
The University of Manchester Research

Data-driven fault identification of ageing wind turbine
based on NARX

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Liu, Y., & Zhang, L. (Accepted/In press). Data-driven fault identification of ageing wind turbine based on NARX. In
The Unified Conference of DAMAS, InCoME and TEPEN Conferences

Published in:
The Unified Conference of DAMAS, InCoME and TEPEN Conferences

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:18. Jul. 2023

https://research.manchester.ac.uk/en/publications/882014eb-fe3e-4abf-ac19-b664e7393b7f


Data-driven fault identification of ageing wind turbine 

based on NARX 

Yue Liu1, and Long Zhang2 * 

1 Department of Electrical & Electronic Engineering, University of Manchester, 

UK yue.liu@manchester.ac.uk 
2 Department of Electrical & Electronic Engineering, University of Manchester, 

UK long.zhang@manchester.ac.uk 

 

Abstract. As the existing wind turbine is approaching the designed service 

life, it is of great significance to check the ageing condition in advance. In this 

study, a system identification model, nonlinear autoregressive network with ex-

ogenous inputs (NARX), was used to analyze the ageing condition of wind tur-

bines. This data-driven approach uses the input and output data of the system 

directly without the need for specific mathematical models. Simulated experi-

mental data for four different ageing conditions are used for system identifica-

tion. By comparing the NARX model parameters under different conditions, the 

fault conditions of the system can be found and the degree of ageing can be de-

tected. 

Keywords: NARX, System Identification, Ageing Assessment, Artificial 

Intelligence. 

1 Introduction 

In recent years, the installed capacity of wind power has increased rapidly, and the 

proportion of wind power in the UK’s power supply has also increased year by year 

[1]. In 2020, wind power accounted for 24.8% of the power generation in the UK power 

system [2], and it is estimated that by 2030, the proportion of power supply from off-

shore wind power alone will reach one-third of the total power generation. To reduce 

energy costs and improve turbine reliability, many studies are devoted to developing 

better condition diagnostic techniques [4]. Relevant research can help improve wind 

turbine design and help formulate corresponding policies, thereby accelerating the de-

velopment of the wind power industry. With the continuous development of wind 

power, the service life of more and more wind turbines is gradually approaching the 

design life [3]. Wind turbines are designed to last around 20 years, ageing affects wind 

turbine performance over time, losing approximately 1.6% of output per year [5]. Be-

cause wind turbines are subjected to extreme loads and harsh operating environments 

throughout their service life, which cause accelerated machine aging, wind turbines are 

theoretically unlikely to last longer than they were designed for [6]. Therefore, it is very 
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important   to evaluate the ageing degree of wind turbines that have been used for sev-

eral years. This will facilitate the life management of wind turbines in wind farms, al-

lowing them to operate until their design year, saving maintenance costs and improving 

economic returns. 

 

Wind turbine ageing assessment and fault diagnosis methods can be divided into 

three categories: signal processing method, model-based method and data-based 

method. Vibration signal analysis is one of the most commonly used methods for fault 

detection. By using fast Fourier transform, wavelet transform and other methods to an-

alyze vibration signals, fault conditions can be found through the characteristic frequen-

cies in the frequency spectrum [8]. In addition, there are other methods for fault diag-

nosis of wind turbines, such as torque [9] and current [10], which collect data from 

other different sensors. However, this may increase the cost of power generation, be-

cause corresponding sensors need to be installed on each wind turbine, and the working 

status of the sensors should also be considered. The model- based method is to conduct 

system analysis by establishing a mathematical model of the system under test and 

comparing it with the real model. But this approach requires knowledge of a detailed 

physical model of the system and then digitizing the system. The wind turbine system 

has a complex structure and is a very typical nonlinear system, so it is very difficult to 

digitize the entire dynamic system [14]. Similar to the model- driven approach, the data-

driven approach also requires a system model. However, the data-driven method does 

not need to know the specific physical model of the system,   and only needs to use the 

input and output signals of the system to build a dynamic model of the system. By 

analyzing the changes of the model and comparing the characteristic patterns in differ-

ent situations, the fault diagnosis can be realized. 

