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Abstract

A geometric approach to Sundman transformation defined by basic functions for sys-
tems of second-order differential equations is developed and the necessity of a change of
the tangent structure by means of the function defining the Sundman transformation is
shown. Among other applications of such theory we study the linearisability of a system
of second-order differential equations and in particular the simplest case of a second-order
differential equation. The theory is illustrated with several examples.
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1 Introduction

The infinitesimal time reparametrisation introduced by Levi-Civita [1, 2], usually called Sund-
man transformation [3], was used in [4] to regularise the 2-dimensional Kepler problem and
it has been proved to be very efficient to deal with many different problems in the theory of
systems of differential equations and related physical problems. Such a transformation, at least
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from a geometric perspective, is very intriguing because the time does not explicitly appear
in the expressions for autonomous systems, and generalisations of Sundman transformation to
deal with autonomous systems of first-order differential equations can be used in the study
of linearisation of systems of differential equations [5] and in numerical solution of systems of
differential equations (see e.g. [6, 7, 8]). These generalised Sundman transformations have also
been used to solve many interesting problems in classical mechanics (see e.g. [9, 10, 11, 12])
and celestial mechanics [13, 14, 15, 16, 17].

The geometric approach to the study of autonomous systems of first-order differential
equations has been very useful and its results have very much clarified many points involved
in the theory. Moreover, as it is intrinsic and the results do not depend on a particular choice
of coordinates, its methods may be generalised to infinite dimensional systems (with some
topological difficulties). So, such a system is replaced by a vector field on a differentiable
manifold M , and the set of its solutions provides the set of the integral curves of the vector
field in a local coordinate system. The time plays the rôle of the parameter of the integral
curves. It has recently been shown [18] that a Sundman infinitesimal time reparametrisation
should be understood as a change of the dynamical vector field, replacing it by a conformal
one. This geometric interpretation was analysed in a more detailed way in [18].

On the other hand, the autonomous systems of second-order differential equations are also
to be studied, not only for its own mathematical interest, but also because they play a crucial
rôle in classical mechanics and in the spectral problem in Quantum Mechanics via the time-
independent Schrödinger equation. Then, the usual way to proceed is to reduce the problem
of a system of n second-order differential equations to a system of 2n first-order differential
equations, or in geometric terms, to relate such systems of second-order differential equations
to a special kind of vector field X on its tangent bundle TM , one of the class of second-order
differential equation vector fields, hereafter shortened as SODE vector fields. Then one can try
to consider the Sundman transformation in the framework of SODE vector fields in a similar
way, i.e. by changing the SODE vector field X describing the autonomous system to the vector
field f X. The point however is that unless f = 1, f X is not a SODE vector field anymore, and
a more careful analysis is needed. Fortunately, the existence of alternative tangent structures
will be useful to solve this problem (see e.g. [17]).

The aim of this paper is to clarify the meaning of an infinitesimal time reparametrisa-
tion for systems of second-order differential equations from a geometric viewpoint. Section 2
is devoted to recall a generalisation of the classical Sundman transformation for systems of
first-order differential equations from a geometric perspective developed in [18], while Section 3
starts by summarising the main geometric ingredients of the theory of systems of second-order
differential equations and the symplectic approach to regular Lagrangian systems, as some
preliminary ideas to show the importance of the tangent structures as well as the possibility
of alternative tangent structures, and afterward an interesting example of alternative tangent
structure to be used for geometrically understanding Sundman transformation for systems of
second-order differential equations is given. Linear systems of second-order differential equa-
tions are reviewed in Section 4 from a geometric perspective. The explicit meaning of Sundman
transformation for systems of second-order differential equations is introduced in Section 5, and
the simpler case of one-dimensional problems and the linearisability of second-order differential
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equations is developed in Section 6, while illustrative examples are collected in Section 7. Some
final remarks and comments on future work are given in the last section.

2 A geometric approach to generalised Sundman trans-

formation

We first review the geometric generalisation of Sundman transformations given in [18]. The
classical Sundman transformation [3] is an infinitesimal scaling of time from t to a new fictitious
time τ given by

dt = r dτ ⇐⇒ dτ

dt
=

1

r
, (2.1)

but it was slightly generalised to dt = c rα dτ , where c ∈ R and α is a positive constant [8], or
more generally to dt = f(r) dτ [14, 19, 20].

We first consider the geometric generalisation of Sundman transformation for systems of
first-order differential equations given in [18]. Recall that, as indicated in [21], we can consider
an autonomous system of first-order differential equations

dxi

dt
= X i(x1, . . . , xn), i = 1, . . . , n, (2.2)

and under the generalisation of Sundman transformation defined by

dt = f(x1, . . . , xn) dτ, f(x1, . . . , xn) > 0, (2.3)

it formally becomes

dxi

dτ
= f(x1, . . . , xn) X i(x1, . . . , xn), i = 1, . . . , n. (2.4)

In the geometric approach the system (2.2) has associated the vector field X with coor-
dinate expression

X =
n∑
i=1

X i(x1, . . . , xn)
∂

∂xi
, (2.5)

and the solutions of the system of equations (2.2) provide us the integral curves of the vector
field X. It has been proved in [18] that if the curve γ(t) is an integral curve of X, and we carry
out the reparametrisation for which the new parameter τ is defined by the relation

dτ

dt
=

1

f(γ(t))
, (2.6)

then the reparametrised curve γ̄(τ) such that γ̄(τ(t)) = γ(t) is an integral curve of the vector
field f X, whose integral curves are solutions of (2.4).

Remark that when each one of the integral curves of a vector field X is arbitrarily
reparametrised we obtain a new family of curves, which when they are integral curves of a
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vector field Y , as the two vector fields X and Y would have the same local constants of mo-
tion, they generate the same 1-dimensional distribution and, at least locally, there exists a
nonvanishing function f such that Y = f X. We have checked that this is the case for the
reparametrisation defined by a Sundman transformation, and then f is the function defining
such Sundman transformation. Therefore, from this geometric point of view the generalised
Sundman transformation (2.3) corresponds to change the vector field X by its conformally
related one X̄ = f X.

It is noteworthy that the ‘velocity’ with respect to the new time is different and so the
new velocity v̄ is related to the old one by v̄i = f vi, as a consequence of (2.3).

The reinterpretation of this ‘infinitesimal time scaling’ was used in [15] to deal with the
satellite theory described by Bond and Janin in [13]. There are many applications of these
generalised Sundman transformations, and more details can be found in [18].

3 Alternative tangent structures and their applications

3.1 Tangent structures and Lagrangian systems

The geometric formulation of Lagrangian Classical Mechanics makes use of the tangent structure
of the velocity phase space [22, 23, 24, 25].

Recall that given a n-dimensional manifold Q, its tangent bundle TQ =
⋃
m∈Q TmQ can

be endowed with a vector bundle structure τQ : TQ → Q, the fibres τ−1
Q (m) = TmQ being

n-dimensional real linear spaces. The usual coordinate charts on the tangent bundle TQ are
induced from a chart on its base manifoldQ. Given a coordinate chart (U,ϕ) ofQ, we can induce
a chart on U = τ−1

Q (U) by the tangent map φ = Tϕ, i.e. φ(m, v) = (ϕ(m), ϕ∗m(v)). In other
words, if πi : Rn → R, i = 1, . . . , n, are the natural projections on each factor and qi = πi ◦ ϕ
are the coordinate functions, i.e. ϕ = (q1, . . . , qn), then we can consider on TQ the coordinate
basis of the linear space of vector fields X(U) usually denoted {∂/∂qj | j = 1, . . . , n} and the
corresponding dual basis for the linear space of 1-forms Ω1(U), {dqj | j = 1, . . . , n}. Then a
vector v on a point q ∈ U is v = vj (∂/∂qj)|q and a covector ζ on such a point is ζ = pj (dqj)|q,
with vj = 〈dqj, v〉 and pj = 〈ζ, ∂/∂qj〉 being the usual velocities and momenta. In this way
each chart (U,ϕ) of Q provides us a trivialization of the tangent bundle on τ−1

Q (U) ≈ U × Rn

and another one on π−1
Q (U) ≈ U × Rn of the cotangent bundle πQ : T ∗Q→ Q.

