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Microscopic analysis of spin-momentum locking on a geometric phase metasurface
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We revisit spin-orbit coupling in a plasmonic Berry metasurface composed of rotated nanoapertures, which is
known to imprint a robust far-field polarization response. We present a scattering formalism that shows how
that spin-momentum locking emerges from the geometry of the unit cell without requiring global rotation
symmetries. We find and confirm with Mueller polarimetry measurements that spin-momentum locking is an
approximate symmetry. The symmetry breakdown is ascribed to the elliptical projection of circularly polarized
light into the planar surface. This breakdown is maximal when surface waves are excited, and a new set of
spin-momentum locking rules is presented for this case.
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I. INTRODUCTION

Chiral light-matter interactions [1,2] form the core of
recent discussions in quantum optics and material science.
Recently, such interactions have been investigated in nano-
optics, with the appropriate designs of two-dimensional
nanoantennas or plasmonic arrays [3–5]. Chiral metasur-
faces, sometimes known as “Berry” or “geometric phase
metasurfaces” (GPM) [6], have found many applications for
the selective manipulation of quantum emitters, in particu-
lar in the field of valleytronics [7–9]. There valley excitons
can be selectively excited and detected by the spin angular
momentum of the emitted light due to the metasurface’s spin-
momentum locking (SML) mechanism. This allows routing
valley degrees of freedom into optical cavity modes, opening
ways for new valley-photon interfaces [10–12].

Despite their applicative potential and the fascinating con-
nections they draw with many fundamental issues in optics,
plasmonic GPMs have been elusive to a rigorous and exhaus-
tive theoretical description. Previous theoretical works have
either considered (i) Berry-phase arguments in systems with
optical elements presenting a continuous spatial modulation
[6] or (ii) a group theory analysis in the Kagome lattice,
restricted to waves with an electric field perpendicular to the
surface, that ascribed SML to the simultaneous presence of
translation and rotation symmetries of the whole lattice [3].
None of these approaches cover the typical case of GPMs,
which are composed of discrete elements that present chirality
within the unit cell but without global rotation symmetries
[4,11,13].

Another issue that has not yet been addressed is how SML,
which distinguishes between two circular polarization states,
can be reconciled with the surface plasmon polariton (SPP),
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which only exists for TM polarization. In other words, a strict
SML rule implies that all Bragg modes, including surface
waves, must have a well-defined circular polarization, which
is not possible when the Bragg mode is an SPP.

In this article, we propose a scattering formulation that
clarifies how SML appears in a plasmonic holey GPM. Our
formulation has three strong assets with respect to previous
theoretical works. First, it shows that the SML appears from
the geometry of the unit cell. Second, it demonstrates that
the SML rules are only approximate when predicting po-
larization, due to the elliptical projection onto the GPM of
the circularly polarized diffraction orders. Third, it enables
a direct comparison with experimental data. The validity of
our findings is confirmed by the excellent agreement between
theory and new experimental data of the polarization states as-
sociated with each of the diffracted Bragg modes, determined
via Mueller polarimetry performed in the optical Fourier
space.

II. THEORETICAL FORMALISM

We consider the simplest GPM, characterized by a peri-
odic array of rectangular grooves in a metal slab. Figure 1(a)
presents an SEM image of the periodic gold metasurface that
we will experimentally study later, and Fig. 1(b) is a schematic
representation of the unit cell, which comprises N grooves,
and is periodically repeated in both �ux and �uy directions. Each
groove has a short side a, a long side b, and depth d . The αth
groove is rotated at an angle θα with respect to the �ux axis.

In this paper, we present a general theoretical framework
for arbitrary groove positions and θα , but we will analyze the
case where (i) the groove centers are aligned along the �ux axis,
(ii) the distance between the centers of nearest grooves is L,
in both x and y directions, and (iii) θα varies linearly with α,
θα = 2πnwα/N .

The winding number nw defines the number of complete
2π rotations along the unit cell (in the particular case nw = 0,
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FIG. 1. (a) Scanning electron microscope (SEM) image of the
periodic metasurface, composed of rectangular grooves in a gold
film. (b) Schematic bird’s-eye view of the unit cell. Nominal pa-
rameters in panel (a): a = 80 nm, b = 220 nm, d = 60 nm, and
L = 460 nm.

the array becomes a nonchiral square lattice of rectangular
grooves). The system depicted in Fig. 1(b) has nw = 1/2, as
each rectangular groove presents a mirror symmetry with re-
spect to the middle of the long axis. Consequently, the rotation
along one unit cell is only of π radians because the next unit
cell is the same and completes the 2π rotation. Notice that,
generally, a surface characterized by a constant increment in
angle θ from hole to hole requires an integer nw. However,
a rectangular aperture has reflection symmetry along its long
axis, which makes the collection of holes repeat itself already
for nw = 1/2, thus halving the unit cell size (if holes depicted
in Fig. 1(b) were trapezoidal, the unit cell would comprise
12 holes while the structure repeats itself already after six rect-
angular holes). Notice also that although the grooves perform
a stepwise rotation within the unit cell, the whole lattice does
not support a global rotation symmetry.

