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ABSTRACT

Structural equation models allow causal effects be-
tween 2 or more variables to be considered and can 
postulate unidirectional (recursive models; RM) or 
bidirectional (simultaneous models) causality between 
variables. This review evaluated the properties of RM 
in animal breeding and how to interpret the genetic 
parameters and the corresponding estimated breeding 
values. In many cases, RM and mixed multitrait models 
(MTM) are statistically equivalent, although subject 
to the assumption of variance-covariance matrices and 
restrictions imposed for achieving model identification. 
Inference under RM requires imposing some restric-
tions on the (co)variance matrix or on the location 
parameters. The estimates of the variance components 
and the breeding values can be transformed from RM 
to MTM, although the biological interpretation differs. 
In the MTM, the breeding values predict the full influ-
ence of the additive genetic effects on the traits and 
should be used for breeding purposes. In contrast, the 
RM breeding values express the additive genetic effect 
while holding the causal traits constant. The differ-
ences between the additive genetic effect in RM and 
MTM can be used to identify the genomic regions that 
affect the additive genetic variation of traits directly or 
causally mediated for another trait or traits. Further-
more, we presented some extensions of the RM that are 
useful for modeling quantitative traits with alternative 
assumptions. The equivalence of RM and MTM can be 
used to infer causal effects on sequentially expressed 
traits by manipulating the residual (co)variance matrix 
under the MTM. Further, RM can be implemented 
to analyze causality between traits that might differ 
among subgroups or within the parametric space of the 
independent traits. In addition, RM can be expanded to 
create models that introduce some degree of regulariza-
tion in the recursive structure that aims to estimate a 

large number of recursive parameters. Finally, RM can 
be used in some cases for operational reasons, although 
there is no causality between traits.
Key words: recursive models, standard mixed models, 
breeding values, causal effects

INTRODUCTION

Mixed multitrait models (MTM; Henderson, 1984) 
have been the standard for the genetic evaluation of 
livestock for more than 40 yr. They consider genetic 
and environmental covariances between traits in pre-
dicting the breeding values. However, the covariance 
represents the association between variables, only, that 
can be produced by a causal relationship or by the pres-
ence of cofounders (Pearl, 2009). Establishing causality 
between 2 variables poses a controversial difficulty in 
statistical inference. A causal relationship exists be-
tween y1 and y2 if and only if an intervention in the 
population to change y1 will change y2 (Pearl, 2009). In 
that case, the association between y1 and y2 is a causal 
relationship; however, establishing causality from the 
association is challenging because forces other than 
causality, such as confounding variables, can produce 
an association from y1 to y2 (or vice versa). Even if a 
causal effect exists, the association is not directional; 
this is, an association does not identify whether y1 
causes y2 or vice versa.

Since the early 20th century, researchers have at-
tempted to tease out causality based on statistical 
methods ranging from pathway analyses (Wright, 1921) 
to more complex structural equation models developed 
in many different fields (Shipley, 2000; Hershberger, 
2003; Van Dijk, 2003). Structural equation models can 
postulate unidirectional causality (recursive models; 
RM) from y1 into y2 (or vice versa), or mutual causal-
ity between y1 and y2 (simultaneous models). In the 
fields of quantitative genetics and animal breeding, 
Gianola and Sorensen (2004) were the first to suggest 
the use of structural equation models in the realm of 
mixed models and proposed a Bayesian implementa-
tion to sample values of the posterior distribution of 
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the structural parameters with a Markov Chain Monte 
Carlo approach. Since then, structural equation models 
have been widely used in animal breeding to infer caus-
al relationships between phenotypes and to estimate 
genetic parameters. Most applications have assumed 
unidirectional relationships and used RM; however, 
their statistical and biological interpretations remain 
debated. In most cases, RM inference can be achieved 
within an MTM framework, although it can present 
identification problems in certain circumstances, and 
some restrictions are needed to ensure proper param-
eter estimation. The objective of this review was to 
clarify some controversial aspects of recursive models 
that have not been fully addressed.