The tangent bundle TQ, as any other vector bundle on Q, has associated a vector field ∆,
usually called Liouville vector field, generator of dilations along the fibres. Its local expression
in the above mentioned tangent bundle coordinates is

∆(q, v) =
n∑
i=1

vi
∂

∂vi
, (3.1)

and there is also a natural (1,1)-tensor field, usually called vertical endomorphism, or simply
tangent structure, which satisfies ImS = kerS and an integrability condition (see later on). Its
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local coordinate expression in the usual tangent bundle coordinates is

S =
n∑
i=1

∂

∂vi
⊗ dqi. (3.2)

The base manifold Q can be identified to the zero section for τQ, while vertical vector fields on
the tangent bundle TQ are those which are tangent to the fibres, and therefore they have local
expressions

D(q, v) =
n∑
i=1

f i(q, v)
∂

∂vi
, (3.3)

i.e. the vertical vectors are those of kerS. In particular, the Liouville vector field ∆ ∈ X(TQ)
is a vertical vector field, i.e. S(∆) = 0, vanishing on the zero section and, as the vertical
endomorphism S is homogeneous of degree minus one in velocities, such that

L∆S = −S. (3.4)

Moreover, if D ∈ X(TQ) is the vertical vector field given by (3.3) on TQ, then LDS = −S if
and only if D(q, v) = ∆(q, v) + ci(q)∂/∂vi, i.e. if D differs from ∆ in the vertical lift of a vector
field on the base, because

LDS =
n∑
i=1

[
D,

∂

∂vi

]
⊗ dqi = −

n∑
i,j=1

∂f j

∂vi
∂

∂vj
⊗ dqi,

and therefore LDS = −S if and only if

f i(q, v) = vi + ci(q), i = 1, . . . , n.

Note that this shows that ∆ is the only vertical vector field on TQ such that L∆S = −S and
vanishes on the zero section, i.e. ∆(q, 0) = 0.

A special kind of vector fields on the tangent bundle TQ is that of the so called second-
order differential equation vector fields, to be shortened as SODE vector fields. These vector
fields Γ are characterized by the property S(Γ) = ∆, and the local coordinate expression of
such a SODE vector field is

Γ(q, v) =
n∑
i=1

(
vi
∂

∂qi
+ f i(q, v)

∂

∂vi

)
.

The SODE name for such vector fields is due to the property that their integral curves are
solutions of the system 

dqi

dt
= vi

dvi

dt
= f i(q, v)

i = 1, . . . , n, (3.5)

and therefore the projections of such curves on the base manifold are solutions of the system
of second-order differential equations q̈i = f i(q, q̇), for i = 1, . . . , n.
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The Lagrangian formalism is introduced as follows: Given a function L ∈ C∞(TQ), we
can define a 1-form θL on TQ by θL = dL ◦S and the energy function EL ∈ C∞(TQ) by means
of EL = ∆(L)− L. Their local coordinate expressions are, respectively,

θL =
n∑
i=1

∂L

∂vi
dqi, EL =

n∑
i=1

vi
∂L

∂vi
− L. (3.6)

The Lagrangian function L ∈ C∞(TQ) is said to be regular if ωL = −dθL is nondegen-
erate, i.e. (ωL)∧n 6= 0. In this case we can define a Hamiltonian dynamical system on TQ
by (TQ, ωL, EL) and then the dynamical vector field Γ, which is a SODE vector field, is the
solution of the dynamical equation

i(Γ)ωL = dEL. (3.7)

Remark also that if Γ is a SODE vector field the equation (3.7) is equivalent to

LΓθL = dL, (3.8)

because LΓθL = i(Γ)dθL + d(i(Γ)θL), and when Γ is a SODE we have that i(Γ)θL = ∆L.
More details of the geometric approach to Lagrangian mechanics can be found in [22, 23,

24, 25].

3.2 Alternative tangent structures on a tangent bundle

The use of alternative structures for the description of mechanical systems has been shown
to be very useful for a better understanding of dynamics, providing unexpected results as,
for instance, recursion operators [26, 27, 28] and non-Noether constants of motion [29]. The
relevance and usefulness of the existence of alternative geometric structures have been shown
in many recent works and have been summarized in a recent book [25].

In particular, the tensorial characterisation of linear structures and vector bundle struc-
tures (partial linear structures) on a manifold have been analysed in Chapter 3 of [25]. In
summary, a linear structure on a manifold M is characterised (see [25, 30]) by the existence of
a complete vector field ∆ ∈ X(M) with only one non-degenerated critical point and such that

F (0)
∆ = R and F (1)

∆ separates derivations, where F (k)
∆ is the set of functions on the manifold M

defined by
F (k)

∆ = {f ∈ F(M) | ∆f = k f}, k ∈ {0} ∪ N.

Recall that we say that F (1)
∆ separates derivations when given two different derivations D1 and

D2 there exists a function f ∈ F (1)
∆ such that D1f 6= D2f

This vector field ∆ is called Liouville vector field. Similarly, a given n-dimensional man-
ifold M is a vector bundle when there exists a complete vector field ∆, also called Liouville
vector field, such that the set of points m on M such that ∆(m) = 0 is a k-dimensional subman-

ifold Q, the set of functions F (0)
∆ is an Abelian algebra whose spectrum is Q, and the equation

∆f = f admits n−k functionally independent fibrewise-linear functions (see [30]). In this case

dF (0)
∆ and dF (1)

∆ span the set of 1-forms Ω1(M) as a F (0)
∆ -module, or, in other words, ∆ defines,

6



at least locally, a partial linear structure and a submersion π : M → Q. It is possible to choose
local coordinates (x1, . . . , xk) on the base manifold and (y1, . . . , yn−k) on the fibres in such a
way that (see [25])

∆ =
n−k∑
α=1

yα
∂

∂yα
. (3.9)

The particular case we are interested in is that of a tangent bundle structure. The
concept of almost-tangent structure on a manifold M was introduced in [31] and [32] as a (1,1)-
tensor field S on the manifold M such that at each point p ∈ M the kernel of the linear map
Sp : TpM → TpM coincides with its image. It follows that S2 = 0 and that M must be even
dimensional, dimM = 2n. It is a particular case of the more general definition given in [33],
and its study received attention during the nineteen-seventies [33, 34, 35, 36, 37].

The almost-tangent structure S is said to be integrable if its Nijenhuis tensor NS vanishes.
We recall that the Nijenhuis tensor NT of a (1,1)-tensor field T on the manifold M is a (1,2)-
tensor field given by

NT (X1, X2) = [T (X1), T (X2)]+T 2([X1, X2])−T ([T (X1), X2])−T ([X1, T (X2)]), ∀X1, X2 ∈ X(M),
(3.10)

and therefore, when T = S, as S2 = 0,

NS(X1, X2) = [S(X1), S(X2)]− S([S(X1), X2])− S([X1, S(X2)]), ∀X1, X2 ∈ X(M),

and consequently, NS = 0 if, and only if, for every vector field X ∈ X(M) [38],

LS(X)S = −(LXS) ◦ S,

because, for each vector field Y ∈ X(M)

(LS(X)S)(Y ) = [S(X), S(Y )]− S([S(X), Y ]),

and
(LXS)(S(Y )) = LX(S(S(Y )))− S([X,S(Y )]) = −S([X,S(Y )]).

The remarkable point is that the NS = 0 condition implies that the vertical distribution defined
by kerS = ImS is involutive, because if X, Y ∈ kerS = ImS, then there exist X̃, Ỹ ∈ X(M)

such that S(X̃) = X and S(Ỹ ) = Y , and then

[X, Y ] = [S(X̃), S(Ỹ )] = S([S(X̃), Ỹ ]) + S([X̃, S(Ỹ )]),

i.e. [X, Y ] lies in the image of S, which coincides with kerS, and therefore the distribution
defined as kerS is involutive, and then integrable in the Frobenius sense. Recall that Frobenius
theorem establishes that a distribution D is integrable if, and only if, it is involutive, i.e.
[D,D] ⊂ D. In this case the manifold splits in leaves which are the integral submanifolds of D
and integrable distributions are called foliations.

As pointed-out in [38], at least locally, the integral submanifolds of such foliation are the
fibres of a fibration π : M → Q where Q is a n-dimensional manifold. The vertical vector
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fields, which project on the zero vector field on Q, are those taking values in kerS. Then, if
X1 ∈ X(M) and X2 ∈ X(M) are projectable vector fields on the same vector field X̄ ∈ X(Q),
then as X2−X1 is a vertical vector field, S(X1) = S(X2), that is, X1−X2 ∈ kerS. Conseqently,
if X ∈ X(M) projects on a vector field X̄ ∈ X(Q), then S(X) only depends on X̄.

Lemma 3.1.
i) If X ∈ kerS and the vector field Y ∈ X(M) is projectable, then [X, Y ] ∈ kerS.
ii) If X1, X2 ∈ X(M) are projectable vector fields, then [S(X1), S(X2)] = 0.