We consider an electromagnetic plane wave impinging
onto the structure with an in-plane wave vector along the x
direction, �kin = kin

x �ux, and compute the reflection coefficients
into the different Bragg modes that can be diffracted off
the periodic metasurface. For that, we use the coupled-mode
method (CMM), which has been widely used in the study of
electromagnetic (EM) properties in holey metallic films [14].
The CMM expands the EM fields in plane waves in the free
space regions and waveguide modes inside the grooves and
finds the field amplitudes by adequately matching the fields at
the interfaces.

The equations derived from the CMM are usually written
in terms of the amplitudes of the waveguide modes [15–17].
However, when studying the SML mechanism, we find it
more convenient to derive the equations directly for the re-
flection coefficients. Although computationally less efficient,
this provides a more transparent description as it now in-
volves far-field amplitudes, thus avoiding the near-field to
far-field decoding needed to extract scattering coefficients
from waveguide mode amplitudes.

Bragg modes are characterized by an in-plane momentum
�k = �kin + �G, where �G is a reciprocal lattice vector, in this
case �G = 2πm/(NL) �ux + 2πny/L �uy, where m and ny are

integers. To develop a minimal model for studying the SML
and simplify the presentation, in the main text, we consider
only Bragg modes with ny = 0. As shown in Sec. 2 in the
Supplemental Material [18], this does not change the main
results because along the y axis there is no breaking of inver-
sion symmetry. We collect the two circular polarizations for
the reflected mth Bragg mode in the spinor rm ≡ (r+

m , r−
m )T ,

where ± denote the right- and left-handed polarizations, each
of them defined within the plane perpendicular to the wave
vector of the corresponding Bragg mode, �km. We choose the
spin representation because the spin of a plane wave is con-
served on reflection by a mirror [19–22] (while the helicity
changes sign).

The CMM can take into account the dielectric constant in
the metal via the implementation of the surface impedance
boundary conditions (SIBC). The general expressions can be
found in Sec. 1 in Supplemental Material [18] and are the
ones used below when comparing to the experimental data.
Here we present the expressions for the simpler case in which
the metal is treated as a perfect electric conductor (PEC), as
this is sufficient to discuss the physics and the structure of the
equations:

rm = − δm0 i0 + Cm0 Y0 i0 −
∑

m′
Cmm′ Ym′ rm′ . (1)

The first term takes into account the specular reflection (i0
is the amplitude of the incident wave). The coefficients Cmm′ ,
which we call “geometric couplings,” are 2 × 2 matrices op-
erating in polarization space. They couple different Bragg
modes via scattering with the GPM and encode the geome-
try of the unit cell through the overlaps between Bragg and
waveguide modes (see Sec. 1 in Supplemental Material [18]).
That is, they contain the information on the geometric dis-
tribution of the holes in the unit cell and thus on whether
they are rotated or not. Ym are the modal admittance ma-
trices of the Bragg modes in the circular polarization basis
(which relate the in-plane magnetic field to the electric one).
They can be written as Ym = Ȳm 1 + �m σx, where 1 and σx

are the 2 × 2 unit matrix and the Pauli matrix that swaps
spin states, respectively. In terms of the linear p (transverse
magnetic) − s (transverse electric) polarized basis, Ȳm ≡
(Ymp + Yms)/2 and �m ≡ (Ymp − Yms)/2. For a plane wave
with frequency ω and in-plane wave vector km propagating in
a uniform medium with dielectric constant ε, Ymp = ε/qmz and
Yms = qmz, where qmz =

√
ε − (ckm/ω)2 (c being the speed of

light).
Notice that �0 = 0 at normal incidence, while both Ȳm and

�m diverge at the Rayleigh points (i.e., whenever a diffractive
order becomes tangent to the metal-dielectric interface, as
then qmz = 0).

