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We present lattice-QCD calculations of the hadronic form factors for the semileptonic decays D → πlν,
D → Klν, and Ds → Klν. Our calculation uses the highly improved staggered quark (HISQ) action
for all valence and sea quarks and includes Nf ¼ 2þ 1þ 1 MILC ensembles with lattice spacings
ranging from a ≈ 0.12 fm down to 0.042 fm. At most lattice spacings, an ensemble with physical-
mass light quarks is included. The HISQ action allows all the quarks to be treated with the same
relativistic light-quark action, allowing for nonperturbative renormalization using partial conservation
of the vector current. We combine our results with experimental measurements of the differential
decay rates to determine jVcdjD→π ¼ 0.2238ð11ÞExptð15ÞQCDð04ÞEWð02ÞSIB½22�QED and jVcsjD→K ¼
0.9589ð23ÞExptð40ÞQCDð15ÞEWð05ÞSIB½95�QED. This result for jVcdj is the most precise to date, with a
lattice-QCD error that is, for the first time for the semileptonic extraction, at the same level as the
experimental error. Using recent measurements from BES III, we also give the first-ever determination
of jVcdjDs→K ¼ 0.258ð15ÞExptð01ÞQCD½03�QED from Ds → Klν. Our results also furnish new
Standard Model calculations of the lepton flavor universality ratios RD→π

μ=e ¼ 0.98671ð17ÞQCD½500�QED,
RD→K
μ=e ¼ 0.97606ð16ÞQCD½500�QED, and RDs→K

μ=e ¼ 0.98099ð10ÞQCD½500�QED, which are consistent within

2σ with experimental measurements. Our extractions of jVcdj and jVcsj, when combined with a value for
jVcbj, provide the most precise test of second-row Cabibbo-Kobayashi-Maskawa unitarity, finding
agreement with unitarity at the level of one standard deviation.

DOI: 10.1103/PhysRevD.107.094516

I. INTRODUCTION

Historically, measurements in quark-flavor physics have
a strong precedent of anticipating the direct discovery of
new particles. To name one instance, consider the charm
quark, decays of which are the subject of this paper. Its
existence was conjectured on the basis of symmetry [1,2],
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and its mass was predicted to explain the rates of strange-
ness-changing neutral-current processes [2,3]. The discov-
ery of the J=ψ [4,5] was then immediately interpreted as
charmonium [6–9]. Another example is the measurement in
1987 of large mixing in neutral B mesons by the ARGUS
Collaboration [10], which suggested the unusually large
mass for the top quark (see, e.g., Ref. [11]), eight years
before its direct observation at the Tevatron in 1995
[12–14]. In light of several anomalies in measurements
of B-meson decays and tension in several tests of the
Standard Model (SM) flavor structure [15,16], one can
speculate that this area of particle physics is again pointing
toward something new. To illuminate the situation, it is
timely to improve the theoretical ingredients in confronting
experiment with the Standard Model for other quark-flavor
processes. In this paper, we report on lattice-QCD calcu-
lations relevant to the second row of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, enabling stringent
tests of second-row CKM unitarity.
Within the StandardModel (SM), charged-current flavor-

changing processes are described by the CKM matrix

VCKM ¼

0
B@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CA; ð1:1Þ

which describes the mismatch between the propagating
mass eigenstates and the flavor eigenstates which participate
in the weak interaction. By construction, the CKMmatrix is
unitary, so each row and column should have unit norm.
Deviations from this expectation can arise ifVCKM is a 3 × 3
submatrix in an extended flavor sector or if non-SM
processes contribute to measured decay and mixing rates.
It is important to test the CKM paradigm using independent
determinations from multiple processes, for example, com-
paring leptonic and semileptonic decays with the same
flavor charge. Improved precision for the individual matrix
elements leads directly to more stringent tests of the
StandardModel. Any statistically significant deviation from
the predictions of CKM-unitarity would constitute evidence
for new physics beyond the Standard Model.
The strongest test of unitarity comes from the first row,

where the matrix elements are determined most precisely,
with the exception of jVubj, which plays a negligible role in
the first row unitarity relation at the current level of
precision. Either taking the most precise value of jVudj
that comes from superallowed β decays [17]1 and jVusj as
extracted from semileptonic Kl3 ≡ K → πlν decays, or

using only inputs from kaon and pion decays (i.e., jVusj
from semileptonic decays and jVusj=jVudj from the ratio of
leptonic decays, Kl2 ≡ K → lν over πl2 ≡ π → lν [24]),
the combination jVudj2 þ jVusj2 þ jVubj2 is in tension with
unitarity at the 3σ level [25]. There is also a ∼3σ tension
between the semileptonic and the leptonic determinations of
jVusj [25], where the leptonic determination uses jVudj from
superallowed decays as an external input. In those tests, the
relevant QCD nonperturbative inputs for semileptonic and
leptonic decays, the form factor fKπþ ð0Þ [26–29] and the ratio
of decay constants fK=fπ [30–35], respectively, are calcu-
lated using lattice QCD with uncertainties that have reached
the ∼0.18% level [36]. Experimental data for the decay
widths of Kl3 and Kl2=πl2 decays are similarly precise
[37,38], leaving electromagnetic corrections as an important
source of uncertainty in the extraction of the corresponding
CKM matrix elements. Pioneering work addressing the
calculation of structure-dependent QED corrections both
for pion and kaon leptonic decays using lattice techniques
[39,40] and kaon semileptonic decays [41–43] including
lattice calculations of the γW-box contribution, have been
recently performed, opening the door to an important
reduction of the electromagnetic uncertainty.
Similarly precise tests for the CKMmatrix elements in the

second row have been limited both by theory and exper-
imental uncertainties. On the theory side, the error for the
decay constants fD and fDs

(roughly 0.35–0.2% [36]) are
now subleading in the extraction of jVcdj and jVcsj, respec-
tively, from leptonic decays thanks to the progress made by
lattice calculations in the last years [31,32]. However, the
situation is very different for semileptonic extractions of
those CKM matrix elements. Since the decay rates are not
suppressed by the lepton mass, experimental measurements
are more precise. For leptonic decays, the Heavy Flavor
Averaging Group (HFLAV) world averages for fDs

jVcsj and
fDjVcdj have fractional errors of roughly 1% and 2%,
respectively [44]. The corresponding semileptonic decay-
ratemeasurements are roughly a factor of twomore precise in
each case, with the fractional errors in fD→Kþ ð0ÞjVcsj and
fD→πþ ð0ÞjVcdj around 0.5% and 1%, respectively [44].
Lattice-QCD calculations of semileptonic form factors
(including both normalization and shape), while more
complex than for decay constants for leptonic decays, have
a long history in lattice QCD [45–58]. Now, however, the
current experimental errors and the forthcoming improve-
ments by BES III motivate further reducing the lattice-QCD
errors to the level of experimental precision.
In this work, we leverage the same theoretical tools that

were successfully employed in the calculation of decay
constants and the Kl3 form factor [27,32,59]; the same
highly improved relativistic lattice actions and gauge-field
ensembles with physical quark masses and small lattice
spacings. In particular, we compute the hadronic form
factors for the semileptonic decays D → πlν, D → Klν,
and Ds → Klν in lattice QCD, with the goal of obtaining

1Recent calculations of the universal electroweak radiative
corrections relevant for superallowed β decays in Refs. [18–22]
found larger values than those estimated before, shifting the
central value of jVudj and increasing the tension with unitarity. In
addition, further, previously unaccounted, nuclear-structure un-
certainties in the inner radiative correction have considerably
increased the error for earlier determinations [19,23].
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percent-level determinations of jVcdj and jVcsj when
combined with experimental data. Our values for jVcdj
and jVcsj provide a stringent test of unitarity and their
precision allows a commensurate comparison with leptonic
determinations. As a key aspect of our analysis, we report
the correlations between the hadronic form factors in the
different decay channels as well as between the final values
for jVcdj and jVcsj (see Sec. VII). Preliminary results for the
present calculation of the form factors have been presented
in Refs. [60,61]. We note that the HPQCD Collaboration
has recently presented a precise lattice-QCD calculation of
the form factors for D → K decay [62,63], with a quoted
lattice-QCD uncertainty close to the experimental one in
the extraction of jVcsj [62]. On the other hand, this paper
yields the first percent-level determination of jVcdj and
enables the first stringent test of second-row CKM unitarity
from semileptonic D-meson decays.
With the hadronic form factors for a given decay in hand,

it is straightforward to construct the lepton flavor univer-
sality (LFU) ratios Rμ=e, which are defined as the ratio of
the branching fractions to muon versus electron final states;
see Sec. VII E. These ratios are expected to be close but not
identically equal to unity in the SM, with differences
coming from lepton-mass, isospin-breaking, and QED
effects. Lattice QCD calculations offer a theoretically clean
method for determining the SM prediction to high precision
(up to QED corrections), contributing to stringent LFU
tests in those channels.
The rest of this article is organized as follows. Section II

reviews the definitions and formalism for relating exper-
imentally measured decay rates to the hadronic form factors
we calculate. Section III gives details related to the lattice-
QCD simulation. Section IV reports the statistical analysis
of Euclidean correlation functions which yields renormal-
ized form factors. Section V describes the final chiral-
continuum fit, which interpolates the form factors to the
physical hadron masses and extrapolates to the continuum
limit. Section VI analyzes the uncertainties in our calcu-
lation and summarizes the complete statistical and system-
atic error budget for the form factors. Section VII discusses
applications to phenomenology, including determinations
of the CKM matrix elements and the LFU ratios in each
channel. Finally, Sec. VIII gives some concluding remarks.
Four appendices provide additional technical information.
Appendix A contains useful formulas appearing in the
statistical analysis of staggered correlation functions.
Appendix B presents useful information about staggered
fermions and heavy quark effective theory when the bare
lattice quark mass is large. Appendix C describes linear and
nonlinear shrinkage techniques for correlation and covari-
ance matrix, the latter of which is a novel aspect of the
correlator analysis presented in this work. Appendix D
provides supporting details and figures regarding various
fits, which exceed the scope of the main text but illustrate
the robustness of our analysis.

II. DEFINITIONS

The differential decay rate for the semileptonic decay
H → Llν of a heavy pseudoscalar meson H ∈ fD;Dsg to
a light pseudoscalar meson L ∈ fK; πg is given by

dΓ
dq2

¼ G2
F

24π3
η2EWjVcxj2ð1 − ϵÞ2ð1þ δEMÞ

×
�
jpj3

�
1þ ϵ

2

�
jfþðq2Þj2

þ jpjM2
H

�
1 −

M2
L

M2
H

�
2 3ϵ

8
jf0ðq2Þj2

�
; ð2:1Þ

where ϵ ¼ m2
l=q

2 (with ml the lepton mass),2 q is the
momentum transfer, MH and ML are the masses of the
heavy initial and light final mesons, and p is the three-
momentum of the final-state meson in the rest frame of the
initial hadron. Short-distance electroweak corrections toGF
are contained in ηEW ¼ 1þ ðαQED=πÞ lnðMZ=μÞjμ¼MD

¼
1.009ð2Þ [64], where the error is an estimate of the
scale uncertainty from a factor-of-two variation around
μ ¼ MD.

3 Long-distance and structure-dependent electro-
magnetic corrections are described by δEM.

4

The form factors fþðq2Þ and f0ðq2Þ encapsulate the
nonperturbative hadronic structure of the decay. They arise
in the usual way from the Lorentz-covariant decomposition
of the relevant transition matrix elements,

hLjVμjHi≡ ffiffiffiffiffiffiffiffiffiffi
2MH

p
½vμfkðq2Þ þ pμ

⊥f⊥ðq2Þ�; ð2:2Þ

≡ fþðq2Þ
�
kμ þ pμ −

M2
H −M2

L

q2
qμ
�

þ f0ðq2Þ
M2

H −M2
L

q2
qμ; ð2:3Þ

hLjSjHi ¼ M2
L −M2

H

mh −mx
f0ðq2Þ: ð2:4Þ

In these expressions, kμ, and pμ refer to the four-
momentum of the heavy initial and light final mesons,
mh andmx refer to the masses of the heavy and light quarks
in the current, vμ ¼ kμ=MH is the four-velocity of the

2In our notation, ml with a cursive subscript always refers to
the lepton mass in the decay H → Llν. The light-quark mass is
denoted ml.

3Physically, the scale dependence of ηEW should cancel against
that of the structure-dependent electromagnetic corrections
which, though calculable in principle, have never been computed
for these decays. Computing these corrections exceeds the scope
of the present work.

4Systematic uncertainties from neglected electromagnetic
corrections and strong isospin breaking are discussed in
Sec. VII B.
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heavy meson, pμ
⊥ ¼ pμ − ðp · vÞvμ is the component of

the final-state hadron’s momentum orthogonal to v, and
qμ ¼ kμ − pμ is the momentum transfer. The same form
factor f0 appears in Eq. (2.3) owing to partial conservation
of the vector current (PCVC), namely ∂μVμ ¼ ðmh −mxÞS
as an operator identity.
In lattice gauge theory, we introduce bilinears of lattice

fermion fields—J ¼ V0, Vi, and S—and associated match-
ing factors ZJ, such that ZJJ and the corresponding J have
the same matrix elements (up to controlled uncertainties).
In this notation, and in the rest frame of the decaying
meson, the relations between form factors and matrix
elements take the following forms:

fkðq2Þ ¼ ZV0

hLjV0jHiffiffiffiffiffiffiffiffiffiffi
2MH

p ; ð2:5Þ

f⊥ðq2Þ ¼ ZVi
1

pi

hLjVijHiffiffiffiffiffiffiffiffiffiffi
2MH

p ; ð2:6Þ

f0ðq2Þ ¼ ZmZS
mh −ml

M2
H −M2

L
hLjSjHi: ð2:7Þ

[No sum is implied in Eq. (2.6).] Using the preceding
equations, the vector form factor is given by a linear
combination of f⊥ðq2Þ and f0ðq2Þ,

fþðq2Þ ¼
�
MH − ELffiffiffiffiffiffiffiffiffiffi

2MH
p

��
1 −

E2
L −M2

L

ðMH − ELÞ2
�
f⊥ðq2Þ

þ
�
M2

H −M2
L

MH − EL

�
f0ðq2Þ
2MH

; ð2:8Þ

which will be useful below.
In momentum space, PCVC implies the following

condition for the lattice currents5:

ZV0ðMH − ELÞhLjV0jHi þ ZViq · hLjVjHi
¼ ZmZSðmh −mxÞhLjSjHi: ð2:9Þ

which can be used to extract the renormalization factors
for the temporal and spatial components of the vector
current, ZV0 and ZVi [48], as explained in detail in
Sec. IV C. With the present treatment of all valence quarks
with the highly improved staggered quark (HISQ) action
[65], the local scalar density enjoys absolute normalization,

ZmZS ¼ 1 [66,67]. Furthermore, PCVC allows one to
express any single matrix element in terms of the other
two involved in the relation in Eq. (2.9), for example,

faltþ ðq2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2MH

p ½fkðq2Þ þ ðMH − ELÞf⊥ðq2Þ�; ð2:10Þ

falt0 ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2MH

p
M2

H −M2
L

× ½ðMH − ELÞfkðq2Þ þ ðE2
L −M2

LÞf⊥ðq2Þ�;
ð2:11Þ

with fk and f⊥ computed using Eqs. (2.5) and (2.6).6

These alternative constructions will be used to check for
systematic errors in our analysis; see Sec. V C.

III. SIMULATION DETAILS

Our calculation uses ensembles generated by the MILC
Collaboration using a one-loop Symanzik improved gauge
action andNf ¼ 2þ 1þ 1 flavors of dynamical sea quarks
with the HISQ action [32,68,69].7 Table I and Fig. 1
summarize the ensembles used in this work. Lattice
spacings range from a ≈ 0.12 fm down to a ≈ 0.042 fm.
An ensemble with physical-mass light quarks appears for
all lattice spacings but a ≈ 0.042 fm. For the finer lattice
spacings, we also include ensembles with heavier-than-
physical light quarks with ml ≈ms=10 and ml ≈ms=5.
The masses of the valence light and strange quarks

generally match those in the sea. In all ensembles the charm
and strange quarks in the sea have (close to) physical
masses. The heavy valence quarks used in this study range
from around nine-tenths to around twice the physical charm
mass. The precise values for the sea- and valence-quark
masses are given in Table II.
Although the primary targets of this work are the

dimensionless form factors f0 and fþ, many intermediate
quantities (e.g., fk and f⊥ and masses) are dimensionful.
Throughout this work, the scale is set on each ensemble
using previously calculated values for the gradient-flow
scale w0=a [70,71], also listed in Table I. Details of the
intermediate scale-setting scheme in the chiral-continuum
analysis are discussed below in Sec. V B.

5In Minkowski space, the basic momentum-space operator
relation reads iqμhVμðqÞi ¼ ðmh −mlÞhSi. Equation (2.9), in
which all terms come with a positive sign and without factors of i,
amounts to a definition of the sign convention for Wick rotation
and the phase convention for the lattice currents.

6Another expression for fþ in terms of f0 and fk exists but
involves a delicate numerical cancellation near q2max. For this
reason it is excluded from the subsequent discussion.

7We have adopted a policy for sharing collaboration-generated
gauge configuration files with highly-improved staggered sea
quarks. The policy, along with a list of lattices that are shared
without restriction as well as bibliographic guidance for citations,
can be found on our GitHub page linked in https://github.com/
milc-qcd/sharing/wiki/LatticeSharing.
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IV. CORRELATOR ANALYSIS

A. Definitions

To access the matrix elements hLjSjHi, hLjV0jHi, and
hLjVijHi, we compute the following two- and three-point
correlation functions:

CP
HðtÞ ¼

X
x;y

hPHðtsrc; xÞPHðtþ tsrc; yÞi; ð4:1Þ

CA0

H ðtÞ ¼
X
x;y

hA0
Hðtsrc; xÞA0

Hðtþ tsrc; yÞi; ð4:2Þ

CP
Lðt; pÞ ¼

X
x;y

eip·ðx−yÞhPLðtsrc; xÞPLðtþ tsrc; yÞi; ð4:3Þ

CS
H→Lðt; T; pÞ ¼

X
x;y;z

eip·ðx−yÞhPLðtsrc; xÞSðtþ tsrc; yÞ

× PHðT þ tsrc; zÞi; ð4:4Þ

CV
H→Lðt; T; pÞ ¼

X
x;y;z

eip·ðx−yÞhPLðtsrc; xÞVðtþ tsrc; yÞ

× PHðT þ tsrc; zÞi; ð4:5Þ

CV0

H→Lðt; T; pÞ ¼
X
x;y;z

eip·ðx−yÞhPLðtsrc; xÞV0ðtþ tsrc; yÞ

× A0
HðT þ tsrc; zÞi; ð4:6Þ

where the labels denote the initial heavy hadron H ∈
fD;Dsg and the final light hadron L ∈ fπ; Kg. The
schematic structure of the three-point correlators in
Eqs. (4.4)–(4.6) is depicted in Fig. 2 and the spin-taste
structure of the operators in our simulations specified in
Table III. The operators used for the scalar current S and
temporal vector current V0 are local, but the spatial vector
current V is the taste-singlet one-link operator. The tastes of
the meson creation and annihilation operators are chosen so
that the correlation functions are overall taste singlets. For
three-point functions involving S and V, Eqs. (4.4) and
(4.5), it therefore suffices to use local pseudoscalar oper-
ators P, corresponding to Goldstone pseudoscalar mesons,
at the source and sink. For three-point functions involving
V0, Eq. (4.6), we use the local axial vector operator A0,
corresponding to a non-Goldstone pseudoscalar meson, at
either the source or the sink. Our choice in Eq. (4.6) is to
use A0 for the initial-state hadrons (D andDs) and P for the
final-state hadrons (π and K). To reduce statistical noise,

TABLE I. A summary of the lattice spacings, lattice spatial (Ns) and temporal (Nt) sizes, valence quark masses,
intermediate scale-setting parameters, number of source times and configurations Nsrc × Nconfigs, source-sink
separations T=a, and approximate Goldstone (pseudoscalar taste) pion masses used in our calculation. The text
describes the ensembles’ sea and valence masses in more detail. The gauge ensembles were generated by the MILC
Collaboration [32,68,69]. The values for the gradient-flow scale w0=a have been calculated previously [70,71]. The
simulation program is described in detail in Ref. [69] and was later extended to smaller lattice spacings
(a ≈ 0.042 fm), as described in Ref. [32]. The number of source times Nsrc refers to the number of loose-solve
source times employed in the truncated solver method; on each configuration one corresponding fine solve is used.
Values for the sea- and valence-quark masses are given in Table II.