 

At present, there are few research on the ageing detection of wind turbines, and most 

of the research focus on fault diagnosis and reliability analysis. This is mainly since 

ageing is different from damage to components, and once    a component fails, the entire 

system becomes completely unusable. Ageing occurs relatively slowly, and there may 

not be a specific component in the entire system that fails. Although it may have a 

certain impact on the output power, the overall system is still running normally. There-

fore, it also brings difficulties to the research on ageing. The slow and lengthy ageing 

process makes it difficult to collect data for all ageing periods of a wind turbine. More-

over, even   two identical wind turbines in the same wind farm can have completely 

different components and severity of ageing. This also requires the simultaneous anal-

ysis of multiple component conditions to assess the performance of the wind turbine. 

In addition, different components may need to use different sampling rates to best cap-

ture its dynamics. Existing datasets basically collect data for all components at a uni-

form sampling rate, which may not be the most suitable for some components [7]. The 

main contributions of this paper are as follows. The nonlinear modelling is the main 

contribution while considering different factors, such as different degrees of ageing, 

sampling rates, and lengths of time for specific components. Therefore, the effect of 
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different sampling rates on the results of ageing experiments at the same part can be 

observed. 

2 DFIG wind turbines 

Doubly-fed induction generator (DFIG) wind turbine systems are widely used due 

to their low installation cost and both the stator and rotor can supply power to the grid 

[16]. The adjustable speed generator and blade pitch control improve system efficiency 

while reducing mechanical stress and other issues [15]. While making the system more 

complex and costly, and large infiltrations can cause problems in the power system, 

more energy extraction can offset this negative impact [13], [16]. 

 

 

Fig. 1. DFIG wind turbine schematic [13]. 

3 Data-Driven Method 

System identification is widely used in building systems because it does not need to 

consider the exact physical model of the system, but only needs to consider the rela-

tionship between the input signal and the output signal. The models available for fitting 

can be divided into two categories: linear and non-linear. 

3.1 NARX Model 

Wind turbine system is a typical nonlinear system. NARX can be used to describe 

nonlinear dynamic systems, is suitable for time series forecasting, and is applied to 

solve nonlinear series forecasting problems in various fields. The mathematical formula 

of multiple input multiple output (MIMO) NARX can be expressed as: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)

𝑒(𝑡 − 1), … , 𝑒(𝑡 − 𝑛𝑒)) + 𝑒(𝑡)
(1) 
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Where, 

𝑦(𝑡) = [
𝑦1(𝑡)
⋮

𝑦𝑚(𝑡)
] , 𝑢(𝑡) = [

𝑢1(𝑡)
⋮

𝑢𝑟(𝑡)
] , 𝑒(𝑡) = [

𝑒1(𝑡)
⋮

𝑒𝑚(𝑡)
] (2) 

represent the output, input and noise vector of the system at time t; ny, nu and ne 

represents the delay order of output, input and noise, respectively. 𝑓(⋅)means non-lin-

ear function which is generally complex and difficult to obtained. Thus a common 

method is to use a simpler approximation formula. In this paper we use the method of 

neural networks. 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦),

𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)) + 𝑒(𝑡)
(3) 

Eq. (3) is a special case of (1), because it only considers the independent noise 

sequence. The neural network model structure of NARX can be shown as Fig.2, one 

or more layers could be designed between the input and output, nl is the number of 

hidden layers. 

 

 

Fig. 2. The structure of multiple input NARX 

Neural networks is statistical-based learning approach, and NARX is able to pre-

dict the output based on the current input, taking into account the impact of previous 

inputs on the system. The multi-layer structure of NARX is designed with hidden 

layer, input layer and output layer. Changing the number of hidden layers and neu-

rons will affect the stability of neural network, which requires more attempts in ex-

periments. The operation process of each neuron in the system is shown in Fig. 3, 

where xi is the neuron input and y is neuron output. The functional relationship be-

tween input and output is given by threshold parameter µ, weights wi and activation 

function a(·): 

𝑦 = 𝑎(∑𝑤𝑖𝑥𝑖 + 𝜇) (4) 

If all activation functions are linear, then the output of the neuron is the weighted 

sum of the inputs. 
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𝑦 = ∑𝑤𝑖𝑥𝑖 (5) 

 

Fig. 3. The structure of a neuron 

According to the universal approximation theorem, artificial neural networks have  

the ability to approximate arbitrary functions [11]. Fewer hidden layers make the com-

putation faster, so if we use a neural network with one hidden layer to model the non-

linear system described by Eq. (3). Define 𝑛 = 𝑚𝑛𝑦 + 𝑟𝑛𝑢 

𝑥(𝑡) = [𝑥1(𝑡) … 𝑥𝑛(𝑡)]
T =

[
 
 
 
