 

methods and regulations could be explored.  



83 
 
 

5. MONITOR AND ANALYZE THE TEMPERATURE MITIGATION 

POTENTIAL OF INTERCONNECTED GREEN INFRASTRUCTURE 

PRACTICES 

5.1. Rationale 

Green infrastructures are increasingly being used as a more resilient storm water 

management option. The watershed wide use of these structures has resulted in 

interconnected networks that increase their runoff mitigation potential (Dong et al., 2022; 

Ferreira et al., 2021; Staccione et al., 2022). To develop wholistic water management 

plans, the many other benefits of green infrastructure should also be considered, such as 

the potential to mitigate the temperature of urban runoff (R. M. Martin et al., 2021). This 

is because urban runoff can increase the temperature of their receiving water bodies 

(Zahn et al., 2021) and across the national TMDL program, temperature is second to 

bacteria as the most frequent number one cause of impairment in a state’s streams and 

rivers. Green infrastructure’s potential to be utilized to reduce the impact of urban runoff 

on downstream temperatures in networks of structures, especially those connected in 

series, is unknown. Understanding the cumulative benefits of GIs ability to mitigate 

runoff temperature will allow water managers and planners to better utilize these 

structures in achieving downstream water quality goals. This study seeks to fill this gap 

by monitoring a green infrastructure system in Milwaukee, WI – a bioswale and 

permeable pavement that both discharge into a second bioswale – to evaluate its 

temperature mitigation potential. 

I hypothesize that green infrastructure in series will improve stormwater runoff 

temperature mitigation. 
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5.2. Materials and Methods 

5.2.1. Site Description 

The Milwaukee War Memorial parking lot was constructed in the spring of 2021 

and has a surface composed of a mix of asphalt and permeable pavement surfaced with 

concrete pavers. The runoff from the parking lot is managed using a combination of 

bioswales and permeable paver systems that discharge at various points into a rip-rap 

lined swale. For this project, the outlets of three green infrastructure practices were 

monitored for flow and temperature including: (1) a permeable paver system collecting 

parking lot runoff, (2) a bioswale collecting parking lot runoff, and (3) a downstream 

bioswale that collects parking lot runoff and runoff from the underdrain of 1 and 2, and 

then discharges to a rip-rap lined swale (Figure 5-1).  

The permeable paver system is approximately 465 m2 in size and collects runoff 

from an overall area of 1,580 m2. The paver system is unlined and is drained by a 6-inch 

(0.15 m) diameter 35.7 m long perforated PVC pipe (0.001% slope) and then is 

discharged through a 6-inch (0.15 m) diameter 20.1 m long PVC underdrain (1.5 % 

slope) that outfalls to the surface of Bioswale 2.  

Bioswale 1 has an area that is approximately 222 m2 and drains a total area of 

2,062 m2. It is planted with a mix of native grasses and shrubs. It is unlined and has a 6-

inch (0.15 m) perforated PVC pipe running underneath the bioswale for 40.2 m (0.001 % 

slope) and connects to an 8-inch (0.20 m) overflow grate where effluent is discharged 

through a 6-inch (0.15 m) diameter 19 m long (0.5 % slope) underdrain that outfalls to 

the surface of Bioswale 2.  
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Bioswale 2 is approximately 270 m2 and collects runoff from the underdrain of 

the permeable paver system, Bioswale 1, as well as a drainage area of 1,775 m2. The 

bioswale is planted with a mix of native grasses and shrubs. It is unlined and has a 6-inch 

(0.15 m) perforated PVC pipe that runs 63.7 m along the bioswale (0.5 % slope). This 

underdrain is connected to an 8-inch (0.20 m) overflow pipe and effluent is discharged 

through an 8-inch (0.20 m) diameter 17.5 m long underdrain (0.5 % slope) that outfalls to 

a rip-rap lined swale.  

 

 

Figure 5-1. Photo of green infrastructure facing north, with monitored infrastructure outlined in 

bright green (1: permeable pavers; 2: bioswale 1; 3: bioswale 2) and connectivity of the 

underdrains in blue (left); photo of green infrastructure facing west, along with gravel rip rap 

channel that system discharges into (right). 

 

5.2.2. Monitoring Methods and Equipment 

To continuously measure water level and temperature, Onset HOBO U20 water 

level sensors were placed within the outlet of each structure and a v-notch weir was 

placed at the end of each outlet pipe in order to estimate flow rates. The water level 

sensors collected both water level and temperature at 2-minute intervals over the study 

period. Additionally, an Onset HOBO tipping bucket rain gauge was installed at the site 

to collect rainfall data that was applied to estimate overland flow volumes into the green 

2 

3 

1 
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infrastructure practices. All sensors were connected to one of two data collection hubs 

that were solar powered and broadcasted data through a cellular connection (Figure 5-2).  

 

 

Figure 5-2. Bioswale 2 outfall into riprap channel, rain gage, and data logger (left); data logger in 

bioswale 2 that measures the discharge from the permeable paver and bioswale 1 underdrains 

(right). 

 

5.2.3. Volumetric Flow Computations 

Influent runoff into each green infrastructure practice entered as overland flow; 

therefore, influent flow rates were estimated using rainfall data collected at the site. The 

curve number method was used to estimate inflow surface runoff volumes to each green 

infrastructure. 

𝑄 =  ((𝑃 −  𝐼𝑎)2)/((𝑃 − 𝐼𝑎) + 𝑆)    [Equation 1] 

𝐼𝑎  =  0.2𝑆        [Equation 2] 

𝑆 =  (1000/𝐶𝑁) − 10       [Equation 3] 

where Q is the runoff in inches, P is the accumulated rainfall depth (inches), Ia is the 

initial abstraction calculated by Equation 2, and S is the potential maximum retention 

after runoff begins which is calculated using Equation 3. Curve number, CN, for each 
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surface was derived using the TR-55 manual provided by USDA (WinTR-55 User 

Manual, 2002): CN for parking and paved spaces is 98. Once runoff is estimated, inflow 

volume was calculated by multiplying runoff height with respective watershed areas and 

converted to SI. Curve number method is the most widely used runoff model (Hawkins et 

al., 2008). As the complexity of the watersheds increase, the accuracy of the curve 

number diminishes and the hydraulic complexities of land use types such as forests are 

not well represented (Bartlett et al., 2016). However, it has been shown that CN method 

can be applied to urbanized watersheds with acceptable accuracy (Reilly & Piechota, 

2005). Due to the small-scale nature of the study’s watershed, having only one directly 

connected land use type (paved parking lot), and the homogeneous nature of the newly 

built parking lot, CN method will produce adequate results for this study. 

Flow in the effluent of the underdrains were calculated using a standard equation 

for a 90-degree v-notch weir (Hwang et al., 1996): 

𝑄 = 2.49ℎ2.48      [Equation 4] 

where ℎ is the height of the water behind the weir as measured by the water level sensors. 

The volume reduction within each infrastructure was calculated as the difference between 

the estimated inflow into each watershed and outflow through each underdrain. The 

rainfall data was applied to the rational method for estimating peak flow into the green 

infrastructure practices using Equation 5. 

𝑄 = 𝑐𝑖𝐴      [Equation 5] 

where 𝑄 is the peak flow, 𝑐 is the runoff coefficient, 𝑖 is the rainfall depth over the 

specified time period and 𝐴 is the drainage area. The catchments of each practice 

contained asphalt parking lots and therefore a runoff coefficient of 0.9 was used. Rational 
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method is widely used in designing stormwater infrastructure (C. Li et al., 2019). Similar 

to curve number method, the rational method is applicable to the monitored site due to its 

simplistic nature of land use type and small scale (Yazdanfar & Sharma, 2015). 

Furthermore, rational method is still widely used in recent published research work in 

watersheds with similar characteristics to this study (Winston et al., 2019) as well as in 

watersheds that are more complex with multiple surfaces and as three times as larger than 

this study (Purvis et al., 2019). Peak flow reduction (PFR) was calculated using the 

estimated peak inflow computed using Equation 5 and observed peak out flows from 

each infrastructure for each rain event. 

5.2.4. Temperature Computation 

The temperature at each outlet location was evaluated using both the peak 

temperature observed during a storm event, as well as the event mean temperatures 

(EMTs) (Picksley & Deletic, 1999). The event mean temperature represents a volume-

weighted average of the temperature in the runoff during a storm event and is calculated 

by the following equation:  

𝐸𝑀𝑇 =  (𝛴(𝑉𝑖  ∗  𝑇𝑖))/(𝛴(𝑉𝑖))     [Equation 3] 

where 𝑉𝑖 and  𝑇𝑖 are the runoff volume and temperature at time step 𝑖.   

In addition to peak temperature and EMT, the slopes of the increase and the decay 

in temperature were evaluated using the following equation for each rain event: 

𝑇 = 𝛽0 + ln (𝑡) ∗ 𝛽1     [Equation 4] 

where 𝑇 is the temperature, 𝑡 is the time after the start of the event (mins) and  𝛽0 and 𝛽1 

are regression coefficients. This log transformed equation better fits the characteristics of 

the temperature increase and decay by satisfying the assumptions of linear regression. 
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The regression coefficient 𝛽1  represents the slope of the increase and decay and was 

determined for each individual runoff event with summary statistics calculated across all 

observed events. The slope of this relationship explains the speed at which temperature 

changes within each infrastructure during runoff events, which is an indication of their 

temperature mitigation performance. The runoff events were delineated based upon 

rainfall that was separated by at least 24 hours. Peak temperature, mean temperature, rate 

of temperature increase, and rate of temperature decay were used to define the 

temperature behavior for each rain event observed from start to finish. 

Peak temperature and EMT distributions for each infrastructure were analyzed 

using ANOVA (Analysis of Variance) test. The hypothesis for the test is that there is a 

significant difference between the mean temperature performance of each infrastructure. 

Finally, ambient air temperature and solar radiation was measured during the 

study period. To determine how these parameters independently influenced the effluent 

temperatures in the green infrastructure, simple linear regression was performed to 

estimate the EMT computed above with air temperature and solar radiation as the 

independent variables. I hypothesize that the variation in EMT can be separately 

explained by the air temperature and hourly solar radiation preceding each rain event. 

This allows me to determine the impact that air temperature and solar radiation had on 

the ultimate EMT of each due to the observed impact of season and air temperature on 

effluent temperatures. 
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5.3. Results and discussion 

5.3.1. Hydrological Performance  

 A total of 21 runoff events were captured at the site over a period from June 29, 

2021 to October 29, 2021. During these events, the three green infrastructure practices 

were estimated to reduce 91% of the stormwater runoff volume on average as indicated in 

Figure 5-3. The volume reduction through individual structures was similar in magnitude, 

with the permeable pavers, bioswale 1, and bioswale 2 producing average volume 

reductions of 77%, 84% and 85%, respectively. The observed higher overall volume 

reduction (91%) is due to the placement of the green infrastructure in series, where the 

overflow of the permeable pavers and bioswale 1 is further reduced through bioswale 2.  

 

 

Figure 5-3. Distribution of the percent of stormwater runoff volume per rain event that is reduced 

by the three green infrastructure practices and the overall system. 

 

To evaluate how volume removal was influenced by storm characteristics, I 

plotted the volume reduction percent as a function of the log of the rainfall depth (Figure 

5-4). Log transformation to the rainfall depth was carried out to ensure that the regression 

analysis satisfies the linearity assumptions, including normality and homoscedasticity of 
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the residuals. As illustrated, the permeable pavers, bioswale 2, and the overall system had 

a statistically significant relationship (p < 0.05 of the slope coefficient) between the 

percent of the volume captured and the rainfall depth, suggesting that the volume 

reduction capacity of the green stormwater infrastructure decreases as it becomes more 

saturated during larger rainfall events. However, the impact of rainfall depth on volume 

reduction for bioswale 1 was less clear with an R2 of only 6% and a p value higher than 

0.05. This is caused by the 114mm rainfall event, which is nearly a 24 hour, 25-year rain 

event (116mm for Milwaukee) that has high influence and leverage in the model with a 

cook’s D value higher than 1. 
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Figure 5-4. The percentage of stormwater runoff that is infiltrated as a function of rainfall depth.  

 

Overall, the green infrastructure system reduced peak flow rates by over 98% on 

average, with slightly less reduction in the permeable pavers (90%) than the bioswales 

(both 95%) (Figure 5-5). Similar to volumetric performance, the peak flow reductions 

were impacted by the size of the rainfall event with less peak flow reduction for larger 

rainfall events (Figure 5-6). While there is an observable outlier at the far end for a storm 

with above a 100 mm depth, it does not have significant influence on the linear regression 

model with a Cook’s D value less than 1.0 for all models (Helsel et al., 2020). 

R2 = 0.56 

R2 = 0.06 

R2 = 0.63 

R2 = 0.59 
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Figure 5-5. Distribution of the peak flow reduction in each green infrastructure practice and the 

overall system. 

 

 

Figure 5-6. Peak flow reduction (PFR) as a function of the rainfall depth. 

R2 = 0.67 

R2 = 0.89 

R2 = 0.91 

R2 = 0.92 
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5.3.2. Temperature Performance 

For the two green infrastructure practices in parallel – permeable paver and 

bioswale 1 – the bioswale had lower EMT across all storms and lower peak temperatures 

across all but 3 events (Figure 5-7). Further EMT reductions were observed in bioswale 

2, which on average was 4.2 °C cooler than the flow from permeable pavers and 2.4 °C 

cooler than the flow from bioswale 1. This is within the range of other studies that have 

found median temperature differences between the influent and effluent of green 

infrastructure between 0.8 and 8.8 °C (M. Jones & Hunt, 2009; Long & Dymond, 2014). 

The reduction in EMT was similar in magnitude for the peak temperature with the 

bioswale 2 on average 4.3 °C cooler than the permeable pavers and 3.4 °C cooler than 

bioswale 1. On an ANOVA test, peak temperature for bioswale 2 was significantly (p < 

0.05) lower than the infrastructure feeding into it while permeable paver had a 

significantly higher EMT than the bioswales. The reductions in both EMT and peak 

temperatures highlight the potential for green infrastructure in series as a way to further 

mitigate runoff temperatures. In fact, by further treating the stormwater runoff, this 

system reduced the EMT to 22 °C on average, below the upper temperature tolerated by 

trout for 1-14 days of 22.5 °C in the upper Midwest of the U.S. (Wehrly et al., 2011).  
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Figure 5-7. Distribution of the peak temperature (a) and the event mean temperature (b) for 

stormwater runoff events captured at the underdrain of each green infrastructure practice.  

 

To evaluate the impact that ambient air temperature has on the peak and event 

mean temperature, I plotted all outflow water temperatures as a function of the date of the 

runoff event and colored by ambient air temperature (Figure 5-8). In this figure the peak 

and event mean temperature points are fit with spline interpolation to illustrate the trends 

over time. As illustrated, the air temperature is cooler towards the beginning and end of 

the study period and appears to peak during sometime in August. Not surprisingly, this 

appears to have a substantial impact on the peak and event mean water temperature, as 

these follow a similar trend.  