≈a [fm] N3
s × Nt ml mh=mc w0=a Nsrc × Nconfigs T=a ≈Mπ;P [MeV]

0.12 483 × 64 Physical 0.9,1.0,1.4 1.4168(10) 32 × 1352 f12; 13; 14; 16; 17g 135
0.088 643 × 96 Physical 0.9,1.0,1.5,2.0 1.9470(13) 24 × 980 f16; 17; 19; 22; 25g 130
0.088 483 × 96 ms=10 0.9,1.0,1.5,2.0 1.9299(12) 24 × 697 f16; 19; 22; 25g 224
0.057 963 × 192 Physical 0.9,1.0,1.1,2.2 3.0119(19) 32 × 877 f25; 28; 30; 34; 37g 134
0.057 643 × 144 ms=10 0.9,1.0,2.0 2.9478(31) 36 × 916 f23; 30; 34; 37g 231
0.057 483 × 144 ms=5 0.9,1.0,2.0 2.8956(33) 36 × 823 f23; 30; 34; 37g 325
0.042 643 × 192 ms=5 0.9,1.0,2.0 3.9222(29) 24 × 1008 f34; 39; 45; 52g 308

FIG. 1. Summary of the lattice spacings and light-quark valence
masses used in the present calculation. The sizes of the colored
circles are proportional to the number of configurations in each
ensemble. Quantitative details are given in Table I.
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APE smearing [72] is applied to the gauge field appearing
in the one-link vector current, with 20 iterations and staple
weight 0.05.
In Eqs. (4.1)–(4.6), we work in the rest frame of

the heavy initial hadron H and compute the recoiling
light hadron L with eight different lattice momenta
p ¼ 2πn=Nsa, where Ns is the spatial extent of the lattice,
and n is (0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 0, 0), (2, 1, 0), (3, 0,
0), (2, 2, 2), or (4, 0, 0). For each choice of heavy-quark
mass in Table I and momentum above, we compute
the three-point function for several different source-sink
separations T, given in Table I. The final-state light-quark
and spectator-quark propagators are computed using
random corner-wall sources [73]. The heavy-quark propa-
gators are computed sequentially from the end of the
spectator-quark propagator at time T þ tsrc as shown in
Fig. 2. For the light- and strange-quark propagators, we
employ the truncated solver method [74,75], using a single
fine solve together with 24 to 36 loose solves on each
configuration (see Table I for details). To reduce autocor-
relation in Monte Carlo time, the source locations for the
fine and loose solves are precessed in Euclidean time from
one configuration to the next.
As usual, states with both positive and negative parities

contribute to the staggered correlation functions. For the
operators considered here, the negative-parity states decay
smoothly with Euclidean time, while the positive-parity
states oscillate while decaying in Euclidean time. The

spectral decompositions of Eqs. (4.1)–(4.6) take the
following forms:

CO
L ðt; pÞ ¼

X
n¼0

ð−1Þnðtþ1Þ jh∅jOLjnij2
2EðnÞ

L ðpÞ
× ðe−EðnÞ

L ðpÞt þ e−E
ðnÞ
L ðpÞðNt−tÞÞ; ð4:7Þ

CO
HðtÞ ¼

X
m¼0

ð−1Þmðtþ1Þ jh∅jOHjmij2
2MðmÞ

H

× ðe−MðmÞ
H t þ e−M

ðmÞ
H ðNt−tÞÞ; ð4:8Þ

CJ
H→Lðt; T; pÞ ¼

X
m;n

ð−1Þnðtþ1Þð−1ÞmðT−t−1Þ

×
h∅jOLjnihnjJjmihmjOHj∅i

4EðnÞ
L ðpÞMðmÞ

H

× ðe−EðnÞ
L ðpÞt þ e−E

ðnÞ
L ðpÞðNt−tÞÞ

× ðe−MðmÞ
H ðT−tÞ þ e−M

ðmÞ
H ðNt−TþtÞÞ; ð4:9Þ

where O ∈ fP;A0g is the appropriate interpolating oper-
ator and j∅i denotes the QCD vacuum state. In the final
line, the ground-state term contains the transition matrix
elements, hnjJjmijn¼m¼0 ≡ hLjJjHi, from which one can
extract the desired form factors via Eqs. (2.5)–(2.7).

TABLE II. Sea- and valence-quark masses in lattice units for the ensembles used in this calculation. The first two
columns specify the ensemble by the approximate lattice spacing and the ratio of light- and strange-quark masses.
The next three columns give the sea-quark masses. The final three columns contain the valence-quark masses.

≈a ml=ms ðamlÞsea ðamsÞsea ðamcÞsea ðamlÞvalence ðamsÞvalence ðamhÞvalence
0.12 1=27 0.001907 0.05252 0.6382 ðamlÞsea ðamsÞsea f0.5744; 0.6382; 0.8935g
0.088 1=27 0.0012 0.0363 0.432 ðamlÞsea ðamsÞsea f0.389; 0.432; 0.648; 0.864g
0.088 1=10 0.00363 0.0363 0.43 ðamlÞsea ðamsÞsea f0.389; 0.432; 0.648; 0.864g
0.057 1=27 0.0008 0.022 0.26 ðamlÞsea ðamsÞsea f0.257; 0.286; 0.572g
0.057 1=10 0.0024 0.024 0.286 ðamlÞsea ðamsÞsea f0.257; 0.286; 0.572g
0.057 1=5 0.0048 0.024 0.286 ðamlÞsea ðamsÞsea f0.257; 0.286; 0.572g
0.042 1=5 0.00316 0.0158 0.188 0.00311 0.01555 f0.164; 0.1827; 0.365g

FIG. 2. Schematic picture of the three-point functions defined
in Eqs. (4.4)–(4.6). The final-state hadron L ∈ fπ; Kg is created
with momentum p at the time tsrc. An external current J is inserted
at time tþ tsrc. The initial-state hadronH ∈ fD;Dsg is destroyed
at rest at time T þ tsrc.

TABLE III. The spin-taste structure of the staggered operators
used in this work. Pseudoscalar mesons are created and annihi-
lated using P (π, K, D, and Ds) and A0 (D and Ds). Transitions
between these states are induced by the currents S, V0, and Vi.
The operator A0 is necessary to conserve taste in Eq. (4.6).

Operator Spin ⊗ Taste Locality

P γ5 ⊗ ξ5 Local
A0 γ0γ5 ⊗ ξ0ξ5 Local
S 1 ⊗ 1 Local
V0 γ0 ⊗ ξ0 Local
Vi γi ⊗ 1 One-link
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For the sake of visualization, certain ratios of correlation
functions prove useful:

Rkðt;T;pÞ ¼
C̄V0

H→Lðt;T;pÞ
ffiffiffiffiffiffiffiffi
2EL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄A0

L ðt;pÞC̄P
HðT − tÞe−ELte−MHðT−tÞ

q ; ð4:10Þ

R⊥ðt; T; pÞ ¼
ffiffiffiffiffiffiffiffi
2EL

p
pi

C̄Vi

H→Lðt; T; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄P
Lðt; pÞC̄P

HðT − tÞe−ELte−MHðT−tÞ
q ;

ð4:11Þ

R0ðt; T; pÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MHEL

p �
mh −ml

M2
H −M2

L

�

×
C̄S
H→Lðt; T; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̄P
Lðt; pÞC̄P

HðT − tÞe−ELte−MHðT−tÞ
q ;

ð4:12Þ
where the bars (e.g., C̄P

L) denote the time-slice-averaged
correlators defined in Eqs. (A1) and (A3). Up to discre-
tization effects (and renormalization), these ratios asymp-
totically approach the form factors at large Euclidean times:

Rkðt; T; pÞ ⟶
0≪t≪T

Z−1
V0fkðpÞ; ð4:13Þ

R⊥ðt; T; pÞ ⟶
0≪t≪T

Z−1
Vi f⊥ðpÞ; ð4:14Þ

R0ðt; T; pÞ ⟶
0≪t≪T

f0ðpÞ: ð4:15Þ

The subsequent analysis of statistical and systematic
uncertainties was conducted in a blinded fashion. More
precisely, all of our three-point correlation functions were
multiplied by a blinding factor X ∈ ð0.95; 1.05Þ, which was
chosen randomly and held fixed across all ensembles,
momenta, currents, and heavy-quark masses in the three-
point functions. The blinded results were carried all the way
through the phenomenological applications described in
Sec. VII. The blinding factor was removed only after the
estimate of systematic errors was complete and the analysis
was frozen.

B. Statistical analysis

The statistical analysis consists of two stages. First, two-
point functions are analyzed in isolation. Second, the two-
and three-point functions are analyzed together to extract
the form factors. Several features are common to the fits in
both stages. To avoid possible contamination from auto-
correlation in Monte Carlo time, the data are binned by 10
configurations prior to fitting. The amount of binning was
chosen by looking for stability and saturation of errors in
the fit results for the masses and form factors.
Our analysis employs standardBayesian fits, which can be

described generally as least-squares regression to a model

function fðaÞ with parameters a for some data set D. The
likelihood function prðDjaÞ ∝ exp ½− 1

2
χ2� iswritten in terms

of the augmented chi-squared function χ2 ¼ χ2data þ χ2prior,
with

χ2data ¼ ðȳ − fðaÞÞTΣ−1ðȳ − fðaÞÞ; ð4:16Þ

χ2prior ¼ ða − ãÞTΣ̃−1ða − ãÞ; ð4:17Þ

where ȳ is a vector with the data means, Σ is the covariance
matrix, ã is a vector with the prior values, and Σ̃ is the prior
covariance matrix. These expressions are standard [76–78].
In the present analysis, ȳ and Σ correspond to the measured
means and covariance matrices of the correlation functions.
The function fðaÞ corresponds to the spectral decomposition
of Eqs. (4.7)–(4.9), with the energies and matrix elements
serving as the parameters a. The choices for the priors ã are
discussed below. Instead of using the usual binned-sample
covariance matrix in Eq. (4.16), we used an improved
estimator Ŝn employing nonlinear shrinkage, which corrects
for finite-sample-size effects [79]; for technical details, see
Appendix C.8 The general procedure is as follows. First, we
compute the binned variances σ. Second, we compute the
correlation matrix Cn using the full (unbinned) data. Third,
we compute the shrinkage estimator Ĉn, taking the effective
sample size to be the ratio of the total configurations to thebin
size. Finally, we construct Ŝn ¼ diagðσÞĈndiagðσÞ. Apart
from the usage of shrinkage, a similar procedure has been
employed in the past, e.g., in Ref. [32]. In all cases, statistical
uncertainties in the fit parameters are determined via boot-
strap resampling with 500 draws. For fits on bootstrap-
resampled pseudoensembles, the covariance matrix is held
fixed to the binned-sample covariancematrix with shrinkage
(Ŝn) for the full ensemble [80].
As mentioned above, the statistical analysis begins with

two-point functions. Figures 3–5 display representative
two-point functions and effective masses for the pion,
the kaon and the D meson, respectively, on the physical-
mass a ≈ 0.12 fm ensemble with a heavy-quark mass near
its physical value for the D meson. For the correlation
functions themselves, dramatic oscillations from opposite-
parity states are present only for the heavy mesons (see
Fig. 5). When plotted in the usual way, oscillations are
visible in all the effective masses aside from the zero-
momentum pion. To reduce the distraction of opposite-
parity states and bring out the approach to the ground state,
the effective mass is constructed separately on even and odd
time slices using

8To avoid possible confusion, we emphasize our correlator fits
use nonlinear shrinkage. The chiral-continuum fits described
below use linear shrinkage, since it combines data from different
ensembles, each with a different statistical size; see the discussion
in Sec. V B.
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ameffðtÞ≡ 1

2
arcCosh½ðCðtþ 2Þ þ Cðt − 2ÞÞ=2CðtÞ�:

ð4:18Þ
In the effective mass plots, the triangle and circle markers
correspond to the even and odd time slices, respectively.

As expected, the statistical noise grows exponentially for
correlators with nonzero momentum. High-momentum
correlators therefore become noisy at large times, espe-
cially those considered here with n ¼ ð2; 2; 2Þ or (4, 0, 0).
Even so, clear plateaus spanning several time slices are
typically present in the effective mass at each momentum.

FIG. 3. Pion two-point correlation functions CP
π ðt; p ¼ 2πn=NsaÞ and effective masses on the physical-mass a ≈ 0.088 fm

ensemble. To reduce the visual impact of opposite parity states, the effective mass is computed separately for even and odd times
using Eq. (4.18) and plotted using circles and triangles, respectively. After folding the data around the midpoint of the lattice, the
correlator is defined for t=a ∈ ½0; Nt=2� ¼ ½0; 48�. Because of the form of Eq. (4.18) involves offsets by 2, the effective mass is defined
on times t=a ∈ ½2; Nt=2 − 2� ¼ ½2; 46�.

FIG. 4. Kaon two-point correlation functions CP
Kðt; p ¼ 2πn=NsaÞ and effective masses on the physical-mass a ≈ 0.088 fm ensemble.

To reduce the visual impact of opposite parity states, the effective mass is computed separately for even and odd times using Eq. (4.18)
and plotted using circles and triangles, respectively. After the data is folded around the midpoint of the lattice, the correlator is
defined for t=a ∈ ½0; Nt=2� ¼ ½0; 48�. Because of the form of Eq. (4.18) involves offsets by 2, the effective mass is defined on
times t=a ∈ ½2; Nt=2 − 2� ¼ ½2; 46�.
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For D mesons, contributions from excited states are
visibly larger when the interpolating operator A0 is
used. This observation informs certain analysis choices
below. The behavior of two-point functions is similar to the
ones shown in Figs. 3–5 for other masses and lattice
spacings.
Each two-point correlator is fit to the corresponding

spectral decomposition, Eq. (4.7) or Eq. (4.8), using the
choices in Table IV. We have verified that our results are
stable under reasonable variations of these choices, such as
including more states or changing the value of tmin. The
preferred number of states is roughly the minimal number
required to achieve statistically significant fits (with, say,

FIG. 5. D-meson two-point correlation functions CP=A0

D ðt; pÞ at p ¼ 0 and effective masses with the heavy-quark mass near its
physical value on the physical-mass a ≈ 0.088 fm ensemble. The corresponding results for the Ds meson are very similar. To reduce
the visual impact of opposite parity states, the effective mass is computed separately for even and odd times using Eq. (4.18)
and plotted using circles and triangles, respectively. Open symbols indicate values of the correlation function that are negative
and, for ease of visualization, have been multiplied by −1. These negative points are responsible for the behavior of the odd-site
effective mass for CA0

D at early times. After folding the data around the midpoint of the lattice, the correlator is defined for
t=a ∈ ½0; Nt=2� ¼ ½0; 48�. Because the form of Eq. (4.18) involves offsets by 2, the effective mass is defined on times
t=a ∈ ½2; Nt=2 − 2� ¼ ½2; 46�.

TABLE IV. Preferred analysis settings for fits of two-point
functions to Eqs. (4.7) and (4.8). The same settings are applied
uniformly across all ensembles. The larger tmin cut for CA0

H ðtÞ is
taken to avoid the excited-state contributions visible in Fig. 5.

Correlator Ndecay þ Nosc tmin [fm] tmax cut

CP
π ðt; p ¼ 0Þ 3þ 0 ≈0.5 Noise ≤ 30%

CP
Kðt; p ¼ 0Þ 3þ 1 ≈0.5 Noise ≤ 30%

CP
Lðt; p ≠ 0Þ 3þ 1 ≈0.5 Noise ≤ 30%

CP
HðtÞ 3þ 2 ≈0.5 Noise ≤ 30%

CA0

H ðtÞ 3þ 2 ≈0.75–0.85 Noise ≤ 30%

TABLE V. Priors used for the energies in fitting two-point functions to the spectral decomposition. All energy
values are in MeV. At each lattice spacing, the values are converted to lattice units. Internally, the actual fit
parameters are (the logarithm of) energy differences [76]. For instance, the splitting between the first and second
excited states for the pion is 1700ð400Þ − 1300ð400Þ ¼ 400ð566Þ MeV. Priors for the amplitudes are discussed in
the main text. For ensembles with heavier-than-physical pions, the central values for the priors for Eπ and EK are
increased using the tree-level expectation from chiral perturbation theory for the quark-mass dependence of the
hadron mass (see Sec. VA below).

n Eπ Eosc
π EK Eosc

K ED Eosc
D EDs

Eosc
Ds

0 135(50) 500(300) 498(100) 800(300) 1865(200) 2300(700) 1968(200) 2317(200)
1 1300(400) � � � 1460(400) � � � 2565(700) 3000(700) 2300(400) 2713(400)
2 1700(400) � � � 1860(400) � � � 3200(700) � � � 2700(400) � � �
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χ2=DOF≲ 1 or p≳ 0.1 for goodness of fit),9 while the cuts
on tmin and tmax are designed to retain as much of the data as
possible without undue contamination from excited states
at early times or statistical noise at late times. The choices
for the number of states and tmin are broadly similar to
Fermilab-MILC work on decay constants [32]. The main
difference from Ref. [32] is that the present analysis
includes more states for the pion and kaon, e.g., 3þ 1
versus 1þ 1, in order to include data from shorter
Euclidean times, which is advantageous for the subsequent
analysis with three-point functions. Table V summarizes
the priors used for the energies in fitting the two-point
functions. For the amplitudes, we choose broad priors in
lattice units; 0.50(20) for decaying states and 0.1(1.0) for
the oscillating states.
As an example, Fig. 6 shows the stability of the ground-

state mass extracted from CP
π ðt; p ¼ 0Þ on the physical-

mass a ≈ 0.12 fm ensemble using fits with different
choices for the number of states and tmin=a. Consistency
with expectations from the effective mass is demonstrated
in Fig. 7. Similar studies inform the other choices in
Table IV.
The second stage of the analysis combines data

from two-point and three-point functions to extract

f0, fk, and f⊥. The basic procedure consists of simulta-
neous correlated fits to the spectral decompositions,
Eqs. (4.7)–(4.9), for a particular value of the heavy-quark
mass and the current J using the choices for the numbers
of states and the fit ranges in Table IV. For instance,
a simultaneous correlated fit to CP

DðtÞ, CP
π ðt; pÞ, and

CS
D→πðt; T; pÞ furnishes hπjSjDi. For consistency between

the two-point and three-point functions, the fit window for
the three-point functions is taken to be t ∈ ½tsrcmin; T − tsnkmin�,
where tsrcmin and t

snk
min are the values of tmin associated with the

source and sink operators, which in general differ. For
example, when the A0 sink operator is used tsrcmin < tsnkmin; see
Table IV. The Bayesian priors used in these fits incorporate
knowledge about the ground-state energies and overlap
factors coming from the two-point fits. Let M2pt � δM2pt

denote the posterior value of the ground-state energy
emerging from a fit to Eq. (4.7) or Eq. (4.8), and let

E2ptðp2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

2pt þ p2
q

denote the value of the energy

obtained by boosting the central value. Similarly, let
A2pt � δA2pt denote the posterior value of the ground-state
amplitude from the same fit.10 For the joint fits to the
two- and three-point functions at zero momentum, the
central values for the amplitude and energy priors are
taken to match the two-point posterior central values
(M2pt and A2pt), while the prior widths are taken to be

FIG. 6. Stability of the ground-state mass in multiexponential fits to CP
π ðt; p ¼ 0Þ on the physical-mass a ≈ 0.12 fm ensemble. The

different colors show the posterior values for the ground-state mass using different numbers of states. The blue points indicating 1-state
fits are aligned with the value of tmin=a on the horizontal axis. The corresponding results for 2- and 3-state fits at the same tmin=a are
offset slightly to the right. The size of the markers is proportional to the p-value of the fit. As described in Table IV, the preferred fit uses
3 states and tmin=a ¼ 4 and is indicated by the green star.

9In this work, we use the augmented χ2 when quoting reduced
χ2=DOF. Throughout the analysis, judgements about fit quality
are insensitive to the precise definition used, and indistinguish-
able results are obtained for other reasonable definitions, e.g., the
alternative quality-of-fit metrics defined in Appendix B of
Ref. [81].

10At large times, a generic two-point function is CðtÞ ¼
A2
2ptðeM2ptt þ eM2ptðT−tÞÞ þ � � �, so the amplitude A2pt contains

the momentum-dependent relativistic normalization of states in
the denominator.
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ten times the posterior widths (10 × δM2pt and 10 × δA2pt).
For nonzero momentum, the prior central values are
obtained by boosting the corresponding ground-state
results assuming the continuum relativistic dispersion
relation; the fractional prior widths are taken to match the
expected size of discretization effects, e.g., δE2pt=E2pt ¼
Oðαsa2p2Þ. Table VI summarizes the choices of these priors.
For the excited states, the priors for the energy differences are
the same as those in TableV, and the priors for the amplitudes
are as above.