 

𝑦T(𝑡 − 1)
⋯

𝑦T(𝑡 − 𝑛𝑦)𝑢
T(𝑡 − 1)

⋯
𝑢T(𝑡 − 𝑛𝑢) ]

 
 
 
 

(6) 

At the same time, it is stipulated that the number of hidden neurons is 𝑛ℎ, threshold 

of i-th hidden neuron is 𝜇𝑖
(ℎ)

. The weight from 𝑥𝑗(𝑡) to i-th hidden neuron is 𝑤𝑖𝑗
(ℎ)

, 

output of i-th hidden neuron is 𝑜ℎ𝑖(𝑡) and the weight from i-th neuron to k-th output 

neuron is 𝑤𝑘𝑖
(𝑜)

. 

 

Define Θ = [𝜃1 … 𝜃𝑛𝜃]
T  for all weights and thresholds. The model can be 

shown as 

�̂�(𝑡, Θ) = 𝑓(𝑥(𝑡); Θ) = [𝑓1(𝑥(𝑡); Θ) … 𝑓𝑚(𝑥(𝑡); Θ)]
T

(7) 

And 

�̂�𝑘(𝑡, Θ)  = 𝑓𝑘(𝑥(𝑡); Θ) = ∑𝑤𝑘𝑖
(𝑜)𝑜ℎ𝑖(𝑡)

𝑛ℎ

𝑖=1

 

 = ∑𝑤𝑘𝑖
(𝑜)𝑎

𝑛ℎ

𝑖=1

 (∑𝑤𝑖𝑗
(ℎ)𝑥𝑗(𝑡)

𝑛

𝑗=1

 + 𝜇𝑖
(ℎ)) ,  1 ⩽ 𝑘 ⩽ 𝑚

(8) 

Neural networks need to choose different activation functions for training accord-

ing to the purpose of use. In this paper the activation function 𝑎(⋅) is chosen as 
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𝑎(𝑧) =
1

1 + exp(−𝑧)
(9) 

and the derivative function is 

𝑎′(𝑧) = 𝑎(𝑧)[1 − 𝑎(𝑧)] (10) 

The gradient [12] of �̂�(𝑡, Θ), for 1 ⩽ 𝑖 ⩽ 𝑛𝜃 and 1 ⩽ 𝑗 ⩽ m is 

Ψ𝑖𝑗(𝑡, Θ) =
𝑑�̂�𝑗(𝑡, Θ)

𝑑𝜃𝑖

 =

{
  
 

  
 𝑜ℎ𝑘(𝑡)  if 𝜃𝑖 = 𝑤𝑗𝑘

(0), 1 ⩽ 𝑘 ⩽ 𝑛ℎ

𝑤𝑗𝑘
(0)𝑜ℎ𝑘(𝑡)(1 − 𝑜ℎ𝑘(𝑡))  if 𝜃𝑖 = 𝜇𝑘

(ℎ), 1 ⩽ 𝑘 ⩽ 𝑛ℎ

𝑤𝑗𝑘
(0)𝑜ℎ𝑘(𝑡)(1 − 𝑜ℎ𝑘(𝑡))𝑥𝑙(𝑡)  if 𝜃𝑖 = 𝑤𝑘𝑗

(ℎ), 1 ⩽ 𝑘 ⩽ 𝑛ℎ,

1 ⩽ 𝑙 ⩽ 𝑛
0  otherwise 

(11) 

The mean squared error between the network output and the target can be written 

as 

𝐸𝐷 = 𝑚𝑠𝑒 =
1

𝑁𝐷
∑ 휀(𝑡, Θ)2

𝑁𝐷

𝑖=1

=
1

𝑁𝐷
∑(𝑦(𝑡) − �̂�(𝑡, Θ))2

𝑁𝐷

𝑖=1

  (12) 

where 𝑁𝐷 represent the number of output data. The least-squares solution of model 

is obtained by minimizing  𝐸𝐷. But in some times the result will fall into one of local 

minima. In order to make the result be global minimum, regularization is required. 