An important observation is the peak temperature of the permeable pavement 

exceeding that of the bioswale 1 for three rain events during the hottest period of the 

study, end of August. This could be due to differences in the contributing area of each 

watershed. The asphalt parking area contributing to the runoff collected by the bioswale 

is 65% larger than the area contributing to the porous pavement but, the bioswale is half 

the size of the pavement. Furthermore, the time of concentration for the bioswale is 

longer due to the inlet placements. Therefore, during much warmer events, the runoff 
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temperature difference resulting from these surfaces could potentially reduce the cooling 

effect of the bioswale compared to the pavement which result in the observed 

performance. Even though porous pavements get hotter than bioswale surfaces, it has 

been shown that they can be 14 oC colder than regular asphalt pavement during dry days 

and 6.6 oC colder during rain events (Cheng et al., 2019). However, the EMT of the 

bioswale 1 effluent is consistently lower than the effluent from the porous pavement due 

to its better temperature mitigation performance resulting from shading and potential 

material differences of each infrastructure. 

Bioswale 2 consistently shows lower effluent EMT and peak temperatures. This is 

due to cooler effluent from the connected GIs mixing with runoff captured by the 

bioswale 2 itself. Bioswale 2 is 20% larger than bioswale 1 however, has a contributing 

parking lot area which is 14% smaller. These size differences result in the perceived 

better performance of the Bioswale 2. During these events at the height of the summer, 

the temperature of the water leaving bioswale 2 are above the threshold for freshwater 

species of 22.5 °C (as indicated by the horizontal line) (Wehrly et al., 2011), suggesting 

that despite further reductions in temperature, the green infrastructure in series may not 

be enough to meet that threshold. However even so, it may be further diluted by the lower 

temperature of receiving streams.   
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Figure 5-8. Peak temperature and event mean temperature as a function of the date. The ambient 

air temperature for each event is represented by the color bar and the horizontal line represents 

the minimum mean temperature threshold for freshwater species (22.5 °C). 

 

To further understand the impact of ambient conditions, I separately evaluated the 

correlation between air temperature and hourly solar radiation immediately preceding the 

storm event on the EMT and peak temperatures of the green infrastructure system using 

simple linear regression. The relationship between air temperature and solar radiation on 

the EMT of each structure is illustrated in Figure 5-9. As illustrated, there is a positive 

correlation between both air temperature and solar radiation, with periods of zero solar 

radiation during nighttime storms. Solar radiation and air temperature are moderately 

correlated to each other with a Pearson correlation of 0.59 (p value < 0.05) for the rain 

events that happen during the day. This may indicate that when both the ambient air is 
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warmer and incident solar radiation is higher, the runoff into the green infrastructure is 

hotter due to higher warming of the pavers within the catchment of each practice. The 

simple linear regression shows that air temperature at the start of the rain event can 

explain 28% to 40% of the variation in EMT and solar radiation at the start of the rain 

event can explain 24% to 37% of the variation. Other explanatory factors that affect the 

complex energy balance taking place within the system include wind speeds, soil 

moisture content (Purdy et al., 2016), infiltration rates, and subsoil temperature 

(Krayenhoff & Voogt, 2007). It has been shown that wind speeds have a positive 

correlation with thermal energy transfer between urban surfaces and the atmosphere 

(Ahmed et al., 2015) thus, higher wind speeds prior to rain events will reduce the surface 

temperature and vice versa. Soil moisture content determines the overall thermal capacity 

and the thermal conductance of the subsoil composite therefore, the moisture content 

within the GI during the rain event has an impact on the temperature performance. 

Infiltration rates within GI can change based on soil moisture content as well. The more 

soil moisture there is, the slower the rate of infiltration will be. Slower infiltration rates 

will increase the time of contact between soil particles and storm water allowing for more 

thermal energy to transfer between them. Furthermore, environmental variables such as 

energy are continuous variables which are autocorrelated (Di Cecco & Gouhier, 2018; 

Parolari et al., 2021). Therefore, inclusion of antecedent weather conditions could also 

improve predicting power of EMT. 
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Figure 5-9. Relationship between EMT and air temperature and solar radiation. Air temperature 

is measured immediately before rain event and solar radiation is the cumulative radiation for the 

hour preceding the rain event. 

 

An example of the change in temperature over the course of a runoff event is 

illustrated in Figure 5-10 for a storm on August 21, 2021. During this runoff event, 

temperatures at the outlets initially decrease, likely due to the flushing of cooler water 

from the green infrastructure (within the underdrain pipe or subsurface of the green 

infrastructure itself) than the ambient air temperature or temperature of the standing water 

behind each weir. However, after the initial decrease, the temperature immediately 

spikes. This is particularly pronounced for bioswale 1 and the permeable pavers that 
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collect direct surface runoff from the asphalt parking lot. Additionally, the falling limb of 

the temperature appear to vary among the bioswales and permeable pavers with bioswale 

1 having a sharp drop in temperature while the permeable pavers and bioswale 2 had a 

more gradual reduction.   

 

 

Figure 5-10. Example of temperature fluctuations over the course of a runoff event. 

 

To further evaluate the temporal dynamics of effluent temperature during runoff 

events, I quantified the rate of change in the rising and falling slopes of the temperature. 

This rate of change is represented as 𝛽1 from Equation 4 and the distributions of 𝛽1 

across all observed storms is illustrated in Figure 5-11. As illustrated, the permeable 
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paver has the slowest rate of increase in comparison to the bioswales, with bioswale 1 

having the greatest rate of increase overall; however, none of these were statistically 

different using the students t-test (p < 0.05). In evaluating the rate of decay, the 

permeable paver and bioswale 2 had a similar decay; however, bioswale 1 had a 

significantly steeper decay (p < 0.05) than the other green infrastructure practices. This 

could be due to several factors. In comparison to the permeable pavers, bioswale 1 could 

have a greater cooling capacity than permeable pavers, which is also evident in the lower 

peak and event mean temperatures. For bioswale 2, it could be that it is receiving effluent 

from the other bioswale and permeable pavers; therefore, there is a lower rate of heat 

exchange due to a lower temperature of its influent. Other possible mechanisms driving 

these differences are discussed in the following section.  

 

 

Figure 5-11. Slope coefficients of the increase and decay of the effluent temperatures. 

 

5.4. Implication of Results and Limitations 

The green infrastructure connected in series reduced both the EMT and peak 

temperatures on average to levels that are below the threshold for freshwater fish species 
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in the Midwest United States of 22.5 °C (Wehrly et al., 2011); however, this was not the 

case in the hottest summer month, as the EMT and peak temperatures were strongly 

influenced by ambient temperatures. The bioretention installed in parallel to the 

permeable pavers had lower event mean and peak temperatures and had a significantly 

higher rate of temperature decay. Though inflow temperatures were not measured, since 

the contributing parking lot area has identical thermal characteristics to one another and 

the contributing parking area for the bioswale 1 is 16% larger than the contributing area 

for the porous pavement, it can be assumed that the incoming runoff temperature to the 

bioswale 1 is similar to the pavement. If this assumption is true, then this would suggest 

that the bioswale in parallel to the pavement performs better overall. The higher rate of 

temperature decay could be due to several factors including an increased residence time 

within the bioswale to facilitate energy transfer, cooler soil and plant temperatures on the 

surface of the bioswale than the surface of the permeable pavers, or thermal conductivity 

and capacity differences between soil media in the bioretention and crushed aggregate 

media in the permeable pavers.  Bioretention, consisting of soils and plants, are known to 

have a lower surface temperature than permeable pavers, which could be a factor in their 

performance. This is largely due to the shading from plants within the bioretention itself 

(Muerdter et al., 2018) and evapotranspiration from plants and surfaces. Shading acts as 

the primary method in reducing surface temperatures through vegetation that can block 

more than 60 – 90% of incoming radiation (Rahman et al., 2019; Winbourne et al., 2020). 

Evaporation of water on the surface reduces surface temperature through a combination 

of conduction and material phase changes, while plant transpiration reduces the near 
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surface air temperature, which in turn reduces the surface temperature through 

conduction and convection (C. Wang et al., 2018). 

In addition, the primary mechanism for which runoff temperatures are reduced 

during events is heat dissipation through conduction with the media when runoff is 

filtered through the green infrastructure practice (H. Y. Chen et al., 2021; Long & 

Dymond, 2014). While not quantified in this study, the thermal capacity of the media 

may be something that plays a considerable role in temperature mitigation as soils 

generally have a greater thermal capacity than permeable pavers. In addition to 

reductions of event mean and peak temperature, the significant overall volume reduction 

(91%) further reduces the impact of elevated stormwater runoff temperatures on 

downstream waters. This indicates that volume reduction through capture, infiltration, 

and evapotranspiration, in as much as temperature reduction, is an important component 

to consider for thermal mitigation.  

While the results demonstrate the overall outcome of green infrastructure in 

series, there are several limitations to the monitoring approach that limit the interpretation 

of the data. Because the runoff entered the system as overland flow, there is no data on 

the temperature of the runoff as it enters the green infrastructure practices. While this 

does not significantly affect the comparative analysis between practices, it does limit our 

understanding of the overall reduction in runoff temperatures, especially in the green 

infrastructure practices in the headwater (porous pavement and bioswale 1). An inability 

to directly measure overland flow also means there will be uncertainties in the 

computation of incoming peak flows and volumes using a modeling approach based upon 

rainfall data.  Even though it has been shown that these modeling methods are valid in 
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given watershed conditions (Winston et al., 2019), errors introduced by these empirical 

models could be exacerbated for smaller storm events. Additionally, there could be 

uncertainties within the estimations of effluent flow rates using a water level and weir. 

Based upon this data, I am also unable to define the extent to which thermal cooling of 

the stormwater runoff occurs within different portions of the system. For example, 

cooling could occur in the bioretention as it infiltrates through the soil layers, as well as 

during its transport through the underdrain.  

To that end, the outcomes of this work lead to several potential research directions 

that would be valuable for elucidating the exact design characteristics of green 

infrastructure for mitigating runoff temperature. First, the specific thermal capacity of the 

media for effectively reducing runoff temperatures is something that is underexplored 

and may have competing objectives with the need to adsorb pollutants and infiltrate 

runoff at a sufficient rate. For example, sand is known to have a greater thermal capacity 

than clay soils (Ghuman et al., 1985); therefore, the recommended mix of bioretention 

media may be an important consideration. There may also be design parameters for the 

depth of the underdrain that could impact the temperature of the effluent that leaves the 

system, with greater depths to underdrains producing lower effluent temperatures due to 

the cooler temperature of deeper soils that are buffered from atmospheric temperatures 

changes and solar radiation (M. Jones & Hunt, 2009). Even so, there may be design and 

cost considerations that limit the depth to which the underdrain can be installed.  

5.5. Conclusion 

This study evaluated the impact of green stormwater infrastructure connected in 

series on the temperature mitigation of stormwater runoff. Results indicate that for the 
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bioswale and the permeable pavers connected in parallel, the bioswale had a lower event 

mean temperature than the permeable pavers (2.8 °C cooler); however, neither was able 

to decrease the event mean temperature below the 22 °C threshold for freshwater trout 

species. The bioswale that performed secondary treatment did, however, further reduce 

the temperature of the cumulative effluent across all storms, as the average event mean 

temperature of bioswale 2 was 4.2 °C cooler than the permeable paver and 2.4 °C cooler 

than the bioswale 1. These findings have practical implications as increasing global 

temperatures and land development will further the impact of stormwater runoff on 

stream temperatures. Therefore, for stormwater managers, the need to reduce the thermal 

load of stormwater runoff will likely only grow as temperature becomes a driver of water 

body impairments. This study demonstrates that green infrastructure can be a useful tool 

in the mitigation of runoff temperatures, especially those installed in series.  
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6. CONCLUSIONS 

Water quality of the nation’s water bodies impact health and recreation of 

humans, plant and animal lives, and the ecosystems that sustain us. Due to its utmost 

importance, nations around the world have established regulations and policies that 

protect and rehabilitate the quality of water resources. The overall objective of this 

dissertation was to evaluate and improve our understanding of the engineering, 

regulatory, and socioeconomic principles influencing stormwater management actions 

which affect downstream water quality and quantity.  

The minimum requirements for water management and planning mandated by the 

CWA do not require a wholistic approach that considers future projections of land use; 

however, doing so is increasingly encouraged by water quality scientists and suggested 

by the EPA (Stoker et al., 2022; Younos et al., 2019). As this dissertation demonstrates, 

land use changes can have a significant relationship to changes in stream water quality; 

therefore, it would be prudent for watershed management plans to assess how projected 

land use changes might influence trends in stream water quality. The outcomes of this 

work could be used for developing better TMDLs, by incorporating the predicted 

influence of land use changes on downstream water quality in margins of safety 

calculations. Furthermore, these outcomes could be incorporated in water quality 

management plans to make more resilient decisions based on future land use projections. 

The TMDL program is the primary federal mechanism to regulate non-point 

source pollution in the U.S.; however, since its authorization 25 years ago, no studies 

have evaluated what factors might influence the variation in its implementation across 

states. Socioeconomics has been shown to be related to water quality (Andrew et al., 
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2019; Wu et al., 2015), yet the relationships between socioeconomics and watershed 

management actions, especially the TMDL process, is unknown. This dissertation 

therefore evaluated the progress of TMDLs and defined the relationship between 

socioeconomic, spatial, and political factors on indicators of TMDL progress. The 

outcomes can be used to improve the TMDL development process by identifying spatial 

and socioeconomic obstacles and catalysts to progress. 

In several U.S. states, temperature is the leading impairment of stream and rivers 

and is the 2nd greatest cause for impairments among all states. Green infrastructures are a 

stormwater best management practice that are primarily used to reduce runoff volumes 

and pollutant concentrations of regulated pollutants (e.g., TSS); however, they also hold 

promise for reduce the temperature of stormwater runoff.  While previous studies have 

demonstrated the potential of green infrastructure such as bioswales and permeable 

pavers for reducing runoff temperatures, none have evaluated how green infrastructure 

connected in series can improve temperature mitigation. The outcome of this objective 

demonstrates the extent to which green infrastructure (porous pavement and bioswales) 

connected in series can reduce outfall runoff temperatures into streams. These outcomes 

can help inform effective designs of green stormwater infrastructure to address one of the 

leading causes of stream impairments in the U.S.  

6.1. Outcomes and key findings 

The following sections summarize the outcomes, key findings, and implications 

of each dissertation objective. 
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6.1.1. Analyze Land-Use Changes and their Impact on Discharge and Water 

Quality Trends in the United States. 

 The outcomes of this objective include (1) defining the land use changes within 

case study watersheds, (2) determining the trends in discharge and water quality, and (3) 

a regression model that relates the change in land use to trends in water quality. The key 

findings of these outcomes were that (1) imperviousness and developed land increased in 

every watershed, (2) of the watersheds with statistically significant trends, the majority 

had increases in specific conductance and decreases in dissolved oxygen and turbidity, 

(3) between 12% - 58% of the variance in water quality trends could be explained by the 

land use changes within the watersheds. 

Trend analysis revealed that land use changes in the watersheds over the study 

period largely followed trends within the U.S. at large, with every watershed 

demonstrating an increase in impervious area, with an average increase of 0.41% and a 

maximum of 1.78% over the period 2008 to 2016. Trends in discharge and water quality 

in streams were mixed, with a majority of watersheds demonstrating a decrease in 

dissolved oxygen and turbidity, both an increase and decrease in discharge, and an 

increase in specific conductance. A regression analysis revealed that discharge, turbidity, 

and specific conductance were correlated with changes in individual land use types with 

an R2 between 0.12 – 0.25. Combining the influences of multiple land uses in 

multivariate regression improved the predictions for discharge (R2 0.58) and specific 

conductance (R2 0.47), highlighting the magnitude for which land cover changes may 

influence trends in water quality. Overall, this study demonstrates the relationship 

between land use changes and surface water quality at a broad spatial (continental U.S.) 

and temporal (9 years) scales. These outcomes could be applied in watershed 
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management plans, where the impact of future land use projections could provide a basis 

for expected changes in downstream water quality.   