For generic transition matrix elements, a prior of
Vnm ¼ 0.1ð10Þ in lattice units is used, where

Vnm ≡ h∅jOLjnihnjJjmihmjOHj∅i
4EðnÞ

L ðpÞMðmÞ
H

: ð4:19Þ

For the special case of the ground state, the central value of
V00 is estimated from the plateau in ratios following
Eq. (D1) below, and the width is taken to be 50%.
Once statistically acceptable fits (e.g., χ2=d:o:f:≲ 1 or

p≳ 0.1) are obtained, a variety of visualizations give
confidence that the bare form factors have been extracted
reliably. For instance, the fits must reproduce the data
visually with reasonable uncertainties and give results
for the ground-state masses and overlap factors that
agree with the initial analysis of two-point functions in
isolation. As the priors in Table VI suggest, energies are
expected to satisfy the continuum dispersion relation,
E2 ¼ ðM2 þ p2Þð1þOðαsa2p2ÞÞ, and overlap factors are
expected to be constant, since only pointlike interpolators
were used for the source and sink operators. Figures 8 and 9
demonstrate that both conditions are well satisfied. The

FIG. 7. Comparison of the ground-state mass from the preferred
fit and the effective mass for CP

π ðt; p ¼ 0Þ on the physical-mass
a ≈ 0.12 fm ensemble. To reduce the visual impact of opposite
parity states, the effective mass is computed separately for even
and odd times using Eq. (4.18) and plotted using circles and
triangles, respectively.

TABLE VI. Summary of how priors for simultaneous fits to
two- and three-point functions incorporate information from the
two-point fits. Values for αs are given in Table VIII.

Momentum Quantity Prior value

p2 ¼ 0 Energy M2pt � 10 × δM2pt

Amplitude A2pt � 10 × δA2pt

p2 > 0 Energy E2pt × ð1� αsa2p2Þ
Amplitude A2pt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2pt=E2pt

p
× ð1� αsa2p2Þ

FIG. 8. Left: The pion dispersion relation. Within statistical uncertainties, E2 ¼ m2 þ p2. Right: The behavior of the overlap factor
h∅jPðπÞjπi, normalized by the value at zero momentum. Within statistical uncertainties, the overlap factor is constant.
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FIG. 9. Left: The kaon dispersion relation. Within statistical uncertainties, E2 ¼ m2 þ p2. Right: The behavior of the overlap factor
h∅jPðπÞjπi, normalized by the value at zero momentum. Within statistical uncertainties, the overlap factor is constant.

FIG. 10. Visual tests involving the ratio RD→π
0 in Eq. (4.12) to form factors coming from the spectral decomposition. Data and results

are taken from the physical-mass 0.12 fm ensemble with the charm-quark mass near its physical value. (Top) The approach to the
asymptotic plateau region for the ratio RD→π

0 at fixed momentum as a function of the source-sink separation. The right panel shows the
maximum point from each color set of points on the left, maxt RD→π

0 ðt; TÞ. The horizontal black line in the top panels shows the form
factor’s posterior value, taken from the joint fit to the spectral decomposition. (Bottom) The form factor’s momentum dependence. The
left panel shows the ratio RD→π

0 ðt; Tmax; pÞ at fixed source-sink separation, with each color corresponding to a different momentum.
Horizontal lines show the central value for the form factors coming from the fits (including all source-sink separations T). The right
panel shows the smooth momentum dependence of fD→π

0 ðq2Þ.
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blue points correspond to the posterior (“best-fit”) results,
while the dashed lines show the size of the priors for
p2 > 0, as defined in Table VI. As the figure shows, the
posteriors typically are much narrower than the priors. We
have verified that statistically consistent results, with
similar statistical precision, are obtained if the priors are
relaxed by inflating the width by a factor of ten. Figure 10
shows representative results for joint fits for D → π. The
top rows show the approach to the asymptotic (T=a → ∞)
plateau region. In the top left panel, data are plotted at fixed
momentum p ¼ 2πð1; 0; 0Þ=Nsa, with each color corre-
sponding to a different source-sink separation T. The top
right panel shows the approach to the asymptotic plateau

versus T=a, with each point corresponding to the maximum
point in the curves on the top left: maxt RD→π

0 ðt; T; p ¼
2πð1; 0; 0Þ=NsaÞ. The horizontal black line in the top
panels shows the form factor’s posterior value, taken from
the joint fit to the spectral decomposition. The bottom
panels shows the form factor’s momentum dependence.
In the bottom left panel, the data correspond to the ratio
RD→π
0 ðt; Tmax; pÞ, with each color corresponding to a

different momentum. In each case, only the largest
source-sink separation Tmax is displayed. Horizontal lines
denote the posterior central values for the form factors,
coming from fits including all source-sink separations T.
The bottom right panel shows the smooth momentum

FIG. 11. Matrix elements (in arbitrary units) entering the PCVC relation, Eq. (2.9), before and after renormalization for the physical-
mass a ≈ 0.12 fm ensemble with the charm-quark mass near its physical value, for the decays D → π (top left), D → K (top right), and
Ds → K (bottom) The open circles denote bare quantities, while the filled squares are renormalized.
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dependence of fD→π
0 ðq2Þ. Additional details, along with

similar figures for the decays D → K and Ds → K are
given in Appendix D 1.

C. Nonperturbative renormalization

Bare matrix elements are renormalized nonperturbatively
by imposing the PCVC relation, Eq. (2.9). Figure 11 shows
the matrix elements entering this expression, before and

after renormalization, for the physical-mass a ≈ 0.12 fm
ensemble with the charm-quark mass near is physical value.
The black points show the quantity ðmc −mqÞhLjSjHi −
qμhLjVμjHi with L ∈ fπ; Kg, H ∈ fD;Dsg, and mq ∈
fml;msg. The fact that the open black circles differ slightly
from zero gives a visual indication that the renormalization
factors ZV0 and ZVi are necessary to satisfy PCVC. The
closed black squares, statistically consistent with zero,

FIG. 12. Vector-current renormalization factors ZV0 , in all cases with the charm-quark mass near its physical value. (Left) Results for
the quark-level transition c → l appearing in the decays D → π and Ds → K. As discussed in the text, the data are taken from fits to the
Ds → K data. (Right) Results for the quark-level transition c → s appearing in the decay D → K. The light gray points show the
renormalization factors computed by HPQCD on the same ensembles, using the same local V0 current but slightly different valence
masses [62]. The two sets of values agree at 1 − 2σ.

FIG. 13. Vector-current renormalization factors ZVi , in all cases with the charm-quark mass near its physical value. (Left) Results for
the quark-level transition c → l appearing in the decays D → π and Ds → K. As discussed in the text, the data are taken from fits to the
Ds → K data. (Right) Results for the quark-level transition c → s appearing in the decay D → K.
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show the precision with which the PCVC relation is
satisfied after renormalization.
In principle, much freedom exists for extracting the

vector-current renormalization factors. The present analysis
fits the bare matrix elements as a function of momentum to
Eq. (2.9) for each ensemble and choice of mh, treating ZV0

and ZVi as free parameters. Recall ZmZS ¼ 1 for the local
staggered scalar current. When constructing the renormal-
ized matrix elements, correlations between the bare matrix
elements and ZV0 and ZVi are incorporated via the bootstrap
resampling discussed above.
Figures 12 and 13 show the results for renormalization

factors for the temporal and spatial components of the
vector current, respectively, in all cases for the data with the
charm-quark mass near its physical value. The transition
c → l appears in both D → π and Ds → K decays, differ-
ing only by the spectator quark. The data for the latter
decay are statistically more precise, which in turns yields
more precise values for the renormalization factors of the l̄c
currents. We thus use the renormalization factors extracted
from the Ds → K data to renormalize both Ds → K and
D → π matrix elements.
At a given lattice spacing, uncertainties both in the bare

matrix elements (coming from the correlator fits) and in the
renormalization factors contribute to the total error budget
for the form factors. The relative importance of the
renormalization error depends both on the form factor
(fk or f⊥) and the momentum. For instance, for the D → π
decay on the physical-mass a ≈ 0.12 fm ensemble, the
renormalization error in fk from ZV0 is ≲0.1%. For the
same decay and lattice spacing, the renormalization error in
f⊥ from ZVi is around 1%. For comparison, the individual
statistical errors in both fk and f⊥ (neglecting the renorm-
alization error) range from around 1% at low momentum to
around 8% at large momentum. These observations are
consistent with the expectation that renormalization with
PCVC should enable subpercent determinations of form
factors.

V. CHIRAL-CONTINUUM ANALYSIS

This section describes our chiral-continuum analysis,
yielding results for fþðq2Þ and f0ðq2Þ at physical quark
mass and in the continuum limit. Section VA describes the
fit function used in the analysis and its connection to
effective field theory (EFT). Section V B presents the
results of the fits and describes our definition of the
physical point in isospin-symmetric QCD. Section V C
presents a cross check on our results by constructing fþ
and f0 in different ways. Section VD re-expresses our
results in a compact form using the model-independent z
expansion. Section V E considers the spectator dependence
of the form factors by comparing our results forD → π and
Ds → K. Finally, Sec. V F compares our form factors with
published results in the literature.

A. Description of the chiral-continuum fit function

Together, the bare matrix elements and renormalization
factors calculated in Sec. IV furnish the form factors fk, f⊥,
and f0 at four different lattice spacings, three different pion
masses, and several values of the heavy-quark mass. These
results are extrapolated to the continuum limit and inter-
polated to the physical point using guidance from effective
field theory.
We treat the light-quark mass dependence of the form

factors fk and f⊥ with SU(2) heavy-meson rooted stag-
gered chiral-perturbation theory [82,83]. Following earlier
work [84,85], we use the version for a hard final-state
hadron [86–88], hereafter referred to as “hard SU(2) χPT.”
We include the complete set of chiral logarithms and
analytic corrections through next-to-leading order (NLO)
in the chiral expansion. To account for truncation errors, we
also include all analytic terms consistent with the power-
counting scheme of Ref. [82,83] through next-to-next-
leading order (NNLO). These choices amount to consid-
ering the following functional form for P ∈ fk;⊥; 0;þg:

wdP
0 fPðEÞ ¼

c0
w0ðEþ Δxy;PÞ

×
�
1þ δflogs þ clχl þ csχs þ cHχH þ cEχE

þ cl2χ
2
l þ clsχlχs þ cs2χ

2
s þ clHχlχH

þ clEχlχE þ csHχsχH þ csEχsχE þ cH2χ2H

þ cHEχHχE þ cE2χ2E þ δfða
2þh2Þ

artifacts

�
; ð5:1Þ

where the exponent dP ∈ f1=2;−1=2; 0; 0g for P ∈
fk;⊥; 0;þg (respectively) and c0 is a dimensionless
constant. Although, in principle, the function describing
the chiral logarithms, δflogs, depends on the form factor, in
hard SU(2) χPT it is the same for all P ∈ fk;⊥; 0;þg, as
discussed below.
The leading pole factor (in terms of the final-state

hadron’s energy E) arises from the exchange of a virtual
W boson, which couples to an excited mesonD�

x composed
of c and the final-state quark x, contributing a factor
proportional to

1

Eþ Δxy;P
¼ 2MDy

M2
D�

x
− q2

: ð5:2Þ

The intrinsic angular momentum and parity of the D�
x are

those of the virtual W boson, which is JP ¼ 1− for fþ and
JP ¼ 0þ for f0. According to the leading-order expect-
ations of the heavy-quark expansion [89], the same pole
arises pairwise for f⊥ as fþ, and similarly for the pair fk
and f0 (cf. Table VII). Equation (5.2) implies that location
of the pole in the energy can be written as
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Δxy;P ¼
M2

D�
xðJPÞ −M2

Dy
−M2

L

2MDy

; ð5:3Þ

where y is the spectator quark and L ∈ fπ; Kg is the final-
state hadron. Values for the Δxy;P are collected in Table VII
for the decays of interest.
The χn are dimensionless expansion parameters defined

according to

χl ¼
ðMsim

π Þ2
8π2f2π

; ð5:4Þ

χs ¼
ðMsim

K Þ2 − ðMPDG
K Þ2

8π2f2π
; ð5:5Þ

χE ¼
ffiffiffi
2

p
E

4πfπ
; ð5:6Þ

χH ¼ ΛHQET

Msim
HðsÞ

−
ΛHQET

MPDG
DðsÞ

; ð5:7Þ

where fπ is the physical pion decay constant and ΛHQET is
the scale of heavy-quark effective theory. As in Ref. [32],
we take ΛHQET ¼ 800 MeV. The parameters χl and χE
describe the analytic dependence on the light-quark mass
ml (via the leading-order expression M2

π ¼ 2μml) and the
final-state hadron energy E, respectively. Their normaliza-
tion is such that, according to the typical χPT power
counting, the corresponding coefficients in the fit function
cl and cE are expected to be of order 1. The parameter χH
describes the heavy quark mass mistuning through the
difference between the simulated heavy meson mass Msim

HðsÞ
and the physical MD0 or MDs

from Ref. [25]. This term
allows for a simultaneous description of results across
several different heavy quark masses. Finally, χs describes
the strange-quark mass mistuning.11

In hard SU(2) χPT, the chiral logarithms for fk and f⊥ in
Eq. (5.1) have the common form [84,85],

δfSUð2Þlogs ¼ 1

ð4πfπÞ2
�
−

1

16

X
ξ

I1ðMπ;ξÞ þ
1

4
I1ðMπ;IÞ

þ I1ðMπ;VÞ − I1ðMη;VÞ þ ½V → A�
�

×

8>><
>>:

ð1þ 3g2Þ; D → π

3g2; D → K

1; Ds → K

; ð5:8Þ

where I1ðMÞ≡M2 lnðM2=Λ2Þ þ 4IFV1 ðM;MLÞ, with
IFV1 ðM;MLÞ being a calculable finite-volume correction
to the chiral logarithm which vanishes exponentially for
large volumes; see Sec. VI C below. Hard SU(2) χPT
enjoys the further simplification that nonanalytic self-
energy corrections vanish for all three decays considered
here. These expressions [Eq. (5.8) and the self energies]
were originally derived for a nonstaggered heavy quark, but
because the heavy-quark taste is conserved in all-staggered
χPT, they hold in the present case too [90]. In heavy-meson
χPT, compact expressions are available for f⊥ and fk
[91,92], while the corresponding results for fþ and f0
follow as linear combinations. Because of their simple
connection to heavy-meson χPT, previous lattice calcula-
tions have historically worked primarily in terms of fk and
f⊥. However, since the chiral logarithms have the same
functional form for fk and f⊥ in hard SU(2) χPT [see
Eq. (5.8)], the same functional form also describes the
chiral logarithms for f0 and fþ. In other words, Eq. (5.1)
may be used directly for all four form factors, with a 1−

pole for fþ;⊥ or a 0þ pole for f0;k.
Following Ref. [83], the arguments of the chiral loga-

rithms involve the masses of mesons with different tastes
ξ ∈ fI; P; V; A; Tg, that can be expressed as

M2
π;ξ ¼ M2

uu;ξ ¼ M2
dd;ξ; ð5:9Þ

M2
ij;ξ ¼ μðmi þmjÞ þ Δξ; ð5:10Þ

M2
η;VðAÞ ¼ M2

uu;VðAÞ þ
1

2
δ0VðAÞ; ð5:11Þ

Δ̄ ¼ 1

16

X
ξ

Δξ: ð5:12Þ

The low-energy constant μ and the taste splittings Δξ have
been tabulated for these ensembles in Ref. [27]. At NLO
in the chiral expansion, the taste splittings Δξ and the
hairpin parameters δ0V;A both scale like α2sa2, so their ratio
remains approximately constant as the lattice spacing

TABLE VII. Approximate pole locations Δxy;P appearing in the
decays D → π, Ds → K, and D → K.

Decay c → x JP D�
xðJPÞ Dy L Δxy;P ðΔxy;PÞPDG

D → π c → l 1− D� D π Δll;þ=⊥ 140 MeV
0þ D�

0ð2300Þ D π Δll;0=k 480 MeV

Ds → K c → l 1− D� Ds π Δls;þ=⊥ −25 MeV
0þ D�

0ð2300Þ Ds π Δls;0=k 300 MeV

D → K c → s 1− D�
s D K Δsl;þ=⊥ 200 MeV

0þ D�
s0ð2317Þ D K Δsl;0=k 440 MeV

11Since the expansion parameters χl and χs are written in terms
of the simulated hadron masses, they implicitly accommodate
mistuning between the masses of the sea and valence quarks. As
shown in Table II, this feature is only relevant for the finest
ensemble, where values for ml and ms differ by a small amount
(≈1%) between the sea and valence quarks.
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changes. We follow Ref. [32] and take δ0A=Δ̄ ¼ −0.88ð09Þ
and δ0V=Δ̄ ¼ þ0.46ð23Þ.
Chiral logs described above include the dominant dis-

cretization effects coming from the taste-symmetry break-
ing of staggered fermions at NLO in the chiral expansion.
We also remove the leading-order (tree-level) heavy-quark
discretization effects in the form factors prior to fitting
by applying a multiplicative normalization factor ZHQET;LO

hx ,
described in Appendix B. Because of the tree-level
improvement of the HISQ action, the remaining discreti-
zation effects are expected to arise at order αsðaΛÞ2 or
αsðamhÞ2, where Λ is the scale of generic discretization
effects. They are thus expected to be well-described by an
expansion in terms of the parameters xa2 and xh:

xa2 ¼
a2Δ̄

8π2w2
0f

2
π
; ð5:13Þ

xh ¼
2

π
amh: ð5:14Þ

The quantity xa2 gives a dimensionless measure of order
αsðaΛÞ2 discretization corrections, while xh is the natural
expansion parameter for heavy-quark discretization effects.
The HISQ action was designed specifically to control
lattice artifacts for charm physics, and the leading
heavy-quark corrections are suppressed both by αs and
the velocity v ≈

ffiffiffiffiffiffiffiffiffiffi
1=10

p
of the charm quark within the

heavy hadron. Our preferred model thus takes the following
simple ansatz for the discretization effects

δfða
2þh2Þ

artifacts ¼ ca2xa2 þ αsvch2x
2
h: ð5:15Þ

Values for αs are given in Table VIII.
To check for truncation effects with high-order discre-

tization effects, we also consider variations:

δfða
2þh2þa4Þ

artifacts ¼ ca2xa2 þ αsvch2x
2
h þ ca4x

2
a2 ; ð5:16Þ

δfða
2þh2þh4Þ

artifacts ¼ ca2xa2 þ αsvch2x
2
h þ vch4x

4
h: ð5:17Þ

With the HISQ action, discretization effects of order x4h
are suppressed by v (at the tree level) or by αs. These
suppression factors are numerically similar enough that the
last term in Eq. (5.17) tests both.

B. Chiral-continuum fits

We perform correlated fits, using the methodology
described around Eqs. (4.16) and (4.17), to Eq. (5.1) with

δfða
2þh2Þ

artifacts in Eq. (5.15) for each of the above form factors for
D → π, D → K, and Ds → K including all of the ensem-
bles and heavy-quark masses described in Table I.
In our preferred fits, the input data for the form

factors f⊥=k=0 are defined using a single matrix element
each via Eqs. (2.5)–(2.7). The chiral-continuum fit
results using the alternative constructions faltP of
Eqs. (2.10) and (2.11) are considered below in the
analysis of systematic effects.
The free parameters varied in the fits are the coefficients

cn, the coupling g, and the mass splittings Δxy;P. The
Bayesian priors for these parameters are given in Table IX.
The leading coefficient c0 is well determined by the data, so
the preferred analysis uses a broad prior (the results are
insensitive to the central value, and any reasonable varia-
tion gives indistinguishable results). The chiral-continuum
fit function is based on power-counting arguments from
effective field theory, according to which the coefficients cn
are expected to be of order unity. The preferred analysis
therefore uses priors of 0� 1 for the parameters cn. The
dimensionless (reduced) “DD�π” coupling appearing as a
coefficient of the chiral logarithms is expected to be
g ≈ 0.5, both from experimental measurement [95–97]
and previous lattice-QCD calculations [98–104]. For com-
patibility with these results, our fits take a prior of
0.5� 0.2. Because a broad width is used for Δ�

xy;P, and
since the fits are insensitive to the precise value, the priors
do not distinguish between the JP ¼ 0þ and 1− states. The
other inputs to the fits are the measured initial- and final-
state hadron masses on each ensemble, the staggered
parameters described in the previous section, and the pion
decay constant (which is held fixed to its physical value
in Table X).
A few words are in order regarding our choice of

intermediate scale setting using w0=a and its role in

TABLE IX. Summary of the priors used in the chiral-con-
tinuum fits to Eq. (5.1). Values for ðΔxy;PÞPDG in the different
decays are given in Table VII.

Parameter Value

c0 1� 10
cn 0� 1
g 0.5� 0.2
Δxy;P ðΔxy;PÞPDG � 200 MeV

TABLE VIII. Values for the strong coupling constant, which
are based on the continuum value of αsð5 GeV; Nf ¼ 4Þ from
Ref. [93]. Continuum perturbation theory is used to convert to the
αV scheme and to run to the scale 2=a [94].