RECURSIVE MODELS IN ANIMAL BREEDING

No human or animal subjects were used, so this anal-
ysis did not require approval by an Institutional Ani-
mal Care and Use Committee or Institutional Review 
Board. Following the notation proposed by Gianola and 
Sorensen (2004), the statistical definition of RM is as 
follows:

 Λy X b u ei i i i= + + , [1]

where b is the vector of fixed effects, yi, ui, and ei are 
m × 1 vectors of phenotypic measurements, additive 
genetic effects and residuals of the m traits associated 
with the ith multivariate record, and Xi is its corre-
sponding incidence matrix. Λ is an m × m matrix of 
the recursive parameters with ones on the diagonal and 
minus the recursive effects of the ith trait on the jth 
trait (−λ1→j) in some or all the elements below the 
diagonal, as follows:
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where n is the number of multivariate records, s is 
the number of individuals including recorded (n) and 
unrecorded (s − n), G and R are m × m genetic and 
residual (co)variances matrices, I is the identity matrix 

of respective order, and A is the numerator relationship 
matrix (which can be replaced by a genomic relation-
ship matrix in a genomic selection approach).

This RM can be reparametrized as a standard mixed 
model (MTM) by multiplying all terms of [1] by Λ−1, 
as follows:

 y X b u e X b u ei i i ii i i= + + = + +− − − −Λ Λ Λ Λ1 1 1 1 * * 

with

 u A G e I R* * * *~ , ~ , ,N  and  N0 0⊗ ⊗( ) ( )  

where u* and e* are the vector of breeding values and 
residuals under the MTM, and G G* = − − ′Λ Λ1 1  and 
R R* .= − − ′Λ Λ1 1

IDENTIFICATION

The fully conditional density of data given the pa-
rameters of the model under an RM is as follows:
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and, under the MTM, is as follows:
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*u ui= −Λ 1 , and, if each factor af-

fects all traits (Wu et al., 2010),
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where f is the number of factors. It can be shown that 
fully conditional densities of the 2 models are com-
pletely equivalent, and the models can only differ due 
to the assumed prior distributions within a Bayesian 
framework. The MTM is completely identifiable, and 
G* and R* can be inferred from likelihood or Bayesian 
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approaches. Instead, the RM has up to m2/2 − m/2 ad-
ditional recursive parameters, and there are an infinite 
number of combinations of R, G, and the recursive pa-
rameters that generate the same likelihood. Therefore, 
to achieve the inference of the parameters involved, 
some restrictions must be imposed. In animal breeding 
models, 2 strategies have been used to achieve statisti-
cal identification, (1) imposing restrictions on the ele-
ments of the (co)variance component matrices (Varona 
et al., 2007) or (2) imposing constraints in the form of 
linear combinations of explanatory variables to dispose 
of instrumental variables (Gianola and Sorensen, 2004). 
To illustrate these 2 types of constraints, let us assume 
a simple recursive model that has 2 traits (y1 and y2) in 
4 scenarios (Figure 1).

For simplicity, assume that the means of the 2 traits 
are known. In the first scenario (Figure 1a), the only 
relationship between y1 and y2 is defined by the recur-
sive parameter (λ) because the residuals are not corre-
lated. Therefore, there are 3 sources of information 
available, the variances of y1 and y2 and the covariance 
between them, which can be used to estimate σ1

2, σ2
2, 

and λ, and the model is completely identifiable. In the 
second scenario (Figure 1b), the residuals are correlat-
ed; therefore, the covariance between y1 and y2 depends 
on λ and σ12, and we have only the same 3 sources of 
information to infer 4 parameters σ σ σ λ1

2
2
2

12, , , and ( ) 
that make the model unidentifiable. One way to make 
the model identifiable is to include an auxiliary instru-
mental variable (z; Figure 1c). The instrumental vari-
ables must be (i) correlated with the explanatory vari-
able (y1) and (ii) not correlated with the residuals. In 

that scenario, 3 additional sources of information are 
available; namely, the covariance between z and y1, the 
covariance between z and y2, and the variance of z and 
2 new unknowns w and σz

2( ). However, in the scenario 
where the variable z affects y2, rather than y1 (Figure 
1d), the covariance between z and y1 is null. Then, it 
does not provide any information, and the model is not 
identifiable.