6.1.2. Define the Influence of Socioeconomic and Spatial Variables on TMDL 

Progress in the United States. 

The outcomes of this objective were (1) an assessment of the progress of TMDLs 

within the U.S., and (2) a determination of how socioeconomic or spatial variables 

influence aspects of TMDL progress. The key findings of this objective were that across 

all U.S. states (1) the median percentage of streams and rivers assessed within states is 

33%,  of those streams that are assessed,  a median of 27% are listed as impaired, and of 

those listed as impaired a median of 22% have a TMDL complete, and (2) the spatial and 

socioeconomic variables that are significantly correlated to indicators of TMDL progress 

include total stream length, state land area, per capita earnings, percentage of population 

with bachelor degrees, percentage of population without high school degrees, EPA 

region, and political inclination .   

Results indicate that TMDL progress and impairments had a large degree of 

variation, some of which could be explained by spatial location including EPA region, as 

well as socioeconomic variables. To that end, results suggest that the size of a state (R2 

0.19) and the length of total streams (R2 0.22) are negatively correlated while per capita 

earnings (R2 0.13) and percentage with bachelor’s degrees or higher (R2 0.13) are 

positively correlated to the percentage of streams that are assessed within a state. In 

addition, states largely followed similar patterns based upon the EPA region that they 

were within, indicating that EPA regions play a large role in TMDL progress. Finally, the 

study found a moderately significant relationship between the overall political inclination  

within state legislature and the percentage of assessed streams, where states historically 
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controlled by democrats assessed a greater percentage of streams. The major impact of 

this study is that it contextualizes the progress in TMDL development and can help aid in 

our understanding of the influence that socioeconomics or regionalization may have on 

implementation of water quality programs. This understanding of the factors that affect 

the TMDL development will allow federal, regional, or state-level agencies to modify 

their watershed management planning approaches in a way that wholistically considers 

the diverse influences that may affect progress towards meeting water quality goals. 

6.1.3. Monitor and Analyze the Temperature Mitigation Potential of 

Interconnected Green Infrastructure Practices. 

The outcome of this objective is a determination of the temperature mitigation in 

green infrastructure connected in series – a bioswale and permeable pavement that both 

discharge into a second bioswale – over the course of the summer and fall. The key 

finding of this objective is that green infrastructure connected in series further reduce 

stormwater runoff temperatures. 

Three GI practices were studied in a parking lot consisting of asphalt, permeable 

pavements, and sidewalks. Results indicate that for the bioswale and permeable pavers 

connected in parallel, the bioswale effluent had lower event mean temperatures than the 

permeable pavers (2.8 °C cooler). In addition, the bioswale that performed secondary 

treatment further reduced the average event mean temperature across all storms by 4.2 °C 

from the permeable pavers and 2.4 °C from the bioswale. This study demonstrates the 

effectiveness of green infrastructure connected in series for reducing effluent 

temperatures, which is important for addressing a critical threat to environmental and 

human health. As temperature impairments in urban water bodies increase due to the 

urban heat island effect and global temperature rises caused by climate change, 
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mitigation efforts are critical.  This study demonstrates that green infrastructure 

connected in series can improve temperature mitigation compared to stand alone 

structures. Watershed managers and planners can use this knowledge in designing green 

infrastructure approaches to addressing the second largest level-1 impairment of streams 

and rivers in the U.S.  

6.2. Future Work Recommendations 

The following sections introduce suggested future work based on the results and 

limitations of each dissertation objective.  

6.2.1. Analyze Land-Use Changes and Their Impact on Discharge and Water 

Quality Trends in the United States. 

While this objective was able to find a sizeable number of gages (60) that 

collected discharge, specific conductance, and turbidity over the time period of interest 

(2008 - 2016), there are other pollutants of concern that were not available for which land 

use could have large impact. For example, nutrients, temperature, and total suspended 

sediments are leading causes of impairments; however, these parameters are not available 

over a long time period (>9 years) at a large number of USGS sites (>30). As new gages 

that collect these parameters come online, future empirical studies could attempt to assess 

how trends in these pollutants are impacted by land use changes. Furthermore, while 

continuous data might not be available, it is possible that grab samples that are 

representative of monthly or annual time scales could also be used to evaluate trends in 

water quality (Wijesiri et al., 2018). While the time frame of this study was limited by the 

availability of continuous data, data over a much longer period could provide stronger 

assessment of temporal trends in both land use and stream discharge and water quality. 

This is especially true if historical data is available prior to the period of this case study 
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as land use changes in the U.S. were more prominent during the late 90’s and early 

2000’s (Winkler et al., 2021). To that end, historical land use maps may become 

increasingly available as machine learning approaches have recently been used to 

develop land use classifications based upon satellite data, aerial imagery, and historic 

paper maps (D. Liu et al., 2018; Talukdar et al., 2020; J. Wang et al., 2022). Utilizing 

these new data sources as they become available could improve the observations from 

this study. 

This study identified the relationship between land use change and trends in 

discharge and water quality; however, there may be other explanatory factors not 

captured by this study that could further explain the mechanisms within watersheds that 

impact trends in discharge and water quality. An example of this is given by the observed 

relationship between changes in turbidity and land use. Turbidity has a negative 

correlation with urban land increases, and it has decreasing trends in more than 85% of 

the watersheds. Other studies (J. C. Murphy, 2020; Stets et al., 2020) have observed 

similar trends in stream discharge and water quality and attribute them to the 

implementation of best management practice within the watershed. An additional finding 

was that the relationship between discharge and imperviousness was not statistically 

significant at p <0.1. This could be related to regulations that require new developments 

to match post-development volume and peak discharges (Prey et al., 1995). A future 

study that can also quantify the rate at which best management practices are implemented 

within a watershed may be able to elucidate the impact to which land use changes are 

also associated with BMP implementation. 
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6.2.2. Define the Influence of Socioeconomic and Spatial Variables on TMDL 

Progress in the United States. 

The study revealed linkages between economic (e.g., per capita earnings) and 

educational (e.g., attainment of a bachelor’s degree) indicators and the percentage of 

streams that were assessed. Future studies could further parse out the exact mechanisms 

for which these indicators translate to stream assessments. For example, states with 

higher income tax and higher per capita earnings may have a greater base for which to 

disperse funds to the state-level agencies that performs assessments. There may also be 

support from non-profits and advocacy groups such as Sweet Water (Southern Wisconsin 

Watershed Trust) and Milwaukee Riverkeeper that fund assessments through voluntary 

groups and that implement educational programs that support watershed management 

goals. To that end, assessing to what degree and how many community organizations get 

involved in the TMDL process could shed light on how much the educational background 

and non-profit organizational efforts support TMDL progress.  

In collecting TMDL data from the ATTAINS database, it was observed that states 

have different methods of categorizing, testing, and reporting pollutants. A future study 

could identify the reasons for which states, or EPA regions, use specific testing methods 

and test for specific pollutants. These could be related to finances, availability of 

expertise, or the specific water quality challenges or polluters (e.g., agriculture) within a 

state. Similarly, states or EPA regions could also have varying laboratory capabilities to 

assess and test water quality resulting in varying approaches to TMDL assessments 

(Williams, 1993). Understanding reasons for which states use specific testing methods or 

test for specific pollutants could assist the EPA in providing further guidance to states on 

how to assess their water bodies.  



114 
 
 

Finally, this study demonstrated the relationships between indicators of TMDL 

progress and historical political control within a state. An assessment of state regulations, 

policy, and legal codes addressing water quality issues could reveal more information 

about how the platform of political parties in control of state-level environmental 

agencies impact the TMDL process. For example, the approach to TMDL development is 

often codified by state legislatures, such as chapter NR 212 subchapter 3 of the 

Wisconsin administrative code, that defines the requirements of TMDL development. 

Comparing these and other state legislation and regulation that impact water quality and 

TMDL development could further shed light on the variation in approaches. 

6.2.3. Monitor and Analyze the Temperature Mitigation Potential of 

Interconnected Green Infrastructure Practices. 

Future work could build upon the outcomes of this objective to quantify the 

impact of green infrastructure design on temperature mitigation. First, the specific 

thermal capacity of the media for effectively reducing runoff temperatures is something 

that may have competing objectives with the need to adsorb pollutants and infiltrate 

runoff at a sufficient rate. For example, sand is known to have a greater thermal capacity 

than clay soils (Ghuman et al., 1985); therefore, future studies could evaluate how the 

recommended mix of bioretention media impacts its ability to reduce runoff temperature. 

In addition, soil amendments used for removing other pollutants may have an impact on 

the conductivity of the soil. For example, artificial soils used for green roofs and green 

walls have shown varying thermal conductivity with ‘Biochar-coconut coir compost’ 

showing the least amount of conductivity (Lunt et al., 2023). Investigating GI subsoil 

thermal properties could help improve the design of these structures to meet both 

objectives of high infiltration and temperature mitigation. 
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There may also be specific design parameters of GI, such as the depth of the 

underdrain, that could impact the temperature of the effluent that leaves the system.  For 

example, greater depths to the underdrain have been found to produces lower effluent 

temperatures due to the cooler temperature of deeper soils that are buffered from 

atmospheric temperatures changes and solar radiation (Jones & Hunt, 2009). To that 

extent, field experiments could test how design parameters, such as the depth to the 

underdrain, influence the temperature reduction of stormwater runoff. Furthermore, 

increasing residence time of flow through design alterations in the subsoil trench could 

improve the temperature reduction of flow through the system. Internal baffles in 

bioretention’s have been used to improve volume capture and pollutant removal by 

increasing residence time (H. Li et al., 2021). A carefully designed baffle system that 

increases the residence time while performing adequate runoff capture could allow the 

storm water to reach thermal equilibrium with the subsoil before being released through 

the underdrain.  

Finally, this study was able to measure the temperature of the effluent of the three 

practices, but future studies could incorporate a greater number of sensors to measure the 

runoff temperature within other parts of the watershed and GI. Other sites where flow is 

concentrated at the inlet of the green infrastructure practice could be used so that influent 

temperatures could also be captured with a thermocouple. However, doing so with porous 

pavements would be a challenge since they are aligned with the roadway, but could 

possibly be done by constructing a temporary blockage around the pavement. In addition, 

soil moisture content has a profound impact on the thermal dynamics of the system due to 

its impact on infiltrations rates, thermal capacity, and thermal conduction rates of the 
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trench media. Therefore, using moisture and temperature sensors in multiple depth 

profiles within each structure could allow us to capture the thermal dynamics within the 

green infrastructure media itself.  
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APPENDICES 

1.  SUPPORTING DOCUMENTS FOR OBJECTIVE 1 

Imputation of water quality data: 

Imputation methods were applied to fill in missing data gaps in the data sets over 

the continuous 9-year period of record. However, several data sets were removed from 

the analysis due to more than 40% missing data over the study period (2008-2016). This 

resulted in 52, 58, 46, and 51 gages for discharge, turbidity, dissolved oxygen, and 

specific conductance, respectively. Out of these, 8 (discharge), 56 (turbidity), 44 

(dissolved oxygen), and 49 (specific conductance) data sets had at least some missing 

data that needed to be filled in using imputation methods. This is summarized in Table A 

1-1, which illustrates that the average gap size ranged between 4.3 and 9.7 days.  

 
Table A 1-1. Summary of the data gap in days for each stream gage measurement. Discharge – 

ft3s-1mile-2, Dissolved Oxygen – mg/l, Specific Conductance - μS cm-1 @ 25 Celsius, Turbidity 

- FNU  

STATISTIC DISCHARGE TURBIDITY DO SPCOND 

MEAN 9.7 4.3 8.6 6.3 

MEDIAN 2 3 2 2 

STD.  DEV. 40.9 12.9 36.5 20.6 

SKEWNESS 6.9 25.7 20.1 9.1 

MINIMUM 1 1 1 1 

MAXIMUM 367 509 981 354 

 

These mean gap values in Table A 1-1 were then used to test the different 

imputations methods on complete data sets. The error associated with each imputation 

method as a function of the number of missing days percentage is illustrated in Figure A 
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1-1. This figure shows the Mean Absolute Error (MAE) for the best four imputation 

methods for Discharge at a gage with complete data. As illustrated, the Kalman 

Smoothing method produced the lowest error among all four imputation methods. 

Kalman smoothing method was also found to be the best method for imputation for all 

water quality and quantity parameters; therefore, it was used to fill in missing data within 

the gages. This technique is commonly used in hydrological studies as it has been found 

to give optimum results in time-series data imputation (Afrifa-Yamoah et al., 2020). 

 

 

Figure A 1-1. Example of Absolute mean Error values (ft3s-1) for the four best imputation 

methods tested on Discharge data of a single gage. 
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Figure A 1-2. Theil-Sen slope distribution for all gages analyzed. Due to more than 50% of the 

gages having no significant (at p<0.1) water quality changes over time, the distribution is skewed 

towards zero, yet the same overall observations in the averages are being seen. Discharge – ft3s-

1mile-2, Dissolved Oxygen – mg/l, Specific Conductance - μS cm-1 @ 25 Celsius, Turbidity - 

FNU 
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Table A 1-2. All Theil Sen slopes (per month) and their p values for each gage and water quality 

parameters and discharge. Discharge – ft3s-1mile-2, Dissolved Oxygen – mg/l, Specific 