≈a [fm] αsð2=aÞ
0.15 0.3509
0.12 0.3091
0.088 0.2646
0.06 0.2236
0.042 0.2036
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the chiral-continuum fit function. The dimensionless
expansion parameters χl and χE contain factors of the pion
decay constant in the denominator. Using the continuum
values for fπ and w0 in Table X, we express the denom-
inator as a dimensionless number. For the numerator, we
use the measured values of aMπ and w0=a to construct the
dimensionless product. In other words, on each ensemble χl
is constructed as

χl →

�ðw0=aÞsim
w0

�
2 ðaMsim

π Þ2
8π2ðfPDGπ Þ2 ; ð5:18Þ

and similarly for χE and χH. In the continuum limit and at
the physical point, the w0 dependence cancels in all the
analytic terms. Since fþ and f0 are dimensionless, the only
residual scale-setting dependence enters through the pole
term, where the energy E (in physical units) must be
converted to w0 units.
On each ensemble, the input data for the form factors and

meson masses and energies are correlated using the results
of the bootstrap fits from Sec. IV. The resulting correlation
matrices tend to be near-singular, with small, poorly
determined eigenvalues posing a difficult challenge for
the fits. For a given form factor, the dominant source of
these eigenvalues is highly correlated data at nearby heavy
valence masses (e.g., 0.9mc, 1.0mc, and 1.5mc). A common
solution to this problem is singular value decomposition
(SVD) cuts, which have recently been used in another
lattice-QCD analysis of D → K form factors [62] and
which are summarized lucidly in Ref. [106]. Another
solution is shrinkage of the eigenvalue spectrum, as
described in Appendix C.
In the analysis of correlation functions in Sec. IV, we

could use nonlinear shrinkage, which has the desirable
feature of not involving any tunable parameters. As
described in Appendix C, however, the amount of shrink-
age applied to the eigenvalue spectrum is controlled by
the concentration ratio (the ratio of the number of
random variables to the number of independent statistical
samples). Since the chiral-continuum extrapolation com-
bines data from different ensembles, there is no clear-cut

concentration ratio. For the chiral-continuum fits, we
therefore employ linear shrinkage, which entails a param-
eter λ. We find that λ ¼ 0.1 is large enough to regulate the
small eigenvalues (thus giving good fits) without discarding
correlations unnecessarily. As with SVD cuts [106], linear
shrinkage improves the quality of fits and tends to increase
the uncertainty in the posterior values. The quantitative
effect of linear shrinkage is discussed alongside other
systematic effects in Sec. VI A. A qualitative comparison
of nonlinear shrinkage, linear shrinkage, and SVD cuts is
given in Appendix C.
These fits deliver the form factors in the continuum limit

and at the physical point. The continuum limit of Eq. (5.1)

is defined by setting δfða
2þh2Þ

artifacts equal to zero and setting the
taste splittings to zero in δfP;logs. The physical point is
defined by setting the input meson masses equal to their
physical values, given in Table X. By construction, all
quantities involving χH also vanish identically at the
physical mass of the decaying heavy meson. Our simu-
lations and chiral analysis are both done in the isospin
limit (i.e., with a pair of degenerate quarks with mass
ml ¼ ðmu þmdÞ=2), so the final results for the form factors
correspond to QCD in the isospin limit. The physical
meson masses in Table X are chosen accordingly, following
the prescription in Ref. [36]. The systematic uncertainty
with the isospin-symmetric approximation is discussed
below in Sec. VII B.
The results for the D → π form factors are shown in

Fig. 14. To avoid plotting many overlapping data and
curves, the figures restrict to the three ensembles with
physical-mass pions and heavy valence masses with
mh=mc ∈ f0.9; 1.0; 1.1g. In all cases, the nearly coincident
data around the physical charm mass (mh ≈mc) suggest a
mild dependence on the lattice spacing. The black band
denotes the result in the continuum limit and at the physical
point. The results for D → K and Ds → K are quite similar
and given in Appendix D 2. Table XI summarizes the fit
quality for the preferred fits.

C. Alternative constructions of f + and f 0
Our default construction for f0 is given by Eq. (2.7)

and obtained in the preceding section. In an analogous
way we construct fþ from the continuum-limit results for
f0 and f⊥ in the preceding section following Eq. (2.8).
As discussed in Sec. II, the PCVC relation in Eq. (2.9)
provides the alternative constructions given in Eqs. (2.10)
and (2.11). Additional freedom exists in whether the
linear combinations in Eqs. (2.8), (2.10) and (2.11) are
taken before or after the chiral-continuum limit. A
comparison of the different constructions is given in
Fig. 15 for D → π and Ds → K (D → K is similar),
where excellent stability is observed throughout the
kinematic range. In the legend, the notation CL specifies
whether the continuum limit is taken before or after

TABLE X. External inputs used to define the physical point in
isospin-symmetric QCD using Eq. (5.1). As described in the text,
the experimentally measured values of the heavy mesons are also
used implicitly as inputs in Eq. (5.1).

Quantity Value Reference

fπ 130.2(8) MeV Ref. [36]
Mπ0 134.9768(5) MeV Ref. [105]
MK0 497.611(13) MeV Ref. [105]
w0 0.17177(67) fm Ref. [36]

MD0 1864.83(05) MeV Ref. [105]
MDs

1968.34(07) MeV Ref. [105]
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computing the linear combination [CLðf⊥Þ þ CLðf0Þ
versus CLðf⊥ þ f0Þ, respectively]. In all cases, fk and
f⊥ are directly related to vector matrix elements via
Eqs. (2.5) and (2.6). Because the results are statisti-
cally consistent, our preferred analysis takes the results
with the best statistical precision (our default analysis).
We take f0 from Eq. (2.7). We construct fþ via
Eq. (2.8), using results for f⊥ and f0 given by
Eqs. (2.6) and (2.7), each separately extrapolated to
the continuum limit.

FIG. 14. The result of the chiral-continuum fit for the D → π form factors constructed using Eqs. (2.5)–(2.7) in units of
the gradient-flow scale w0. For visual clarity, only the physical-mass ensembles with heavy valence masses mh=mc ∈ f0.9; 1.0; 1.1g
are shown, although all ensembles and heavy valence masses in Table I are included in the fit. Different colors label diffe-
rent lattice spacings and different shapes correspond to the different values of the heavy-quark mass. Points with mh=mc ≈ 1.1
were only simulated on the a ≈ 0.06 fm ensemble. Similar figures for the decays D → Klν and Ds → Klν are given in Figs. 45
and 46.

TABLE XI. Summary of the reduced χ2 values and associated
degrees of freedom (in brackets) for the preferred fits to Eq. (5.1)
for all decays and form factors.

D → π D → K Ds → K

f0 0.91 [126] 0.48 [128] 1.31 [134]
fk 0.59 [112] 0.41 [123] 0.88 [128]
f⊥ 0.64 [110] 0.32 [111] 0.66 [113]
fþ 0.59 [106] 0.29 [109] 0.60 [111]
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D. Model-independent z expansion

The previous section gave results for fþðq2Þ and f0ðq2Þ
in the continuum limit and at the physical point. To
facilitate comparison with experimental measurements
and other theoretical calculations, it is convenient to re-
express our results using the z expansion. To start, consider
the decays D → π and D → K. The z expansion leverages
the known analytic structure of the form factors in the
complex q2-plane to write the form factors as a rapidly
convergent expansion in the variable zðq2; t0Þ,

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð5:19Þ

where tþ ¼ ðMD þMLÞ2 denotes the start of the multi-
particle cut, L ∈ fπ; Kg, and t0 ∈ ½0; tþ� can be chosen for
convenience. This map sends the branch cut onto the unit
circle, jzðq2; t0Þj ¼ 1, and the rest of the first Riemann
sheet onto the open unit disk, jzðq2; t0Þj < 1. Note that

zðtþ; t0Þ ¼ −1; ð5:20Þ

zðt0; t0Þ ¼ 0; ð5:21Þ

zð−∞; t0Þ ¼ þ1: ð5:22Þ

Further, Eq. (5.19) maps the physical region for semi-
leptonic decay onto an interval on the real axis. Similar
considerations apply for the decay Ds → K, except that the
multiparticle cut begins at tþ ¼ ðMD þMπÞ2 [and not at
ðMDs

þMKÞ2]. Below, we take t0 ¼ 0, so q2 ∈ ½0; q2max� is

mapped to z ∈ ½0;−zmax�. Because −zmax ≈ 0.332, 0.190,
and 0.192, for D → π, D → K, and Ds → K, respectively,
one expects a series expansion in z to converge within our
precision in roughly four or fewer terms.
The form factors can be expressed in z in various ways

[107,108]. We follow Bourrely, Caprini, and Lellouch
[108] as

f0ðzÞ ¼
1

1 − q2ðzÞ=M2
0þ

XM−1

n¼0

bmzm; ð5:23Þ

fþðzÞ ¼
1

1 − q2ðzÞ=M2
1−

XN−1

n¼0

an

�
zn −

n
N
ð−1Þn−NzN

�
:

ð5:24Þ

In these expressions, MJP refers to a possible subthreshold
(M2

JP < tþ) pole, which requires explicit removal. For the
scalar or vector form factors, the pole corresponds to any
subthreshold particle with quantum numbers JP ¼ 0þ or
1−, respectively, corresponding to the helicity of the virtual
W boson. Such poles are present for the decaysD → K and
Ds → K with JP ¼ 1−. No subthreshold poles are present
for D → π, but the fits are more stable if the nearby
poles are nevertheless included, as shown previously for
D → π [57].
Since the input data from the continuum results in

Sec. V C spans the full kinematic range of the decay, the
z expansion amounts to a convenient change of variables.
To carry out this procedure, we evaluate each form factor at
four evenly spaced points spread throughout the physical

FIG. 15. Comparison of the form factors coming from different continuum-limit constructions for the decays D → π, and Ds → K.
Points are offset horizontally for readability; the same value of q2 is used in each grouping. The notation used in the legend is explained
in the main text. The black points denote the preferred results with the best statistical precision. Similar agreement was also found
for D → K.
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q2-region: ½0.1; 0.37; 0.63; 0.9� × q2max. We then perform a
joint correlated fit of these synthetic data to Eqs. (5.23) and
(5.24), imposing the kinematic constraint fþð0Þ ¼ f0ð0Þ
by taking a common coefficient for n ¼ 0: a0 ≡ b0. The
pole masses entering Eqs. (5.23) and (5.24) are given in
Table XII. Table XIII reports the correlated posterior values
for an and bm emerging from the preferred fits for the three
decays analyzed. The preferred fits have N ¼ M ¼ 4 terms
for all three decays. As shown in Fig. 16, the posteriors for
the coefficients stabilize with these choices. In all cases,
statistical uncertainties in the fit parameters are determined

via bootstrap resampling with 500 draws. These bootstrap
fits also furnish estimates of the 21 × 21 correlation matrix
associated with the full set of form factors (fþ and f0 for all
three decays). The block-diagonal correlations for each
decay are also given in Table XIII, while the full correlation
matrix is given in the supplementary material [109]. The
results for fþðq2Þ and f0ðq2Þ coming directly from the
chiral-continuum fits (before applying the z expansion) are
compared with those from the z expansion in Fig. 17.
An alternative, common form of the z expansion

uses [107]

TABLE XII. Pole masses and cut positions used in Eqs. (5.23) and (5.24). The closest pole and the start of the cut
are the same for both D → π and Ds → K, since they both involve the same c → d quark-level transition.

Decay
ffiffiffiffiffi
tþ

p
Pole JP ¼ 1− Pole JP ¼ 0þ

D → K MD þMK D�
s 2112.2(4) MeV D�

s0 2317.8(5) MeV
D → π, Ds → K MD þMπ D� 2006.85(05) MeV D�

0 2300(15) MeV

TABLE XIII. Correlated posterior values for an and bm for the coefficients of the z expansion for the decays
D → π, D → K, and Ds → K. The simultaneous fit to Eqs. (5.23) and (5.24) constrains a0 ≡ b0. The pole masses
used in the fits are given in Table XII. The full correlation matrix is given in the supplementary material[109]. The
supplementary material [109] also contains a script, reconstuct.py, which shows an example of how to read the
z-expansion coefficients and recreate our final results for the form factors as function of the momentum transfer,
correctly including the full correlation matrix.

D → π a0 ≡ b0 a1 a2 a3 b1 b2 b3
0.6300(51) −0.610ð99Þ −0.20ð30Þ 0.30(19) 0.330(51) −0.31ð25Þ −1.90ð39Þ
1.0000 0.5670 0.5189 −0.2018 0.7547 0.3473 0.0861

1.0000 0.8912 −0.2826 0.5148 0.2529 0.0747
1.0000 −0.1482 0.5082 0.2782 0.1162

1.0000 −0.1728 −0.0496 0.0354
1.0000 0.8277 0.6066

1.0000 0.9442
1.0000

D → K a0 ≡ b0 a1 a2 a3 b1 b2 b3
0.7452(31) −0.948ð97Þ 0.14(40) 0.07(12) 0.776(62) 0.14(34) 0.03(13)

1.0000 −0.0332 0.0747 −0.0201 0.7753 0.4920 −0.0189
1.0000 0.3272 −0.1586 −0.0909 −0.1090 0.0420

1.0000 −0.7543 0.2071 0.2565 0.1457
1.0000 −0.0594 −0.1119 −0.2259

1.0000 0.9087 0.1012
1.0000 0.2126

1.0000

Ds → K a0 ≡ b0 a1 a2 a3 b1 b2 b3
0.6307(20) −0.562ð65Þ −0.19ð20Þ 0.33(29) 0.347(27) 0.44(18) −0.21ð43Þ
1.0000 0.1825 0.2612 −0.0266 0.8467 0.5197 0.0973

1.0000 0.9274 −0.2432 0.1899 0.1915 0.1180
1.0000 −0.0514 0.3243 0.3065 0.1764

1.0000 −0.0551 −0.1580 −0.2098
1.0000 0.8344 0.4260

1.0000 0.8442
1.0000
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fþðq2Þ ¼
1

Pðq2Þϕðq2Þ
XN−1

n¼0

anzn; ð5:25Þ

with Pðq2Þ ¼ 1 for D → π or zðq2;M2
D�

s
Þ for D → K and

outer function ϕðq2Þ given by

ϕðq2Þ ¼
ffiffiffi
π

3

r
mc

�
zðq2; 0Þ
−q2

�
5=2

�
zðq2; t0Þ
t0 − q2

�−1=2

×

�
zðq2; t−Þ
t− − q2

�−3=4� tþ − q2

ðtþ − −t0Þ1=4
�
; ð5:26Þ

where t0 ¼ tþð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þ and mc ¼ 1.25 GeV. For
comparison with the experimental determination of the
shapes in Sec. VII C below, we use Eq. (5.25) together with
the refitting procedure described in Ref. [62].

E. Spectator dependence

From the hadronic perspective, the decay channels
D → π and Ds → K are quite similar, differing only by
the mass of the valence spectator quark. As illustrated in
Fig. 18, we find that the vector and scalar form factors for

these two transitions agree with with each other at the level
of ≲2% throughout the full kinematic range of theDs → K
decay. The first experimental measurement of the decay
Ds → K by BES III [110] confirms this picture within
experimental uncertainties while old, unpublished results
by the HPQCD Collaboration [52,53] are also consistent
with our findings.

F. Comparison with existing results
in the literature

The form factors under consideration have been com-
puted previously using lattice QCD with Nf ¼ 2þ 1þ 1

flavors of dynamical fermions by ETMC [57,58] (for both
D → π and D → K) and by HPQCD (for D → K) [62,63].
The more recent HPQCD calculation [63] includes the
same set of D → K correlators as the earlier one [62], but
they are analyzed together with tensor-current three-point
functions, data for heavier-than-charm quark masses, and
Ds → ηslν form factor data [111]. Both the correlator fits
and the description of the heavy-quark-mass dependence
and discretization effects are thus different. Our D → π
results for the form factors and the semimuonic differential
decay rate are compared with those of ETMC in Fig. 19. At

FIG. 16. Stability analysis for the fit parameters appearing in the z expansion for the decaysD → π andD → K. The preferred fit uses
N ¼ M ¼ 4 terms (i.e., up to and including a3 and b3), at which point the coefficients’ central values and errors have stabilized and
higher-order terms are expected to contribute negligibly at the current level of precision. Results for Ds → K are qualitatively similar.
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large q2, our results for the form factors are significantly
larger than those in Ref. [57]. Due to phase-space
suppression, the difference is less visibly pronounced in
the differential decay rate dΓ=dq2. In the low q2 region,
which is most relevant for extractions of jVcdj, good
agreement is observed at the level of ≈1σ. Similarly, our
D → K results are compared with those of ETMC and
HPQCD in Fig. 20. Mild tension, at the level of ≈2σ, is
observed between our results and ETMC. Good agree-
ment with HPQCD is observed throughout the kinematic
range. Our results for fþð0Þ ¼ f0ð0Þ, f0ðq2maxÞ, and

fþðq2maxÞ are summarized in Table XIV alongside the
published results of Refs. [57,58,62,63].

VI. SYSTEMATIC ERROR ANALYSIS

The fits to the z expansion described in Sec. V D and
given in Table XIII provide our final results for the pure-
QCD form factors at the physical point in isospin-
symmetric QCD. In this section, we examine and quantify
the various statistical and systematic uncertainties contrib-
uting to the calculations. The complete final error budget is

FIG. 17. Final results for fþ and f0 for the decaysD → π,D → K, andDs → K in the continuum limit and at the physical point before
and after fitting to z expansion. The solid curves show the results after the chiral-continuum fit, while the hatched curves show the result
of the z expansion. The left column shows the product ð1 − q2=M2

JPÞf0;þ as a function of z, while the right column shows the form
factors versus q2.
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summarized in Table XV for fþð0Þ ¼ f0ð0Þ, fþðq2maxÞ, and
f0ðq2maxÞ for all decay modes. As discussed in Secs. VI C
and VI D, the very small corrections for the leading finite-
volume shifts (≲0.01%) and the effect of nonequilibrated
topological charge (relevant for a ≈ 0.042 fm only) have
been applied to the form factors prior to fitting and thus are

not included as separate errors. Systematic errors associated
with isospin breaking effects and QED corrections, which
are external to our calculation in isospin-symmetric QCD
but necessary for comparison with experimental results, are
discussed in Sec. VII B.

A. Chiral-continuum fits: Stability analysis

The results in Sec. V are the product of several choices.
In this section, we examine the stability of the results under
reasonable variations to these choices for the fiducial point
q2 ¼ 0. First, the model for the EFT is varied. The
staggered chiral logarithms are replaced with their con-
tinuum counterparts, setting the known taste splittings to
zero by hand. Another alternative is simply dropping the
chiral logarithms δfP;logs in Eq. (5.1). This variation is
reasonable, since the ensembles with physical-mass pions
reduce the approach to the physical point from an extrapo-
lation to an interpolation. The final EFT variation consists
of augmenting the analytic terms in Eq. (5.1) to include
all the N3LO terms (i.e., terms cubic in the χl, χH, and χE).
Second, we consider variations to the model for discretiza-
tion effects as given in Eqs. (5.16) and (5.17). Third, the
widths of our Bayesian priors are increased, and the fits are
rerun. In one variation, the widths of the priors for the
coefficients of the leading-order analytic terms (cl, cE, and
cH) are increased by a factor of ten. In another variation, the
widths of all the priors are increased by a factor of two.
Fourth, the choice of the linear shrinkage parameter is
tested by fits varying it by a factor of 2 from its fiducial
value (λ ¼ 0.1). Finally, the choice of data used in the
fits is varied, rerunning after dropping the coarsest

FIG. 18. Comparison of the vector and scalar form factors
between the decaysD → π andDs → K, which differ only by the
mass of the valence spectator quark. The form factors agree at the
level of ≲2% throughout the full kinematic range of the Ds → K
decay. The long dashed lines extending to q2 ≈ 3 GeV2 corre-
spond to D → π, while the shorter solid lines correspond
to Ds → K.

FIG. 19. Comparison of our results for the D → π form factors and semimuonic differential decay rate ðdΓ=dq2Þð24π3=G2
FÞ=jVcdj2

with published results from ETMC [57]. No QED or electroweak corrections [cf. ηEW in Eq. (2.1)] or errors have been included. To
account for differences in defining the physical isospin-symmetric point, the errors in our curves have been inflated with an estimate of
SIB effects; see Sec. VII B below.
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ensemble (a ≈ 0.12 fm) and after dropping the finest
ensemble (a ≈ 0.042 fm).
As Fig. 21 shows, for D → π, that all variations are

statistically consistent with the preferred fit at the level
of one standard deviation. Stability plots for D → K

and Ds → K are similar and given in Fig. 47 and 48 in
Appendix D 2.
The discussion in Sec. V C demonstrates good agree-

ment for the physical form factors constructed in different
ways, while the discussion above shows that alternative
discretization models, as well as continuum-χPT fit func-
tions (without taste splittings in the chiral logarithms), give
consistent results.