III. SPIN-MOMENTUM LOCKING

The geometric couplings have a simple analytical expres-
sion when the polarization is defined on the circular basis
with respect to the �uz direction (Cz

mm′ ). When the groove di-
mensions are much smaller than the wavelength, we find (see
Secs. 1 and 3 in the Supplemental Material [18] for detailed
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derivation)

Cz
mm′ = C

(
δm,m′+n0N 1 +

∑
s=±

δm,m′+n0N−2nws σs

)
, (2)

where C is a constant that only depends on the properties of
a single groove, n0 is an integer, and σ± are Pauli matrices
that increase and decrease spin, respectively. The expression
of the couplings coefficients in the circular polarization basis
of each Bragg mode, Cmm′ , can be obtained from Cz

mm′ using
the 2 × 2 “rotation” matrices Rk(m)←z and Rz←k(m′ ):

Cmm′ = Rk(m)←z Cz
mm′ Rz←k(m′ ). (3)

The expressions for Rk(m)←z and Rz←k(m′ ) are provided in
Sec. 1 in the Supplemental Material [18].

If all �m were zero and all change of basis matrices R
were the identity, which only occurs at the direction normal
to the surface, then the previous expressions would give rise
to the following Bragg laws. The term proportional to 1 in the
Eq. (2) preserves spin, σout = σin, and the associated Bragg
law kout

x = kin
x + n0G0, with G0 = 2π/L, would be the same

one that would appear if all grooves were parallel (and so
it is denoted as “standard” Bragg law [3]). The terms inside
the sum in the Eq. (2) swap spin, σout = σin ± 1, and shift
the standard Bragg law by a term that depends both on the
spin change and the winding number: kout

x = kin
x + n0G0 ∓ kg,

where kg ≡ 2π 2nw/(NL) is the geometric momentum. This
condition is denoted as spin-orbit Bragg law [3] and corre-
sponds to the exact SML mechanism.

These two Bragg laws have been amply used to discuss
experimental results but, as mentioned, they were derived only
for the cases of continuous spatial modulation [6] and in a
lattice that presents a combination of translation and rotation
symmetry of the whole lattice [3]. In our treatment, they ap-
pear from the groove-mediated geometric couplings between
Bragg modes in a system without a global rotational lattice
symmetry. Thus, SML is a feature of the basis of the unit cell
and not of the symmetry of the whole lattice.

However, �m �= 0 and R �= 1 for Bragg modes with wave
vectors away from the surface normal, so the terms propor-
tional to σx in both Ym and the modifications when passing
from Cz

mm′ to Cmm′ must be considered. These terms flip cir-
cular polarization before the geometric couplings are applied.
Thus the symmetry that leads to Eq. (2) still holds, but the
exact link between changes in momentum and spin, found
when assuming �m = 0 and R = 1, breaks down.

The physical origin of the breakdown terms resides in that
the polarization of the transversal EM field is defined on the
plane perpendicular to the wave vector. However, the in-plane
component (i.e., perpendicular to the surface normal) of the
EM field is the relevant one in the interaction with the holey
metasurface. This mismatch results in the EM wave being
elliptically polarized and thus described by a combination of
the two circular polarizations with respect to the propagation
direction.

Mathematically, for a PEC, the breakdown term is max-
imum for waves with qmz = 0, while for a real metal, this
occurs when the Bragg mode coincides with the SPP of the flat
surface. Considering SML breakdown terms is thus essential
when surface resonances are excited (spoof SPPs in the case

Neglecting SML
breakdown terms

Full calculation

FIG. 2. Reflection coefficients for the two polarizations (spin +
in red and spin − in blue) and two different diffraction orders. The
incident EM wave has spin + and in-plane momentum kin

x . The
chosen resonance is such that kSPP

x ≈ kin
x + G0 + kg. [(a) and (b)] Ap-

proximate calculation neglecting SML breakdown terms. rkin
x +G0 = 0

for spin − in panel (a) and rkin
x +kg

= 0 for spin + in panel (b).
[(c) and (d)] Full calculation, including breakdown terms. Chosen
values: ω = 2.1 eV, a = 80 nm, b = 220 nm, d = 60 nm, L = 460
nm, nw = 1/2, and N = 6, based on the experimental sample shown
in Fig. 1. The metal is considered as a PEC.

of a PEC, SPPs of the corrugated surface in the case of a real
metal [23]).