In short, the only ways to make recursive models 
identifiable are (1) imposing constraints on the (co)
variance matrix (scenario a), or (2) having an instru-
mental auxiliary variable that influences the dependent 
traits only through the independent variable (scenario 
c). Identification of auxiliary variables requires find-
ing a systematic effect or a covariate (in the jargon of 
mixed models) that explains a significant proportion of 
the variation in the independent traits, and influences 
the dependent traits through the recursive relationship, 
only. In the animal breeding scope, finding a variable 
that matches these 2 conditions can be difficult be-
cause traits of economic interest are often affected by 
common environmental factors. Nevertheless, there are 
some examples. For instance, milk yield is genetically 
correlated with days open, and have a recursive effect 
because cows that have high energy demands in lacta-
tion can incur a negative energy balance, which impairs 
reproductive function. In that case, the energy compo-
sition of feed can be an auxiliary variable. The amount 
of energy in the ration (z) influences the amount of 
milk (y1) a cow produces; however, in the absence of 
lactation, reproductive performance (y2) is expected to 
be normal as long as the minimum feed requirements 
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Figure 1. Four scenarios of the relationship between 2 variables (y1 and y2): (a) causality of y1 into y2, (b) causality and residual correlation 
between y1 and y2, (c) causality and residual correlation between y1 and y2 with an extra variable (z) affecting y1, and (d) causality and residual 
correlation between y1 and y2 with an extra variable (z) affecting y2.
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are met. Thus, the amount of energy in the ration (z) 
affects milk yield (y1), not reproductive performance 
(y2), but high levels of y1 would impair y2.

In more complex models, such as multiple-trait RM 
models that have several recursive dependencies, identi-
fying auxiliary variables can be extremely cumbersome. 
However, forcing the residual covariance matrix to be 
diagonal guarantees the identification in multiple-trait 
RM, although we must bear in mind that this is a strict 
assumption in most cases. Phenotypic causal relation-
ships between traits rarely is the sole cause of envi-
ronmental covariance between traits, there are usually 
other shared external environmental effects. In addi-
tion, mixed models can have other restrictions such as 
setting to zero the genetic or the phenotypic covariance 
between traits, as proposed by Varona et al. (2007) and 
Jamrozik and Schaeffer (2011).

The equivalence between MTM and RM holds under 
the assumption of fully recursive relationships. If the 
number of constrains imposed is greater than the num-
ber required to be identifiable or if some of the recur-
sive relationships are fixed, the model is over-identified. 
Over-identified models are often nested models with 
respect to the complete models (Bentler and Satorra, 
2010), and the parameter space of G* and R* is re-
stricted to a subspace. Therefore, they can be compared 
with frequentist or Bayesian models comparison tools; 
however, these tests compare model fit to the available 
data, only, and cannot differentiate causality from as-
sociation. To illustrate that, one can test whether 2 
traits (y1 and y2) are associated but cannot determine 
whether y1 has an effect on y2 or vice versa, or whether 
cofounders affect both traits simultaneously.

RECURSIVE PARAMETERS: INTERPRETATION  
AND IMPLICATIONS

In RM, the recursive parameter λ1→2 is the expected 
change in trait y2 for each unit of change in trait y1, 
which affects other important parameters such as heri-
tability and genetic correlation. Let us assume a simple 
recursive model that has 2 traits in which

 y u ei i i i1 1 1 1 1= ′ + +x β  [2]

 y y u ei i i i i2 1 2 1 2 2 2 2= + ′ + +→λ x β  [3]

To evaluate the effect of the recursive parameter on the 
heritability and the genetic correlation, we set a simple 
bi-character scenario as a case of study, where 
σ σ σ σu1 u2 e1 e2

2 2 2 2 1= = = = . The heritability of trait 2 and 
the genetic correlation between traits 1 and 2 can be 
calculated as follows (Gianola and Sorensen, 2004):
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For simplicity, λ1→2 is expressed as units of the indepen-
dent trait residual standard deviation σe1( ). Figure 2 
shows the landscape of heritability of trait 2 and the 
recursive effect of trait 1 on trait 2 at various levels of 
the genetic covariance between the 2 traits. In the pres-
ence of recursiveness, the heritability of the dependent 
trait increases if λ1→2 has the same sign or direction as 
the genetic covariance. The stronger the genetic covari-
ance, the larger the increase in h2. If, however, the re-
cursive parameter and the genetic covariance are in 
opposite directions, the heritability of the dependent 
trait decreases. In general, the stronger genetic correla-
tion the larger effect is shown on the change in herita-
bility.