B. Chiral-continuum fits: Error breakdown

The form-factor results coming out of the chiral-con-
tinuum fits contain several sources of uncertainty: statistical
errors in the form factor on each ensemble (the correlated
uncertainty from the bare form factors and renormalization
constants), scale-setting errors coming from the continuum
value of w0, choices in the fit function and chiral inter-
polation, discretization effects, and errors in the input
parameters (physical meson masses and fπ in Table X).
The different sources of error are entangled in the total fit
uncertainty; in particular, the fit function, chiral interpola-
tion and discretization errors are rather difficult to separate
unambiguously. Nevertheless, an estimate of each error can
be obtained using the package gvar [112] following the
methodology described in Ref. [113]. The discretization
error is defined to be the error coming from the parametric

uncertainty in δfða
2þh2Þ

artifacts from ca2 and ch2 . The combined
uncertainty from all other fit parameters in Eq. (5.1) is
defined to be the error in the fit function and chiral
interpolation. This error includes the uncertainty from
the DD�π coupling, g, which turns out to have a small
influence on the final results. The experimentally measured

FIG. 20. Comparison of our results for the D → K form factors and semimunoic differential decay rate ðdΓ=dq2Þð24π3=G2
FÞ=jVcsj2

with published results from ETMC [57] and HPQCD [62]. No QED or electroweak corrections (cf. ηEW in Eq. (2.1)) or errors have been
included. To account for differences in defining the physical isospin-symmetric point, the errors in our curves have been inflated with an
estimate of SIB effects; see Sec. VII B below.

TABLE XIV. Final results for fþð0Þ ¼ f0ð0Þ, fþðq2maxÞ, and
f0ðq2maxÞ for the decays D → π, D → K, and Ds → K, together
with comparisons with existing Nf ¼ 2þ 1þ 1 results in the
literature from HPQCD [62,63] and ETMC [57]. The results of
the present work, denoted “Fermilab-MILC”, are all given at the
physical point and in the continuum limit in isospin-symmetric
QCD. Included in these results are all systematic errors discussed
in Sec. VI and summarized in Table XV. Not included are
additional systematic uncertainties associated with QED, isospin,
and electroweak corrections (these effects are estimated in
Sec. VII B). The different groups use slightly different conven-
tions to define the isospin-symmetric point. Shifts from these
differences are expected to be small. Figure 24 suggests that the
largest differences, perhaps amounting to a few percent, will be
present near q2max.

Process Collaboration f0ð0Þ f0ðq2maxÞ fþðq2maxÞ
D → π FNAL=MILC 0.6300(51) 1.2783(61) 3.119(57)
D → π ETMC 17 0.612(35) 1.134(49) 2.130(96)

D → K FNAL=MILC 0.7452(31) 1.0240(21) 1.451(17)
D → K HPQCD 22 0.7441(40) 1.0136(36) 1.462(16)
D → K HPQCD 21 0.7380(40) 1.0158(41) 1.465(20)
D → K ETMC 17 0.765(31) 0.979(19) 1.336(54)

Ds → K FNAL=MILC 0.6307(20) 0.9843(18) 1.576(13)
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values of the meson masses also contribute negligibly to the
total error.
Numerical results for the error breakdown are shown in

Table XV for q2 ¼ 0 and q2max, and Figs. 22, 49 and 50
show the error budgets through the full kinematic range for

D → π, D → K, and Ds → K, respectively, after fits to the
z expansion. The colored curves sum in quadrature to give
the total error in black. Not shown are contributions from
uncertainties less than 0.01%; this includes the experimen-
tal values for the input meson masses. Since the lattice data
span the full kinematic range in q2, errors from the z
expansion are also negligible.
Several important qualitative features are evident in

the error budgets. For all three decays, fþ has the
largest errors near q2max, since this kinematic region
involves an extrapolation (p → 0). Second, because the
z-expansion analysis uses a correlated joint fit to f0 and
fþ, the final errors in each case include contributions
from statistical uncertainties in both f0 and fþ. Third,
because the f⊥ term vanishes in Eq. (2.8) at q2 ¼ 0, the
contributions from statistical errors in f⊥ decrease for
small q2. Fourth, although the form factors are dimen-
sionless, the scale-setting uncertainty is significant and
tends to decrease for large q2. At the physical point, the
scale-setting uncertainties vanish identically for the
chiral logarithms and analytic terms. The full uncer-
tainty comes from the leading-order term in Eq. (5.1):
since the posterior values for c0 and Δxy;P are both
implicitly in intermediate units of w0, so must the
energy be. The associated scale-setting uncertainty thus
decreases when the energy is small.
The error budgets for D → K and Ds → K are qualita-

tively similar as shown in Figs. 49 and 50. Over the whole
kinematic range, statistics is the dominant source of error
for all three channels, except for fDs→K

0 near q2max, where
the scale-setting uncertainty dominates.

C. Finite-volume corrections

In principle, the finite volume of our simulations is a
systematic effect influencing the results for the form

TABLE XV. Complete statistical and systematic error budget for the vector and scalar form factors at q2 ¼ 0 and q2max for the
decays D → π, D → K, and Ds → K. All values are given in percent. The breakdown of the chiral-continuum fit errors is discussed in
Sec. VI B. Corrections for finite-volume and topological-charge effects, discussed in Secs. VI C and VI D, are applied prior to the chiral-
continuum fit and are negligibly small (< 0.01%). Experimental uncertainties on the meson masses are also negligible at our current
level of precision.

Decay D → π D → K Ds → K

Source fþð0Þ fþðq2maxÞ f0ðq2maxÞ fþð0Þ fþðq2maxÞ f0ðq2maxÞ fþð0Þ fþðq2maxÞ f0ðq2maxÞ
Statistics f⊥ 0.21 1.46 0.01 0.07 0.95 0.01 0.07 0.73 0.02
Statistics f0 0.70 0.39 0.40 0.39 0.36 0.22 0.29 0.18 0.12
Continuum w0 0.31 0.09 0.15 0.24 0.14 0.17 0.32 0.27 0.27
χEFT f⊥ 0.12 0.46 0.01 0.03 0.50 0.00 0.03 0.39 0.01
χEFT f0 0.24 0.13 0.13 0.11 0.14 0.05 0.05 0.03 0.02
Discretization f⊥ 0.08 0.73 0.00 0.06 0.41 0.01 0.03 0.41 0.01
Discretization f0 0.05 0.02 0.07 0.02 0.02 0.02 0.00 0.00 0.01
fPDGπ 0.16 0.10 0.13 0.06 0.04 0.03 0.12 0.04 0.09

Total error 0.87 1.84 0.48 0.49 1.29 0.28 0.46 0.99 0.30

FIG. 21. Stability of the D → π form factors f⊥=k=0 at q2 ¼ 0
under variations to the EFT model, the model for discretization
effects, to the choice of data included in the fit, and other analysis
choices as described in the main body. The central values have
been normalized by the central value of preferred fit in green. All
variations are statistically consistent with the preferred fit, high-
lighted by the green band in each panel. The statistical signifi-
cance of the fits is indicated by the marker size, with larger points
denoting better fits.
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factors. Within chiral perturbation theory, the leading
corrections amount to replacing loop integrals by discrete
sums [114,115]. The basic infinite-volume loop integral
appearing in the present analysis is

iμϵ
Z

d4−ϵq
ð2πÞ4−ϵ

1

q2 −M2
¼ 1

16π2
I1ðMÞ; ð6:1Þ

with I1ðMÞ ¼ M2 lnðM2=Λ2Þ as in Eq. (5.8). In a finite
volume, this integral becomes the discrete sum

I1ðMÞ ¼ 1

L3

X
q

Z
dq0

2π

1

q2 −m2 þ iϵ
≡ I1ðmÞ þ IFV1 ðmÞ;

ð6:2Þ

where IFV1 ðMÞ is the finite-volume correction that vanishes
exponentially for large volumes. The correction has the
explicit form

IFV1 ðMÞ ¼ 1

4π2
M2

X
jnj≠0

K1ðnMLÞ
nML

; ð6:3Þ

with the sum running over all nonzero lattice vectors
n ∈ Z3 in the finite volume, and where K1 is a modified
Bessel function of the second kind. As described in Sec. V,
the effect of this correction has already been included
explicitly in our fits to Eq. (5.1). To quantify the overall size
of the finite-volume effect, it is useful to compute the
dimensionless ratio:

IFV1 ðmÞ
I1ðmÞ ¼ 4

ln ðM2=Λ2Þ
X
jnj≠0

K1ðnMLÞ
nML

: ð6:4Þ

As shown in Table XVI, the finite-volume corrections
amount to ≲2% shifts in I1ðmÞ. In the chiral-continuum
fits to Eq. (5.1), the overall contribution from the chiral
logarithms enter at the level of a few percent. The total size
of finite-volume corrections to the form factors may be

estimated to be at the few permyriad level, Oð0.01Þ%.
Since the leading correction to the chiral logarithm has
already been included in our fits to Eq. (5.1), and since the
effect is so small, we do not include any additional error for
residual finite-volume effects in our final systematic error
budget.

D. Nonequilibrated topological charge

Efficiently sampling regions with different topological
charges Q in lattice-QCD simulations becomes slow in
standard algorithms, which use a continuous updating
procedure for the gauge fields. Brower et al. [116] realized
that chiral perturbation theory can be used to study the
Q-dependence of observables, and they showed how to
extract physical results from numerical data at fixed top-
ology. Their calculations confirmed the theoretical expect-
ation that, due to locality and cluster decomposition, the
effects from fixed topology should be suppressed for
large volumes. Subsequent calculations by Bernard and
Toussaint [117] extended these ideas to heavy-light decay
constants and meson masses in the context of heavy-meson
chiral-perturbation theory. The analysis was extended to
light form factors in Ref. [27].
Following those works, we account for the effect of the

difference between the correct hQ2i and the simu-
lation hQ2isample in the extraction of heavy-light form
factors by applying a correction factor ΔQfP, independent

FIG. 22. Final error budget for the form factors fD→πþ and fD→π
0 after the fit to the z expansion. Contributions less than 0.01% are not

shown.

TABLE XVI. Finite-volume corrections to the chiral logarithm
I1ðMπÞ for the ensembles given in Table I.

≈a [fm] ml=ms L=a MπL IFVðMπÞ=I1ðMπÞ [%]

0.120 1=27 48 3.9 1.32
0.088 1=10 48 4.7 0.65
0.088 1=27 64 3.7 2.06
0.057 1=5 48 4.5 1.31
0.057 1=10 64 4.3 1.25
0.057 1=27 96 3.7 1.91
0.042 1=5 64 4.3 1.70
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on q2, valid for all form factors considered in this work, and
given by

ΔQfP ≡ fP;corrected − fP;sample; ð6:5Þ

¼ −
1

2χTV
∂
2fP
∂θ2

����
θ¼0

�
1 −

hQ2isample

χTV

�
; ð6:6Þ

with fP;sample the simulation value of a given form factor at
any value of q2, θ the vacuum angle, χT the topological
susceptibility, and V the four-dimensional lattice volume.
The second derivative of the form factors with respect to
the vacuum angle is obtained using LO heavy-light χPT
with θ ≠ 0

∂
2fP
∂θ2

����
θ¼0

¼ −
1

4

�
mlms

mxðml þ 2msÞ
�

2

fPðθÞjθ¼0: ð6:7Þ

where ml;s are the light and strange quark masses respec-
tively, and mx is the mass of the spectator quark in the
transition, i.e.,ml forD → πðKÞlν,ms forDs → Klν. The
value of hQ2isample is understood to be the measured value
from the simulation. For the chiral susceptibility, we take
the prediction from leading-order staggered χPT [118],

χT ¼ 1

4
f2πM2 ð6:8Þ

where 1=M2 ¼ 2=M2
ll;I þ 1=M2

ss;I involves the taste-singlet
non-Goldstone states. At leading order, the only change
from the familiar result [119] is the replacement of M2

π by
M2. The masses of the taste-singlet mesons are calcula-
ted using Eq. (5.10). Of the ensembles considered in this
work (cf. Table I), the effects of nonequilibrated topo-
logical charge are relevant only for the finest ensemble
(a ≈ 0.042 fm), for which hQ2isample ¼ 27.59 [117]. The
resulting corrections, ðΔQfPÞ=fP ≲ 0.0003, are applied to
the form factor data on the a ≈ 0.042 fm ensemble prior to
the chiral-continuum fit in Sec. V. Having accounted for the
effect explicitly, and given the smallness of the correction,
no further systematic error is assigned for nonequilibrated
topological charge.

VII. PHENOMENOLOGY

The analysis of the preceding sections yields the semi-
leptonic form factors for D → π, D → K, and Ds → K in
the idealized case of isospin-symmetric QCD. For phe-
nomenological applications, we have to consider the effects
of strong isospin and QED, and then combine corrected
results with experimental data. In this section, we first
(Sec. VII A) explore several options for combining the
experimental results with the lattice-QCD form factors and
next (Sec. VII B) estimate QED and strong isopin-breaking
effects. We are then in a position to determine via Eq. (2.1)

the CKM matrix elements jVcdj and jVcsj with a full error
budget (Sec. VII C) and to carry out tests of CKM unitarity
(Sec. VII D). We also compute the Standard Model
predictions for the LFU ratios Rμ=e.

A. Experimental measurements

The differential decay rates dΓ=dq2 for semileptonic
decays of DðsÞ mesons to pseudoscalar light mesons
have been measured by FOCUS (shape only) [120],
Belle [121], BABAR [122,123], CLEO [124], and BES III
[110,125–128]. Table XVII summarizes the published
measurements according to decay channel. Due to the
experimental challenge of reconstructing muons in the final
state, more measurements exist for the electron channels.
The only published data available for the semimuonic
final states are from BES III, which measured the rates
for D → πμν [128] and D → Kμν [126,129]. Although
Belle measured both the semielectronic and semimuonic
final states [121], numerical values for the rate were
not reported; instead, only values for the product
jVcxjfD→π=K

þ ðq2Þ averaged over the lepton final state are
available [130,131], without any correlation information.
Since both experimental data and lattice-QCD form factors
have now reached a level of precision where the effects of
the scalar form factor (which are proportional tom2

l) are no
longer negligible, as discussed below, we exclude Belle
data from our subsequent analysis.

TABLE XVII. Summary of published measurements of semi-
leptonic decays of D mesons to pseudoscalar light mesons.
FOCUS 2005 [120] obtained shape information only and is
omitted.

Decay Measurements Notes

D0 → π−eþν BABAR 2015 [123]
Belle 2006 [121] eþ and μþ averaged

BES III 2015 [125]
CLEO 2009 [124]

Dþ → π0eþν BES III 2017 [127]
CLEO 2009 [124]

D0 → π−μþν Belle 2006 [121] eþ and μþ averaged
BES III 2018 [128]

Dþ → π0μþν BES III 2018 [128]

D0 → K−eþν BABAR 2007 [122]
Belle 2006 [121] eþ and μþ averaged

BES III 2015 [125]
CLEO 2009 [124]

Dþ → K̄0eþν BES III 2017 [127]
CLEO 2009 [124]

D0 → K−μþν Belle 2006 [121] eþ and μþ averaged
BES III 2019 [129]

Dþ → K̄0μþν BES III 2016 [126] total rate only

Dþ
s → K0eþν BES III 2019 [110]
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Besides the experimental difficulties associated with
semimuonic final states, the extraction of the CKM matrix
elements jVcdj and jVcsj poses an additional complication.
Contributions to the differential decay rate from the scalar
form factor enter Eq. (2.1) with a factor of m2

l. As Fig. 23
shows, the scalar form factor is negligible for semielec-
tronic final states everywhere except the lowest q2 bin,
where its contribution is roughly 1%. The situation for
semimuonic final states is entirely different, where con-
tributions from f0 are roughly ðmμ=meÞ2 ≈ 105 times larger
and, thus, contribute at the few-percent level throughout the
full kinematic range. Many extractions of jVcdj and jVcsj
have neglected the contributions of the scalar form factor.
But, with errors of≲1% both from experiment and from the
results of this paper, determinations of jVcdj and jVcsj
require the inclusion of both terms in Eq. (2.1).

B. Systematic uncertainty from strong
isospin effects and QED

The form-factor results reported in Table XIII are
computed in isospin-symmetric QCD, i.e., in simulations
with degenerate light quarks of massml ¼ ðmu þmdÞ=2 in
the sea and valence sectors. This theory is slightly different
from nature, which includes corrections from electromag-
netic effects and strong isospin breaking (SIB). An estimate
of these neglected effects is necessary before combination
with experimental data.
Consider first SIB. Isospin violation in the sea may be

ignored at the current level of precision. Because the matrix
elements yielding the form factors are symmetric under
exchange of the up and down sea quarks (mu ↔ md), the
leading contributions from SIB in the sea are of order
ðmd −muÞ2. This behavior appears in the χPT [83]
expressions, showing that sea SIB is smaller than the

NNLO terms in the chiral expansion [32]. To estimate
the valence correction, we evaluate the form factors with
a different definition of the physical point, replacing
the masses of the neutral initial and final hadrons that
define the physical point, see Table X, with their charged
counterparts, and then computing the fractional shift
1 − ðfneutralþ;0 =fchargedþ;0 Þ as a function of q2. To account for
this systematic effect, we increase our errors on the form
factors by �ð1 − fneutralþ;0 =fchargedþ;0 Þ, leaving the central value
unchanged. The systematic error profiles are shown as
functions of q2 in Fig. 24. Although this treatment of SIB
does not distinguish between SIB in the sea and valence
sectors, it is conservative insofar as both sea and valence
effects contribute the variation with the hadron masses.
Guidance from EFT calculations or dedicated simulations
with mu ≠ md would be useful to help quantify this effect
more precisely. Due to phase-space suppression at large q2,
isospin effects will turn out to be a small (and sometimes
neglible) contribution to the systematic error budgets for
quantities of phenomenological interest.
Some effects of QED are taken into account in the

experimental measurements. For instance, final-state radi-
ation tends to degrade the momentum resolution, which can
lead to mis-measurement of the positron momentum if
background radiative events (e.g., D0 → π−eþνγ) are not
handled correctly. Experimental groups correct for this
effect using the Monte Carlo tool PHOTOS [132,133]. See
Refs. [122,124] for a discussion.
The long-distance electromagnetic corrections to the

semileptonic decays themselves [δEM in Eq. (2.1)] have
not been calculated for the decaysDðsÞ→K=πlν. However,
the analogous corrections to the decay amplitudes for
K → πlν have been computed in the framework of
χPT [134,135] and more recently in a hybrid framework
combining χPT and Sirlin’s representation of SM radiative

FIG. 23. Fractional contributions from the scalar and vector form factors to the differential decay rate dΓ=dq2 for D0 → π−lν for
electronic and muonic final states. Scalar contributions enter Eq. (2.1) with a factor of m2

l. In muonic decays, in general, scalar
contributions are thus a factor of ðmμ=meÞ2 ≈ 105 larger than in the corresponding electronic decays.
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corrections [41–43]. The more recent calculations confirm
the older results but with smaller final uncertainties. The
overall picture, substantiated by Table XVIII, is that final
states with a charged hadron (e.g., π−eþ) tend to have shifts
of δEM ≈ 1–1.5%, while the shifts for final states with a
neutral hadron (e.g., π0eþ) are roughly a factor of 3–4
smaller. Differences between the decays with an eþ or a μþ
in the final state are around an order of magnitude smaller.
Since, as mentioned above, no similar calculations exist for
the decays at hand, we are unable to apply a concrete
correction δEM. Instead, using the results for K → πlν as a
rough guide, we include an additional systematic uncer-
tainty. For extractions of the CKMmatrix elements, we add
a conservative error of�1% to the final value jVcdj or jVcsj.
In all cases, the uncertainty is inflated without shifting the
central values.
In the analysis below, we also report values for the

correlated ratio jVcdj=jVcsj as well as LFU ratios. A few
additional remarks are necessary concerning the QED
uncertainty for these quantities.

Consider first the ratio jVcdj=jVcsj. As the results in
Table XVIII show, QED corrections for Kþ decays
are ≲0.25%, which suggests similarly small corrections
for Dþ decays. For the decays of D0, the QED corrections
will be dominated by the Coulomb interaction between
the charged final-state particles. The Coulomb shift in
the rate is approximately given by 1þ πα=β, where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

Lm
2
l=ðpL · plÞ2

q
is relative velocity between

the charged final-state particles [134,136–139]. For the
decays considered here, the kinematics are such that
β ≈ 1. Therefore, within the uncertainties of our calcu-
lation, the Coulomb corrections for D0 decays are
essentially constant over the kinematic range of the
decays and would cancel in the ratio. Overall, we take
a conservative 0.5% QED systematic uncertainty for the
ratio jVcdj=jVcsj.
Similar considerations apply for the LFU ratios.