To illustrate the relevance of the breakdown terms, we
consider an incident left-handed (spin +) polarized wave,
impinging onto the GPM described in Fig. 1. We compute
the reflection coefficients at a fixed frequency as a function
of kin

x , near an SPP resonance. Figure 2 renders the results for
two different Bragg orders (rkin

x +G0 and rkin
x +kg

) and the two
circular polarizations (spin + in red and spin − in blue). The
left panels [Fig. 2(a) and 2(b)] are computed neglecting all
breakdown terms by artificially forcing both �m = 0 (taking
Yms = Ymp) and Cmm′ = Cz

mm′ , while the right panels [Figs. 1(c)
and 1(d)] are the full calculations including the breakdown
terms. As expected, when breakdown terms are neglected, the
coefficient rkin

x +G0 is nonzero only for spin +, while the Bragg
mode that has gained an extra geometric momentum kg has an
associated spin reduction, and is thus nonzero only for spin
−. When the breakdown terms are considered, as they should,
both polarizations become finite for any Bragg order. Away
from the SPP resonance, the effect of the breakdown terms
is small and SML selection rules hold to a good approxima-
tion. However, the breakdown terms can not be neglected at
resonance. So a new set of phenomenological selection rules
is needed to understand the SML in plasmonic metasurfaces
when SPPs are excited. This will be analyzed in detail in the
next section when describing the excitation and deexcitation
of SPPs.

Notice that we can apply the geometric couplings sequen-
tially. This is, we can study the couplings between a Bragg
mode and a second one, and then the couplings between the
latter and another different. This way, the first mode can be
coupled to modes with two or more units of added geometric
momentum (±2 kg,±3 kg, etc.). Of course, this would not
be possible if the SML were perfect because spinor algebra
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would prevent this process (it is impossible to reduce more
than one spin unit to a spin 1/2). However, as we will show
in the next section, breakdown terms enable this remarkable
phenomenology.

IV. MUELLER POLARIMETRY

A more detailed analysis of the metasurface’s full polar-
ization response can be obtained with Mueller polarimetry
that measures, artifact-free, the polarization states of the
light beams incident on and scattered off the metasurface.
The 4 × 4 Mueller matrix M is defined by Sout = M Sin,
where Sin/out are the input and output polarization states de-
scribed by the Stokes vectors [24–26]. Using the experimental
scheme presented in Sec. 4 in the Supplemental Material
[18], M can be measured as a function of photon energy ω

and kin
x . Among the 16 components of the Mueller matrix,

we concentrate on the component M30, which provides the
difference in reflected intensities between the + and − po-
larizations when the system is illuminated with unpolarized
light.

For a flat interface, in-plane momentum is conserved, and
M can be measured for all ω and kin

x at once, using an ob-
jective whose back focal plane is fully illuminated with a
collimated white light beam. However, the Mueller matrix
can be defined and measured for each diffracted order n in a
periodically corrugated interface; see Fig. 3(a). Here we will
analyze Mn

30(ω, kin
x ), obtained from the polarization properties

of the reflected light at Bragg orders kout
x = kin

x + nkg, and re-
stricting ourselves to n = 0, 1, 2, for reasons explained below.
The experimental results for the GPM shown in Fig. 1 are
presented in Figs. 3(b)–3(d). Panels Figs. 3(e)–3(g) show the
numerical simulations performed with the CMM framework
within the SIBC approximation. The calculations reproduce
the main features found in the experiments. All panels show
inverted parabolic features related to the resonant excitation
of the SPP of the metasurface.

Let us concentrate on the plasmonic resonances, which are
the main reason for analyzing metallic GPMs. We find that
resonant reflection processes can be understood as two-step
scattering processes. First, the incident light scatters with the
surface picking up momentum n0G0 + n1kg and adding spin
−n1 (where n1 = 0,±1). If this scattered wave is an SPP,
then it only has a p-polarization component. A subsequent
scattering of the SPP with the surface brings it into one of
the considered diffraction orders (for that, the picked momen-
tum must be −n0G0 + n2kg, which adds spin −n2). Taking
into account that the SPP excitation can mathematically be
represented as a projector onto the p-linear polarization, this
two-step resonant scattering process results in the following
rules:

kSPP
x = kin

x + n0G0 + n1 kg, (4)

kout
x = kin

x + (n1 + n2) kg, (5)

σout = σ−n2 · p (pT · σ−n1 · i0), (6)

where p = 2−1/2 (1, 1)T is the linear p-polarization and i0
the incident polarization (in the circular polarization basis),
σ± are the Pauli matrices that increase and decrease spin,

FIG. 3. Mueller polarimetry for the system described in Fig. 1(a).
The grooves are filled with SiO2, which also forms a 4-nm layer
above the gold metasurface. (a) Scheme of the chosen Bragg
modes. [(b)–(d)] Experimental Mn

30(ω, kin
x ), for a reflected wave

with kout
x = kin

x + nkg. [(e)–(g)] Theoretical Mn
30(ω, kin

x ). The calcu-
lations have been performed within the SIBC approximation, and
the groove dimensions have been phenomenologically enlarged by
1.25 times the skin depth to consider the field penetration in the
metal [15].

and we have written σ0 ≡ 1. These rules substitute the SML
rules when SPPs are excited and are the ones to be used to
understand and predict the polarization properties of resonant
plasmonic structures.