Genetic correlation under recursiveness is depicted in 
Figure 3. The relationship between λ1→2 and the ge-
netic correlation follows a sigmoidal curve. The pres-
ence of a recursive effect causes an increase (or decrease) 
in the genetic correlation if it has the same (or differ-
ent) direction as the genetic covariance. The recursive 
parameter has the largest effect on h2 and the genetic 
correlation for values up to 1 genetic standard devia-
tion. Values larger than that tend to have a lesser effect 
on the 2 genetic parameters because λ1→2 affects in a 
quadratic manner to h

u*
2

2 ; therefore, if λ1→2 > 1, the 

phenotypic variability of trait 1 explained by nonge-
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Figure 2. Parameter space of the heritability of the dependent 
trait and levels of recursiveness strength and additive genetic covari-
ance between the 2 traits.
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netic factors has a larger effect on the total phenotypic 
variability of trait 2. The generating R code is pre-
sented in Supplemental File S1 (https: / / figshare .com/ 
articles/ journal _contribution/ APPENDIX _A _docx/ 
22040597; Varona and González-Recio, 2023).

The example shows that, even though an RM is 
equivalent to a bi-character trait model, the presence of 
a causal effect implies that the heritability of the de-
pendent trait and the genetic correlation have a re-
stricted parametric space. Under recursiveness, 
u u u2 2 1 2 1

* = + →( ),λ  the heritability of the dependent 
trait (u2) is affected by λ σ1 2

2
1

2
→ u  in the numerator and by 

λ σ σ1 2
2

1
2

1
2

→ +( )u e  in the denominator as additional terms 

in the heritability formula. Thus, for λ1 2
2 0→ > , h

u*
2

2  in-

creases proportionally to σu  1
2  and σe1

2 . Even if σu2
2 0= , 

the heritability of u2
* is greater than 0 as long as λ1 2→  is 

not 0 and hu1

2  is not null. Hence, even in the hypotheti-
cal case in which y2 is fully influenced by the environ-
ment (no genetic control), an MTM would estimate a 
nonzero heritability due to the recursive effect of y1 on 
y2 and the nonzero heritability of y1.

Similarly, the genetic correlation is restricted to a 
parameter space that depends on the magnitude of the 
recursive parameter and the genetic covariance in the 
MTM. The larger the recursive effect, the larger the 
genetic correlation between the 2 traits, independent of 
the genetic covariance between them. In this case, the 
genetic correlation does not come from pleiotropic ef-
fects of the genes that affect both traits, nor from link-
age disequilibrium between different genes that affect 
each trait; it rather comes from a recursive nongenetic 
effect of trait 1 that affects trait 2. The residual cor-
relation follows the same reasoning as the genetic cor-
relation, and it is also restricted to a given parameter 
space that depends on the recursive parameter and the 
residual covariance. The causal relationship between 
both traits produces an inflation or deflation in the 
residual correlation if the SMM that is not due to the 
causal phenotype rather than to environmental factors.

BREEDING VALUES: INTERPRETATION

The breeding values in the MTM for the ith individ-
ual (ui*) can be obtained from the breeding values in 
the RM (ui) because u ui i

* = −Λ 1  and vice versa 
u ui i= Λ .*  Although MTM and RM may be statisti-
cally equivalent, their interpretations are very different. 
Mixed multitrait models assume that genetic and re-
sidual effects of traits are correlated and caused by 
pleiotropy or linkage disequilibrium between QTLs 
(genetic correlation) and common environmental ef-
fects (residual correlation). In contrast, the RM postu-

late a causal and unidirectional influence of some traits 
on others, which affects genetic and residual covari-
ances between traits, but which are not completely de-
termined by common genetic or environmental effects. 
Thus, the interpretation of the breeding values of traits 
that are affected by the phenotypic influence of other 
traits (dependent traits) differs between RM and MTM. 
In RM, the breeding values of the dependent traits 
must be understood as the effect of the genes that act 
directly on the traits, and not indirectly through the 
phenotypic influence of another trait. Therefore, breed-
ing values in RM must be interpreted as the breeding 
values corrected for their causal influence or while hold-
ing physically the value of the independent traits (Va-
lente et al., 2013). In contrast, in MTM, breeding values 
reflect the entire additive effects of the genes on traits, 
even though they directly or indirectly affect the final 
phenotype. For example, dominant or more aggressive 
cows may produce more milk than compliant cows. 
Dominant cows may have access to more amount of fed, 
crowding out compliant cows who might eat less and 
produce less milk. Therefore, aggressiveness can have a 
positive recursive effect on milk production, even if 
there is no pleiotropy or LD between genes affecting 
both traits (null genetic correlation). In MTM, the 
breeding values for milk yield include the additive ge-
netic effects related to aggressiveness and milk produc-
tion, whereas in RM, they only include the additive 
genetic effects for milk yield without the influence of 
aggressiveness.