Conductance - μS cm-1 @ 25 Celsius, Turbidity - FNU 

State 

Turbidity Discharge 
Dissolved 

Oxygen 

Specific 

Conductance 

p 

Theil 

Sen 

slope 

p 

Theil 

Sen 

slope 

p 

Theil 

Sen 

slope 

p 

Theil 

Sen 

slope 
01408029 NJ 0.000 -0.624 0.050 -0.032 NA NA 0.000 7.150 

01463500 NJ 0.000 -0.435 0.001 -0.099 0.125 -0.029 0.001 4.500 

01472157 PA 0.020 -0.253 0.000 -0.064 NA NA NA NA 

01473169 PA 0.003 -0.388 0.044 -0.032 NA NA NA NA 

01480300 PA 0.000 -1.154 0.004 -0.061 NA NA NA NA 

01480617 PA 0.001 -0.489 0.076 -0.033 0.000 0.085 0.000 10.536 

01480870 PA 0.006 -0.327 0.012 -0.056 0.786 0.007 0.000 10.188 

01481000 PA 0.086 -0.273 0.003 -0.056 0.833 -0.012 0.000 7.819 

01569460 PA 0.000 0.242 0.000 -0.271 NA NA NA NA 

01608500 WV 0.833 0.016 0.786 -0.003 0.002 -0.048 0.527 0.614 

01649190 MD 0.741 -0.081 0.609 0.014 0.252 -0.012 0.000 16.788 

02110400 SC 0.292 0.190 0.000 0.041 0.416 -0.043 0.321 -3.479 

02110500 SC 0.265 -0.108 0.000 0.084 0.012 -0.091 0.000 -5.027 

02110701 SC 0.000 -1.095 0.489 -0.051 0.050 -0.098 0.002 -4.288 

02110704 SC 0.001 -0.164 0.000 0.082 0.028 -0.053 0.000 -6.798 

02203603 GA 0.125 -0.281 0.976 -0.001 0.786 -0.005 0.652 -0.475 

02203655 GA 0.880 -0.037 0.086 0.051 0.434 -0.017 0.567 0.397 

02203700 GA 0.489 -0.172 0.265 0.025 0.058 -0.048 0.000 -3.046 

02335000 GA 0.567 -0.163 0.001 0.051 NA NA 0.000 1.137 

02336000 GA 0.696 0.094 0.005 0.054 NA NA 0.000 -2.288 

02336120 GA 0.833 0.084 0.527 0.021 0.857 0.004 0.928 0.035 

02336240 GA 0.527 0.090 0.452 0.024 0.976 -0.002 0.366 0.463 

02336300 GA 0.383 0.121 0.383 0.023 0.321 -0.015 0.696 -0.487 

02336313 GA 0.125 0.144 0.416 0.016 0.508 -0.009 0.006 -3.422 

02336360 GA 0.140 -0.211 0.452 -0.017 0.588 0.011 0.000 1.347 

02336410 GA 0.157 -0.253 0.321 0.023 0.718 -0.006 0.000 1.411 

02336526 GA 0.050 -0.222 0.928 -0.004 0.489 -0.011 0.050 -1.480 

02336728 GA 0.012 -0.475 0.176 0.021 0.035 0.028 0.508 -0.283 

03254520 KY 0.004 -4.134 0.452 -0.025 0.265 -0.038 0.292 2.342 

03431083 TN 0.196 0.161 NA NA 0.810 -0.004 0.527 0.442 

03527220 TN 0.609 0.082 0.567 0.012 NA NA NA NA 

05054000 ND 0.176 -0.196 0.002 -0.014 0.630 -0.010 0.044 -9.137 

05082500 ND 0.157 -0.710 0.028 -0.007 0.527 0.024 0.000 23.680 
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06818000 MO 0.009 -3.659 0.452 0.001 0.351 0.019 0.000 10.758 

06894000 MO 0.000 -2.137 0.001 -0.062 0.003 -0.058 0.004 5.763 

06934500 MO 0.058 -4.406 0.002 -0.009 0.104 0.069 0.000 24.072 

07061270 MO 0.452 0.042 1.000 0.000 0.004 0.070 0.351 1.029 

07143672 KS 0.176 -0.764 0.066 -0.004 0.076 -0.056 0.321 -9.985 

07144100 KS 0.038 -1.138 0.157 -0.005 0.976 0.001 0.176 -7.519 

071912213 OK 0.022 0.095 0.006 -0.038 0.470 -0.012 0.001 2.873 

07191222 OK 0.044 0.124 0.140 -0.024 0.399 -0.021 0.000 2.943 

07263296 AR 0.050 -0.277 0.156 -0.011 0.489 -0.032 0.904 0.028 

08068500 TX 0.000 4.035 0.050 0.021 0.066 -0.042 0.015 -13.278 

08070200 TX 0.000 4.641 0.033 0.011 0.321 -0.012 0.033 -1.884 

08155500 TX 0.000 0.174 0.000 0.059 0.004 0.096 0.005 -2.849 

08181500 TX 1.000 0.025 0.741 0.001 0.253 -0.022 0.489 -3.352 

08317400 NM 0.076 0.515 0.012 -0.002 0.000 -0.102 1.000 0.049 

09406000 UT 0.696 -1.533 0.696 0.000 0.110 0.017 0.140 3.980 

10346000 CA 0.001 0.155 0.125 -0.010 NA NA NA NA 

11501000 OR 0.066 -0.228 1.000 0.000 NA NA NA NA 

11502500 OR 0.292 -0.036 0.489 -0.001 NA NA NA NA 

14206950 OR 0.001 -0.602 0.696 -0.006 0.015 -0.044 0.292 1.017 

14207200 OR 0.024 -0.145 NA NA 0.588 -0.010 0.001 4.312 

14209710 OR 0.007 -0.081 NA NA 0.000 -0.056 0.058 0.442 

14210000 OR 0.044 -0.072 0.033 -0.056 0.000 -0.084 0.007 0.367 

14211010 OR 0.763 0.010 0.176 -0.038 NA NA 0.007 0.518 

14211400 OR 0.044 -0.507 0.265 -0.004 NA NA NA NA 

14316460 OR 0.741 -0.008 NA NA 0.000 -0.025 0.005 0.363 

14317450 OR 0.086 -0.061 NA NA 0.000 -0.063 0.000 0.543 

453004122510301 

OR 

0.038 -0.162 NA NA 0.015 -0.069 0.033 -1.467 

453030122560101 

OR 

0.000 -0.676 NA NA 0.001 -0.060 0.265 -1.330 

453040123065201 

OR 

0.017 -0.231 NA NA 0.003 -0.049 0.009 1.015 
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Table A 1-3. All results of simple linear regression for land use changes as independent variables 

and water quality parameters as dependent variables. Discharge – ft3s-1mile-2, Dissolved Oxygen – 

mg/l, Specific Conductance - μS cm-1 @ 25 Celsius, Turbidity - FNU 

Dependent Variable Independent Variable Coefficient p stat R2 

Discharge Open water 8.91 0.16 0.08 

Discharge Developed 0 0.75 0.00 

Discharge Barren land -14.58 0.23 0.06 

Discharge Forest 1.62 0.13 0.06 

Discharge Shrub/Grass land -4.55 0.01 0.26 

Discharge Cultivated 4.88 0.03 0.16 

Discharge Wetland -17.01 0.22 0.02 

Discharge Impervious 0.81 0.79 -0.04 

Dissolved Oxygen Open water -16.2 0.58 -0.04 

Dissolved Oxygen Developed 0 0.90 -0.05 

Dissolved Oxygen Barren land -13.77 0.84 -0.05 

Dissolved Oxygen Forest 0 0.39 -0.01 

Dissolved Oxygen Shrub/Grass land -0.81 0.31 0.01 

Dissolved Oxygen Cultivated -0.81 0.64 -0.04 

Dissolved Oxygen Wetland 4.05 0.28 0.01 

Dissolved Oxygen Impervious 0.81 0.72 -0.05 

Specific Conductivity Open water -7009.8 0.00 0.25 

Specific Conductivity Developed 426.68 0.50 -0.02 

Specific Conductivity Barren land -5341.95 0.19 0.03 

Specific Conductivity Forest -10.53 0.78 -0.04 

Specific Conductivity Shrub/Grass land 17.01 0.64 -0.03 

Specific Conductivity Cultivated -589.38 0.00 0.26 

Specific Conductivity Wetland 335.34 0.27 0.01 

Specific Conductivity Impervious 85.05 0.60 -0.03 

Turbidity Open water -110.16 0.48 -0.02 

Turbidity Developed -20.25 0.00 0.24 

Turbidity Barren land 400.95 0.66 -0.03 

Turbidity Forest 1.62 0.71 -0.03 

Turbidity Shrub/Grass land 0.81 0.89 -0.04 

Turbidity Cultivated 95.72 0.00 0.45 

Turbidity Wetland 69.64 0.14 0.04 

Turbidity Impervious -56.21 0.00 0.23 
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Figure A 1-3. Scatter plot and robust regression for Discharge trends as dependent variable and 

land use change as independent variable. Only trends with significance (p < 0.05) are shown. 

 

Figure A 1-4. Scatter plot and robust regression for Specific Conductance trends as dependent 

variable and land use change as independent variable. Only trends with significance (p < 0.05) are 

shown. 
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Figure A 1-5. Scatter plot and robust regression for Turbidity trends as dependent variable and 

land use change as independent variable. Only trends with significance (p < 0.05) are shown. 
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2.  SUPPORTING DOCUMENTS FOR OBJECTIVE 2 

Table A 2-1. Data used for analysis and their sources. 

Data type Source 

TMDL data https://www.epa.gov/waterdata/attains 

Total stream lengths https://www.epa.gov/waterdata/attains 

EPA region https://www.epa.gov/aboutepa/regional-

and-geographic-offices 

State land area https://www.census.gov/en.html 

Water area under state jurisdiction https://www.census.gov/en.html 

Average rainfall (1981 – 2010) https://www.weather.gov/ 

Highest / Lowest elevation https://www.usgs.gov/educational-

resources/highest-and-lowest-elevations 

Average slope of the topography https://www.landfire.gov/slope.php 

Population (2017) https://www.census.gov/en.html 

State gross domestic product (in BUSD) https://www.census.gov/en.html 

Percentage of population with no high school 

diploma (2017) 

https://www.census.gov/en.html 

Percentage of population with bachelor’s degree or 

higher (2017) 

https://www.census.gov/en.html 

Per capita earnings (2017) https://www.census.gov/en.html 

Remote land percentage https://www.ers.usda.gov/ 
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Figure A 2-1. Scatter plot and simple linear regression for Percent Assessments of rivers and 

streams as dependent variable and socioeconomic factors as independent variables. Only trends 

with significance (p < 0.05) are shown. 
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Figure A 2-2. Scatter plot and simple linear regression for Percent TMDL Completion of rivers 

and streams as dependent variable and socioeconomic factors as independent variables. Only 

trends with significance (p < 0.05) are shown. 
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3.  SUPPORTING DOCUMENTS FOR OBJECTIVE 3 

Table A 3-1. Volume data for each rain event. For each of the 21 rain events, the runoff volume, 

estimated by using rainfall (measured on site) and watershed data, and the outflow volumes 

measured on site for each GI practice monitored is tabulated. 

Rain 

Event  

    Permeable pavement Bioswale 1 Bioswale 2 

Date 

Event 

start time 

(HH:MM) 

Runoff 

Volume 

(m3) 

Outlet 

volume  

(m3) 

Runoff 

Volume 

(m3) 

Outlet 

volume  

(m3) 

Runoff 

Volume 

(m3) 

Outlet 

volume  

(m3) 

1 6/29/2021 8:23 44.51 59.60 56.55 14.42 146.14 49.01 

2 7/12/2021 14:32 7.41 0.17 8.66 1.51 13.42 1.20 

3 7/14/2021 15:53 19.06 2.07 23.57 2.38 35.10 4.98 

4 7/29/2021 0:53 5.41 1.07 6.15 1.09 10.67 0.83 

5 8/6/2021 4:13 31.76 7.34 40.01 3.07 61.75 21.41 

6 8/7/2021 19:42 174.53 118.60 225.72 120.35 523.21 267.19 

7 8/9/2021 9:05 17.40 7.47 21.44 1.44 36.87 7.33 

8 8/10/2021 19:32 9.21 0.98 10.95 1.23 16.86 1.49 

9 8/11/2021 18:03 1.17 0.11 1.07 0.11 1.96 0.69 

10 8/21/2021 5:36 8.10 1.49 9.53 0.77 15.11 1.37 

11 8/24/2021 14:47 4.14 0.52 4.58 1.29 8.27 0.43 

12 8/28/2021 14:51 19.81 6.40 24.55 2.31 40.59 9.47 

13 9/7/2021 11:59 * 0.13 * 0.07 * * 

14 9/13/2021 3:38 * 10.47 * 7.39 * * 

15 9/21/2021 5:59 2.74 0.18 2.87 0.70 5.10 0.17 

16 9/24/2021 20:47 4.27 0.45 4.73 0.79 7.90 0.18 

17 10/3/2021 9:30 3.90 0.31 4.28 0.47 6.86 0.16 

18 10/7/2021 11:07 18.76 2.71 23.18 1.58 34.46 1.24 

19 10/11/2021 15:04 6.20 0.43 7.13 1.48 11.68 0.28 

20 10/24/2021 16:16 53.11 9.36 67.72 2.48 97.99 9.87 

21 10/28/2021 18:09 22.85 3.29 28.47 0.95 41.07 0.35 

*gage not operational 

 

 

 

 

 

 

 

 

 



154 
 
 

Table A 3-2. Peak and event mean temperature for each runoff event. For each of the rain events 

and GIs, the observed peak temperatures and the summarized event mean temperatures for the 

effluents is tabulated. 

      Peak Temperature (°C) Event Mean Temperature (°C) 

Rain 

Event  Date 

Event 

start time 

(HH:MM) 

Permeable 

Pavers 

Bioswale 

1 

Bioswale 

2  

Permeable 

Pavers 

Bioswale 

1 

Bioswale 

2  

1 6/29/2021 8:23 28.29 24.09 21.88 25.65 20.93 21.39 

2 7/12/2021 14:32 26.03 25.74 21.50 25.64 23.49 21.12 

3 7/14/2021 15:53 28.99 26.52 22.74 26.19 21.88 21.78 

4 7/29/2021 0:53 31.20 31.51 24.28 30.68 28.91 23.69 

5 8/6/2021 4:13 31.10 28.79 25.54 30.70 23.99 24.79 

6 8/7/2021 19:42 29.89 26.03 25.35 26.22 23.36 23.46 

7 8/9/2021 9:05 27.60 24.48 24.19 30.70 23.40 23.67 

8 8/10/2021 19:32 28.09 27.40 24.28 27.77 23.47 23.96 

9 8/11/2021 18:03 27.99 27.40 24.28 27.83 24.40 24.13 

10 8/21/2021 5:36 32.23 33.06 25.25 31.58 29.27 24.92 

11 8/24/2021 14:47 30.80 31.82 24.96 30.43 29.69 24.79 

12 8/28/2021 14:51 31.82 35.37 26.81 31.15 28.80 26.13 

13 9/7/2021 11:59 28.69 27.30 * 27.16 26.43 * 

14 9/13/2021 3:38 27.70 24.38 * 27.01 21.01 * 

15 9/21/2021 5:59 26.91 26.71 22.74 26.71 24.65 22.47 

16 9/24/2021 20:47 24.19 23.03 21.50 23.96 21.32 21.04 

17 10/3/2021 9:30 25.15 24.77 21.21 25.06 23.60 21.06 

18 10/7/2021 11:07 23.32 22.93 21.40 22.76 20.52 21.08 

19 10/11/2021 15:04 22.93 22.17 21.02 22.78 21.23 20.84 

20 10/24/2021 16:16 18.26 17.59 16.83 16.38 16.66 14.92 

21 10/28/2021 18:09 16.45 16.73 15.68 16.01 15.93 14.87 
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4.  LOW-COST ACTIVE CONTROLS TO IMPROVE VOLUME AND PEAK 

FLOW MITIGATION OF GREEN INFRASTRUCTURE 

4.1. Introduction 

Urban areas experience increased runoff due to a high amount of impervious 

surfaces combined with climate change that result in increasing intensity and frequency 

of stormwater runoff events. To address this challenge, municipalities are looking to 

green infrastructure as an adaptable and resilient stormwater management strategy that 

captures, treats, and infiltrates stormwater at the source. To that end, green infrastructure 

is becoming codified in many municipal stormwater programs as a requirement for new 

and redevelopments (City of Milwaukee, 2018). However, while green infrastructure is a 

prevalent approach to stormwater management, their hydrologic benefits have been 

difficult to quantify at the watershed scale (Bell et al., 2020; Jefferson et al., 2017; Miller 

et al., 2021) and models indicate that it may take significant implementation (e.g., > 20% 

coverage) at a high cost of time and resources before noticeable downstream impacts on 

hydrology are achieved (Avellaneda & Jefferson, 2020). Therefore, novel and adaptable 

approaches to stormwater management that can augment green infrastructure to improve 

performance could have significant benefits towards achieving downstream goals such as 

reduced peak flows, volumes, and combined sewer overflows.  