Proof.- i) As the vector field X is projectable, because it is in kerS, and Y ∈ X(M)
is projectable on Ȳ ∈ X(Q), then the vector field [X, Y ] is projectable on [0, Ȳ ] = 0, i.e.
[X, Y ] ∈ kerS.

ii) The vanishing condition of the Nijenhuis tensor, NS(X1, X2) = 0, together with the
result i) imply that [S(X1), S(X2)] = 0, because [S(X1), X2]) and [X1, S(X2)]) are in kerS.

2

If (x1, . . . , xn) are local coordinates on Q we can choose local coordinates (xi, ui) on
M , and it was proved in [38] that such local coordinates ui can be chosen in such a way
that if X1, . . . , Xn, are vector fields on M projecting on ∂/∂x1, . . . , ∂/∂xn, respectively, as
[S(Xi), S(Xj)] = 0, the local coordinates on the fibres satisfy S(Xi) = ∂/∂ui. The local
expression of S is then S = (∂/∂ui)⊗ dxi.

Note however that the coordinates ui are determined in this procedure only up to an
additive constant on each fibre, i.e. they depend on a choice that plays the rôle of zero section,
because they are solutions of the system of differential equations S(Xi)u

j = δji , i, j = 1 . . . n,
and we can change ui by ūi = ui + f i(x). The ambiguity functions f i are fixed by the choice
of the zero section. Such a choice uniquely determines, for each coordinate system (xi) on the
base manifold Q, a system of local coordinates (xi, ui) on M such that the integrable almost
tangent structure is given by

S =
n∑
i=1

∂

∂ui
⊗ dxi. (3.11)

Given a vector field on the base, X̄ ∈ X(Q), there is one vector field X ∈ X(M) such
that X and X̄ are π-related, the relation LXS = 0 holds, and X is tangent to the image of the
zero section. In fact, if

X̄(x) =
n∑
i=1

f i(x)
∂

∂xi
, (3.12)

the coordinate expression of a vector field X π-related to X̄ is

X(x, u) =
n∑
i=1

(
f i(x)

∂

∂xi
+ gi(x, u)

∂

∂ui

)
,

and the condition LXS = 0 implies that

∂gi

∂uj
− ∂f i

∂xj
= 0, i, j = 1 . . . n⇐⇒ gi =

n∑
j=1

∂f i

∂xj
uj + ci(x), i = 1 . . . n,
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and then the tangency condition implies ci(x) ≡ 0, and hence the explicit coordinate expression
of such a vector field X is:

X(x, u) =
n∑
i=1

f i(x)
∂

∂xi
+

n∑
i,j=1

∂f i

∂xj
uj

∂

∂ui
, (3.13)

which formally looks like the complete lift of X̄ from Q to M .
Furthermore, there is a uniquely-defined vertical vector field ∆ such that L∆S(X) =

−S(X) for such vector fields (3.13) and ∆ = 0 on the zero section, because S(X) is then the

vertical vector field S(X) =
n∑
i=1

f i(x)(∂/∂ui), and if the local expression of the vertical field ∆

is ∆ =
n∑
i=1

gi(x, u)(∂/∂ui), as

[
n∑
i=1

f i(x)
∂

∂ui
,

n∑
j=1

gj(x, u)
∂

∂uj

]
=

n∑
i,k=1

f i(x)
∂gk

∂ui
∂

∂uk
,

and L∆S(X) = −S(X), it implies ∂gk/∂ui = δki , i, k = 1 . . . n, i.e. gk(x, u) = uk + ck(x), while
the vanishing condition on the zero section fixes ci(x) ≡ 0, and hence the explicit expression of
∆ is

∆ =
n∑
i=1

ui
∂

∂ui
. (3.14)

The vector field ∆ provides a linear space structure to every fibre of π : M → Q.
The vector fields associated to systems of second-order differential equations with respect

to the new integrable almost tangent structure given by (3.11) are those of the form

D(x, u) =
n∑
i=1

(
ui

∂

∂xi
+ f i(x, u)

∂

∂ui

)
,

and are characterized by S(D) = ∆.
The rôle of the integrable almost tangent structure was clarified in [39] where it was

clearly established that the almost tangent structure is responsible only of the affine structure
of the tangent bundle rather than of its linear structure. It is the vector field ∆ which selects
the linear structure as indicated in the preceding paragraph.

3.3 An important example

A particularly important example of integrable almost tangent structure is the above mentioned
one of the tangent bundle τQ : TQ→ Q, where S is the vertical endomorphism (see e.g. [23]).
Alternative tangent structures have also been exhibited in [24], but we are going to fix our
attention on the following example which is a particular case of other more general method
of construction, given a vector field X ∈ X(TQ) on a tangent bundle τ : TQ → Q, of an
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alternative tangent structure such that the vector field X is a SODE vector field with respect
to the new tangent bundle structure.

Now, given a constant sign basic function τ ∗Qh on TQ, with h ∈ C∞(Q), we can introduce
a new integrable almost tangent structure (τ ∗Qh)S on TQ, simply denoted S̄ = hS, because
ker(hS) = Im(hS). The vertical distribution defined by ker(hS) coincides with the usual one
defined by kerS and the set of leaves can be identified with the base manifold Q. If we choose a
local set of coordinates for Q, (q1, . . . , qn), and if X1, . . . , Xn, are τQ-projectable vector fields on
TQ, τQ-related to ∂/∂q1, . . . , ∂/∂qn, respectively, then the vector fields hS(X1), . . . , h S(Xn)
are pairwise commuting (by Lemma 3) and there exist local coordinates v̄1, . . . , v̄n, such that
S(hXi) = hS(Xi) = ∂/∂v̄i, i = 1, . . . , n, and as S(Xi) = ∂/∂vi, with the same choice for the
zero section, we can see that S̄ = (τ ∗Qh)S, has the local expression

S̄ =
n∑
i=1

∂

∂v̄i
⊗ dqi = hS,

with the fibre coordinates being given by h v̄i = vi, i = 1, . . . , n. Of course the vector field ∆̄
coincides with the usual generator of dilations, the standard Liouville vector field ∆.

Note that as the local expression of the new (1,1)-tensor S̄ is similar to that of S, the
condition NhS = 0 follows from NS = 0.

It is also to be remarked that the v̄i are not coordinates adapted to the original tangent
bundle structure because the 1-forms αi defining such coordinates of the vector v by v̄i = αi(v)
are not exact but αi = (1/h)dqi, and they correspond to the so called quasi-velocities (see
[40, 41, 42, 43] and references therein).

In summary, going from S to S̄ = hS we obtain a new tangent structure on TQ, with
its corresponding Liouville vector field ∆̄ = ∆ and a new concept of SODE vector field with
respect to the new tangent structure.

4 Linear systems of second-order differential equations

Sundman transformation was first introduced to deal with systems of second-order differential
equations, Newton equations of motion, and it was used to study the linearisation of systems
of second-order differential equations (see e.g. [44, 45]). We first recall some relevant concepts
of the geometry of autonomous systems of second-order differential equations. As mentioned
in the preceding section, given such a system

d2xi

dt2
= X i(x1, . . . , xn, ẋ1, . . . , ẋn), i = 1, . . . , n, (4.1)

it has associated a system of first-order differential equations
dxi

dt
= vi

dvi

dt
= X i(x1, . . . , xn, v1, . . . , vn)

i = 1, . . . , n, (4.2)
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whose solutions define the integral curves of the second-order differential equation vector field
Γ on TQ

Γ =
n∑
i=1

(
vi

∂

∂xi
+X i(x, v)

∂

∂vi

)
, (4.3)

i.e. a system of second-order differential equations can be dealt with a SODE vector field Γ on
the tangent bundle. Such vector fields can be characterised in several ways. For instance by
being sections of the two structures of vector bundle of T (TQ) over TQ, τTQ : T (TQ) → TQ
and TτQ : T (TQ)→ TQ, or alternatively, as indicated in the preceding Section, by S(Γ) = ∆.
But, when considering an alternative tangent structure there will be different second-order
differential equations vector fields with respect to the new tangent structure.