Again using K → πlν and Table XVIII for guidance,
the correlated [43] differences δEMðμÞ − δEMðeÞ are about
0.3–0.4%. As for the ratio of CKM matrix elements, the
Coulomb corrections are expected to introduce a factor,
ð1þ απÞ, which cancels, within the precision of our
calculation, in the ratio. For the same reasons as above,
we thus take a conservative 0.5% QED systematic uncer-
tainty for the LFU ratios.

C. CKM matrix elements

Our analysis extracts the CKM matrix elements using
two different methods: the joint z-expansion method and
the binned method, discussed below.

TABLE XVIII. Long-distance electromagnetic corrections for
theKl3 decay amplitude, taken from Ref. [41–43,134,135]. Since
the shifts are computed for the amplitude, the factor of two is
necessary for use with the decay rate. Entries correspond to 1

2
δEM

in %.

Decay Cirigliano et al. [134,135] Seng et al. [41–43]

K0 → π−eþν 0.50� 0.11 0.580� 0.016
K0 → π−μþν 0.70� 0.11 0.77� 0.04

Kþ → π0eþν 0.05� 0.13 0.105� 0.024
Kþ → π0μþν 0.08� 0.13 0.25� 0.05

FIG. 24. Systematic error envelopes 1 − fneutralþ;0 =fchargedþ;0 estimating the effects of isospin breaking from the variation in form factors
using an alternative definition of the physical point with the charged initial and final hadron masses (cf. Table X). The total errors on the
theoretical prediction for the form factor are increased, leaving the central value unchanged. Although the systematic uncertainty from
SIB increases with q2, its effect on jVcxj and Rμ=e ends up being small due to phase-space suppression.
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First, the joint z-expansion method fits experimental data
for dΓ=dq2 together with synthetic data for our lattice-QCD
form factors fþðq2Þ and f0ðq2Þ. More precisely, the
expected model for the decay rate is given by Eq. (2.1)
using the four-parameter z expansions for both fþðq2Þ and
f0ðq2Þ via Eqs. (5.23) and(5.24). The CKM matrix element
jVcxjjoint is treated as a free parameter in the fit which serves
as a floating relative normalization factor between the

experimental data for the rate and synthetic data for the
form factors. The synthetic data are computed using our
results for fþðq2Þ and f0ðq2Þ given in Table XIII, evaluated
for q2 at ½0.1; 0.3; 0.63; 0.9� × q2max. The locations of these
points are the same as the synthetic points used in Sec. V D.
Since this method works directly with the full expression for
the differential decay rate, Eq. (2.1), it makes no assumptions
about the relative size of the vector and scalar contributions.

FIG. 25. The differential decay rates forD → π (top row) andD → K (bottom row) in the semielectronic (left) and semimuonic (right)
channels. The blue curves shows the result of evaluating Eq. (2.1) using our lattice-QCD form factors, normalized by jVcxj2joint. The
hatched orange curves show the result of the joint fit of experimental data and synthetic lattice-QCD data to the z expansion. The black
data points indicate charged-hadron (K−=π−lþ) final states, while the green points indicate experimental measurements for neutral-
hadron (K0=π0lþ) final states. In the top row, D → π results come from BABAR [123], CLEO [124], and BES III [125,127,128]. In the
bottom row, results come from BABAR [122], CLEO [124], and BES III [125,127,129]. Results from different experiments have are
distinguished by different markers. The points have been slightly offset horizontally for readability.
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Joint z-expansion fits have been carried out including all
experimental data for each decay process. The correspond-
ing differential decay rates (orange curves) are shown,
together with the experimental data, in Fig. 25 (D → π and
D → K) and Fig. 26 (Ds → K). For completeness, the fit
posteriors for the z-expansion coefficients are given in
Appendix D 5. Measurements from CLEO were reported
including correlations between different decay channels
[124]; these correlations are included in our analysis. The
published results from BES III do not include correlations
between different decays (e.g., D0 → π−eþν, Dþ →
π0eþν, D0 → π−μþν, and Dþ → π0μþν). We have exper-
imented with different models for the missing off-diagonal
blocks of the full correlation matrix, ranging from zero
correlation to 100% correlation. Our results for jVcdj and

jVcsj are extremely insensitive to the precise treatment of
these off-diagonal correlations and give statistically indis-
tinguishable results. We therefore report values from our
preferred analysis, which uses a simple model for the
correlations in which the off-diagonal blocks are taken to
be constant, with correlation coefficient equal to the mean
of the corresponding diagonal blocks.12 Regarding the

FIG. 26. (Left) The differential decay rate for Ds → K0eþν. The blue curve shows the result of evaluating Eq. (2.1) using our lattice-
QCD form factors, normalized by jVcdj2joint. The hatched orange curve show the result of the joint fit of experimental data and synthetic
lattice-QCD data to the z expansion. The data points indicate experimental measurements from BES III [110]. (Right) The binwise
estimate of the CKM matrix element ½jVcdðq2i Þj�Binned from the decay Ds → K.

FIG. 27. Comparing the shapes of the vector form factor fþ between lattice QCD and experiment for the decays D → π (left) and
D → K (right) via ratios of z-expansion coefficients from Eq. (5.25). Where published correlations are available, the ellipses show the
68% confidence intervals. Systematic errors from QED and isospin breaking are not included in the lattice QCD results.

12We thank the BES III Collaboration for providing us with the
correlations for the differential rate dΓ=dq2 for the decays
Dþ

s → K0eþν, D0 → π−μþν, and Dþ → π0μþν as well as for
information and guidance regarding the treatment of off-diagonal
correlations between different decays (Lei Li, private communi-
cation, 22 July, 2022; Hailong Ma, private communication,
11 December, 2022).
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measurements of D0 → K−eþν coming from BABAR
[122], our fits drop the largest q2 bin, since it is constructed
by a normalization constraint (one minus the sum of the
other bins). Especially when fitting dΓ=dq2 for semi-
muonic channels, including the scalar form factor is
essential to achieving a good description of the data at
low q2. However, the higher parameters b1 and b2 asso-
ciated with the scalar form factor are constrained entirely

by our precise synthetic data for f0. The influence of
neglecting f0 is considered below.
The plots in Figs. 25 and 26 also include comparisons

with the shape obtained from our form factors, given by the
parameters in Table XIII (lattice-QCD-only results), nor-
malized by jVcxj2joint. Those correspond to the blue curves
in the plots. In addition, fits are also conducted to the
experimental data alone, although we do not use these

FIG. 28. The binwise estimate of the CKM matrix element ½jVcxðq2i Þj�Binned from the decays D → π (top rows) and D → K (bottom
row) in the semielectronic (left) and semimuonic (right) channels. The horizontal bands show the resulting values for jVcxjBinned
from correlated fits to a constant in each channel. The result for jVcdjD→πμþν

Binned (red) lies slightly below jVcdjD→πeþν
Binned (blue). The

combined extraction using both channels lies between the two bands and is statistically consistent with each. A compari-
son of the different extractions of jVcxj is given in Fig. 29. For D → π, experimental data are taken from BABAR [123],
CLEO [124], and BES III [125,127,128]. For D → K, experimental data are taken from BABAR [122], CLEO [124], and BES III
[125,127,129]. Although all the correlated fits have good quality (χ2=DOF ≈ 1, p≳ 0.05), the residuals for D → K are visually
larger near q2max.
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results to extract the CKM matrix elements. All those
z-expansion fits, as well as the joint fit, enforce the
kinematic identity fþð0Þ ¼ f0ð0Þ by imposing a0 ¼ b0
[cf. Eqs. (5.23) and (5.24)]. The best-fist posterior values
for those z-expansion fits are also given in Appendix D 5.
Another visualization of the form factors’ shapes, which

is independent of the overall normalization, comes from
comparing the ratios r1 ≡ a1=a0 and r2 ≡ a2=a0 of the
z-expansion coefficients from Eq. (5.25) after applying the
refitting procedure of Ref. [62]. These ratios are displayed
for D → π and D → K in Fig. 27. Our results, given by the
black ellipses, show good agreement with the experimental
shapes. For D → K, we also find good agreement with the
lattice QCD calculation from HPQCD [62]. ForD → π, we
find r1 ¼ −2.009ð55Þ and r2 ¼ 0.14ð36Þ, with a correla-
tion of ρ12 ¼ −0.58. For D → K, we find r1 ¼ −2.05ð11Þ
and −0.59ð52Þ, with a correlation of ρ12 ¼ −0.29.
The second method we use to extract CKM matrix

elements, the binned method, combines lattice-QCD results
with experimental data for the rate dΓ=dq2 to give a
binwise estimate of the CKM matrix element:

½jVcxðq2i Þj�Binned ≡
��

dΓ
dq2

�
Expt

24π3

G2
Fη

2
EW

1

hð� � �ÞLQCDiq2i

�
1=2

;

ð7:1Þ
where the quantity in the denominator is understood to be
the binwise average (i.e., integrated over the bin) of the
lattice-QCD form factors together with the appropriate
kinematic factors appearing in Eq. (2.1),

ð� � �ÞLQCD ≡ ð1 − ϵÞ2
�
jpj3ð1þ ϵ=2Þfþðq2Þ

þ jpjM2
H

�
1 −

M2
L

M2
H

�
2 3

8
ϵf0ðq2Þ

�
: ð7:2Þ

This expression depends on the lepton mass via ϵ≡m2
l=q

2

as well as the experimentally measured hadron masses MH

and ML for each mode (e.g., D0 and π− or Dþ and π0 for
D → π). A weighted, correlated average (i.e., a fit to a
constant) then gives jVcxjBinwise. The binned method is
entirely general andmakes no assumptions about the relative
size of the vector and scalar contributions. Results for jVcdj
from D → π and jVcsj from D → K for each q2 bin and
experiment, as well as the correlated average over bins
including only semielectronic (blue lines) or only semi-
muonic data (red lines), are shown in Fig. 28. The semi-
muonic results lie roughly 1σ below the semielectronic
results for both jVcdj and jVcsj, so below we report the
values in each channel aswell as the combined results. Those
combined extractions, including all leptonic channels, lie
between the two bands in Fig. 28, and are statistically
consistent with the individual determinations, as shown in
Fig. 29. For jVcdj fromDs → K, results are shown in Fig. 26.
As argued above, with present statistical precision, the
presence of the scalar form factor is quantitatively important
for the differential rate dΓ=dq2, especially for semimuonic
channels. Figure 30 shows the effect of dropping the
contribution from f0 for D → Kμν. Values for jVcsjbinned
are observed to shift by a few percent and, when considered
as a function of q2, become statistically inconsistent with a
constant. Similar few-percent shifts occur for D → πμν.
Because the joint-fit and binned methods explicitly

account for (potentially) percent-level contributions from
the scalar form factor, they constitute our main extractions
for jVcxj. For continuity with previous studies, we also
consider the endpoint method, in which jVcxj is defined
according to

½jVcxj�Endpoint ≡
½jVcxjηEWfþð0Þ�Expt
ηEW½fþð0Þ�LQCD

: ð7:3Þ

The experimental values are taken from the
HFLAV world averages: jVcdjηEWfD→πþ ð0Þ¼0.1426ð18Þ,
jVcsjηEWfD→Kþ ð0Þ ¼ 0.7180ð33Þ [44]. The resulting values
for ½jVcxj�Endpoint are shown in Fig. 29 and given in

FIG. 29. Determinations of jVcdj and jVcsj using experimental measurements of the decays D → π and D → K. The outer and inner
error bars and bands show the results with and without QED uncertainties, respectively.
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Table XIX. Although these endpoint results give a stat-
istical precision comparable to our preferred extractions,
it’s worth emphasizing that our precise values for fþð0Þ
were made possible by leveraging information about the
form factor across the full kinematic range of the decays.
The final errors can potentially be much larger in a
simulation that works directly at the endpoint (q2 ¼ 0).
For example, preliminary work by our collaboration has

focused on q2 ≈ 0 on many of the same ensembles and with
comparable statistics [60]. Using the preliminary values of
fþð0Þ from these proceedings gives values for jVcdj and
jVcsj with errors that are roughly 2.5 to 3.5 larger than the
final errors in the present work.
The results for jVcdj and jVcsj from the different methods

described above and for different leptons in the final states
are summarized in Fig. 29 and Table XIX. Since, as shown
in the plot, the binned and joint-fit extractions give
statistically consistent values well within 1σ, we take the
joint-fit extractions to define our preferred results:

jVcdjD→πlþν ¼ 0.2238ð11ÞExptð15ÞQCDð04ÞEW
× ð02ÞSIB½22�QED; ð7:4Þ

jVcdjDs→Keþν ¼ 0.258ð15ÞExptð01ÞQCD½03�QED; ð7:5Þ

jVcsjD→Klþν ¼ 0.9589ð23ÞExptð40ÞQCDð15ÞEW
× ð05ÞSIB½95�QED; ð7:6Þ

where the first error comes from the experimental differ-
ential decay rate uncertainty, the second error comes from
our form factor calculation (see Table XV), the third error
shows the uncertainty in ηEW, and the fourth and fifth from
our estimate of SIB and long-distance QED corrections
described in Sec. VII B. The errors in these expressions
combine in quadrature to give the total errors in Table XIX.
Since our preferred extraction of jVcsj includes both eþ and
μþ final states, the experimental contribution to the error is
smaller by roughly a factor of two than in Ref. [62].
We also repeated our analysis separating charged-hadron

and neutral-final states (e.g., π−eþ versus π0eþ). No statis-
tically significant difference was observed within the uncer-
tainties, consistent with what was observed in Ref. [62].
For the first time, our calculation provides a value of

jVcdj from D → π for which lattice QCD errors are at the
same level as the experimental errors, ∼0.5% each. This
represents an improvement by roughly a factor of six from
the existing state of the art [57,140]. For jVcdjDs→K,
experimental errors dominate and are substantially larger
than forD → π. Since the theoretical uncertainty is actually
the smallest for Ds → K, additional experimental measure-
ments of this channel would be particularly welcome. On
the other hand, theoretical error exceeds the experimental
error by roughly a factor of two in the extraction of jVcsj
from D → K, leaving room for improvements in the theory
side. Experimental errors also dominate the CKM extrac-
tions from the semimuonic channels, where we have only
included recent results from BES III. Another key ingre-
dient for improved semileptonic extractions of jVcdj and
jVcsj would be the calculation of long-distance structure-
dependent EM corrections or a more robust estimate of
their effect on these decays, since our lack of knowledge of

TABLE XIX. Summary of results for jVcdj and jVcsj from
different decays and different extraction methods. The final
column gives the result when errors from QED are neglected.

Process Method jVcxj jVcxj (no QED)

jVcdj D → πeþν z-expansion 0.2251(30) 0.2251(20)
jVcdj D → πeþν Binned 0.2250(31) 0.2250(21)
jVcdj D → πμþν z-expansion 0.2199(35) 0.2199(27)
jVcdj D → πμþν Binned 0.2209(36) 0.2209(28)
jVcdj D → πlþν z-expansion 0.2238(29) 0.2238(19)
jVcdj D → πlþν Binned 0.2238(30) 0.2238(19)
jVcdj D → πlþν Endpoint 0.2243(41) 0.2243(34)

jVcsj D → Keþν z-expansion 0.9653(110) 0.9653(53)
jVcsj D → Keþν Binned 0.9631(113) 0.9631(58)
jVcsj D → Kμþν z-expansion 0.9537(111) 0.9537(56)
jVcsj D → Kμþν Binned 0.9543(116) 0.9543(65)
jVcsj D → Klþν z-expansion 0.9589(108) 0.9589(49)
jVcsj D → Klþν Binned 0.9582(110) 0.9582(54)
jVcsj D → Klþν Endpoint 0.9549(110) 0.9549(61)

jVcdj Ds → Keþν z-expansion 0.2582(155) 0.2582(153)
jVcdj Ds → Keþν Binned 0.2583(157) 0.2583(155)

FIG. 30. The effect of neglecting the scalar form factor [setting
f0ðq2Þ≡ 0 in Eq. (2.1)] when computing jVcsjbinned for
D → Kμν. The red and blue horizontal lines and the black data
are reproduced from the bottom-right panel of Fig. 28. Similar
few-percent shifts occur for D → πμν.
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these corrections currently dominates the uncertainty of the
most precise determinations.
A comparison of our final results for jVcdj and jVcsj

with existing results in the literature appears in Fig. 31,
including leptonic decays, global fits assuming CKM
unitarity fits, and scattering. Our determinations of jVcdj
and jVcsj agree well, at the level of 1–2 standard deviations,
with previous leptonic [31,32,141–144] and semile-
ptonic [48,49,57,62,140] determinations reported in
FLAG [36].
Our correlated results for jVcdj and jVcsj also yield the

ratio,

jVcdj=jVcsj ¼ 0.2334ð13ÞExptð16ÞQCDð02ÞSIB½11�QED;
ð7:7Þ

where the correlation coefficient between jVcdj and jVcsj,
neglecting QED, is 0.18. As described in Sec. VII B, we
have taken a conservative 0.5% systematic uncertainty for
QED effects in the ratio.
Using the latest measurements fDþjVcdj and fDs

jVcsj
reported by HFLAV [44] and the ratio of decay constants
fDs

=fDþ computed by our collaboration in a similar set
of ensembles and with the same action in Ref. [32], one finds
½jVcdj=jVcsj�leptonic ¼ 0.2212ð58Þ, where the error is domi-
nated by the experimental uncertainty. Both values are plotted

in Fig. 32 together with previous leptonic [31,32,141–144]
semileptonic [48,49,57,62,140] determinations combined in
averages by FLAG [36] and the result from the PDG global
unitarity fit [25] (the global-fit methodologies of CKMfitter
[145] and UTfit [146] give very similar results). The leptonic
extraction above agrees with our semileptonic result within
roughly 2σ, although, as plotted in Fig. 32, leptonic determi-
nations tend to give smaller values of the ratio. The error in our
result ismore thana factorof twosmaller than the leptonicone,
with similar uncertainties from lattice QCD and experiment.
Results for jVcdj=jVcsj from the PDG global fit assuming
unitarity and from the ratio jVusj=jVudj (see Sec. VII D below
for more details) are also shown in Fig. 32. Our result agrees
well with both of them.

D. Tests of CKM unitarity

Our results for jVcdj and jVcsj enable a test of unitary in
the second row of the CKM matrix, including theoretical
correlations between jVcdj and jVcsj. Using our preferred
extractions in Eqs. (7.4) and (7.6), and jVcbjinclþexcl ¼
ð40.8� 1.4Þ × 10−3 from a combined average of inclusive
and exclusive semileptonic B-decays [25]13 yields the

FIG. 31. Comparison of our preferred determinations of jVcdjD→π and jVcsjD→K (blue bands) with existing results in the literature. The
outer and inner error bands show our preferred result with and without QED uncertainties, respectively. The world’s first determination
jVcdjDs→K is also given. Results from FLAG are taken from Ref [36]. Results from the PDG appear in Ref. [25]. We emphasize that
FLAG uses slightly different conventions for the semileptonic extraction of jVcdðcsÞj as we used here; for instance they do not include
short-distance electroweak corrections to GF or an error from QED. For the leptonic results, we combine the latest experimental
averages reported in HFLAV [44] with the FLAG averages for fD and fDs

[36]. “CKM unitarity” denotes the global fit result reported by
the PDG, which includes all available measurements (for all nine matrix elements) imposing three-generation unitarity.