An emerging technology that could address this concern is real-time control or 

active control of green infrastructure that uses sensors, actuators, and models to control 

the flow of water in stormwater systems. Real-time controls can vary from reactive 

controls, which use current and past information of the state of the system to make 

control decisions, to predictive controls, which additionally use predicted weather data to 
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determine how the system should react in the future. Real-time controls also include 

simple logistic localized controls, which  are isolated from other infrastructure and are 

only controlled based on its own state, as well as centralized control systems, which 

control a network of controls using artificial intelligent algorithms to maximize overall 

system performance (Maiolo et al., 2020). While real-time controls have been used in 

industries such as waste water management (Xu et al., 2020), their application to 

stormwater and green infrastructure is an emerging field. 

To that extent, a number of studies have demonstrated the benefits of active 

controls in green infrastructure such as bioretention, green roofs, and pervious pavement 

systems (Bryant & Wadzuk, 2017; Quigley & Brown, 2014). For example, a model of a 

real-time control on a green roof demonstrated an 157% increase in removed runoff 

volume  (Bryant & Wadzuk, 2017) and modeled rain barrels with real-time control 

improved peak (35%) and volume (50%) reductions (Liang et al., 2019). Field 

applications of real-time control on a green roof and rain barrel system improved volume 

retention by 10% (Shetty et al., 2022). This range in volume reduction (10-157%) 

demonstrates the variability in performance of existing studies, which could be due to 

differences in control application, control logic, meteorological conditions, specific green 

infrastructure design specifications, geomorphological conditions, and green 

infrastructure type. This further highlights the need for research on real-time control 

applications in field studies.  At a laboratory scale, column studies found that using 

controls to increase water retention time can improve the removal of nitrogen and 

ammonia while also capturing a greater volume (Persaud et al., 2022), as well as increase 

pathogen removal (Shen et al., 2020). Finally, at a watershed scale, modeling the 
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integration of grey and green infrastructure with real-time controls demonstrated 

robustness while being cost effective in controlling combined sewer overflows (CSOs) 

(Jean et al., 2021). 

The studies cited demonstrate that active controls can improve green 

infrastructure performance to solve flooding, CSO, and water quality impairments in 

urban areas. However, a lack of adoption may be due to (1) a lack of field studies on the 

performance of real-time control of green infrastructure for meeting volume removal 

goals, and (2) the potential of prohibitive costs for removal goals. To that end, 

performance studies of real-time control of green infrastructure to date have largely been 

constrained to modeling scenarios that lack field validation.  In addition, their application 

in different types of green infrastructure (e.g., permeable pavements and bioswales), with 

various groundwater conditions (e.g. low vs. high water tables), is underexplored. This is 

important for understanding the conditions and data inputs that are necessary for 

effectively implementing active controls in green infrastructure. In addition, even though 

active control of green infrastructure may have hydrologic benefits (e.g., peak flow and 

volume reductions), a significant limiting factor in the widescale adoption of active 

controls is its high cost. Many of these systems are designed as more complex controls 

systems, costing tens of thousands of dollars, and even the most optimistic estimates of 

active control of stormwater infrastructure in a mature market are $15,000 per control 

(Quigley and Brown, 2014). While such costs may be feasible for large green 

infrastructure practices such as a constructed wetland, they are prohibitive for widely 

adopted smaller green infrastructure practices such as green roofs, rain gardens, or 

pervious pavement.  
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To address these gaps, this study developed a low-cost power efficient active 

control system for green infrastructure to increase volume capture and infiltration and 

applied that system in three pilot green infrastructure practices. This study hypothesized 

that low-cost active controls could improve runoff capture and infiltration during storm 

events. This, in turn, would improve volume reduction of green infrastructure. To test this 

hypothesis, this study (1) developed low-cost active controls and tested them within a 

laboratory setting, (2) deployed and monitored three active controls on three green 

infrastructure practices in the Milwaukee area, and (3) applied the data in a model of 

green infrastructure that could identify the conditions under which active controls could 

produce the greatest benefit. The following sections contains the methods and results 

from the development and implementation of the active controls, as well as a discussion 

of the modeling results.  

4.2. Study Objectives 

The overarching goal of this study is to successfully implement a novel low-cost 

active control system for green infrastructure. The objectives to meet that goal are as 

follows:  

(1) Develop a low-cost active control system for green infrastructure: An active 

control system was developed to control green infrastructure runoff during stormflow 

events. Components of the system design include decision algorithms for controlling flow 

rates, low-cost data collection hardware, actuated valves, rechargeable battery-power, and 

water-tight control box.  
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(2) Apply low-cost active control system in a green infrastructure practice and 

monitor performance: The low-cost active control system was deployed in three green 

infrastructure practices where its performance regarding volume mitigation was assessed. 

(3) Model the conditions under which the developed active control system would 

be most appropriate for green infrastructure: Conditions to model include infiltration 

rates of the soil, blockage of the underdrain pipe, groundwater table levels, and extreme 

rainfall events. 

4.3. Methods and Materials 

4.3.1. Development of Real-Time Controls 

A goal of the low-cost real-time controls was to reduce volumetric flow rate from 

green infrastructure. Therefore, reactive, localized controls were developed that used 

limited data inputs (water level only), as well as battery power to reduce infrastructure 

costs. To that end, the real-time controls were developed in the hydraulic engineering 

laboratory. Components of the control included (1) activated valves, (2) water level 

sensor (3) data collection and control hardware, (4) battery power, and (5) water-tight 

enclosure box. Figure A 4-1 below illustrates the valve set up within the hydraulics lab. 

These are butterfly valves with actuators that run on 24V DC power. In this study, valves 

were used from two manufacturers: Assured Automation NL series work gear actuator 

and COVNA electric PVC butterfly valve.  The actuators are secured to a six-inch 

underdrain PVC pipe using an epoxy and supported using custom-built aluminum 

brackets. Inside of the valve is a Campbell stainless steel CS451 pressure transducer that 

collects water level measurements within the pipe. The valve and the pressure sensor are 

both connected to a Campbell CR1000X Measurement and Control Datalogger that 
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collects data from each device and is used to open and close the butterfly valve. Both the 

valve and the data logger are powered by batteries that are housed within a waterproof 

Pelican box (Figure A 4-2).  

 

 

Figure A 4-1. Active control set-up in the laboratory. The figure on the left illustrates the 

activated valve connected to an underdrain and supported by aluminum legs; the picture in the 

center illustrates the testing apparatus of the activated valve in a hydraulic; the picture on the right 

illustrates the pressure transducer installed inside the 6-inch underdrain and shows the installation 

of the pressure transducer to measure water level within the underdrain and behind the butterfly 

valve. 

 

 

Figure A 4-2. Water-proof enclosure that houses the data collection and battery power 

components. These include 12V batteries in parallel to provide 24V power to the butterfly valve; 

a 12V batter for the measurement and control datalogger; a signal converter and amplifier; and 

finally, a measurement and control data logger. 
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Using this laboratory set-up, the components of the system were tested in the lab. 

To do so, the underdrain pipes (the underdrain pipe and the vertical pipe used to simulate 

the height of the infiltration trench) were connected to a hydraulic bench and simulated 

infiltration events into a green infrastructure system. In doing so, the communication and 

control components of the system were verified to ensure that the valve would work 

under expected hydraulic head conditions. The laboratory setup was also instrumental in 

developing and verifying the programmed algorithms to ensure they work as intended. 

Once the components were tested within the lab, three real-time controls were deployed 

into the field as discussed in the following section.  

4.3.2. Site Descriptions 

1. Green Alley 

The first site selected is a green alley located in Wauwatosa, Wisconsin (Figure A 

4-3). This green alley is composed of permeable pavers 13.6 ft across that stretch the 

length of the alley (415 ft). Beneath the pavers is an 8-inch base of crushed aggregate 

(angular ASTM No. 57), followed by a 24” subgrade crushed aggregate (angular ASTM 

No. 2) lined with an Ethylene Polypropylene Diene Monomer (EPDM) layer. A 6-inch 

perforated underdrain is located at the bottom of the trench within the crushed aggregate 

and runs the length of the alley and discharges into a junction box that is connected to the 

downstream stormwater system. 
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Figure A 4-3. Permeable pavers in a green alley in Wauwatosa, Wisconsin. The image on the top 

shows an arial image of the green alley location with the red square marking the alley; bottom left 

image shows the permeable pavement system at the site; the image on the right illustrates the 

design of the alley (source: City of Wauwatosa). 

 

The real-time control system was attached to the underdrain of the green alley at 

the location of the junction box (Figure A 4-4). The system was connected to the 

underdrain using a flexible pipe coupling with worm clamps to ensure a watertight 

connection. The butterfly valve was further supported by adjustable metal legs that rested 

on footings on the bottom of the junction box. The box that housed the power and data 
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collection and control hardware was placed on a raised platform and connected to the 

butterfly valve. Water level was collected approximately 8 inches behind the valve using 

the pressure transducer. In addition, rainfall data was collected from a nearby MMSD 

rain gage (site WS1229). 

 

 

Figure A 4-4. Active control installed at the underdrain of the green alley. 

 

2. Bioswales 

Two bioswales were selected for the real-time control systems. Both bioswales 

are located along Good Hope Road in Milwaukee between 60th and 76th streets (Figure 

A 4-5). These bioswales locations were provided by the City of Milwaukee and were 

selected based upon design criteria that included (1) a single source of inflow into the 

systems, (2) a single discharge location, and (3) an underdrain that is accessible (e.g., not 

located in a junction within the street) with clearance (> 12 inches) of the invert above the 

bottom of the junction to place the valve, and (4) a junction box big enough to house the 

data collection box without interfering with the hydraulics of the system. Over 20 sites 

were surveyed before finding the two selected sites that met these criteria. 
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Figure A 4-5. Locations of the bioswales (HellTy Bioswale at the entrance to Hellermann Tython 

headquarters; WI Club Bioswale at the entrance to Wisconsin Club county club). 

 

The selected bioswales were constructed in 2019 and drain catchments that 

consist of roadway and grassed medians. The bioswales drain the roadway runoff through 

grade inlets in the curb that discharge into the bioswale through a rock swale. The 

bioswales were planted with a mix of switchgrass, purple coneflower, red hot daylily, 

diablo ninebark, and Zagreb coreopsis plantings. An example of the cross-section of the 

bioswales provided by the city of Milwaukee is illustrated in Figure A 4-6. These 

bioswales had a 2-inch layer of mulch above a 1.67-foot layer of engineered soil, and a 

0.33-foot layer of 3/8 inch pea gravel. A 6-inch underdrain that runs the length of the 

bioswale was placed just below the engineered pea gravel layer and discharged into an 

overflow junction with a 2 ft x 2 ft overflow grate. The underdrain was also connected to 

an 8-inch diameter overflow standpipe placed approximately 6 inches above the soil 
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surface. A 1-inch crushed stone layer of 2-foot deep is located underneath the underdrain 

for storage. 

 

 

Figure A 4-6. Example of the cross section of the bioswales (source: City of Milwaukee). 

 

HellTy Bioswale drains an area of 1.04 acres and is 70 ft long. It has one inlet 

location on both the north and south of the bioswale that drain the respective segments of 

road. WI Club Bioswale is larger and drains an area of 1.85 acres and is 65 ft long. 

Unlike HellTy Bioswale, it has two inlet locations on both the north and south of the 

bioswale that drain the respective segments of road. Figure A 4-7 illustrates pictures of 

the two bioswales. 
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Figure A 4-7. The image on the left shows the HellTy bioswale with the overflow grate open and 

the active control visible; the image on the right shows the real-time control attached to the 

underdrain of the HellTy bioswale. 

 

4.3.3. Control Algorithms 

1. Level Control Algorithm  

The primary goal of the real-time controls was to reduce the volume of 

stormwater exiting the underdrains without overtopping the green infrastructure systems 

or extending the drawdown time beyond a maximum limit. To do so, a simple control 

rule was developed that was based upon the water level in the system (Figure A 4-8). 

This control algorithm is based upon (1) retaining water in the green infrastructure 

practice for 48 hours and then releasing to meet the drawdown time requirements and (2) 

releasing stored water if it reaches a maximum threshold to prevent bypass of water into 

the overflow grate and in doing so maximize treatment volume. This algorithm reads the 

water level at 5-minute intervals. If the water level (WL) is below a specific water level 

threshold set by the user (e.g., invert of underdrain pipe, level of the known groundwater 

table, etc.) it is assumed that there is no stormwater infiltration into the trench and 

defaults to a closed valve position. However, if the water level reading exceeds the set 

minimum threshold, then it is assumed that infiltration into the system has begun and the 
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next step in the logic begins. First, the system determines if it has been over 48 hours 

since the stormwater infiltration began. If it has, then the system opens to meet the draw-

down requirements (this is illustrated as 48 hours but may range from 48-72 hours 

depending upon the regulatory authority). If it has not been longer than the set time 

threshold, then it checks for a second condition: has the water level reached a height at or 

above the maximum threshold (set as 2ft in the diagram). If not, it remains closed; if so, it 

opens to prevent bypass of the green infrastructure and maximize the volume that is 

treated.  

 

 

Figure A 4-8. Diagram of level-based control algorithm used for the active controls. 
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2. Gradient control algorithm  

In some cases, high groundwater tables were observed at the site. Without prior 

knowledge of the groundwater level, which changes over time, it is difficult to determine 

when a runoff event begins simply based upon a minimum water level threshold. 

Therefore, in the following algorithm, the rate at which the water level changed was used 

as a determination of when runoff begins, negating the need to know where the 

groundwater level table is. This is illustrated in Figure A 4-9, where the event start is 

initiated using the rate of change in the water level reading. If the water level in the pipe 

increases at or greater than a set rate for 15 minutes, a runoff event is initiated. In 

addition, a threshold water level set at the surface may not be necessary in all cases, as 

excess water can either pond (as in the case of bioretention) or may reach the storm sewer 

system through an overflow grate. Therefore, this algorithm allows ponding for a period 

of 48 hours before emptying if the ponding is still occurring.  

Compared to the level-based algorithm, this enables green infrastructure practices 

designed with ponding depths to take greater advantage of the ponding volume and 

therefore infiltrate a greater volume during runoff events. The downside of this is, in the 

case of an overflow, there would be untreated surface runoff that would directly flow into 

the sewer system. However, it has been shown that the first flush carries most of the 

pollutants, especially in smaller watersheds (Hathaway & Hunt, 2011; Lee et al., 2002); 

therefore, this algorithm ensures treatment of the first flush of pollutants, while also 

maximizing volume retention.  
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Figure A 4-9. Diagram of gradient-based control algorithm used for the active controls. 

 

3. Gradient plus level control algorithm 

The above two algorithms were tested in the field and based upon their field 

outcomes two more algorithms were developed and tested using the developed computer 

model (discussed in section 2.6). The level-based control algorithm was effective at 

retaining flow and maximizing infiltration; however, due to the logic, it frequently 

opened and closed during high runoff events when the maximum threshold was 

consistently exceeded. Therefore, to reduce wear and tear on the valve, a timer was 

integrated into the logic to keep the valve open for 15 mins (user adjustable) in order to 

drain down a larger portion of the runoff. This was combined with the gradient control 

logic that initiates storm runoff based upon a rate of change and enables the system to 
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effectively handle fluctuations in groundwater tables that are above the invert of the 

underdrain (Figure A 4-10). 