An interesting particular case is that of systems of second-order differential equations that
are linear in a given coordinate system, i.e. a tangent bundle chart induced from a chart for the
base manifold Q on an open set U of Q. In this case the functions X i on U appearing in (4.3)

must be of the form X i(x, v) =
n∑
j=1

(Ai j x
j +Bi

j v
j), where Ai j and Bi

j are real numbers. In

geometric terms, this property can be written as [∆̃,Γ] = 0, with ∆̃ being the vector field on
U such that ∆̃ = ∆Q + ∆, where ∆Q and ∆ are the vector fields on U with local expressions

∆Q =
n∑
i=1

xi(∂/∂xi) and ∆ =
n∑
i=1

vi(∂/∂vi), because

[∆̃,Γ] =

[
n∑
i=1

(
xi

∂

∂xi
+ vi

∂

∂vi

)
,

n∑
j=1

(
vj

∂

∂xj
+Xj(x, v)

∂

∂vj

)]
=

=
n∑

j,k=1

(
xj
∂Xk

∂xj
∂

∂vk
+ vj

∂Xk

∂vj
∂

∂vk

)
−

n∑
j=1

Xj(x, v)
∂

∂vj
,

(4.4)

and therefore, [∆̃,Γ] = 0, if, and only if, each component X i, for = 1, . . . , n, satisfies

n∑
j=1

(
xj
∂X i

∂xj
+ vj

∂X i

∂vj

)
= X i(x, v), i = 1, . . . , n,

which, according to Euler theorem of homogeneous functions, mean that the components X i

are homogeneous functions of degree 1, and this implies (see e.g [46], p. 213) that there exist
real constants Ai j and Bi

j such that

X i(x, v) =
n∑
j=1

(Ai j x
j +Bi

j v
j), i = 1, . . . , n. (4.5)

Remark that the vector field ∆̃ is not intrinsic but it depends on the choice of the chart on U .
More explicitly, the vector field ∆̃ is the complete lift of ∆Q, and hence this notion of linearity
of a SODE depends on the chart that has been used. Note also that if ∆Q is globally defined,
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then so is ∆̃. Recall that the existence of such globally defined complete vector field ∆Q implies
that Q is a linear space.

Another subset of interesting systems are those which are linear in velocities, i.e. char-
acterised by functions X i(x, v) in (4.3) for which there exist real functions Bi

j such that

X i(x, v) =
n∑
j=1

Bi
j(x) vj, i = 1, . . . , n. (4.6)

Such fibre-linear systems can be characterised in terms of the partial linear structure of the
tangent bundle TQ, which allows us to define the Liouville vector field ∆. In fact, we can see
that a SODE vector field Γ is linear (in velocities) if 〈dvi, [∆, X]〉 = 0, for all indices i = 1, . . . , n,
because if Γ is a SODE given by (4.3), then

[∆,Γ] =
n∑
i=1

vi
∂

∂xi
+

n∑
j,k=1

(
vk
∂Xj

∂vk
−Xj

)
∂

∂vj
,

and therefore, as

〈dvi, [∆, X]〉 =
n∑
k=1

vk
∂X i

∂vk
−X i, i = 1, . . . , n,

we see that 〈dvi, [∆, X]〉 = 0, for i = 1, . . . , n, if and only if there exist n2 real basic functions

Ai j(x) such that X i =
n∑
j=1

Ai j(x) vj, i.e. the second subsystem of the associated system of

differential equations for the determination of the integral curves of Γ is linear in velocities.

We may also be interested in the case of systems of inhomogeneous linear second-order
differential equations, for which the components X i of the vector field X in (4.2) must be of

the form X i(x, v) =
n∑
j=1

(
Ai j x

j +Bi
j v

j
)

+ Ci, with Ai j, B
i
j and Ci real constants, i.e. the

vector field Γ is a sum of Γ = Γ0 + Γ−1 where

Γ0 =
n∑
i=1

(
vi

∂

∂xi
+

n∑
j=1

(Ai j x
j +Bi

j v
j)
∂

∂vi

)
, Γ−1 =

n∑
i=1

Ci ∂

∂vi
, (4.7)

which satisfy
[∆̃,Γ0] = 0, [∆̃,Γ−1] = −Γ−1,

and therefore, [∆̃,Γ] = −Γ−1 what implies that [∆̃,Γ] is a vertical vector field with constant
coefficients such that

[∆̃, [∆̃,Γ]] = −[∆̃,Γ].

This last property characterises the vector fields corresponding to inhomogeneous linear
second-order differential equations in a given chart, because this shows that if the vector field

12



[∆̃,Γ] is a constant vertical field −
n∑
i=1

Ci∂/∂vi and, moreover, [∆̃, [∆̃,Γ]] = −[∆̃,Γ], then (4.4)

shows that the components X i satisfy ∆̃(X i) −X i = −Ci, and therefore, there exist 2n2 + n

real constants Ai j, B
i
j and Ci such that X i =

n∑
j=1

(
Ai j x

j +Bi
j v

j
)

+ Ci.

Our aim is to study under which circumstances a given systems of second-order differential
equations can be transformed by an appropriate Sundman transformation into a linear or linear
in velocities system. The properties of a Sundman transformation of a systems of second-order
differential equations are analysed in next Section.

Observe that we have characterised different kinds of SODE systems that we can integrate.
These characterisations are not intrinsic but depend on the existence of an appropriate chart.

5 Sundman transformation for systems of second-order

differential equations

Let us analyse now the geometric approach to Sundman transformation for such systems. As a
system of second-order differential equations is geometrically described by a SODE vector field,
Γ, which is of a special kind of vector fields in the tangent bundle TQ, the theory developed for
systems of first-order differential equations suggests us to proceed by similarity and obtain the
transformed vector field by multiplication with the function defining the Sundman transforma-
tion. However as now the second derivatives appear, maybe this approach should be modified.
On the other hand, when multiplying by the function f the SODE characteristic property is
lost. This leads us to examine this definition more carefully, and it will be shown that we can
overcome these two problems in the particularly important case of the function f defining the
Sundman transformation being a constant sign basic function, and this fact will be assumed
hereafter without explicit mention.

Actually, when applying a Sundman transformation (2.3) to the system (4.2), as indicated
above, the new velocities with respect to the new time, v̄, are related to the previous ones by
v̄i = f vi, as a consequence of (2.6), because given a curve,

vi =
dxi

dt
=
dxi

dτ

dτ

dt
=

1

f
v̄i ,

and therefore, as f is a basic function,

∂

∂vi
=

n∑
j=1

∂v̄j

∂vi
∂

∂v̄j
= f

∂

∂v̄i
.

This suggests the use of non-natural coordinates in TQ, the so called quasi-velocities [40, 41,
42, 43], which have been shown to be very useful, for instance, in the study of Chaplygin
systems [47]. In the case we are dealing with, it amounts to consider {f dx1, . . . , f dxn} as
a nonholonomic basis of the C∞(Rn)-module of sections of τ : TRn → Rn (see [41, 43] and
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references therein). The corresponding dual basis of the module of vector fields on TQ is made
up by {Yk = f−1 ∂/∂xk | k = 1, . . . , n}, and then, as

[Yi, Yj] =

[
f−1 ∂

∂xi
, f−1 ∂

∂xj

]
= −f−3 ∂f

∂xi
∂

∂xj
+ f−3 ∂f

∂xj
∂

∂xi
,

i.e.

[Yi, Yj] =
1

f 2

(
∂f

∂xj
Yi −

∂f

∂xi
Yj

)
=

j∑
k=1

γkij Yk,

we have that [Yi, Yj] =
n∑
k=1

γkij Yk, where the Hamel symbol γkij, necessary to write the Hamel-

Boltzman equations corresponding to the dynamical evolution in the Lagrangian formalism
[40, 42, 43], is given by

γkij =
1

f 2

(
∂f

∂xj
δki −

∂f

∂xi
δkj

)
.

With this in mind we have a coordinate change to a new coordinate system on the
manifold TQ

(xi, vi) 7→ (x̄i, v̄i) , x̄i = xi, v̄i = fvi ,

where we will keep the notation x̄i for clarity. Observe that, by direct calculus, we obtain
∂

∂xj
=

∂

∂x̄j
+

n∑
i=1

∂f

∂xj
vi

∂

∂v̄i
=

∂

∂x̄j
+

n∑
i=1

1

f

∂f

∂x̄j
v̄i

∂

∂v̄i

∂

∂vj
= f

∂

∂v̄j

.

Correspondingly, 
dx̄k = dxk

dv̄k =
n∑
l=1

1

f

∂f

∂x̄l
v̄kdxl + f dvk

,

and therefore, 
dxk = dx̄k

dvk =
1

f

(
−

n∑
l=1

1

f

∂f

∂x̄l
v̄k dx̄l + dv̄k

)
.