For practical purposes, in a breeding scheme that has 
the objective of increasing (or decreasing) the pheno-
typic mean of a dependent trait, the breeding values 
generated by an MTM should be used. However, the 
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Figure 3. Parameter space of the genetic correlation between the 
independent and the dependent traits at different levels of recursive-
ness strength and additive genetic covariance between the 2 traits.
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statistical equivalence of MTM and RM can be invoked 
to calculate the breeding values from an RM 
( ).*u ui i= −Λ 1  Furthermore, an RM allows the split of 
the breeding values into direct genetic effects (ui) that 
are attributed to genes that directly affect the trait, 
and indirect genetic effects (ui

* − ui), which are caused 
by genes that influence the independent trait and affect 
the dependent trait through its phenotypic influence. If 
selection is based on the predicted breeding values from 
the RM (ui), the response to selection in the dependent 
traits will occur by acting on the direct genetic effects. 
Note, however, that it may cause a correlated genetic 
response in the independent trait because of the pres-
ence of additive genetic covariance. If the breeding plan 
aims to modify the dependent trait and keep the inde-
pendent trait constant, restricted selection indexes 
(Kempthorne and Nordskog, 1959) should be used.

Similarly, estimates of the additive genetic (co)vari-
ances components in an RM (G) and their equivalents 
in an MTM ( )*G G= − − ′Λ Λ1 1  allow the decomposition of 
the genetic variance between traits. The estimates of 
additive genetic variance from an RM reflect the addi-
tive genetic variance caused by genes acting directly on 
the trait. The difference between the estimates from an 
MTM and an RM is the additive genetic variance that 
the dependent traits incorporated through the pheno-
typic influence of other traits. For instance, assuming 
the same simple recursive models defined in equations 
[2] and [3], the additive variance in an MTM can be 
split into the additive variance in an RM σu2

2( ) and the 
additive variance generated by the causal influence of 
trait 2 2 1 2 12 1 2

2
1

2λ σ λ σ→ →+( )u u . The same decomposition 
can be achieved for the additive genetic covariance be-
tween traits, which can be divided into the covariance 
generated by pleiotropic genes that affect the 2 traits 
σu12( ), simultaneously, and the additive genetic covari-
ance caused by the phenotypic influence of the indepen-
dent trait λ σ1 2 1

2
→( )u .

Selection on independent traits produces a correlated 
response in the dependent trait because of both sources 
of genetic covariance. However, an environmental 
change or an external intervention (Rosa and Valente, 
2013), that directly increases (or reduces) the indepen-
dent traits, will modify the phenotypic performance 
of dependent traits. This phenotypic change is solely 
through the phenotypic influence between traits ex-
pressed by the recursive parameter, and will not imply 
any change in the genes associated with the genetic 
variation. For example, milk yield in dairy cattle is af-
fected by the amount of energy in the diet and has a 
causal effect on the SCC in milk. An external inter-
vention that modifies the diet of cows by increasing 

the energy in the ration will increase milk production. 
It will also indirectly modify the SCC, although there 
would be no direct influence of the energy of the diet 
on the SCC.

External interventions can also modify the causal 
structure between traits. In the above example of the 
dominant and compliant cows, if they are raised un-
der feed restriction or without ensuring full access to 
feeder, a breeding program selecting for larger produc-
tion yields would also increase aggressiveness. Genetic 
correlation from an MTM may show positive estimates, 
because it does not differentiate between the causal phe-
notypic effect and the genetic correlation (association 
due to genes). However, if more feed bins and plenty 
of feed availability is supplied to cows, more compliant 
individuals can eat as much as the more aggressive in-
dividuals. Hence, the external intervention removes the 
phenotypic causal effect that favor dominant animals in 
detriment of other cows.