 

Figure A 4-10. Diagram of gradient / level-based control algorithm used for modeling. 

 

4. Complex control algorithm 

As mentioned previously, by removing a maximum water level threshold in the 

gradient control algorithm, infiltration is maximized but at the cost of risk to overflow. 

However, because the first flush (beginning of the runoff event) contains a higher 

concentration of pollutants, overflow that occurs at the end of the storm may not release a 

comparative amount of pollution downstream. Similarly, there is a risk to keeping runoff 

retained in a green infrastructure system for too long. If a green infrastructure practice is 
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fully saturated and a new runoff event begins, then that runoff, including the first flush of 

the new event, will be routed to an overflow pipe or grate without treatment. Therefore, a 

new algorithm was developed to try to reduce the risk of overflow during back-to-back 

events.  

To account for this risk, a new complex algorithm based on the gradient control 

algorithm, was developed that adds an additional step in the logic which empties the 

green infrastructure practice based upon two criteria: (1) a declining water level gradient 

and (2) the level of the water table within the green infrastructure practice (Figure A 4-

11). In this additional step, during the retention period, the gradient of the water level 

change is checked and if the water level (1) decreases for 8 hours (time adjustable by 

user) at a predetermined rate and (2) is above 50% maximum height of the trench, then 

the valve is opened for 15 minutes. The height limitation is used to disregard smaller 

runoff events and maximize volume capture through its lifetime. 
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Figure A 4-11. Diagram of complex control algorithm used for modeling. 

 

4.3.4. Estimating Water Balance 

The influent volume into the green alley was estimated using rainfall data from 

WS1229 rain gage located approximately 1.3 miles from the site. The influent volume 

into the bioswales was estimated using rainfall data provided by MMSD for rain gages 

WS1207 and WS 1209 located approximately 1.8 and 2.7 miles from the site. Using this 

rainfall data, along with the drainage areas and runoff coefficients of the respective 

catchments, the rational method was applied to estimate input flow rates for storm events 

using the following equation: 
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𝑄 = 𝑐𝑖𝐴      Equation 1 

where 𝑄  is the flow rate in ft3/s, 𝑐 is the runoff coefficient derived from land 

cover, 𝑖 is the rainfall intensity, and 𝐴 is the area in acres. 

The effluent volume from the underdrain pipes were estimated using the water 

level within the pipe and two different hydraulic equations depending on the valve action. 

Unique to real-time controls are the opening condition, where full pipe flow exists for a 

brief period of time. Therefore, at the moment of valve opening (the first 5 minutes), the 

volume leaving the system was equivalent to the water volume inside the pipe. When the 

pipe empties, the effluent was estimated based upon the estimated water level in the 

green alley and the flow rate into the perforations of the pipe. The following empirical 

relationship was generated using observed data from 11 events: 

𝑄𝑖𝑛 = 0.0138 (ℎ − ℎ𝑝)0.5 ∗ 𝐴𝑝    Equation 2 

where  𝑄𝑖𝑛 is the infiltrative flow into the pipe, ℎ is the groundwater level height 

in the green infrastructure practice, ℎ𝑝 is the height of the water in the pipe, and 𝐴𝑝 is the 

cross-sectional area of the pipe.  

4.3.5. Data analysis 

To evaluate the volume removal of the real-time control systems, the measured 

influent and effluent volume were used to compute a volume ratio:  

𝑅𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
      Equation 3 

where 𝑅𝑣𝑜𝑙𝑢𝑚𝑒 is the ratio of the total volume of outflow (𝑉𝑜𝑢𝑡) to the volume of 

inflow (𝑉𝑖𝑛) (Davis, 2008). In doing so, this provides a quantifiable metric that can be 

used to understand the degree to which real-time controls on green infrastructure affected 

the volume removal of green infrastructure.  
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In addition, the rate at which water rises in the green infrastructure practice (i.e., 

infiltration – exfiltration during the rising limb of the water level) was evaluated, as well 

as the drawdown rate (i.e., infiltration – exfiltration during receding limb of the water 

level) while the real-time controls remained closed. This information provides us with an 

understanding of how the structure adheres to the design requirements while an active 

control system is in place. The rising rate of the water level in the green infrastructure is 

computed as: 

𝑅 =
(ℎ𝑝𝑒𝑎𝑘−ℎ𝑏𝑒𝑔𝑖𝑛)

(∆𝑡)
    Equation 4 

where 𝑅 is the is the rising rate of the water level in inches/hour, ℎ𝑏𝑒𝑔𝑖𝑛 is the 

water level height in the green infrastructure before runoff begins (i.e., groundwater level 

or invert of the underdrain),  ℎ𝑝𝑒𝑎𝑘 is the peak water level height in the green 

infrastructure in inches, and ∆𝑡 is the time between ℎ𝑏𝑒𝑔𝑖𝑛 and ℎ𝑝𝑒𝑎𝑘. Similarly, the 

drawdown rate is computed as: 

𝐷 =
(ℎ𝑝𝑒𝑎𝑘−ℎ𝑏𝑎𝑠𝑒)

(∆𝑡)
     Equation 5 

where 𝐷 is the is the drawdown rate in inches/hour, ℎ𝑝𝑒𝑎𝑘 is the peak water level 

height in the green infrastructure in inches, ℎ𝑏𝑎𝑠𝑒 is the water level height in the green 

infrastructure when it returns to base levels (i.e., groundwater level or invert of the 

underdrain) and ∆𝑡 is the time between ℎ𝑝𝑒𝑎𝑘 and ℎ𝑏𝑎𝑠𝑒.   

4.3.6. Modeling 

A third objective of the project was to model the real-time control systems using 

the data collected to evaluate the performance of the controls under simulated conditions. 

Doing so can simulate alternative site conditions (infiltration rates, pipe blockage, etc.) 
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and storm conditions (e.g., return period) to determine the conditions under which real-

time controls for green infrastructure might be most appropriate. To do so, a water 

balance model was developed for the green alley using python code as illustrated in 

Figure A 4-12. 

• Qin = Inflow to the trench 

• Qout = Outflow from the under-drain 

• Qspill = Overflow from the structure 

• Qp = Flow into the pipe through perforations 

• QL = Infiltration/exfiltration of storm water through soil 

• E = Evaporation 

• h = Height of water table from the bottom of the trench 

• hmax = Maximum height of water table in trench 

• hs = Maximum water table level allowed to retain (level control algorithm) 

• hmin = Distance from bottom of trench to invert of underdrain 

• hGW = Groundwater height from bottom of the trench 

• GW = Groundwater level 

 

 

Figure A 4-12. Schematic of the water balance in the green alley. 
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To simplify the system, it is divided into two boundaries, the red (the trench 

without the underdrain) and the green (the underdrain). The variable hs is used as a 

constant parameter to control the valves operation while hmax is considered the upper 

bound where all water above it flows instantaneously to the sewer system through the 

overflow grate. The governing mass balance equation for the red boundaries are as 

follows: 

𝑑𝑉(ℎ,𝑡)

𝑑𝑡
= 𝑄𝑖𝑛(𝑡) −  𝑄𝑝(ℎ)  −  𝑄𝑠𝑝𝑖𝑙𝑙(ℎ, 𝑡) −  𝑄𝐿(ℎ, 𝑡)   Equation 6 

Furthermore, Equation 6 can be written as a combination of Equations 7-11: 

𝑑𝑉(ℎ,𝑡)

𝑑𝑡
= (

𝑑ℎ

𝑑𝑡
) × 𝐴𝑠        Equation 7 

𝑄𝑖𝑛(𝑡) =
𝐴𝑤𝑝

𝐴𝑠𝜌
 (𝐶𝑙 ×  𝐴𝑙% +  𝐶𝑝𝑙 ×  𝐴𝑝𝑙% + 𝐴𝑝𝑝%)(1 − 𝐶𝑝𝑝)  Equation 8 

where 𝑄𝑖𝑛 is the stormwater inflow into the trench, 𝐴𝑤 is watershed area, 𝐴𝑠 is 

surface of the green alley, 𝑝 is the precipitation, 𝜌 is the porosity of the trench media, 

𝐶𝑙,𝑝𝑙,𝑙 are the runoff coefficients, and 𝐴𝑙,𝑝𝑙,𝑝𝑝 are the areas with different runoff 

coefficients. The outflow from the green infrastructure trench to the underdrain as a 

function of the water height within the trench is modified from Equation 2 and given 

below:  

𝑄𝑝 = 𝐶𝑑 × 𝐿 × 𝐴𝑝,𝑡𝑜𝑡𝑎𝑙 × 𝐵1 × (2𝑔(ℎ − ℎ𝑝))0.5          Equation 9 

where, Cd is the discharge coefficient of perforations, L is the slope adjusted 

length of the pipe at each time step, Ap,total is the total area of perforations per 1m of 

pipe length, B1 is the clogging factor of perforations, g is the gravitational acceleration, h 

is the water height in the trench, and hp is the water height inside the underdrain. 

Groundwater infiltration / exfiltration was modelled using the equation below:  
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𝑄𝐿(ℎ, 𝑡) = 𝐾 × 𝐴𝑇 × 𝐵2 × (2𝑔(ℎ − ℎ𝑔𝑤))0.5    Equation 10 

where K is the hydraulic conductivity of soil, AT is the effective bottom area of 

the trench, and B2 is the clogging factor of the geotextile. Finally, the overflow from the 

structure (𝑄𝑠𝑝𝑖𝑙𝑙) if the water level is above the overflow invert is computed as: 

𝑄𝑠𝑝𝑖𝑙𝑙(ℎ) = 𝑚𝑎𝑥[0, ℎ − ℎ𝑚𝑎𝑥]          Equation 11 

 

where ℎ𝑚𝑎𝑥 is the maximum allowable water level before spillage occurs.  

Finally, the mass balance of the green boundary can be written as: 

𝑑𝑉(ℎ,𝑡)

𝑑𝑡
= 𝑄𝑝(ℎ) − 𝑄𝑜𝑢𝑡(ℎ)           Equation 12 

where, 

𝑄𝑜𝑢𝑡(ℎ) = (
𝑄𝑝+𝑉𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑝𝑖𝑝𝑒          (𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑣𝑒 𝑜𝑝𝑒𝑛𝑠)

𝑄𝑝                        (𝑖𝑓 𝑣𝑎𝑙𝑣𝑒 𝑖𝑠 𝑠𝑡𝑖𝑙𝑙 𝑜𝑝𝑒𝑛)
)  Equation 13 

And 𝑄𝑝 is given by Equation 9. 

 
Table A 4-1. Values of model coefficients. 

Parameter Value 

Cd 0.6 

K 1.0E-6 

B1 

B2 

0.75 

1.0 

 

 

Assumptions were made to simplify and properly model the system and are listed 

below. 

1. All storm water reaching the pervious pavement is infiltrated into the trench, 

thus no bypass of surface runoff over the pavement is considered if there is 

infiltrative capacity within the trench itself (Cpp = 0). 

2. For Equation 2, water height inside the trench is calculated considering the 

slope of the structure. 
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3. Evaporation compared to other factors is negligible and rainfall over the 

watershed flows into the structure without a time delay. 

4. Due to the 1st assumption, Qspill occurs only when the trench has met its full 

capacity and the entire volume of the trench is fully saturated. Once it reaches 

full saturation, Qspill is calculated accordingly. 

5. The water table surface inside the trench is assumed to have the same 

elevation throughout; therefore, the holding capacity is limited by the slope of 

the trench. 

6. Pipe outflow is constrained by the area of the perforations in the underdrain, 

as well as the blockage or clogging factor (B1), which is considered to be 25% 

due to age of the structure. 

7. For model simplicity, it is assumed that within the 5 min readout interval 

during which the valve is closed, water height inside the pipe fills up to 40% 

capacity, which matches the porosity of the trench media. 

Given the assumptions above there are several limitations of the model to 

consider. For example, the water table surface inside the trench is assumed to have the 

same elevation throughout. However, in field conditions, soil water interactions may 

behave differently with varying infiltration locations, hydraulic conductivity, and storage 

capacity throughout. Additionally, the model uses a stepwise method to calculate 

overflow, underdrain infiltration, and ground exfiltration. Due to this, precedence is given 

to overflow over underdrain infiltration and underdrain infiltration over ground 

exfiltration. However, in real conditions these processes occur simultaneously; therefore, 

model overflow values could potentially be exaggerated while ground exfiltration is 

understated. 

The overall model includes all the above equations to simulate the water balance 

through the system. This is further augmented with the control rules defined within the 

previous section to simulate the impact of real-time controls on the green infrastructure 

system. This was done at the green alley site using 5-minute rainfall data from a nearby 

MMSD gage. 
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4.4. Results 

4.4.1. Green Alley: Time Series Analysis 

The real-time control system was installed on the green alley in Wauwatosa, WI 

at the beginning of 2019. Figure A 4-13 shows an example of the rainfall depth, water 

level depth in the underdrain, and control (open or close), over a 1-month period 

(11/15/19 – 12/13/19). Over this time period, five rain events occurred. The valve is 

controlled using the level-based algorithm (as described in Figure A 4-9) and the orange 

lines on Figure A 4-13 show the times in which the valve is open, otherwise it is closed. 

The shaded area of orange represents the valve having been open for more than a 5-

minute interval. An average groundwater table was computed using observed data and 

used as the pipe sill level later when the gradient-based algorithm was used. 

In most cases, this site had a groundwater table that was above the invert of the 

underdrain pipe. This is illustrated in Figure A 4-13, where the level-based algorithm 

recognizes a water level above the invert as remaining stormflow that must be flushed. 

This causes the valve to open every two days since the algorithm utilizes a maximum of 

two days as the retention period. To overcome this shortcoming, the average groundwater 

table was computed using observed data and used as a lower threshold value in future 

algorithms in order to prevent this unnecessary opening and closing. This also ensures 

that non-stormwater flows from groundwater are retained and not emptied into the 

stormwater system. 
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Figure A 4-13. 5-minute Time series data of Green Alley for the period of 11-15-2019 to 12-13-

2019; Rainfall (green) in secondary axis and the corresponding water level measured (blue) in 

major axis; The valve opening is depicted by the orange line. 

 

There are also instances in Figure A 4-13 in which the real-time controls opened 

due to an increased water level from stormwater runoff in order to prevent the system 

from overtopping. A closer inspection of this is highlighted in Figure A 4-14, which 

shows rainfall depth, water level depth in the underdrain, and control (open or close), at 

the green alley during a single event that transpired on 11/30/2019 to 12/01/2019. This 

event is an example of how the level-based algorithm works in the field. Valve openings 

are marked by the labels A, B, C, and D. The label A is a flush out event caused by two 

days of water retention due to the high groundwater level at this site as discussed 

previously. Shortly after the valve closes again, the water level quickly ascends above the 
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pipe invert level due to groundwater infiltration and therefore the retention timer starts 

again. The following retention flush-out occurs two days after A and is marked as D. 

Valve at D stays open for a longer period since the water level inside the pipe does not 

reach “zero” for 3 hours due to both faster groundwater infiltration and retained 

stormwater volume.  