Consequently, the new coordinate expression of the vector field Γ given by (4.3) is

Γ(x, v̄) =
n∑
i=1

v̄i

f

∂

∂x̄i
+

n∑
i=1

(
fX i(x, v̄/f) + v̄i

n∑
j=1

1

f 2

∂f

∂x̄j
v̄j

)
∂

∂v̄i
. (5.1)

To analyse the behaviour under the generalised Sundman transformation (2.3) of the
system (4.1), we can use the operational relations

d

dt
=

1

f

d

dτ
,

d2

dt2
=

1

f

d

dτ

((
1

f

)
d

dτ

)
=

1

f 2

d2

dτ 2
− 1

f 3

df

dτ

d

dτ
, (5.2)
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and hence, if x(t) is a solution of (4.1), and the new parameter τ is given by

τ(t) =

∫ t 1

f(η)
dη,

then x̄(τ) such that x̄(τ(t)) = x(t) satisfies the system of second-order differential equations

d2x̄

dτ 2
= X̄ i

(
x̄,
dx̄i

dτ

)
i = 1, . . . , n,

with

X̄ i

(
x̄,
dx̄

dτ

)
= f 2X i

(
x̄,

1

f

dx̄

dτ

)
+

d

dτ
(log f)

dx̄i

dτ
, (5.3)

together with the condition v̄i = f vi, i.e. dx̄i/dτ = f dxi/dt. The system can be rewritten as
dx̄i

dτ
= f vi = v̄i

dv̄i

dτ
= f 2X i

(
x̄,

1

f
v̄

)
+

d

dτ
(log f) v̄i

. (5.4)

This shows that the images under the generalised Sundman transformation of the integral
curves of the vector field Γ given by (4.3), are the integral curves of the vector field Γ̄(x̄, v̄)
given by

Γ̄(x̄, v̄) =
n∑
j=1

v̄j
∂

∂x̄j
+

n∑
i=1

(
n∑
j=1

1

f
v̄j
∂f

∂x̄j
v̄i + f 2X i

(
x̄,

1

f
v̄

))
∂

∂v̄i
, (5.5)

and a simple comparison with (5.1) shows that

Γ̄(x̄, v̄) = f(x̄)Γ(x̄, v̄), (5.6)

and therefore we see that, under the action of the Sundman transformation, the associated
SODE vector field Γ given by (4.3) is multiplied by the function f ∈ C∞(Q), Γ̄ = f Γ. Moreover,
remark that the new vector field Γ̄ = f Γ is not a SODE vector field anymore. However, in
the very relevant special class of Sundman transformations with f being a constant sign basic
function, f ∈ C∞(Q), it is clear that the new vector field Γ̄ = f Γ is a SODE vector field with
respect to the new tangent structure S̄ related to S as S̄ = f−1 S. Therefore the Sundman
transformation amounts to multiply the vector field Γ by the function f but also to consider
a new tangent structure, and then the vector field Γ̄ is now a SODE with respect to the new
tangent structure defined by

S̄ = f−1S = f−1

n∑
j=1

(
∂

∂vj
⊗ dxj

)
=

n∑
i=1

∂

∂v̄i
⊗ dx̄j ,

with Liouville vector field

∆̄ =
n∑
j=1

v̄j
∂

∂v̄j
=

n∑
j=1

vj
∂

∂vj
= ∆ .
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In summary, if Γ is a SODE vector field for the usual tangent bundle structure, then Γ̄ is a
SODE vector field for the tangent structure defined by S̄ = (1/f)S.

It is then clear from the expression (5.5) of the vector field Γ̄ in quasi-coordinates that,
in the simpler and relevant case in which the X i are basic functions, the new vector field is
not linear in the associated chart. Conversely, in a general case one can try to determine, if
possible, the function f in such a way that the vector field Γ̄ be linear in the fibre coordinates
of the corresponding associated system of quasi-coordinates, i.e. it is fibre-linear in the new
tangent structure.

Remark also that if we apply successively to the system (4.2) two Sundman transfor-
mations (2.3), characterised respectively by the functions f1 ∈ C∞(Q) and f2 ∈ C∞(Q), we
obtain the system obtained by applying the Sundman transformation defined by the product
f2 f1 ∈ C∞(Q), and that the transformed vector field is a SODE vector field with respect to
the new tangent structure ¯̄S = f−1

2 f−1
1 S. Moreover, as the set of positive real functions is

an Abelian multiplicative Lie group, the Sundman transformation corresponding to f−1 is the
inverse of the Sundman transformation defined by f .

According to the previous comments, given an arbitrary SODE field Γ, it may exist a
positive basic function f such that the vector field Γ̄, which is a SODE vector field with respect
to the new almost tangent structure S̄ = f−1 S, be linear, or linear in velocities, in the new
tangent structure. Note that when we consider a Sundman transformation (2.3), characterised
by the functions f ∈ C∞(Q), not only the given vector field Γ should be transformed to Γ̄,
but we should change the tangent bundle structure S to S̄ = f−1 S. But then there is also
a new chart for TQ determined by the quasi-coordinates (xi, v̄i). The question is when is it
possible to choose the function f in order to the transformed vector field Γ̄ be fibre-linear with
respect to the changed tangent bundle structure. This happens when the function f is such
that [∆̃, Γ̄] = 0. Similarly, sometimes the function f can be chosen such that the vector field Γ̄
corresponds to a system of inhomogeneous linear differential equations. Finally, it is noteworthy
that very often the existence of constants of motion can be used in such a way that the reduced
system is linear, even if the original system is nonlinear, as it will be shown by means of an
illustrative example.

The time evolution in terms of the new time τ of the new quasi-coordinates obtained
under the given Sundman transformation, according to the second equation in (5.4) is

dv̄i

dτ
=

n∑
j=1

f
∂f

∂xj
vj vi + f 2X i(x, v) =

n∑
j=1

1

f

∂f

∂x̄j
v̄j v̄i + f 2X i

(
x̄,
v̄

f

)
, (5.7)

and therefore the projection on the base manifold of the integral curves of Γ̄ are solutions of
the system of second-order differential equations

d2x̄i

dτ 2
=

(
n∑
j=1

1

f

∂f

∂x̄j
dx̄j

dτ

)
dx̄i

dτ
+ f 2X i

(
x̄,

1

f

dx̄

dτ

)
. (5.8)
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6 Linearization of scalar SODEs

6.1 An example in Classical Mechanics

In this section we consider the case of an autonomous one-dimensional SODE, i.e. n = 1. We
first consider, because of its usefulness in mechanics, the simplest case of X1 = F being a basic
function. Then, from the expression (5.7) we obtain the equation for the integral curves of the
vector field corresponding to Γ = v ∂/∂q + F (q) ∂/∂v:

dv̄

dτ
=

1

f
f ′(q) v̄ v̄ + f 2 F (q), (6.1)

where q is the local coordinate in the 1-dimensional manifold Q.
In the particular case of a system defined by a potential function V , where F = −V ′,

the corresponding SODE vector field Γ in coordinates (q, v) and the transformed vector field
Γ̄ = f Γ in coordinates (q̄, v̄) are given, respectively, by

Γ(q, v) = v
∂

∂q
− V ′(q) ∂

∂v
, Γ̄(q̄, v̄) = v̄

∂

∂q̄
+

(
f ′

f
v̄2 − f 2V ′(q̄)

)
∂

∂v̄
.

But it is known that the energy function E = 1
2
v2 + V = 1

2
(v̄/f)2 + V is a conserved quantity

and if we restrict ourselves to study the motions for a given energy E,

dv̄

dτ
= ff ′(q) 2(E − V)− f 2 V ′(q) =

d

dq

(
f 2(E − V)

)
, (6.2)

and then this is an inhomogeneous linear differential equation in the variable q iff there exist
constants A, B and C such that f 2(E −V) = Aq2 +B q +C, from where the final equation is

dv̄

dτ
= 2A q̄ +B =⇒ d2q̄

dτ 2
= 2A q̄ +B.

In the very relevant case of the radial equation for a given fixed angular momentum ` for
Coulomb–Kepler problem for which q is the radial variable r and V (r) = −k/r, we have

V(r) = V (r) +
`2

2r2
= −k

r
+

`2

2r2
, F (r) = −V ′(r) =

`2

r3
− k

r2
,

and from f 2 (E − V) = Ar2 +B + C, we obtain

f 2

(
E +

k

r
− `2

2r2

)
= Ar2 +B r + C,

i.e.
f 2E = Ar2, f 2 k = B r2, `2 f 2 = −2C r2,

and therefore, the general solution is a multiple of f(r) = r with

A = E, B = k, C = − `
2
,
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and then the transformed second-order differential equation is:

d2r

dτ 2
= 2E r + k,

which is the result given in [48]. The remarkable fact is that the Sundman transformation is
independent of `, because f(r) is proportional to r.