Bayesian regularization minimizes the mean squared error by updating the weights as 

network changes. The method used in this paper is to determine the ageing severity 

of wind turbines by comparing the weight changes between different models, so more 

accurate weights are very important for research. A diagonal matrix Λ is introduced, 

when it has constant diagonal elements λ, cost function S(w) will be minimized with 

respect to the weights: 

𝑆(Θ) = 𝐸𝐷 + 𝜆∑(𝑤𝑘𝑗
(ℎ))

2
𝑁𝑃

𝑗=1

  , where 0 ≤ 𝜆 ≤ 1 (13) 

where 𝑁𝑝 is the number of parameters (number of neurons). 

Δ𝜃𝑖 = −𝛼
∂𝑆(Θ)

∂𝜃𝑖
= −𝛼(

2

𝑁𝐷
∑ 휀(𝑡, Θ)Ψ𝑖𝑗(𝑡, Θ)

𝑁𝐷

𝑖=1

+ 2𝜆𝛿) (14) 

Only when 𝜃𝑖 = 𝑤𝑘𝑗
(ℎ)
, 𝛿 = 1, otherwise the value of  𝛿 is 0. Then the parameters of 

the model can then be updated as 
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𝜃𝑖
new = 𝜃𝑖

old + Δ𝜃𝑖 (15) 

4 Experiment 

The experiment is mainly to test whether the ageing degree of the system can be 

judged by the NARX model. First, a healthy wind turbine model needs to be built, 

and then the different ageing conditions are simulated by changing the corresponding 

parameters to collect data. This is because the actual data is difficult to record all the 

ageing conditions completely, and the damaged parts are also uncontrollable. There-

fore, data collection needs to be assisted by simulation experiments. Afterwards, the 

collected data is used for system identification, which is used for ageing degree analy-

sis. 

4.1 Reference mode 

The experimental object of this experiment is a 2MW wind turbine. The establish-

ment of health model is by modifying the parameters of the wind farm model in 

MATLAB. By comparing the actual data and the simulation data, it can be seen that 

the simulation data is basically consistent with the actual data trend. Therefore, the data 

from simulation model can be used instead of the actual data. 

 
Fig. 4. The validation of health wind turbine model. 

4.2 Ageing cases setting 

In order to analyses whether this method can be used in different parts of wind tur-

bine, four cases were selected for simulation. For Case 1, the changes of mechanical 

power are used to simulate the ageing of rotor-side converter control system. For Case 

2, the change of magnetizing inductance are used to simulate the generator coils ageing. 

For both cases 3 and 4 are used to simulate the blade part. The changes of change rate 

and controller gain are used to simulate the ageing of blade bearing and pitch control 

system, respectively. 

To describe the gradual ageing of wind turbine, 4 to 5 different stages are designed 

for each case. From the reality, with ageing, the performance of wind turbine will grad-

ually decrease. Corresponding to the model, that is, the parameters will gradually 
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change. Therefore, only the parameter reduction cases are considered during the exper-

iment. In order to minimize the influence of noise on the experimental results, each 

experiment is repeated 5 times to obtain the average results. Other data that will be used 

in the experiment are shown in the Table 1. The input signal is wind speed, and output 

is generated power. 

Table 1. Experimental setup parameters 

Name 
 

Mechanical power 0.895(pu) 

Constant wind speed 10.5m/s 

Square wind speed 7 to 11m/s 

Sampling rate 1s 

The input signal used by case 1 and 2 is constant wind speed. Since case 3 and 4 

involve pitch control, they use gust with a period of 120s as input to repeatedly collect 

the situation when blades rotate. 

4.3 Validation 

In order to verify whether the model obtained by system identification can replace 

the original model, it is necessary to make a validation. It can be seen from Fig.5 that 

the results obtained by the data-driven model are basically consistent with those of the 

original model when the same wind speed is input. This shows that the data-driven 

model obtained by system identification can replace the original model. 

 
Fig. 5. The validation of pontificated model. 

4.4 Different model comparison 

By using different models for system identification, the mean square error (MSE) of 

the models obtained is shown in the Table 2. It can be seen that for all cases, the MSE 

of NARX is the smallest. This also shows that compared with the other two models, the 

predicted value calculated by NARX is closer to the real value. 
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Table 2. Comparison of different model 
 

ARX ARMAX NARX 

Case 1 0.001267 0.001665 0.001013 

Case 2 0.001267 0.001055 0.001013 

Case 3 0.004635 0.004709 0.003292 

Case 4 0.004608 0.00469 0.003364 

5 Results 

Data collection was performed by the model after reducing parameters by 1%, 2%, 

5%, and 10%. Different order of delay and the layer number of the neural network will 

cause different results. Using the acquired data for system identification, the results 

obtained are shown below. 