The labels B and C in Figure A 4-14 are valve openings that occur because the 

water level inside the trench reaches the 2 ft peak level (hs) set in the algorithm. When 

the water level reaches 2ft, the valve opens to release some of the retained water in order 

to prevent ponding on top of the green alley. A water volume equivalent to the volume of 

the underdrain is released swiftly and the hydraulic connection between the water inside 

the pipe and the trench is disconnected causing the water level to be read as near-zero. 

This low reading then causes the valve to then close after which hydraulic connectivity to 

the groundwater table is shortly restored and the system can read the level in the green 

alley.  
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Figure A 4-14. 5-minute Time series data of Green Alley for a rain event which occurred during 

11/30/2019 and 12/01/2019; A, B, C, and D are valve openings. 

 

Another example of the algorithm functioning is provided in Figure A 4-15, 

which illustrates two rain events that occurred consecutively within 35 hours. During the 

rain event on the 22nd, the valve opens and closes five times during the peak of the event. 

This consistently releases a small volume of water to prevent ponding while also 

maximizing the volume retention of the system. In doing so, an estimated 85 ft3 was 

released during these valve openings. One day later, a second rain event occurred when 

only about two-thirds of the water inside the trench had exfiltrated or left the system. This 

resulted in a reduced volumetric holding capacity of the permeable pavement trench for 

the incoming event; however, the system was able to retain most of the volume while 

only opening once during the peak water level.  

During the time that these events were captured, the drawdown time within the 

algorithm was set to 72 hours for each rain occurrence. Therefore, after 72 hours from the 
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first rain event, the valve was opened to flush out the system. However, this happened 5.7 

hours after the second event, thereby flushing out water that would have been retained if 

not for back-to-back storms. The estimated pipe flow during this opening is 148 ft3. As a 

whole, the green alley with an active control system exfiltrates 96.9% of the influent 

volume across the two storms. 

 

Figure A 4-15. 5-minute Time series data of Green Alley for the period of 10-21-2020 to 10-25-

2020: Shows a few shortcomings of the level-based algorithm. 

 

Not all rain events captured caused an opening of the real-time control valve once 

the groundwater level was known and accounted for. Figure A 4-16 shows observed data 

for the gradient-based algorithm (described in Figure A 4-9) for the period of 10-21-2020 

to 10-25-2020. As illustrated, none of the events out of the 15 rain events observed 

triggered any of the thresholds set in the algorithm. This is largely due to the low-rainfall 

volume (0.02 – 0.32 inches) that occurred during these storm events and illustrates the 

way in which the valve can function as a plug that retains 100% of the volume of water 
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over a maximum time period, while allowing the system to drain. The influence of the 

rainfall depth on the volume retention of the system is further illustrated in Figure A 4-

17. As illustrated, in general as the rainfall depth increases, the volume of water that is 

retained decreases due to the need to open the valve to prevent ponding.  

 

Figure A 4-16. 5-minute Time series data of Green Alley for the period of 10-21-2020 to 10-25-

2020: Gradient-based algorithm. 

 

4.4.2. Green Alley: Volume Reductions 

To further evaluate if the real-time controls met the drawdown times required by 

regulations (48-72 hrs), the drawdown times were assessed across all storms. Figure A 4-

18 shows the drawdown time for rain events as a function of rainfall depth. None of the 

observed rain events surpassed the WDNR technical standard requirement of drainage of 

the system within 72 hours. According to observed data and the regression developed, 

drawdown time increases as the rainfall depth increases. Although extreme rain events 
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were not observed during our observation periods, they were simulated within our model 

and are discussed later. 

 

 

Figure A 4-17. The volume removed (%) as a function of the rainfall depth (in) for 20 captured 

runoff events. 

 

 

Figure A 4-18. Graph of drawdown time vs. total rainfall depth for the green alley site: Simple 

linear regression and the R2 value is shown within the graph. 
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The rising and drawdown rates of the green alley were evaluated as illustrated by 

their distributions in the boxplots in Figure A 4-19. The rising rate of the green ally 

trench (estimated from the water level in the system) is on average 8.5 times larger than 

the drawdown rate. This number is largely dominated by the infiltration into the system 

during the beginning of runoff when infiltration is larger than the exfiltration in the 

system. The WDNR standards require the infiltration rate of the porous pavement to be 

maintained at a minimum of 10 inches/hour and in a few rain events, the rising water 

level rates are higher than the specified limit suggesting that the porous pavement 

infiltrates as intended.  

 

 

Figure A 4-19. Boxplot comparison of rising rate and the drawdown rate for the green alley site. 
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Table A 4-2 summarizes the data for all the events observed for the two different 

algorithms. This table demonstrates that the green infrastructure with a real-time control 

using both algorithms on average, exfiltrated more than 99% of the influent runoff. In 

both cases, this could be due to the retaining of volume when the valves are closed during 

the runoff events and the subsequent exfiltration after runoff while the valves remain 

closed. A direct comparison between the algorithms is challenging, however, because the 

average total runoff depths for each algorithm are different, and in no instances during 

the deployment of the gradient-based algorithm did the water level reach a threshold that 

required the system to open.  

 
Table A 4-2. Average of each performance parameter used for the green ally site. 

Parameter Level-based 

algorithm (n = 11)  

Gradient-based 

algorithm (n = 9)  

Average total rainfall depth (inch)  0.6  0.3  

Average influent volume (cf)  2761 1436  

Average Drawdown time (days)  0.95  0.66  

Average Drawdown rate (inch/hr) 0.85 1.11 

Average rising rate (inch/hr) 7.43 9.08 

Average effluent volume – Pipe (cf)  61  0  

Average volume removed (%)  99.4  100 

 

 

The results of this study demonstrate a greater volume reduction as compared to 

other studies that have evaluated the volumetric reduction of permeable pavements. 

Studies done by other researchers show volume removal rates of permeable pavements 

between 25% to 96% (W. Liu et al., 2020).  In a previous study performed by this 

research team for MMSD at an adjacent green alley with similar hydrological and 

structural properties, it was found that the green alley removed 36% of influent flow. This 

value was found to be on the lower range of volume removal due to groundwater inputs 
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that also contributed volume to the underdrain during the runoff events. In the case of the 

green alley controlled in this study, groundwater was also found to be a factor. Therefore, 

the 99-100% volume removal on average demonstrates that the green alley with real-time 

controls is greater than the standard performance of uncontrolled permeable pavement 

systems with high groundwater tables.  

4.4.3. Bioswales: Time Series 

An example of the performance of the real-time control at a bioswale is illustrated 

in Figure A 4-20, which shows the rainfall data, water level inside the swale, and the 

valve (open/close) for the period of 8/6/2021 to 8/11/2021 at the WI Club bioswale 

utilizing the gradient-based algorithm. Three rain events occurred during this time and 

due to the high rate of drawdown, the thresholds to open the valve are never reached and 

therefore the valve never opens. In all three events, the exfiltration rates into the 

subsurface are high enough to reduce 100% of the influent flow. Furthermore, due to the 

storage capacity below the underdrain, only six rain events out of 15 observed displayed 

a water level increase above the underdrain invert level. This demonstrates the significant 

volumetric exfiltration capacity of the bioswale; however, it is unclear how these would 

perform during extreme events. 
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Figure A 4-20. 5-minute time series data of WI Club Bioswale for the period of 8-6-2021 to 8-11-

2021. 

 

The rain event that occurred on 8/7/2021 – 8/8/2021 is an event of a magnitude of 

3.72 inches that occurred over a period of 12 hours. This is closely equivalent to the 10-

year, 24-hour rain event (3.78 inch), according to National Oceanic and Atmospheric 

Administration (NOAA) data. The maximum water level above the pipe invert during 

this rain event was 3.88 feet, and the water level stayed above 3.8 ft for a duration of 30 

mins. This height is above the overflow level (3.16 ft) that is designed to handle the 10-

year storm, but below the maximum water level height in the bioretention (3.92ft). 

Therefore, this rain event, which is close in magnitude to the 10-year storm, appears to 

perform as designed, even with the valve completely closed during the event and, 

therefore, no underdrain flow.  
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4.4.4. Bioswales: Volume Reductions 

Drawdown times for each observed event were quantified to evaluate how well 

the bioretention exfiltrates the stored volume of rainwater. As shown in Figure A 4-21, all 

six events receded in less than 0.14 days (3.5 hours). The outlier is the rain event with a 

3.72-inch rain depth which was discussed in the previous paragraph.  

 

 

Figure A 4-21. Graph of drawdown time Vs. Total rainfall depth for the WI Club Bioswale site: 

Simple linear regression and the R2 value is shown within the graph. 

 

The rising rates at the WI Club bioswale site are on average 15 times higher than 

that of the green alley, while the drawdown rates are 14 times higher. Figure A 4-22 

shows the distribution of the rising and drawdown rates at the WI Club bioswale site. 

Similar to the green ally, the rising rates at the bioswale is 8.9 times higher than the 

drawdown rate. Compared to the green alley, the bioswales are newly built, which could 

increase infiltration rates as, with time, pore spaces within the structure get clogged with 
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incoming pollutants and due to settling of the soil media. However, they also have native 

vegetation that slows the infiltration rate compared to permeable pavers, and unlike the 

green alley, there is no groundwater interference reducing exfiltration rates at these sites.  

 

 

Figure A 4-22. Boxplot comparison of rising rate and the drawdown rate for the WI Club 

bioswale. 

 

Table A 4-3 summarizes the data for the six rain events observed for the WI Club 

bioswale. Although the HellTy bioswale received the same rain events as the WI Club 

bioswale, due to its small watershed and similar design dimensions, no measurable water 

level was observed above the underdrain invert. This is due to a larger surface area to 

drainage area ratio of the bioswale, WI Club ratio is 0.011 while HellTy ratio is 0.017 

(HellTy is 1.5 time that of WI Club), which has provided more than enough storage 

volume underneath the underdrain for the ten observed rain events during the period of 

August 2021 to November 2021. 
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Table A 4-3. Average of each performance parameter used for the WI Club bioswale site. 

Parameter Gradient-based algorithm  

(6 events out of 15) 

Average total rainfall depth (inch) 0.97 

Average rain volume (cf) 6512 

Average influent volume - theoretical (cf) 4930 

Average Drawdown rate (inch/hr) 13.72 

Average rising rate (inch/hr) 121.46 

Average Drawdown time (days) 0.08 

Average effluent volume – Pipe (cf) 0 

Average % release 0 

 

4.4.5. Modeling 

A model was developed for the green alley site to simulate the real-time control of 

green infrastructure. Field data collected over the study period was used to calibrate and 

validate the model. The model was applied to assess the performance of the four control 

algorithms mentioned in Section 2.3: level-based control, gradient-based control, 

gradient/level-based control algorithm, and the complex algorithm.  These algorithms 

were applied to three years of continuous 5-min rainfall data, and were evaluated against 

each other, as well as a no-control scenario and a scenario where the underdrain was 

completely plugged. The models were also used to evaluate how the system responds to 

extreme rainfall events based on return periods. Finally, they were applied to evaluate the 

conditions under which the developed active control system would be most appropriate 

for green infrastructure, including infiltration rates of the surrounding soil, blockage of 

the underdrain, and groundwater table levels. 
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Model calibration to observed data: 

A comparison of field and modeled data is provided in Figure A 4-23. Both the 

field (bottom graphic) and model (top graphic) systems were controlled using the level-

control algorithm with a height threshold limit of 2 feet. As illustrated, the peaks and 

openings generally follow a similar trend. A notable difference is that the field data has 

openings every 48 hours due to issues with a high groundwater table initiating a false 

runoff event. While there are several methods to compare field and modeled data, such as 

the Nash Sutcliffe coefficient, root mean square error, and others (Moriasi et al., 2015), 

an application of these statistical tests is difficult with a system that opens and closes, 

thus changing the temporal nature of the hydraulics. Therefore, visual calibration was 

performed by attempting to match the peak water height (Table A 4-4), rather than 

applying statistical methods that assume uniformity in hydraulic conditions. 

 

 

Figure A 4-23. Comparison of field and modeled data. 
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Table A 4-4. Difference between modeled and observed peaks. 

Date Modeled Peak (m) Observed peak (m) Percent difference 

11/18/19 0.39 0.32 21.8 

11/20/19 0.66 0.61 8.2 

11/27/19 0.69 0.60 15.0 

11/30/19 0.64 0.62 3.2 

12/10/19 0.29 0.24 20.8 
 

Performance of alternative control algorithms 

An initial comparison of the performance of the control algorithms was applied to 

a 3-month dataset and the results are illustrated in Figure A 4-24 and A 4-25. As 

illustrated, there were five precipitation events that occurred over the course of the 3-

month period. Modeled results demonstrate a quick response in the no-control scenario 

due to observed high infiltration rates and exfiltration through the underdrain, as well as a 

time of concentration equal to the 5-mintue time step of the model, that resulted in runoff 

instantaneously routed to the trench. The control algorithms are shown with a dashed 

black line that indicates if the valve is open (0.5) or closed (0). The level control and 

gradient/level perform similarly in that each of these control algorithms open the valve 

based upon a maximum threshold to reduce ponding or the risk of overflow. For example, 

during the third event that occurred near day 12, the level control opened three times 

while the gradient/level control opened two times to reduce overflow. The difference in 

the number of openings is due to the timer used in the gradient/level control that keeps 

the valve open for 15 minutes rather than closing it in one time step (5 min). Conversely, 

the gradient control and complex control do not have a maximum threshold and therefore 

neither of them open during the peak of the event, but only after a retention period has 
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passed (gradient control) or there is a descending water level for 8 hours (complex 

control). 

 

 

Figure A 4-24. Comparison of the behavior of algorithms for a month of data – Trench Water 

level. 

 

Figure A 4-25 shows the exfiltration of water into the groundwater table. In this 

simulation, the groundwater table is set 4-inches above the underdrain invert as observed 

at the site. Therefore, in the no control conditions, there is constant groundwater 

infiltration into the trench that ultimately gets released to the sewer system. This is 

evident by the -41.22 m3 exfiltration volume shown in the no control graph. Conversely, 
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the fully plugged scenario infiltrates 243 m3 of runoff, demonstrating that the more the 

valve is closed, the more exfiltration is promoted. 

 

 

Figure A 4-25. Comparison of the behavior of algorithms for a month of data – Groundwater 

exfiltration. 

 

To further evaluate the performance of the control algorithms, their performance 

was simulated over a 3-year period for the observed site conditions (i.e., groundwater 

table at + 4 inches) and the results are illustrated in Figure A 4-26. As illustrated, the no 

control scenario has by far the largest volume through the underdrain, only 16 m3 of 

overflow, and negative groundwater exfiltration. This is because at the site the 

groundwater table was observed to be consistently above the invert of the underdrain, 
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thereby contributing groundwater volume into the system. In all cases, a real-time control 

improves the amount of water that is exfiltrated, suggesting that regardless of the control 

rule, when high groundwater tables are present, real-time controls can improve the 

exfiltration and prevent groundwater from entering into the stormwater system. 

Furthermore, in comparison to a fully plugged scenario, the level control and 

gradient/level control reduce the volume of untreated water that overflow, thereby 

improving the water quality benefits.  

 

 

Figure A 4-26. Three-year performance of each algorithm compared to no control scenario. 