As another particular example in the opposite direction, we can start from the linear
SODE vector field Γ describing the time evolution of the 1-dimensional harmonic oscillator, i.e.
Γ = v (∂/∂x)− ω2 x (∂/∂v), which corresponds to F (x) = −ω2x, i.e. V = 1

2
ω2x2. In this case,

under the Sundman transformation defined by a given function f ,

Γ̄(x̄, v̄) = f(x̄) Γ(x, v̄) = v̄
∂

∂x̄
+

(
1

f

df

dx̄
v̄2 − f 2 ω2 x̄

)
∂

∂v̄
, v̄i = f vi,

whose integral curves are such that their projections on the base manifold are solutions of the
differential equation

d2x̄

dτ 2
− 1

f

df

dx̄

(
dx̄

dτ

)2

+ f 2 ω2 x̄ = 0,

i.e. it appears an additional quadratic damping term, and linearity of harmonic oscillator is
lost. Conversely, an equation of this last type can be reduced to a harmonic oscillator by means
of the Sundman transformation defined by the function f−1. If, for instance, f(x) = x2, the
former equation reduces to

d2x̄

dτ 2
+

2

x̄

(
dx̄

dτ

)2

+ ω2 1

x̄3
= 0,

i.e. it is the Ermakov-Pinney equation corresponding to free motion under the action of a
damping quadratic term [49]. This is a prototype for linearisable examples to be analysed next.

6.2 Generalised Sundman transformations

Let us remark that from a geometric viewpoint only Sundman transformations dt =
f(x) dτ have a sense, i.e. the function f does not depend on t, which is not a coordinate.
However, as it was stated in Section 4, in adapted coordinates y, a linear structure on the
base manifold Q = R is of the form ∆Q = y ∂/∂y and the linear character of a given SODE
depends on the choice of the coordinate y. The strategy that we will follow in the study of
the linearisation process is to find a coordinate transformation y = ϕ(x) from the original
coordinate to the adapted one, and a Sundman transformation dτ = h(x) dt which transforms
our original SODE into a linear one in the new coordinate y and its velocity. This will be done
in several steps, by finding several coordinate transformations and Sundman transformations
which simplify the form of the SODE. In other words, we admit composition of ordinary changes
of coordinates with the Sundman transformations considered until now. In this context we will
refer to a transformation of the form y = x, dτ = h(x) dt as a pure Sundman transformation,
and to y = ϕ(x), dτ = dt as a pure coordinate transformation. By composition of such type of
transformations we get a group of generalised Sundman transformations (h, ϕ) defined as

y = ϕ(x), dτ = h(x) dt, (6.3)
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with composition law
(h2, ϕ2) ? (h1, ϕ) = ((h2 ◦ ϕ1)h1, ϕ2 ◦ ϕ1).

The neutral element is (1, id) and the inverse of (h, ϕ) is ((1/h) ◦ϕ−1, ϕ−1). The pure Sundman
transformations are those of the form (h, id), and close on an Abelian invariant subgroup, while
usual coordinate transformations correspond to those of the form (1, ϕ) and made up also a
subgroup. As each transformation can be factorised as

(h, ϕ) = (1, ϕ) ? (h, id) = (h ◦ ϕ−1, id) ? (1, ϕ),

the set of generalised Sundman transformations is a semidirect product group.

6.3 Linearisation under generalised Sundman transformations

We will say that a SODE ẍ = X(x, ẋ) is fibre-linearisable (or linearisable in velocities)
under generalised Sundman transformations if it can be transformed to a SODE of the form
ẍ + A(x)ẋ + b(x) = 0, where A and b are real functions, while we will say that the SODE is
linearisable under generalised Sundman transformations if it can be transformed into a SODE
of the form ẍ+α ẋ+Bx+C = 0 for some real numbers α,B,C ∈ R. Remark that when C 6= 0
the transformed equation is an inhomogeneous linear equation.

Consider a scalar SODE
d2x

dt2
= X

(
x,
dx

dt

)
, (6.4)

i.e. a generic autonomous second-order differential equation. In order to study the linearisability
of such equation remark that the abovementioned group properties of the set of generalised
Sundman transformations show that the possible linearising transformations will be factorisable
as a composition of a coordinate transformation first and a pure Sundman transformation later,
leading to the linear equation. Inverting the process we can see first the form of the image
under a pure Sundman transformation of the prototype linear equation. This is given by the
the general transformation rule (5.8) for the 1-dimensional case, and then we see that the image
is an equation of the class of SODEs of the form

d2x

dt2
+ γ0(x)

(
dx

dt

)2

+ A0(x)
dx

dt
+ b0(x) = 0, (6.5)

i.e. the function X(x, v) is a polynomial of degree at most two in the variable v = dx/dt, or in
other words, ∂3X/∂v3 = 0. But such a class is invariant under changes of coordinates because
if we consider x̄ = ϕ(x), then

dx̄

dt
=
dϕ

dx

dx

dt
,

d2x̄

dt2
=
d2ϕ

dx2

(
dx

dt

)2

+
dϕ

dx

d2x

dt2
,

and then x̄ satisfies an equation of the same type than (6.5). Therefore we obtain as a first result
that a necessary condition for fibre-linearisability under generalised Sundman transformations
is that the function X(x, v) be a polynomial of degree at most 2 in the variable v = dx/dt,
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or in other words, ∂3X/∂v3 = 0, and consequently second-order differential equations that are
linearisable under generalised Sundman transformations must be of the form (6.5). Such a class
of second-order differential equations is invariant under generalised Sundman transformations
and contains the subset of inhomogeneous linear in velocities equations, which correspond to
equations (6.5) with γ0 = 0. As an instance we can say that the example of the Rayleigh-like
oscillator studied in [50],

ẍ+ f(x) ẋ3 + g(x)ẋ2 + h(x)ẋ+ k(x) = 0,

is not linearisable under generalised Sundman transformations.
We must determine which ones of these equations (6.5) are linearisable. The quadratic

in the velocity term of (6.5) can always be eliminated by an appropriate pure Sundman trans-
formation x1 = x, dt1 = h(x) dt. Indeed, under such a transformation the SODE takes the
form

d2x1

dt21
+

(
γ0 +

h′

h

)(
dx1

dt1

)2

+
1

h
A0
dx1

dt1
+

1

h2
b0 = 0,

so that the new coefficients are

γ1 = γ0 +
h′

h
, A1 =

A0

h
and b1 =

b0

h2
. (6.6)

We can choose as function h = h0(x) a non trivial solution of the linear ode

dh

dx
+ γ0(x)h = 0,

whose general solution is h(x) = K exp

(
−
∫
γ0(x) dx

)
with K being any constant, which is

irrelevant for our purposes. With this choice for the function h the transformed second-order
differential equation under the pure Sundman transformation defined by h becomes the fibre-
linear equation

d2x1

dt21
+ A1(x1)

dx1

dt1
+ b1(x1) = 0, (6.7)

with A1 = A0/h0 and b1 = b0/h
2
0. Therefore any SODE of the given class (6.5) is fibre-

linearisable by a pure Sundman transformation.
At this point we should notice that if both A1 and b1 vanish identically (i.e. A0 and b0

both vanish identically) then we have already got a special linear equation, more specifically,

d2x1

dt21
= 0.

Let us consider now the case where at least one of such functions is not the zero function.
Remark that once we have got an inhomogeneous fibre-linear SODE we can use only Sundman
transformations that transform an inhomogeneous fibre-linear SODE into a new inhomogeneous
fibre-linear SODE. These are slightly more general than affine transformations of coordinates,
as it is stated in the following result:
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Lemma 6.1. i) If a generalised Sundman transformation x̄ = ϕ(x), dt̄ = h(x) dt preserves the
set of inhomogoneous fibre-linear SODEs, then there exists a real constant c 6= 0 such that

dϕ

dx
= c h. (6.8)

ii) A Sundman transformation x̄ = ϕ(x), dt̄ = h(x) dt such that (6.8) holds, transforms
every inhomogeneous fibre-linear SODE

d2x

dt2
+ A(x)

dx

dt
+ b(x) = 0 (6.9)

into the inhomogeneous fibre-linear SODE

d2x̄

dt̄2
+ Ā(x̄)

dx̄

dt
+ b̄(x̄) = 0, (6.10)

where

Ā(x̄) =
1

h(x)
A(x) and b̄(x̄) =

c

h(x)
b(x). (6.11)

Proof.- i) Under a Sundman transformation x̄ = ϕ(x), dt̄ = h(x) dt we have

v̄ =
dx̄

dt̄
=

1

h

dϕ

dx

dx

dt
=

1

h

dϕ

dx
v, (6.12)

and
d2x̄

dt̄2
=

1

h

[
d

dx

(
1

h

dϕ

dx

)
v2 +

(
1

h

dϕ

dx

)
d2x

dt2

]
. (6.13)

Therefore, if the original equation is inhomogeneous fibre-linear as in (6.9), then the transformed
one (6.13) is also inhomogeneous fibre-linear if and only the coefficient of v2 vanishes, that is,
if and only if the function (1/h)(dϕ/dx) is constant, which proves condition (6.8).

ii) If the Sundman transformation x̄ = ϕ(x), dt̄ = h(x) dt satisfies condition (6.8), we
have that

d2x̄

dt̄2
=

c

h(x)

d2x

dt2
,

or in other words, it looks like the inhomogeneous fibre-linear equation (6.10) with

Ā(x̄)v̄ + b̄(x̄) =
c

h(x)
(A(x)v + b(x)) .