5.1 Case 1: Mechanical power 

First tried the case where input and output delay order are 10 and the hidden layer is 

1. The model obtained at this time is the simplest structure of the model. After system 

identification and data processing, the results shown in the Fig. 6 can be obtained. The 

results shown in the figure are the changes in model parameters. It can be seen that as 

the ageing degree increased, the variation of parameters also increased. 

 

 
      (a) input parameter                               (b)output parameter 

Fig. 6. The variations of parameters with the mechanical power changes (10 orders, 1 layer). 

The change in parameters is proportional to the degree of ageing. That means, if 

there is a problem with the mechanical power part, the ageing degree can be roughly 

determined by comparing the parameters of model. Although the changing trends of all 

parameters are consistent, it can be clearly seen that the change rate of each parameter 

is different. In theory, even if the components of other parts are also ageing, the change 

rate of parameters will be different. Therefore, it should be possible to identify the age-

ing site by the parameter change rate. 
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In addition, in order to observe the results of experiments with different delay orders 

and hidden layers, several other experiments were performed. The experimental results 

of order 10 layer 2 are shown in the Fig. 7. 

 
(a) neuron 1                                         (b) neuron 2 

Fig. 7. The variations of input parameters with the mechanical power changes (10 orders, 2 

layers). 

It can be seen that due to the increase of hidden layer, the number of input parameters 

has changed from 10 to 20. While all parameter variables in neuron 2 are still propor-

tional, the parameter changes in neuron 1 do not always follow the same trends. With 

the increase of hidden layer, the change of parameters does not become more regular, 

but becomes more chaotic, 5 layers result shown in Fig. 8. This may be because, alt-

hough the wind turbine is a nonlinear system, it can still be approximated as a linear 

model under some specific conditions. In this case, the simple model can have better 

accuracy than the complex model. 

 

 
Fig. 8. The variations of input parameters with the mechanical power changes (10 orders, 5 

layers). 

5.2 Magnetizing inductance changes 

First, as in case 1, consider the results in a linear system. The results are show in 

Fig. 9. However, unlike case 1, in the one-layer model, the change trend of the param-

eters is not consistent with the change trend of the magnetizing inductance. This may 

be due to the fact that magnetizing inductance also affects the reactive power, but this 

was not taken into account during system identification. But the same as case1, as the 

hidden layer increases, the parameter changes become more chaotic. 
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(a) neuron 1                                         (b) neuron 2 

Fig. 9. The variations of input parameters with the magnetizing inductance changes. 

5.3 Pitch angle changes 

Since this case involves pitch control, in order to make the model identified by the 

system more accurate, the multiple-input single-output (MISO) NARX model is used 

for system identification. Take wind speed and pitch angle as input and generated 

power as output. Also consider the data analysis results under only one layer at first, 

and the results are shown in the Fig. 10. The change of parameters is consistent with 

the change trend of pitch angle. 

 

 
      (a) input parameter                               (b)output parameter 

Fig. 10. The variations of parameters with the pitch angle changes.  

5.4 Pitch controller gain changes 

This experiment also uses the MISO model, and the results are shown in the Fig. 

11. In the case of linear models, it can be seen that although most of the parameter 

changes are proportional. But there are also individual parameter changes that are in-

consistent with changes in controller gain, such as the fifth delay. 
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      (a) input parameter                               (b)output parameter 

Fig. 11. The variations of parameters with the pitch controller gain changes.  

6 Conclusion 

This paper uses a data-driven approach to assess wind turbine system ageing. For 

the simulation results, all ageing conditions can be detected when the model has only 

one hidden layer. However, in case 2, only the ageing of the system can be found, and 

the severity of the ageing cannot be confirmed. In other cases, the degree of ageing 

can be reflected in changes in model parameters. In these cases, the degree of ageing 

can be confirmed while the fault is detected, and corresponding warnings or mainte-

nance advice can be issued. But all experiments perform poorly when the hidden layer 

is greater than 1. This may be because, under certain conditions, the local linear 

model is more accurate than the nonlinear model. 

 

Under certain conditions, the parameters of the data-driven model can still reflect 

the ageing of wind power system. This work validates them under these operating con-

ditions. At the same time, this method could theoretically be used for other kinds of 

wind turbines. Future work will also consider how to analyse the ageing combination 

of different components. 
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