13In particular, see the review “Semileptonic b-Hadron De-
cays, Determination of Vcb, Vub”
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following result for the deviation from unitarity in the
second row:

jVcdj2þ jVcsj2þjVcbj2− 1

¼−0.0286ð44ÞExptð78ÞQCD½194�QEDð28ÞEW ¼−0.029ð22Þ:
ð7:8Þ

Because jVcbj is so small compared to jVcdj and jVcsj,
numerically indistinguishable results are obtained (within
current precision) if inclusive or exclusive values are taken
for jVcbj. This result is compatible with three-generation
CKM unitary within approximately one standard deviation.
The precision of this test is roughly 2% and is limited by the
systematic uncertainty from QED in our extractions of

jVcdj and jVcsj. We show the constraints on jVcdj and jVcsj
from our calculation in Fig. 33, together with constraints
coming from leptonic decays [32,44] and second-row
unitarity. The leptonic inputs used for the green ellipse
are summarized in Table XX. As the figure shows, semi-
leptonic tests of second-row CKM unitarity are now slighty
more precise than leptonic tests. The leptonic and semi-
leptonic results are consistent at the level of roughly 1–2
standard deviations.
One can perform further tests of the unitarity of the CKM

matrix using the fact that in the Standard Model, jVcdj ¼
jVusj þOðA2λ5Þ and jVcsj ¼ jVudj þOðA2λ4Þ. Including
the dominant corrections [147] with the Wolfenstein
parameters taken from global unitarity fits by CKMFitter
[145] (using values from the January 2022 update) gives

jVcsj ¼ 0.97282ð32Þ from jVudj0þ→0þ ; ð7:9Þ

FIG. 33. Constraints on jVcdj and jVcsj from our results, D–
meson leptonic decays, and unitarity. The blue ellipse shows the
preferred values of the present work from semileptonic decays in
Eqs. (7.4) and (7.6). The green ellipse is the result of combining
the latest results for the products ηEWjVcdjfDþ and ηEWjVcsjfDs

with leptonic decay constants from lattice-QCD calculations; the
inputs values are summarized in Table XX. The dotted line comes
from assuming unitarity of the second row, taking jVcbjinclþexcl ¼
ð40.8� 1.4Þ × 10−3 [25]. In all cases, the ellipses shows the
correlated 1σ (68%) confidence intervals. The inner blue ellipse
shows our result without the QED uncertainty.

TABLE XX. Leptonic inputs used for comparison in Fig. 33. HFLAV reports the product ηEWjVcxjfDðsÞ [44].
Following the prescription of the PDG [25], we include an EWþ QED error of 0.7% for the product jVcxjfDðsÞ .

Value Source

ηEWjVcdjfDþ ¼ 46.2ð1.0Þð0.3ÞEWþQED MeV HFLAV [44]
ηEWjVcsjfDs

¼ 245.4ð2.4Þð1.7ÞEWþQED MeV HFLAV [44]
fDþ ¼ 212.7ð0.6Þ MeV Fermilab-MILC 2018 [32]
fDs

¼ 249.9ð0.4Þ MeV Fermilab-MILC 2018 [32]
fDs

=fDþ ¼ 1.1749ð16Þ Fermilab-MILC 2018 [32]

FIG. 32. Comparison of different extractions of the ratio
jVcdj=jVcsj. The blue point and band show the value from the
preferred extractions of the present work. Error bands with and
without QED error are indistinguishable. The red and green
points denote semileptonic and leptonic extractions given by
FLAG [36]. The points below the dashed line are constraints
from unitarity. The orange point is computed using values from
CKMFitter’s global fit (as reported in the PDG), assuming CKM
unitarity. The brown points comes from two different extractions
of jVusj=jVudj which, as explained in the text, are related to
jVcdj=jVcsj by CKM unitarity.
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jVcdj ¼ 0.22317ð53Þ from jVusjKl3; ð7:10Þ

jVcdj=jVcsj ¼ 0.22941ð55Þ from jVusjKl3=jVudj0þ→0þ ;

ð7:11Þ

using jVudj ¼ 0.97367ð32Þ from superallowed 0þ → 0þ
nuclear β decays [17,37] and jVusj ¼ 0.22330ð53Þ from
Kl3 decays [36,37]. Alternatively, the ratio of Kl2 to πl2
decays yields [36,37]

jVcdj=jVcsj ¼ 0.23135ð51Þ from jVus=VudjKl2=πl2 : ð7:12Þ

As shown in Fig. 32, our preferred value in Eq. (7.7) lies
roughly 1σ above the result coming from jVus=VudjKl2=πl2

and roughly 2σ above that from jVusjKl3=jVudj0þ→0þ . Our
preferred value for jVcdj in Eq. (7.4) shows excellent
agreement with jVcdj from jVusjKl3. Our preferred value
for jVcsj in Eq. (7.6) lies somewhat below jVcsj from
jVudj0þ→0þ but is consistent at 1–2 standard deviations.

E. Lepton flavor universality

For a given semileptonic decay H → Llν, the LFU ratio
Rμ=e is defined as the ratio of branching fractions into muon
versus electron final states

RH→L
μ=e ≡ BðH → LμνÞ

BðH → LeνÞ ¼
Γμ

Γe
; ð7:13Þ

where the total rates to each final state are defined in the
usual way,

Γl ≡
Z

q2max

m2
l

dq2
�
dΓ
dq2

�
: ð7:14Þ

In the SM, the LFU ratios are close but not identically equal
to unity. This difference from unity arises from at least three
effects. First, the lower boundary of the integration region
in Eq. (7.14) depends on the lepton mass. Second, the
differential decay rate in Eq. (2.1) itself depends on the
lepton mass, with the scalar form factor contributing more
for larger masses. Finally, QED corrections depend in
principle on both the charges of the final state and the

lepton mass. The coefficients G2
F

24π3
ðηEWjVcxjÞ2 are indepen-

dent of q2 and cancel in the ratio, meaning that predictions
for Rμ=e are entirely calculable using our lattice-QCD form
factors, up to corrections from QED and SIB. The rates
dΓ=dq2 for the decay D → π, using as inputs our form
factors f0ðq2Þ and fþðq2Þ together with the estimates
of systematic uncertainties from QED and SIB (see
Sec. VII B), are shown in Fig. 34 for both semielectronic
and semimuonic final states. When computing the rates,
the meson masses were taken to be the average of the
experimentally measured masses for the charged and

neutral states (e.g., D0 and Dþ or π0 and πþ). The final
results for the SM predictions of the ratios Rμ=e are

RD→π
μ=e ¼ 0.98671ð17ÞQCD½500�QED; ð7:15Þ

RD→K
μ=e ¼ 0.97606ð16ÞQCD½500�QED; ð7:16Þ

RDs→K
μ=e ¼ 0.98099ð10ÞQCD½500�QED: ð7:17Þ

The dominant error is the systematic uncertainty from QED
corrections, which we conservatively take to be 0.5%, as
described in Sec. VII B. Our prediction for RD→K

μ=e is in good
agreement with a recent calculation by HPQCD, which
found RD→K

μ=e ¼ 0.97594ð19ÞQCD½500�QED and used the
same estimate of the QED uncertainty [62].14 We also find
good agreement with previous lattice QCD results by
ETMC and experimental measurements of RD→π

μ=e and

RD→K
μ=e , as shown in Fig. 35. The measurement of RD→π

μ=e

by BES III for the channel D0 → π− lies below our result
but is consistent at the 2σ level. Because the QED error is
dominant for the lattice-QCD predictions of the LFU ratios,
the insets in Fig. 35 compare the lattice-QCD results with
the QED uncertainty removed.

FIG. 34. Our prediction for the decay rates dΓ=dq2 for the
decays D → π. The majority of the total rate comes from small
q2, where ðdΓ=dq2Þμ < ðdΓ=dq2Þe. The Standard Model there-
fore predicts Rμ=e < 1.

14The central value we quote here differs slightly from the
published value in Ref. [62]. We thank HPQCD for providing the
correct central value (William Parrott, private communication,
16 December, 2022).
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VIII. CONCLUSIONS

We have calculated the hadronic form factors fþðq2Þ and
f0ðq2Þ relevant for the semileptonic decays D → πlν,
D → Klν, and Ds → Klν using lattice QCD. These
decays occur at tree level in the SM and are important
channels for determining the CKM matrix elements jVcdj
and jVcsj. Our calculation uses Nf ¼ 2þ 1þ 1 flavors of
dynamical staggered quarks and includes several ensem-
bles with all quarks near their physical masses. The use of
the HISQ action permits all the quarks to be treated with the
same relativistic light-quark action and allows for non-
perturbative renormalization using PCVC, Eq. (2.9). Our
results improve significantly on the previous precision for
the form factors forD → π andDs → K, and have precision
comparable to that of recentNf ¼ 2þ 1þ 1 calculations by
HPQCD for D → K [62,63]. We agree well with HPQCD’s
D → K form factors over the entire kinematic range,
especially with their latest results in Ref. [63], while for
both D → π and D → K, our form factors are significantly
larger near q2max than the Nf ¼ 2þ 1þ 1 results of

ETMC [57]. Table XIII shows the z-expansion parameters
fromwhich our final results for the form factors, computed in
isospin-symmetric QCD where mu ¼ md, can be recon-
structed, while a complete error budget, including all
statistical and systematic uncertainties, is given in
Table XV for the edges of the kinematic range.
Our results suggest a very mild spectator dependence

for D → π and Ds → K, with close agreement at ≲2%

level throughout the kinematic range between the res-
pective form factors (cf. Fig. 18). This picture was also
recently confirmed, within experimental uncertainty, by the
first measurement of the decay Ds → K by BES III [110].
When combined with the available experimental data for

the corresponding decay rates, summarized in Table XVII,
our form factors enable the extraction of the CKM matrix
elements jVcdj and jVcsj with percent-level uncertainties.
These extractions include correlations between all the
lattice form factors and between the different experimental
channels.15 The values obtained from our preferred extrac-
tions are

jVcdjD→πlþν ¼ 0.2238ð11ÞExptð15ÞQCDð04ÞEWð02ÞSIB½22�QED;
jVcdjDs→Keþν ¼ 0.258ð15ÞExptð01ÞQCD½03�QED;
jVcsjD→Klþν ¼ 0.9589ð23ÞExptð40ÞQCDð15ÞEWð05ÞSIB½95�QED:
jVcdj=jVcsj ¼ 0.2329ð13ÞExptð16ÞQCDð02ÞSIB½11�QED

FIG. 35. Comparison of RD→π
μ=e and RD→K

μ=e with experimental HFLAV averages [44], which are dominated by measurements from
BES III [126,128,129], and other SM predictions from lattice QCD [62,140]. In the main body of both figures, all lattice QCD results are
presented with a QED uncertainty of 0.5%. The results from ETMC 18 were reported in the isospin-symmetric limit of QCD, without
including QED or SIB uncertainties [140], so we have added the QED uncertainty for a like-to-like comparison. The insets compare
lattice QCD results when QED uncertainty is removed.

15In the supplementary material [109], we provide correlated values for all the z-expansion coefficients needed to reproduce our final
results for all three decays.
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For jVcdj we obtain the most precise determination to date,
with lattice-QCD form factors errors that, for the first time
in a semileptonic extraction, are commensurate with ex-
perimental uncertainties. The improved determination of
D → π form factors, together with the fact that we account
for theoretical correlations among channels, also allows us
to provide the most precise determination of the ratio
jVcdj=jVcsj, around a factor of two more precise than the
leptonic determination. The rate for Ds → K was only
recently measured for the first time by BES III [110], and
our calculation delivers the first extraction of jVcdjDs→K .
Although this determination is not yet competitive with the
one from D → π, the error is dominated by the statistics-
limited experimental uncertainty. Our result for jVcdjDs→K

lies roughly 2σ above jVcdjD→π , albeit with large uncer-
tainty. Experimental improvements for this Cabibbo-
suppressed decay would immediately give improved
precision for jVcdjDs→K and help clarify the situation.
Our determinations of jVcdj and jVcsj, combined with the

value of jVcbj from Ref. [25], give a precise test of second-
row CKM unitarity. We find consistency with unitarity at
the level of roughly 2% and one standard deviation, with an
uncertainty dominated by the systematic effect of QED.
As shown in Fig. 33, the precision of the semileptonic
constraint is now slightly better than the corresponding
leptonic one.
After demonstrating consistency between the form factor

shapes from our calculations and those measured in experi-
ments, we computed the SM prediction for the lepton flavor
universality ratios Rμ=e with subpercent precision for all
three decays:

RD→π
μ=e ¼ 0.98671ð17ÞQCD½500�QED;

RD→K
μ=e ¼ 0.97606ð16ÞQCD½500�QED;

RDs→K
μ=e ¼ 0.98099ð10ÞQCD½500�QED:

These results agree with previous Nf ¼ 2þ 1þ 1 lattice
calculations, considerably improving the precision for
D → π, and with experimental measurements within 2σ,
for D → π and D → K.
With the total precision for jVcdj and jVcsj approaching

the subpercent level, the effects of the scalar form factor in
the differential rate, Eq. (2.1), become quantitatively
important. For semielectronic decays, contributions from
f0 enter at roughly the 1% level in the lowest q2 bin. For
semimuonic decays, the effect is much larger, a roughly
10% effect in the lowest q2 bin and a few-percent effect
throughout the rest of the kinematic range. Figure 30
showed that naively neglecting contributions from f0
can shift values for jVcsj by a few percent in the case of
D → Kμν (similar results hold for D → πμν).
Future progress in the precision of jVcdj, jVcsj, and the

LFU ratios will depend crucially on improved understand-
ing of QED corrections to these decays, which are already

the dominant source of uncertainty. The one exception is
the decay jVcsjDs→Klþν, for which the experimental error is
still large. One avenue for improvement is through
EFT calculations in the spirit of those for K → πlν
[41–43,134,135], which were used in Sec. VII B to
estimate our systematic uncertainties (cf. Sec. VII B). As
usual, the intermediate mass of the charm quark (which is
simultaneously too heavy for χPT to apply and too light for
reliable application of HQET) may present a challenge for
robust treatment with EFT. Another possibility is carrying
out lattice simulations to compute the structure-dependent
QED corrections to the semileptonic decay amplitudes.
Such calculations have not yet reached a mature state, but
the field is progressing rapidly, particularly for the QED
corrections to leptonic decays [39,40,148–152].
Regarding the pure QCD calculation, it should be

straightforward to improve the precision of our form factor
results. A leading contribution to the error budget is
statistics (cf. Table XVand Figs. 22, 49 and 50), for which
the physical mass ensembles at a ≈ 0.06 fm and 0.09 fm
play the largest role. As part of our ongoing work toward B-
meson semileptonic decays, we are simulating on a finer
physical-mass ensemble with a ≈ 0.04 fm. We expect that
new data from this ensemble will reduce the uncertainties
both from statistics and from the continuum extrapolation.
Future calculations will also benefit from ongoing work in
the community to improve scale-setting measurements
(e.g., w0 or the Ω-baryon mass) on the HISQ ensembles
used in this work.
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APPENDIX A: ANALYSIS OF STAGGERED
CORRELATION FUNCTIONS

As demonstrated in Ref. [155], averaging over adjacent
time slices can dramatically suppress contributions from
oscillating states. Consider a two-point correlation function
C2ðtÞ Let E denote the ground state energy. Then the
averaged two-point function is C̄2ðtÞ

C̄2ðtÞ ¼
e−Et

4

�
C2ðtÞ
e−Et

þ 2C2ðtþ 1Þ
e−Eðtþ1Þ þ C2ðtþ 2Þ

e−Eðtþ2Þ

�
; ðA1Þ

¼ jh∅jOjEij2
2E

e−Et þOðΔE2Þ; ðA2Þ

where O is an interpolating operator as given in Table III
and j∅i is the QCD vacuum. Similarly, consider a three-
point correlation function C3ðt; TÞ with ground states EL
and EH at the source and sink, respectively, and connected
by the current J. The averaged three-point function
is C̄3ðt; TÞ

C̄3ðt; TÞ ¼
e−ELte−EHðT−tÞ

8

�
C3ðt; TÞ

e−ELte−EHðT−tÞ þ
2C3ðtþ 1; TÞ

e−ELðtþ1Þe−EHðT−t−1Þ þ
C3ðtþ 2; TÞ

e−ELðtþ2Þe−EHðT−t−2Þ

þ C3ðt; T þ 1Þ
e−ELte−EHðTþ1−tÞ þ

2C3ðtþ 1; T þ 1Þ
e−ELðtþ1Þe−EHðT−tÞ þ

C3ðtþ 2; T þ 1Þ
e−ELðtþ2Þe−EHðT−t−1Þ

�
ðA3Þ

¼ h∅jOLjELihELjJjEHihEHjOHj∅i
4ELEH

e−ELte−EHðT−tÞ þOðΔE2
H;ΔE2

LÞ: ðA4Þ

These averaged two- and three-point functions are used in
Eqs. (4.10)–(4.12).

APPENDIX B: DISCRETIZATION ERRORS
FOR HISQ

Several of the results in this appendix were first derived
in Ref. [156]. Our discussion follows closely that of
Ref. [32]. Let am0 and am1 denote a quark’s bare and
rest masses, respectively. The two quantities are related by
the transcendental equation

am0 ¼ aS̃hðam1Þ

¼ sinhðam1Þ
�
1 −

1

6
Nðam1Þ sinh2ðam1Þ

�
: ðB1Þ

In this expression, Nðam1Þ denotes the coefficient of the
Naik improvement term appearing in the HISQ action

Nðam1Þ ¼
4 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Xðam1Þ

p
sinh2ðam1Þ

; ðB2Þ
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Xðam1Þ ¼
2am1

sinhð2am1Þ
: ðB3Þ

When bare masses are not small, am0≪1, quark bilinears
can lose their conventional normalization. This phenome-
non has been discussed in the literature for both Wilson
[157,158] and staggered fermions. Consider a quark
bilinear containing a heavy quark h and a generic (heavy
or light) quark x. Arguments from leading-order HQET
[32] show that the conventional normalization can be
restored, at leading order, by multiplying matrix elements
containing the bilinear by the factor ZHQET;LO

hx

C̃hðam1Þ ¼ coshðam1Þ
�
1−

1

2
Nðam1Þ sinh2ðam1Þ

�
; ðB4Þ

ZHQET;LO
hx ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̃hðam1;hÞC̃hðam1;xÞ

q
; x nonrelativisticffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̃hðam1;hÞ
q

; x ultrarelativistic
:

ðB5Þ

Residual discretization effects from next-to-leading HQET
appear at order x4h and αsx2h, where xh is the parameter
linear in the heavy quark mass defined in Eq. (5.14).

APPENDIX C: SHRINKAGE OF COVARIANCE
AND CORRELATION MATRICES

Analysis of highly correlated Monte Carlo data encoun-
tered in lattice gauge theory presents a formidable statistical
challenge. Many problems are phrased in terms of least-
squares minimization of a suitable χ2 function. Examples in
the present work include the correlator analysis in Sec. IV
to extract energies and matrix elements and the chiral-
continuum fits of Sec. V. The essential difficulty is that
covariance matrix appearing in the χ2 functions can be
nearly singular, and the small eigenvalues in the sample
covariance matrix are poorly determined. Shrinkage
estimators, which we review here, are a class of tools
for improving the sample covariance matrix by “regulating”
the small eigenvalues. For motivation, we follow closely
the discussion and notation of Ref. [159], beginning with a
technical result.
Lemma C.1 (Ledoit and Wolf). Let M be a real,

symmetric matrix. The eigenvalues are the most dispersed
diagonal elements obtainable by rotation.
Proof. Consider a real, symmetric p × p matrix M. Let

R ∈ SOðpÞ be a rotation, under which M transforms into
RTMR. The average of the eigenvalue spectrum hλi≡
ð1=pÞTr½M� is clearly invariant under rotations. Let vi
denote the ith column of the rotation R. The ith diagonal
element of RTMR is vTi Mvi, and the dispersion of the
diagonal elements around the average of the spectrum is
defined via

1

p

Xp
i

ðvTi Mvi − hλiÞ2: ðC1Þ

This expression is not invariant under rotations, but a
closely related quantity is

Tr½ðRTMR − hλiIÞ2� ¼ 1

p

Xp
i

ðvTi Mvi − hλiÞ2

þ
Xp
i¼1

Xp
j¼1
j≠i

ðvTi MvjÞ2: ðC2Þ

The second term on the right-hand side is non-negative and
vanishes precisely when the rotation R diagonalizes M.
In other words, since the left-hand side is constant, the
dispersion is maximized when the eigenvalues ofM appear
on the diagonals of RTMR, which was to be shown. ▪
This result has important consequence for the near-singular

covariance matrices encountered in practical problems. Let
diagðλÞ ¼ UTΣU denote the spectral decomposition of the
“true” population covariance matrix of a statistical distribu-
tion, where U contains the eigenvectors and λ are the
eigenvalues. The corresponding sample covariance matrix
has decomposition diagðλnÞ ¼ UT

nSnUn. As usual, Sn is an
unbiased estimator of Σ. Therefore, UTSnU is also an
unbiased estimator of diag λ. Unfortunately, one does not
typically have access to the population eigenvectors of U and
is instead obliged toworkwith the sample estimates ofUn. As
the preceding lemma makes clear, the sample eigenvalues λn
will be more widely dispersed than those of the population λ.
Indeed, λn is not an unbiased estimator of UTΣU due to
correlations between the eigenvectors in Un and the eigen-
values inλn. Thegeneral idea behind shrinkage estimators is to
apply some function which decreases the dispersion of the
sample eigenvalues λn to better approximate the population λ.
The remainder of this appendix is organized as follows.

Appendix C 1 describes linear shrinkage, which is used in
the chiral-continuum analysis (cf. Sec. V B). Appendix C 2
describes nonlinear shrinkage, which is used in the corre-
lator fits (cf. Sec. IV).