Since in this case, according to (6.12), v̄ = c v we find that

Ā(x̄) =
1

h(x)
A(x) and b̄(x̄) =

c

h(x)
b(x),

which ends the proof.
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The explicit value of the constant c does not have any influence in the problem of linearis-
ability, and then without loosing of generality we can take c = 1 (or c = −1 when appropriate).

This result shows that we can only transform the inhomogeneous fibre-linear SODE (6.7)
by means of a special kind of Sundman transformations x2 = ϕ(x1), dt2 = h(x1) dt1, with

ϕ(x) =

∫ x

h(ζ) dζ, since, otherwise, the transformed equation of (6.7) would be non linear

in the fibre variable. For such a transformation dx2/dt2 = dx1/dt1 and the expression of the
transformed SODE is

d2x2

dt22
+

1

h(x1)
A1(x1)

dx2

dt2
+

1

h(x1)
b1(x1) = 0, (6.14)

where the substitution of x1 by ϕ−1(x2) on the last two terms is understood. This SODE
is linear if, and only if, the function A1/h is constant and the function b1/h is affine in the
variable x2. In the differential equation (6.14) we have two different situations:

a) If A1 vanishes identically (recall that also A0 vanishes identically), we can choose the
function h as h = |b1| in the Sundman transformation and the transformed SODE is then

d2x2

dt22
+ β = 0,

with β = sign(b), which we assume to be constant (otherwise we have to restrict x2 to an

interval where the sign of b is constant). The Sundman transformation is x2 =

∫ x1

|b(ζ)| dζ
and dt2 = |b(x1)| dt1. Alternatively, we can take the generalised Sundman transformation

x2 =

∫ x1

b(ζ) dζ, dt2 = |b(x1)| dt1, and the transformed SODE is

d2x2

dt22
+ 1 = 0.

b) If A1 is not the zero function, in order to make constant the coefficient of dx2/dt2 we
must take h(x1) = |A1(x1)| (up to an irrelevant multiplicative constant). Thus the transfor-

mation x2 =

∫ x1

A1(ζ) dζ, dt2 = |A1(x1)| dt1, transforms the given inhomogeneous fibre-linear

SODE (6.7) into the form
d2x2

dt22
+ α

dx2

dt2
+ b2(x2) = 0, (6.15)

with α = sign(A) (which once again we assume to be constant) and

b2(x2) =
b1(x1)

|A1(x1)|
,

where on the right-hand side we assume that x1 is replaced by its corresponding value of x2.
A generalised Sundman transformation that preserves the form of the above SODE (6.15),

i.e. inhomogeneous fibre-linear with constant coefficient α, is of the form x̄ = mx2 + n,
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dt̄ = mdt2, with m and n some constants. Therefore, a SODE of the above form (6.15) is
either linear or otherwise it is not linearisable. Obviously, the new SODE is linear if, and only
if, b2(x2) is an affine function. In other words if, and only if, db2/dx2 is constant,

db2

dx2

= B ∈ R. (6.16)

Let us find the conditions on the original data γ0, A0 and b0 in order to b2(x2) be an
affine function. Using the chain rule and the definitions (6.6) of A1 and b1, we see that

B =
dx1

dx2

d

dx1

(
b1

A1

)
=

1

A1

d

dx

(
b0

A0h0

)
=

1

A3
0

(
A0

d

dx
+ γA0 − A′0

)
b0.

Taking into account that if z is the real function

z =

(
A0

d

dx
+ γA0 − A′0

)
b0,

we have
d

dx
(A−3

0 z) = A−3
0 z′ − 3A−4

0 A′0z = A−4
0 (A0z

′ − 3A′0z),

we get that the condition (6.16) can be rewritten as

dB

dx
=

1

A4
0

(
A0

d

dx
− 3A′0

)(
A0

d

dx
+ γ0A0 − A′0

)
b0 = 0.

Consequently, we have arrived to the following linearisability condition: the SODE (6.5) is
linearisable if and only if the functions A0, b0 and γ0 satisfy(

A0
d

dx
− 3A′0

)(
A0

d

dx
+ γ0A0 − A′0

)
b0 = 0.

Notice that this condition is also satisfied in the two first cases (either A0 = b0 = 0, or A0 6= 0
and b0 = 0). Moreover, we can prove that such condition is invariant under a generalised
Sundman transformation:

Theorem 6.1. For the class of SODEs of the form

d2x

dt2
+ γ(x)

(
dx

dt

)2

+ A(x)
dx

dt
+ b(x) = 0,

let Q be the function

Q =

(
A
d

dx
− 3A′

)(
A
d

dx
+ γA− A′

)
b. (6.17)

Then, the condition Q = 0 is invariant under generalized Sundman transformations.
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Proof.- We have seen that under a pure Sundman transformation, dτ = h(x) dt, the
coefficient functions transform as in (6.6):

γ 7→ γ +
h′

h
, A 7→ A

h
and b 7→ b

h2
.

Thus the factor

P =

(
A
d

dx
+ γA− A′

)
b

is transformed into(
A

h

d

dx
+

(
γ +

h′

h

)
A

h
−
(
A

h

)′)
b

h2
=

(
A

h

d

dx
+

(
γ +

h′

h

)
A

h
−A

′

h
+
Ah′

h2

)
b

h2
=

1

h3

(
A
d

dx
+γA−A′

)
b,

i.e. P is transformed into P/h3.

Hence Q =

(
A
d

dx
− 3A′

)
P is transformed into

(
A

h

d

dx
− 3

(
A

h

)′)
P

h3
=

(
A

h

d

dx
− 3

A′

h
+ 3

Ah′

h2

)
P

h3
=

1

h

(
A
d

dx
− 3A′ + 3

h′

h
A

)
P

h3
,

and using that
d

dx

(
P

h3

)
=

1

h3

d

dx
P − 3

h′

h
P,

we see that Q is transformed into

1

h4

(
A
d

dx
− 3A′

)
P =

1

h4
Q.

Therefore Q 7→ 1

h4
Q, and hence the condition Q = 0 is invariant under pure Sundman trans-

formations.
Under a usual change of coordinates x 7→ x̄ = ϕ(x) the coefficient functions change as

A 7→ A b 7→ J b and γ 7→ 1

J

(
γ − J ′

J

)
,

where J(x) = dϕ/dx, and of course d/dx 7→ (1/J) d/dx, and hence A′ 7→ (1/J)A′. The term

P =

(
A
d

dx
+ γA− A′

)
b is transformed into

(
A

1

J

d

dx
+

1

J

(
γ − J ′

J

)
A− 1

J
A′
)

(J b) =
1

J

(
A
d

dx
+

(
γ − J ′

J

)
A− A′

)
(J b)

=

(
A
d

dx
+

(
γ − J ′

J

)
A− A′ + A

J ′

J

)
b =

(
A
d

dx
+ γ − A′

)
b,

i.e. P is invariant.
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Hence Q =

(
A
d

dx
− 3A′

)
P is transformed into

(
AJ

d

dx
− 3JA′

)
P = J

(
A
d

dx
− 3A′

)
P.

Therefore, Q 7→ JQ, and we can conclude that the condition Q = 0 is also invariant under pure
coordinate transformations.

As a generalised Sundman transformation can be obtained by composition of a pure
coordinate transformation and a pure Sundman transformation, the invariance of the condition
Q = 0 under generalised Sundman transformations follows.

As in the particular case of a linear SODE we have Q = 0, this shows that the given
condition is also necessary. Summarizing our results, we have proved the following statement.