 

As mentioned, a primary goal is increasing exfiltration; however, in doing so, a 

tradeoff exists between reducing the volume of treated water that is sent through the 

underdrain and the volume of untreated water that is overflow – representing two 

potentially competing objectives. Figure A 4-27 illustrates the comparative performance 

of the different algorithms. As illustrated in Figure A 4-27a, at the extreme ends are the 
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no-control algorithm which has very little overflow but a large underdrain volume 

(14,415 m3), and the fully plugged scenario which has zero underdrain volume, but a 

larger overflow volume (2,355 m3). The two algorithms that reduce both underdrain and 

overflow volumes – as evidenced by their location in the bottom left corner of Figure A 

4-27a – are the level control and the level/gradient control. These two algorithms, while 

not having the greatest exfiltration as compared to the gradient control, do have a 

relatively smaller overflow volume (Figure A 4-27b). Therefore, if seeking both 

objectives, a control rule or algorithm that opens when a maximum water level is reached 

may be preferrable.  

 

 

Figure A 4-27. Relationship between overflow volume and underdrain volume (a) and the 

overflow volume and groundwater exfiltration (b) for the different control algorithms over a 3-

year period. 

 

Design storms  

In addition to the observed 3-year rainfall data, design storms (1-500 yr) were 

simulated to evaluate the impact that real-time controls would have during extreme 

events. The results of this analysis are in Figure A 4-28, which illustrates the performance 

in terms of overflow, groundwater exfiltration, and underdrain flow for all of the control 
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algorithms. As illustrated, overflow increases within increasing storm intensity in all 

cases, but is most pronounced for the gradient and complex controls, which have an equal 

amount of overflow as a fully plugged system. This is also evident in Figure A 4-28c, 

where there is little to no flow out of the underdrain of these systems. This is because 

neither of these controls (gradient and complex) try to prevent overflow, but only seek to 

maximize infiltration while also ensuring that a draw-down period is met. On the other 

hand, the level and gradient/level controls do attempt to prevent overflow by opening 

when a maximum water level is reached in the trench. In the scenario without a control, 

overflow occurs after the 10-year design storm events and is comparatively low to the 

other control systems; however, the no control algorithm releases the most volume 

through the underdrain while promoting little to no exfiltration.  
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Figure A 4-28. Model performance of different algorithms for standard design storms (1-200 yr) 

in regards to the overflow (a), groundwater exfiltration (b), and the underdrain flow (c). 

 

Sensitivity analysis 

The model was also used to analyze the performance of the algorithms with 

varying site conditions, including hydraulic conductivity of the soils, blockage of 

perforations in the underdrain, and static groundwater levels. The groundwater level for 

the hydraulic conductivity and blockage evaluation was set 1m below the invert of the 

underdrain to represent a more general site condition without a high groundwater table.  

The impact on the model under soil types with varying hydraulic conductivity is 

illustrated in Figure A 4-29. The three soil types tested represent are compacted clay (K = 
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1.0E-13), silty sand (K = 1.0E-6), and uniform sand/gravel (K = 1.0E-1). As would be 

expected, exfiltration increases when hydraulic conductivity increases, and all algorithms 

promote exfiltration to a similar degree (Figure A 4-29c). The difference in exfiltration is 

high between that of compacted clay and that of silty sand and uniform gravel, the latter 

two of which are within 71-86% of each other. In addition, for all algorithms, the 

underdrain and overflow reduce as the hydraulic conductivity of the soil increases. 

However, there is a noted difference in the performance between the algorithms 

themselves that mirrors their performance in the previous 3-year analysis in that the level 

and gradient/level controls have a higher underdrain flow and lower overflow due to their 

maximum water level thresholds.  
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Figure A 4-29. Performance of the algorithms as soil type changes. 

 

The model performance when the blockage of the underdrain is varied is 

illustrated in Figure A 4-30, where B of 0 represents fully blocked perforations and B of 

1 represents no blockage. As illustrated in Figure A 4-30a, as the blockage in the 

underdrain perforations decreases (i.e., as B increases), the volume through the 

underdrain increases. Figure A 4-30b represents the overflow, and as illustrated there is 

no impact on the gradient control because the system is plugged during peak events and 

therefore overflow is unaffected by the flow rate through the underdrain perforations. 
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However, as blockages increase, so does the overflow that occurs for the level and 

level/gradient controls. Therefore, as the perforations of an underdrain get blocked 

overtime, this may be a concern for the performance of these algorithms in reducing 

overflows.  

 

 

Figure A 4-30. Performance of the algorithms as blockage of perforations changes. 
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The impact of groundwater levels on the model is illustrated in Figure A 4-31, 

which shows the performance of the algorithms based on three different groundwater 

levels: 3 m below the invert level (-3 m), at the invert (0 m), and 0.5 m above the invert 

of the underdrain. In the case of no control, the groundwater table above the invert level 

infiltrates water into the trench and ultimately adds a considerable volume (>14,000 m3) 

into the sewer system (Figure A 4-31c). However, when the groundwater table is above 

the invert, all real-time control algorithms have a cumulative volume reduction through 

exfiltration. As evident in Figures A 4-31a and A 4-31b, as the groundwater table 

increases, both overflow and underdrain volumes also increase across all algorithms. This 

indicates that despite an ability to significantly reduce groundwater infiltration into the 

stormwater system through the underdrain, the higher the water table the lower the 

performance of the system with real-time controls.  
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Figure A 4-31. Performance of the algorithms as groundwater table changes. 

 

4.5. Costs of Real-Time Control Systems 

One of the objectives of the study was to develop a low-cost active control system 

to control flow through small scale urban green infrastructure. To this end, an active 

control system was built for a maximum budget of $5,000. Table A 4-5 breaks down the 

major components required to build the system. Two options are given in which Setup 1 

is a relatively expensive option that utilizes top of the line hardware and computing 

components, while Setup 2 looks for cost savings through cheaper manufacturers.  

The actuator and valve used in Setup 1 is bought from an American supplier 

(Assured Motors), while the other is from a Chinese supplier (CONVA). While there is a 
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drastic price difference, throughout the deployment of the system, the authors noticed no 

difference in the function and the quality of the two valves. The Assured Motors valve 

was installed at the green alley and one of the bioswales, while the valve produced by 

CONVA was installed at one of the bioswales.  

Campbell data loggers were used for their reliability in scientific instrumentation. 

In addition, Campbell and METER Group pressure transducers were used with no 

observed differences in their performance or maintenance needs. The Hydro 21 sensor 

from METER Group has the added advantage of having a temperature and a specific 

conductance sensor as well as the water level sensor while being competitively cheaper. 

 
Table A 4-5. Cost breakdown of 2 options for the active control system. 

Component Cost of Setup 1 ($) Cost of Setup 2 ($) 

Valve + Actuator (Assured motors) 1500 -  

Valve + Actuator (CONVA) -  380 

Data logger (CR300 Campbell) 900 900  

Pressure transducer (CS451 Campbell) 790 -  

Pressure transducer (Hydro 21 METER Group)  - 490 

Signal convertor 10 10 

Pelican Box 155 155 

Two 12V 15AH rechargeable Lead-acid batteries 65 65 

12V 18AH rechargeable Lead-acid batteries 40 40 

Other material (e.g., steel legs, wires, etc.) 250 250 

Total Cost 3,410 2,290 

 
 

4.6. Discussion 

In this project a real-time control system was developed to improve the volume 

removal of green infrastructure. Three real-time control systems were applied to green 

infrastructure (one green alley and two bioswales), and it was found that 97-100% of the 
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influent stormwater volume was removed on average across the storms that were 

monitored. The alley or bioswales were not monitored during uncontrolled conditions and 

the controlled valves were closed during most of the monitoring period; therefore, it is 

difficult to quantify the level of additional removal the real-time controls provided 

beyond the valve-closed condition. However, in this study, measured volume removal 

was greater than other monitoring studies that observed a range of 25% to 96% volume 

removal for permeable pavements (W. Liu et al., 2020) and an average of 61% volume 

removal for bioretention with underdrains (Poresky et al., 2011). Additionally, the green 

alley was modeled using python and three years of rainfall data to test the performance of 

additional algorithms, extreme rain events, and varying site conditions. The model results 

suggest that real-time control systems can be applied to balance the relative amounts of 

stormwater partitioned to underdrain flow, groundwater exfiltration, and overflow. This 

capability could be used to prevent untreated overflows or to maximize pollutant removal 

credits. To that end, the following conclusions can be made. 

Green infrastructure with closed underdrain valves removed a large volume 

of runoff. As demonstrated by the summary of results above, the green infrastructure 

with real-time controls had a large removal of volume for both the green alleys (97%) 

and the bioswales (100%) during the observed time. The extent to which this is due to the 

real-time controls versus the infrastructure itself is not possible to determine with the data 

collected. However, modeling results indicate that controls do play a factor in controlling 

the pathways of effluent stormwater, i.e., underdrain, exfiltration, and overflow.  In 

addition, compared to other monitoring studies, bioswales with underdrains have found 

an average of 56% removal for those with underdrains (14 studies) and 89% (100% for 
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75th percentile) for those without underdrains (six studies) (Poresky et al., 2012). 

Because the real-time controls effectively plugged the underdrain during these events and 

the observed high infiltration rate, these bioswales performed similar to high-performing 

bioswales without underdrains. The value proposition of the proposed system is in 

maximizing volume removal while preventing overtopping (if included as a constraint) 

and ensuring drawdown times are met. Under the right conditions (defined further in the 

following paragraphs), these could be useful as an option for improving volume removal, 

while reducing risk of prolonged saturation or drawdown times that are beyond those 

required by regulations (usually between 48 and 72 hours). 

Groundwater table levels influence the type of control rules that should be 

used. The green alley exhibited high groundwater tables during the study period. In using 

a real-time control at the site, there were challenges in developing control algorithms that 

would function properly without prior knowledge of groundwater level in the system. 

This is because groundwater levels could fluctuate above the invert of the underdrain 

causing the system to recognize a runoff event when none was present. The rate of 

change in the water level reading, rather than a water level threshold, was applied to 

overcome this challenge; however, further application of this method may require an 

understanding of the site-specific groundwater table dynamics to accurately delineate 

between water level changes caused by groundwater movement versus runoff. Modeling 

results further indicated that real-time controls in situations with high water tables have 

the added benefit of reducing unforeseen groundwater infiltration into the stormwater 

network by holding back groundwater.  
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Exfiltration capacity of green infrastructure is an important consideration 

when implementing real-time controls. This study showed that for the bioswales, there 

was significant exfiltration of influent volumes across all storms. This is not unfounded 

as other studies have found that green infrastructure practices often have a greater than 

designed removal of runoff volume (Lewellyn et al., 2016). In this case, the real-time 

controls at the bioswales acted as a factor-of-safety for events in which the infiltrative 

capacity of the system were less than the runoff volume into the bioswales. However, 

over the course of the study period, no events were captured in which this was the case. 

This does not mean that these controls are not appropriate in these locations, but that their 

value is primarily in ensuring near 100% removal while preventing overflow and 

standing water during extreme events, such as design storms. This was further supported 

by the sensitivity analysis of the hydraulic conductivity, which demonstrated limited 

overflow and underdrain flow for soils with high infiltration capacity.  

Performance objectives of the green infrastructure should inform the type of 

control algorithm used. Modeling results indicated a range in the performance of the 

algorithms based upon the control rules that were implemented. For example, there was a 

higher overflow volume for algorithms that sought to only increase exfiltration versus 

those that sought to also prevent the trench from exceeding a maximum threshold. While 

the former resulted in a greater exfiltration into the ground, they also resulted in a greater 

volume of untreated stormwater in the overflow. This may meet volumetric goals, but if 

water quality is a concern, then the algorithms that prevent overtopping by allowing 

treated stormwater to leave through the underdrain may be preferred.  
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Real-time controls may not provide the most value in all cases. In locations in 

which exfiltration was high, the real-time controls did not need to open to prevent 

overflows or to decrease drawdown rates to meet minimum drawdown times. Therefore, 

a cheaper alternative could be to simply plug the underdrain. In fact, similar approaches, 

such as a constricted underdrain orifice or a plug, have been promoted as an option in 

other stormwater BMP guidance manuals and studies (Maine DEP, 2012). For example, 

in Philadelphia green infrastructure has been implemented with endcaps on the 

underdrain to promote complete infiltration (Ballestero, 2020; PWD, 2020). In these 

cases, performance is observed and if the systems do not drain adequately between 

events, then a hole is drilled into the end cap. Alternative approaches could include 

modified valves that open under specified pressures related to the level of water in a 

system. Such an approach could be a cost-effective means of obtaining more volume 

removal. However, it would not be able to adapt to field conditions rapidly in the way a 

real-time control system can. This was demonstrated by the modeling results (e.g., Figure 

A 4-27) where the fully plugged system has a larger volume of overflow than many of the 

real-time control algorithms that are able to open during periods of high runoff events and 

release treated underdrain flow, as opposed to untreated overflow.  

Limitations of real-time controls should be considered. Limitations to the 

proposed real-time controls systems include the need to replace battery power and 

necessary field conditions for installation.  In this study, with the provided capacity of 

batteries, the systems were able to continuously run for an average of five weeks before 

needing to be recharged; however, power requirements may change based on the opening 

frequency of the valve and the frequency of data collection. In our case, the frequency of 
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data collection was set conservatively at five minutes, but this could be extended to 

improve battery life. Alternative power sources could include solar or grid connections; 

however, these may increase costs and would be dependent upon site conditions. In 

addition, the real-time control valve requires an accessible junction where the underdrain 

meets the stormwater system. This is not always the case as some underdrains are directly 

connected to a stormwater pipe, and therefore, there is no space to place a control valve. 

Others that do meet at a junction could be inaccessible due to the junctions location in the 

middle of the street, deep within a manhole, or at a low invert elevation (e.g., a few 

inches from the bottom of the junction) that prevents the installation of real-time control, 

which in our case requires 12 inches of clearance or more to install. If these types of 

systems are desired, the placement of the underdrain connection in an accessible location 

with space for a valve would be a primary design consideration. Finally, while the valves 

were able to function throughout the study, even after continued deployment through the 

winter, there may be components of the system that need to be maintained during the 

lifetime of the system. 

Hardware for real-time controls of green infrastructure are not cost-

prohibitive. Cost savings were found through controls based solely upon water level that 

eliminate the need for extensive monitoring equipment and communications hardware, as 

well as low-power sensors and actuators that eliminate the need for connections to grid or 

solar power. Such a system could add significant value to green infrastructure practices, 

which already have a high cost per gallon of detention and treatment compared to gray 

infrastructure (Environment Water Federation, 2015). To this end, low-cost, power-

efficient active control of green infrastructure has the potential to enhance adoption of 
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active control technology. Not included within the cost estimates may be other significant 

costs such as overhead, engineering design, and maintenance and operations.  

4.7. Conclusion 

This section presents the outcomes from implementing three real-time control 

systems on three different green infrastructure practices (one green alley and two 

bioswales) and modeling of various conditions at the green alley location. Results 

demonstrate that green infrastructure with real-time controls removed a significant 

amount of volume during runoff events (97-100%). However, the controlled valves were 

closed during most of the monitoring period and, therefore, this effect cannot be 

attributed to the real-time controls and may be the result of simply plugging the 

underdrain.  While plugging of the underdrain may maximize volume removal without 

compromising drawdown requirements in many cases, model results suggest that real-

time controls may have the added benefit of reducing the amount of untreated water that 

is overflowed. Further research would be needed to study and demonstrate this potential 

benefit of real-time controls. Realization of the proposed technology could directly 

advance and support improved stormwater management, through improved volume 

mitigation of green infrastructure practices. 
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