1. Linear shrinkage

Linear shrinkage was introduced by Ledoit and Wolf in
Ref. [159]. There seems to be some knowledge of this
technique in the recent lattice-gauge-theory literature [160].
Because lattice data often vary over many orders of
magnitude, it is common to invert the correlation matrix
instead of the covariance matrix, with shrinkage techniques
being applied to them instead.
The linear shrinkage estimator Ĉn is defined as the

convex sum of two matrices,

Ĉn ¼ ð1 − λÞCn þ λCtarget; ðC3Þ
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with λ ∈ ½0; 1�. As the parameter λ is varied, the shrinkage
estimator smoothly interpolates between the sample corre-
lation matrix Cn and the target matrix Ctarget. Many options
are possible for Ctarget. Examples in the literature [159,160]
advocate using the identity matrix as the shrinkage target.
The idea is that suppressing the correlations by a small
amount (say, λ ¼ 0.05 or 0.1) will correct the small
eigenvalues while preserving the rest of the correlated
structure to the data.16 Besides using the identity matrix,
our analysis also experimented with block-diagonal matri-
ces (e.g., to retain the full correlations between different
momenta at fixed valence mass). The more complicated
choices did not improve fit results compared with the
simpler choice of the identity matrix. The preferred chiral-
continuum analysis of Sec. V therefore uses only the
identity matrix. Once a shrinkage estimator for the corre-
lation matrix has been chosen, the corresponding covari-
ance matrix follows in the usual way,

Ŝn ¼ diagðσÞĈndiagðσÞ; ðC4Þ

where σ is a vector containing the standard deviations.
The shrinkage estimator, which enjoys a smaller condition
number and approximates the population covariance matrix
better than the sample estimate, is then inverted to give Ŝ−1n ,
which is used in our fits.

2. Nonlinear shrinkage

Nonlinear shrinkage has been described by Ledoit and
Wolf [79], whose notation and presentation we follow
closely. A complete theoretical justification exceeds the
scope of the work; the interested reader is invited to consult
the original paper for proofs, additional references, and
numerical evidence supporting the applicability in realistic
finite data. To keep the present work self-contained, we
restrict ourselves to reproducing the required formulas with
some discussion.
Suppose the sample covariance matrix Sn is computed

from n observations of p total random variables. Consider
the diagonalization of this matrix, Sn ¼ UT

ndiagðλnÞUn.
Individual eigenvalues are denoted λn;i, i ∈ f1;…; pg and,
without loss of generality, may be supposed to be sorted in
ascending order. For large p and n, suppose the eigenvalues
follow some asymptotic cumulative distribution function
FðxÞ with associated spectral density fðxÞ ¼ F0ðxÞ.
Nonlinear shrinkage is a method for adjusting the empirical
spectral density locally to improve the spread in eigenval-
ues for finite n.

Nonlinear shrinkage is based on the Hilbert transform,
which maps continuous real functions gðxÞ to HgðxÞ via

HgðxÞ≡ 1

π
PV

Z
∞

−∞
dx0

gðx0Þ
x0 − x

; ðC5Þ

wherePV denotes theCauchy principal value. Conceptually,
and as described at length in Ref. [79], the Hilbert transform
acts like a local attractor, pulling eigenvalues towards regions
of greater density. Define the oracle function

dðxÞ≡ x
½πcxfðxÞ�2 þ ½1 − c − πcxHfðxÞ�

¼ x
1þ c2½φðxÞ2 þHφðxÞ2� − 2cHφðxÞ

; ðC6Þ

where c≡ p=n is the concentration ratio, φðxÞ ¼ πxfðxÞ
andHφðxÞ ¼ 1þ πxHfðxÞ is its Hilbert transform. Given a
set of sample eigenvalues λn, dðλnÞ provides a shrinkage
estimator. To see this, first observe that as the number
of samples becomes large (c → 0), no shrinkage occurs
[dðxÞ → x], in agreement with intuition. For small but finite
concentration, the linear term in the denominator will
dominate,

dðxÞ ≈ x½1þ 2cHφðxÞ þOðc2Þ�: ðC7Þ

Since theHilbert transform attracts eigenvalues, anomalously
large or small eigenvalues will be pulled locally toward
regions of higher density, shrinking the spectrum. The same
qualitative behavior is also present for generic c, as described
in Ref. [79]. For some given finite data set, the underlying
distributions FðxÞ and fðxÞ are typically unknown.
Moreover, since neither the empirical density nor the empiri-
cal CDF are continuous (the former is a sum of δ functions,
one at each eigenvalue), the necessary Hilbert transform does
not exist. Instead, oneworks with a kernel estimator for fðxÞ,
for which the necessary derivatives do exist:

f̃nðxÞ ¼
1

p

Xp
i¼1

1

hn;i
k

�
x − λn;i
hn;i

�
; ðC8Þ

Hf̃n
ðxÞ ¼ 1

p

Xp
i¼1

1

hn;i
Hk

�
x − λn;i
hn;i

�
; ðC9Þ

wherehn;i ≡ λn;ihn for some suitable choice of bandwidthhn.
In principle, many possibilities exist for the choice of the
kernel function k. In practice, it is advantageous to take a
kernel with finite support and an analytically calculable
Hilbert transform. Reference [79] advocates choosing the
Wigner semicircle distribution,

kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4 − x2�þ

p
2π

; ðC10Þ

16As discussed in the main text, the preferred value of λ ¼ 0.1
was chosen to regulate the small eigenvalues (thus giving good
fits) with unnecessarily discarding correlations, which can also
cause fit quality to degrade. Ultimately, our results are insensitive
to the precise choice of λ, as shown in Figs. 21, 47 and 48.
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HkðxÞ ¼
sgnðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4 − x2�þ

p
− x

2π
; ðC11Þ

where ½x�þ ≡maxf0; xg for any x ∈ R. With this choice, the kernel estimators f̃n and Hf̃n
take the following form when

evaluated at the eigenvalues:

f̃nðλn;iÞ ¼
1

p

Xp
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2n;jh

2
n − ðλn;i − λn;jÞ2

q
2πλ2n;jh

2
n

; ðC12Þ

Hf̃n
ðλn;iÞ ¼

1

p

Xp
i¼1

sgnðλn;i − λn;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðλn;i − λn;jÞ2 − 4λ2n;jh

2
n�þ

q
− λn;i þ λn;j

2πλ2n;jh
2
n

: ðC13Þ

Likewise, the sample estimator for the oracle function
becomes

d̃n;i ¼
λn;i

½πcλn;if̃nðλn;iÞ�2 þ ½1 − cþ πcλn;iHf̃n
ðλn;iÞ�2

:

ðC14Þ

Some freedom exists in the choice of bandwidth. For
reasons of statistical convergence, i.e., so that f̃nðxÞ →
fðxÞ and Hf̃n

ðxÞ → HfðxÞ uniformly in probability,
Ref. [79] argues that the bandwidth should vanish for
large n (limn→∞ hn ¼ 0) but not decrease too quickly
(limn→∞ nh5=2n ¼ 0). We follow their recommendation of
choosing hn ≡ n−0.35.
After shrinkage is applied, the new “eigenvalues” d̃n;i

computed from λn;i are not guaranteed to maintain their
ascending order. For this reason, the penultimate step is to
restore ascending order by applying the pool adjacent
violators (PAV) algorithm [79,161]. Finally, the shrinkage
estimator for the sample covariance matrix is given by

d̂n ≡ PAVðd̃nÞ; ðC15Þ

Ŝn ≡Undiagðd̂nÞUT
n : ðC16Þ

As above, the shrinkage estimator is then inverted, and Ŝ−1n
is used in our fits.
The PAV algorithm is as follows. Given an input set of

data d, the algorithm iteratively updates the values, locally
pooling adjacent values which violate di ≥ diþ1, and
replacing them with their average. The process is repeated
until the monotonicity condition is satisfied everywhere,
yielding PAVðdÞ.
Included in the supplementary material [109] (in

shrink.py) is a python implementation of the nonlinear
shrinkage algorithm.

3. Numerical examples of shrinkage

In this section, we present representative examples of
correlation matrices appearing in our analysis. For con-
creteness, we consider the correlation matrices for the
two-point functions CP

Ds
ðtÞ and CP

Kðt; 0Þ [cf. Eqs. (4.1)
and (4.3)] associated with the Ds and K mesons on the
physical-mass a ≈ 0.06 fm ensemble. The eigenvalue
spectra associated with the correlation matrices are shown
in Fig. 36, for raw data, nonlinear shrinkage, linear
shrinkage with λ ¼ 0.1, and an SVD cut of 10−3.17 The
raw spectra, shown in blue, span a range of roughly eight
orders of magnitude. (In fact, not displayed are the last
few eigenvalues, which are consistent with zero at double
precision). For the given parameter choices, linear
shrinkage and the SVD cut give similar results. With
nonlinear shrinkage, the shape of the small-eigenvalue
region of the spectrum retains some of its original
curvature. In the case of the kaon (left in Fig. 36), the
small eigenvalues from nonlinear shrinkage vary by
approximately an order of magnitude over the region
where they are roughly constant for linear shrinkage and
SVD cut.
These methods all alter the covariance between pairs of

data. Figures 37 and 38 show heat maps for the corre-
sponding correlation matrices. As with the eigenvalue
spectra in Fig. 36, the results for linear shrinkage and
SVD cut are qualitatively similar. Compared with the other
methods, nonlinear shrinkage tends to smooth the far off-
diagonal correlation coefficients. All three correction
methods suppress the near-diagonal correlations which
are nearly unity in the raw data.

17Some freedom exists in the implementation of an SVD cut.
One possibilty is setting to zero all eigenvalues below some
threshold. Instead, the method used for comparison in this
appendix compares all the eigenvalues to the largest eigenvalue,
λmax. All eigenvalues below the threshold svdcut×λmax are
replaced by this value. Theoretical and practical aspects of this
convenction for SVD cuts are described in Ref. [106].
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Reference [106] has argued that applying an SVD cut is a
statistically conservative analysis choice, amounting to
adding uncertainty to the data. However, care must be
given when interpreting the χ2=DOF when SVD cuts have
been applied, since such cuts can result in artificially low

values for the χ2=DOF. As described in Ref. [106], the
standard diagnostic for this potential problem is to rerun fits
with additional noise in the means, checking for the
stability of posterior values and for the χ2=DOF to increase
slightly but (at least for good fits) to remain of order unity.
Our analysis has carried out this check, with good stability
observed.

FIG. 37. Comparison of correlation matrices resulting from
different correction techniques applied to the zero-momentum K
two-point function CP

Kðt; 0Þ on the physical-mass a ≈ 0.06 fm
ensemble. The associated eigenvalue spectra are shown
in Fig. 36.

FIG. 38. Comparison of correlation matrices resulting from
different correction techniques applied to the Ds two-point
function CP

Ds
ðtÞ on the physical-mass a ≈ 0.06 fm ensemble.

The associated eigenvalue spectra are shown in Fig. 36.

FIG. 36. Comparison of eigenvalue spectra resulting before and after shrinkage or an SVD cut, for the correlation matrices for CP
Ds
ðtÞ

(left) and CP
Kðt; 0Þ (right) on the physical-mass a ≈ 0.06 fm ensemble. Linear shrinkage was applied with λ ¼ 0.1. An SVD cut of 10−3

was chosen to have an effect on the spectrum similar to shrinkage.
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APPENDIX D: FITS: ADDITIONAL DETAILS
AND FIGURES

This appendix gives additional details concerning the
correlator, chiral-continuum, and z expansion fits described
in Secs. IV, V B and V D, and compiles figures that
illustrate the robustness of our chiral-continuum analysis
for D → K and Ds → K decays. Analogous figures are
included in the main text for D → π.

1. Correlator fits

As introduced in Sec. IV, the correlator fits must satisfy
checks related to the ratios Eqs. (4.10)–(4.12). Figure 10
shows tests based on the ratio RD→π

0 for the physical-mass
0.12 fm ensemblewith the charm-quarkmass approximately
tuned to its physical value. Similar figures are shown for the
other decays and form factors in Figs. 39–44. The first test
concerns the approach of the ratios R0;k;⊥ðt; T; pÞ to the

FIG. 39. Comparing the ratios RD→π
0;k;⊥, Eqs. (4.10)–(4.12), with the form factor’s fit posterior result at fixed momentum p ¼ ð1; 0; 0Þ on

the physical-mass 0.12 fm ensemble. Left: The data are the ratios RD→π
0;k;⊥ðt; T; p̂2 ¼ 1Þ, with each color corresponding to a different

source-sink separation T. Right: The approach to the asymptotic plateau. Each point corresponds to the maximum point in the curves on

the left, maxt RD→π
0;k;⊥ðt; T; p̂2 ¼ 1Þ. As the source-sink separation is increased, the data gradually approaches the form factor’s posterior

value given by the band.
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FIG. 40. Comparing the ratios RD→K
0;k;⊥ , Eqs. (4.10)–(4.12), with the form factor’s fit posterior result at fixed momentum p ¼ ð1; 0; 0Þ on

the physical-mass 0.12 fm ensemble. See the caption of Fig. 39 for a detailed explanation.
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FIG. 41. Comparing the ratios RDs→K
0;k;⊥ , Eqs. (4.10)–(4.12), with the form factor’s fit posterior result at fixed momentum p ¼ ð1; 0; 0Þ on

the physical-mass 0.12 fm ensemble. See the caption of Fig. 39 for a detailed explanation.
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asymptotic plateau region. This behavior is examined in the
top row of Fig. 10 (and in Figs. 39–41) by considering the
ratios at fixed momentum as the source-sink separation is
increased. As T increases, the data tend to flatten out as the
ratio approaches the asymptotic limit. In the right-hand
panes, the data show the highest point,

max
t
R0;k;⊥ðt; T; p ¼ 2πð1; 0; 0Þ=NsaÞ; ðD1Þ

as a convenient proxy for the value of “plateau”. As T is
increased, theses points gradually approach the form factor’s
fit posterior value, indicated by the horizontal band in both
the left and right panes. It bears emphasizing that the value of
the form factor itself emerges from a fit to the spectral

decomposition, Eqs. (4.7)–(4.9), and therefore explicitly
includes excited-state effects.
The third visual test checks the momentum depen-

dence and is shown in the bottom row of Fig. 10 (and
in Figs. 42–44). The left panel shows the ratio RD→π

0 ,
with each color corresponding to a different momentum.
The horizontal lines with matching colors show the central
values of the posteriors for fD→π

0 ðp2Þ. For visual clarity,
data are only shown for fixed Tmax, but all available source-
sink separations T were included in the fits. Moving from
top to bottom, the form factors fall monotonically with
momentum, and the effects of excited states tend to
decrease. The bottom-right panel shows the corresponding
posterior values for fD→π

0 ðp2Þ, which exhibit smooth
dependence on the momentum.

FIG. 42. Comparing the ratios RD→π
0;k;⊥, Eqs. (4.10)–(4.12), with fit results for the form factors coming from the spectral decomposition

on the physical-mass 0.12 fm ensemble. Left: The data are the ratios RD→π
0;k;⊥ðt; Tmax; pÞ, with each color corresponding to a different

momentum. In each case, only the largest source-sink separation Tmax is displayed. Horizontal lines denote the central values form
factor’s fit posterior values, coming from fits including all source-sink separations T. Right: The momentum dependence of the form
factor’s fit posterior values.
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FIG. 43. Comparing the ratios RD→K
0;k;⊥ , Eqs. (4.10)–(4.12), with fit results for the form factors coming from the spectral decomposition

on the physical-mass 0.12 fm ensemble. See the caption of Fig. 42 for a detailed explanation.
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FIG. 44. Comparing the ratios RDs→K
0;k;⊥ , Eqs. (4.10)–(4.12), with fit results for the form factors coming from the spectral decomposition

on the physical-mass 0.12 fm ensemble. See the caption of Fig. 42 for a detailed explanation.

D-MESON SEMILEPTONIC DECAYS TO PSEUDOSCALARS … PHYS. REV. D 107, 094516 (2023)

094516-51



2. Chiral-continuum fits: Results for D → K and Ds → K

FIG. 45. The result of the chiral-continuum fit for the D → K form factors constructed using Eqs. (2.5)–(2.7) in units of the gradient-
flow scale w0. For visual clarity, only the physical-mass ensembles with heavy valence masses mh=mc ∈ f0.9; 1.0; 1.1g are shown,
although all ensembles in Table I were included in the fit. Points with mh=mc ≈ 1.1 were only simulated on the a ≈ 0.06 fm ensemble.
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FIG. 46. The result of the chiral-continuum fit for theDs → K form factors constructed using Eqs. (2.5)–(2.7) in units of the gradient-
flow scale w0. For visual clarity, only the physical-mass ensembles with heavy valence masses mh=mc ∈ f0.9; 1.0; 1.1g are shown,
although all ensembles in Table I were included in the fit. Points with mh=mc ≈ 1.1 were only simulated on the a ≈ 0.06 fm ensemble.
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3. Chiral-continuum fits: Stability plots for D → K and Ds → K

4. Chiral continuum fits: Error breakdowns for D → K and Ds → K

FIG. 47. Stability of the D → K form factors f⊥=k=0 at q2 ¼ 0
under variations to the EFT model, the model for discretization
effects, to the choice of data included in the fit, and other analysis
choices as described in the main body. The central values have
been normalized by the central value of preferred fit in green. All
variations are statistically consistent with the preferred fit, high-
lighted by the green band in each panel. The statistical signifi-
cance of the fits is indicated by the marker size, with larger points
denoting better fits.

FIG. 48. Stability of the Ds → K form factors f⊥=k=0 at q2 ¼ 0
under variations to the EFT model, the model for discretization
effects, to the choice of data included in the fit, and other analysis
choices as described in the main body. The central values have
been normalized by the central value of preferred fit in green. All
variations are statistically consistent with the preferred fit, high-
lighted by the green band in each panel. The statistical signifi-
cance of the fits is indicated by the marker size, with larger points
denoting better fits.

FIG. 49. Final error budget for the form factors fD→Kþ and fD→K
0 after the fit to the z expansion. Contributions less than 0.01% are not

shown.
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5. z-expansion fits: Joint fits to lattice-QCD
form factors and experimental data

TablesXXI–XXIII compare the results of the z-expansion
fits for the decays D → π, D → K, and Ds → K. The fits
enforce the kinematic identity fþð0Þ ¼ f0ð0Þ by imposing
a0 ¼ b0 [cf. Eqs. (5.23) and (5.24)]. For the scalar form

factor, the higher parameters b1, b2, and b3 are uncon-
strained by the fits including experimental data. In the joint
fit, the lattice QCD form factors include a systematic from
SIB, as described in Sec. VII B. No uncertainty fromQED is
included in the fit, since this is applied directly to jVcxj as a
final 1% uncertainty.

FIG. 50. Final error budget for the form factors fDs→K
þ and fDs→K

0 after the fit to the z expansion. Contributions less than 0.01% are
not shown.

TABLE XXI. Comparison of z-expansion fit results for the decay D → π.

D → π LQCD only Joint LQCD and experiment Experiment only

a0 ≡ b0 0.6300(51) 0.6306(47) 0.1426(17)
a1 −0.610ð99Þ −0.574ð83Þ −0.157ð45Þ
a2 −0.20ð30Þ −0.009ð393Þ −0.15ð32Þ
a3 0.30(19) 0.32(94) 0.12(94)
b1 0.330(51) 0.379(52) � � �
b2 −0.31ð25Þ 0.22(36) � � �
b3 −1.90ð39Þ −0.54ð84Þ � � �

TABLE XXII. Comparison of z-expansion fit results for the decay D → K.

D → K LQCD only Joint LQCD and experiment Experiment only

a0 ≡ b0 0.7452(31) 0.7450(31) 0.7246(26)
a1 −0.948ð97Þ −1.036ð73Þ −1.049ð89Þ
a2 0.14(40) 0.18(73) 0.10(92)
a3 0.07(12) −0.03ð1.00Þ −0.03ð1.00Þ
b1 0.776(62) 0.772(66) � � �
b2 0.14(34) 0.08(56) � � �
b3 0.03(13) −0.02ð99Þ � � �

TABLE XXIII. Comparison of z-expansion fit results for the decay Ds → K.

Ds → K LQCD only Joint LQCD and experiment Experiment only

a0 ≡ b0 0.6307(20) 0.6306(20) 0.164(18)
a1 −0.562ð65Þ −0.557ð72Þ −0.14ð29Þ
a2 −0.19ð20Þ −0.20ð42Þ −0.03ð98Þ
a3 0.33(29) 0.04(98) 0.008(1.000)
b1 0.347(27) 0.346(35) � � �
b2 0.44(18) 0.45(30) � � �
b3 −0.21ð43Þ −0.11ð96Þ � � �
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