Theorem 6.2. i) A second-order differential equation

d2x

dt2
= X

(
x,
dx

dt

)
is fibre-linearisable by a Sundman transformation y = ϕ(x), dτ = h(x) dt, if, and only if, it is
of the form

d2x

dt2
+ γ(x)

(
dx

dt

)2

+ A(x)
dx

dt
+ b(x) = 0. (6.18)

Moreover, it can always be transformed to a constant coefficient α form

d2y

dτ 2
+ α

dy

dτ
+ β(y) = 0,

with α = sign(A) (understanding that α = 0 if A = 0).
ii) A second-order differential equation is linearisable if and only if it is of the form (6.18)

and the coefficients γ(x), A(x) and b(x) satisfy

Q ≡
(
A
d

dx
− 3A′

)(
A
d

dx
+ γA− A′

)
b = 0. (6.19)

More specifically:

• If A = 0 and b = 0, then the SODE can be transformed into the form

d2y

dτ 2
= 0 (6.20)

by the Sundman transformation

y = x, dτ = exp

(
−
∫ x

γ(ζ) dζ

)
dt. (6.21)
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• If A = 0 and b 6= 0, then the SODE can be transformed into the form

d2y

dτ 2
+ 1 = 0 (6.22)

by the Sundman transformation

y =

∫ x

b(ζ) exp

(
2

∫ ζ

γ(η) dη

)
dζ, dτ = |b(x)| exp

(∫ x

γ(ζ) dζ

)
dt. (6.23)

• If A 6= 0 and condition (6.19) is satisfied, then the SODE can be transformed into the
form

d2y

dτ 2
+ α

dy

dτ
+By + C = 0, (6.24)

where α = sign(A), by the Sundman transformation

y =

∫ x

A(ζ) exp

(∫ ζ

γ(η) dη

)
dζ, dτ = |A(x)| dt. (6.25)

2

7 Some examples of linearisable under Sundman trans-

formations systems

In this section we illustrate the theory of linearisable systems with some particular examples:

Example 7.1 (Ermakov-Pinney [49]). Consider once again the differential equation

ẍ+
2

x
ẋ2 +

ω2

x3
= 0, ω ∈ R,

so that γ(x) = 2/x, A(x) = 0 and b(x) = ω2/x3. Therefore it is Sundman linearisable and can
be transformed to the form (6.22) by means of the transformation given by (6.23)

y = ω2x2, dτ =
ω2

x
dt.

Example 7.2 (Geodesics on the sphere [51]). Consider as a fully analogous example the dif-
ferential equation

ẍ = 2ẋ2 cotx+ sinx cosx,

so that γ(x) = −2 cotx, A(x) = 0 and b(x) = − sinx cosx. It is Sundman linearisable by
means of the transformation given by (6.23)

y =
1

2 sin2(x)
, dτ = | cot(x)| dt,

and the transformed SODE is once again (6.22).
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Example 7.3. Consider the differential equation [52]

ẍ+
1

x
ẋ2 + x ẋ+

1

2
= 0, (7.1)

so that γ(x) = 1/x, A(x) = x and b(x) = 1/2. The condition Q = 0 is trivially satisfied because(
A
d

dx
+ γA− A′

)
b =

(
x
d

dx

)
(1/2) = 0,

and therefore it is Sundman linearisable. If we consider the interval x > 0 then the Sundman
transformation given by (6.25)

y =
1

3
x3, dτ = x dt

transforms the given SODE into the form given by (6.24),

d2y

dτ 2
+
dy

dτ
+

1

2
= 0.

Notice that this equation (7.1) is not linearisable by point transformations, as it does not satisfy
Lie criteria, but it is Sundman linearisable.

Example 7.4. As a generalization of the preceding example, we consider the differential equa-
tion

ẍ+
1

x
ẋ2 + x ẋ+ b(x) = 0.

The condition Q = 0 is(
A
d

dx
− 3A′

)(
A
d

dx
+ γ A− A′

)
b = (∆R − 3)∆Rb = 0,

with ∆R = x∂/∂x. Therefore Q = 0 if and only if ∆Rb is homogeneous with degree 3, say
∆Rb = 3k1x

3 with k1 ∈ R, and hence b(x) = k1x
3 + k2. It follows that the more general SODE

of the above form that is Sundman linearisable is ẍ +
1

x
ẋ2 + xẋ + k1x

3 + k2 = 0. A Sundman

transformation linearising this equation is y = 1
3
x3, dτ = |x| dt.

Example 7.5. The Liénard equation

ẍ+ f(x) ẋ+ g(x) = 0, (7.2)

and the existence of generalised Sundman transformations

y = ϕ(x), dτ = F (x) dt,

able to transform the given equation into

d2y

dτ 2
+ 3

dy

dτ
+ y3 + 2y = 0,
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are studied in [53].
Moreover, the generalised Sundman transformation leading from the original equation to

the linear equation
d2y

dτ 2
+ σ

dy

dτ
+ y = 0

is also found.
Note that (7.2) is a particular case of the master equation

d2x

dt2
+ γ(x)

(dx
dt

)2

+ A(x)
dx

dt
+ b(x) = 0, (7.3)

with γ(x) = 0, A(x) = f(x) and b(x) = g(x). Recall also that the linearisability condition is

Q ≡
(
A
d

dx
− 3A′

)(
A
d

dx
+ γA− A′

)
b = 0, (7.4)

that in our particular case turns out to be(
f(x)

d

dx
− 3f ′(x)

)(
f(x)

d

dx
− f ′(x)

)
g = 0,

and therefore
f 2 g′′ − f f ′′ g − 3f f ′ g′ + 3f ′2g = 0.

Then, given the function f , the function g is any function of the linear space of solutions of
the linear second-order differential equation in the variable g. But as g = f is a solution of
such equation we can introduce the change of variable g = f ζ and the given equation becomes
f ζ ′′ − f ′ ζ ′ = 0, which shows that the general solution is

ζ = k1

∫ x

0

f(ξ) dξ + k2,

and therefore the linearisability condition implies that the function g is

g(x) = k1 f(x)

∫ x

0

f(ξ) dξ + k2 f(x),

in agreement with the result of Theorem 2 of [53].
The example may be used to study the Liénard type equation containing a dissipative term.

As explained in [54] the differential equation

ẍ+ f(x) ẋ2 + g(x) ẋ+ h(x) = 0 (7.5)

can be reduced by a pure Sundman transformation dτ = F (x) dt to a Liénard equation (7.2).
In fact, if

F (x) = exp

(
−
∫ x

f(ξ dξ

)
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(7.5) becomes
d2x

dτ 2
+ g̃(x)

dx

dτ
+ h̃(x) = 0, (7.6)

with

g̃(x) = g(x) exp

(∫ x

f(ξ dξ

)
, h̃(x) = h(x) exp

(
2

∫ x

f(ξ dξ

)
.

This process is the one indicated for going from (6.5) to (6.7) and shows that the linearisability
under Sundman transformations of (7.5) is reduced to that of the corresponding equation (7.6).

8 Conclusions and outlook

The geometric approach to Sundman transformation defined by basic functions for systems
of second-order differential equations has been developed. It has been shown that, as it also
happens for systems of first-order differential equations, it amounts to replace the dynamical
vector field by the corresponding conformally related one, but the additional price to be payed
is the change of the usual tangent bundle structure by a new one that depends on the basic
function defining the Sundman transformation in such a way that the transformed dynamical
vector field is a SODE vector field with respect to the new tangent structure. The study is based
on the use of quasi-coordinates on the tangent bundle that turn out to be true tangent bundle
coordinates with respect to the new tangent structure. As an application we have developed
the study of the linearisation of a second-order differential equation where not only standard
Sundman transformation but a generalisation in which a change of coordinates is also involved,
because linearity depends on the choice of coordinates. Finally the theory has been illustrated
with several examples.

Systems of second-order differential equations equivalent to a Euler-Lagrange system
of second-order differential equations are a privileged class because of its interest in many
physical problems, and consequently, this particular class of systems is worth of a deeper study.
Particularly interesting are those systems describing geodesic motions in Riemann manifolds
(M, g) and the more general class of natural systems, also called of mechanical type, where
forces derivable of a potential function V appear. This leads to study both geodesic motions
for conformally related metrics [55] and similar problems when potential functions are involved.
These questions have been shown to be relevant in the study of classical superintegrable systems
(see [56, 57] and references therein).
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Sci. Paris 255, 1563–1565 (1962).

[33] Houh, C.S.: On a structure defined by a tensor filed F of type (1,1) satisfying F 2 = 0,
Canad. Math. Bull. 16, 447–449 (1973).

[34] Brickell, F., and Clark, R.S.: Integrable almost tangent structures, J. Diff. Geom. 9, 557–
563 (1974).

[35] Clark, R.S., and Goel, D.S.: On the geometry of an almost tangent manifold, Tensor 24,
243–252 (1972).

31



[36] Grifone, J.: Structure presque-tangente et connexions, I, II. Ann. Inst. Fourier (Grenoble)
22, 287–334, 291–338 (1972).

[37] Yano, K., and Davies, E.T.: Differential Geometry of almost tangent manifolds, Annali di
Matematica Pura ed Applicata 103, 131-160 (1975).

[38] Crampin, M.: Defining Euler-Lagrange fields in terms of almost tangent structures, Phys.
Lett. A 95, 466–468 (1983).

[39] Crampin, M., and Thompson, G.: Affine bundles and integrable almost tangent structures,
Math. Proc. Camb. Phil. Soc. 98, 61–71 (1985).

[40] Heard, W.B.: Rigid Body Mechanics, Wiley-VCH, 2006.
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