We start by considering how this reasoning applies to the
case kout

x = kin
x + kg, rendered in Figs. 3(c) and 3(f). The cen-

tral parabola corresponds to the case n = 1, n1 = 0, n2 = 1.
As n1 = 0, the unpolarized incident light maintains its spin
after interacting with the surface and thus can excite the lin-
early polarized SPP. The second scattering with the surface
removes the nG0 momentum. Still, it adds +kg, thus decreas-
ing the spin of the p-polarized wave, ending with spin −,
which agrees with both experimental and computed results.
The parabola that appears displaced to a smaller kin

x arises
from the processes n = 1, n1 = 1, n2 = 0. Thus the incident
photon has spin − after the first scattering, still being able to
excite the SPP. As the second scattering with the grating has
n2 = 0, it conserves spin, and the reflected photon is linearly
polarized (so, it has M30 = 0, in accordance with the experi-
mental data). Thus, both parabolas involve resonant excitation
of an SPP and two interactions with the holey array, described
by one standard and one spin-orbit Bragg laws, being the
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difference in the order of the “standard” and “geometric”
processes.

Figures 3(d) and 3(g) represent the case when the out-
coming momentum is +2kg larger than the incident one. The
existence of this diffraction order is a direct confirmation
of the presence of the SML breakdown, as an exact SML
would imply that the addition of +2kg momentum must be
accompanied by a reduction of spin in −2 units, which is
not possible (as σ 2

− = 0 for spin 1/2 spinors). In this case,
both experiment and calculation show only one plasmonic
resonance, resulting in a spin − in the reflected wave. The
reason is that the two interactions with the array now involve
spin-orbit Bragg laws. The first interaction of the incident
wave with the holey surface and the resonant excitation of
SPP is like in Figs. 3(c) and 3(f), but the second interaction
also adds geometrical momentum and thus decreases spin,
producing a reflected wave with spin −.

Finally, Figs. 3(b) and 3(e) represent the case of specular
reflection: kout

x = kin
x . In this case, on top of the processes

described by Eqs. (4)–(6) the direct reflection [the term −δm0i0
in Eq. (1)] must also be considered, and it dominates the
signal. For this reason, spin − is fully reflected in the left
parabola while spin +, which can couple to an SPP, is only
partially reflected. Thus, overall, M0

30(ω, kin
x ) is negative in

that spectral region, although much lower in magnitude than
for the rest of Bragg orders (n = 1, 2) because of the domi-
nance of the specular reflection.

Therefore, we have seen that the SPP acts as a filter to
linear p-polarized light and also allows us to reach processes
where the photon acquires an extra momentum 2kg, which
would not be possible without the SML breakdown.

V. CONCLUSION

We have presented a rigorous theoretical analysis, based
on a scattering formalism, that shows how spin-momentum
locking in geometric phase metasurfaces emerges from the
geometry (winding number) of the unit cell. Furthermore, we

show that SML is an approximate symmetry with or with-
out global lattice symmetries. SML breakdown terms yield
couplings to Bragg orders that would otherwise be uncoupled,
such as reflected waves that pick up two units of geometrical
momentum. The origin of the SML breakdown is that each
circularly polarized wave has an elliptical polarization when
projected onto the surface (except for waves with momentum
normal to the surface). This breakdown is particularly relevant
when linearly polarized surface resonances (as surface plas-
mon polaritons) are excited. Our analysis shows how SML
rules should be modified when surface modes are resonantly
excited in the system. This process can be viewed as a two-
step interaction with the metasurface, with the plasmon acting
as a polarization filter. These modified SML rules perfectly
agree with experimental results on the excitation of plasmonic
resonances obtained with Mueller polarimetry.

Considering the crucial role played by spin-momentum
locking in integrated quantum optical systems [2], our elu-
cidation of the mechanism and its relation to the near-field
will help understand and design plasmonic structures for the
polarization control of light. This is important in the current
applicative perspectives discussed currently in the context of
optovalleytronic systems [27], nonlinear hybrid metasurfaces
[28], and topology-based high-resolution sensors [29].
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