The ability to predict the expected outcome for those 
external interventions requires distinguishing between 
causality and association, which cannot be achieved us-
ing standard goodness-of-fit tests given the statistical 
equivalence of the RM and the MTM. The distinction 
between them can be extremely complex because of 
the possibility of confounding effects that affect sev-
eral traits (Rubin, 1974). Some authors (Shipley, 2000; 
Pearl, 2009) have developed methods that can achieve 
that goal. An adaptation of the Inductive Causation 
(IC) algorithm (Pearl, 2009) to the scope of mixed 
models by Valente et al. (2010) is the most widely used 
algorithm for inferring the causal structure within a set 
of phenotypic traits. Briefly, the IC algorithm has the 
following 3 steps:

 1. For each pair of traits (y1 and y2), search for a 
set of traits such that y1 is independent of y2, 
given this set. If y1 and y2 are dependent in each 
possible set, they are declared as adjacent and 
are connected by an undirected edge.

 2. If 2 nonadjacent variables (y1 and y2) are con-
nected to an extra-adjacent variable (y3) and 
are not independent for all sets of variables that 
contain y3, connect y3 to y1 and y2 by a directed 
edge. The result is a partially oriented graph 
that has directed and undirected edges.

 3. Change as many undirected to directed edges 
as possible to avoid generating new colliders or 
cycles.

The goal of the IC algorithm is to identify each pair of 
variables as either conditionally dependent or indepen-
dent, which is based on the partial correlations of the 
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2 traits given the sets of remaining traits. As proposed 
by Valente et al. (2010), within a Bayesian framework, 
those partial correlations can be obtained from the pos-
terior distribution of the residual (co)variances matrix 
calculated in a standard multivariate mixed model. If 
the HPD (highest posterior density) of a partial cor-
relation includes zero, the 2 traits are assumed to be 
conditionally independent. A more detailed description 
of the algorithm is described by Valente et al. (2010, 
2011) and Rosa and Valente (2013). For each pair of 
traits, the algorithm chooses among independence, cau-
sality, or associated confounders. However, it cannot be 
ruled out that one trait has an effect on another, and, at 
the same time, there are confounding factors that affect 
both traits simultaneously. Therefore, neither the RM 
nor the MTM may reflect the real relationship between 
the 2 traits, and both models are subject to very strong 
assumptions. Again, the only way to measure the mag-
nitude of the effects of causality effects or the influence 
of cofounders is to have an external intervention that 
modifies the independent trait and allows quantifying 
the effects on the dependent trait.

RECURSIVE MODELS IN ANIMAL BREEDING

After the introduction of recursive models in quan-
titative genetics and animal breeding (Gianola and 
Sorensen, 2004), they have been applied in numerous 
studies. For instance, recursive models have been ap-
plied to calving traits (López de Maturana et al., 2010; 
Inoue et al., 2017), milk traits (Rehbein et al., 2013; 
Bouwman et al., 2014; Santos et al., 2015; Tiezzi et al., 
2015), growth traits (González-Rodríguez et al., 2014; 
Leal-Gutiérrez et al., 2018; Krugmann et al., 2020), dis-
eases (König et al., 2008; Rehbein et al., 2013; Quigley 
et al., 2018), and microbiota traits (Saborío-Montero 
et al., 2020) in different species. The methods behind 
recursive models and the wide range of applications 
have been reviewed elsewhere (Wu et al., 2010; Valente 
et al., 2013; Cantet et al., 2017; Inoue, 2020).

Recursive models were initially formulated based on 
the assumption that all traits have a continuous distri-
bution; however, in animal breeding, it is quite common 
for the traits of interest to be categorical and have 2 
or more possible outputs. For those types of traits, ei-
ther threshold models (Gianola, 1982) or models that 
assume a non-Gaussian distribution for the residuals 
(Tempelman and Gianola, 1993; Varona and Sorensen, 
2010) are used. Bivariate recursive models when the 
independent traits follow a Gaussian distribution 
has been described for Gaussian – Threshold Models 
(López de Maturana et al., 2007; König et al., 2008; Wu 
et al., 2008), Gaussian – Binomial Models (Varona and 

Sorensen, 2014), and Gaussian – Multiplicative Bino-
mial models (Varona et al., 2020). Furthermore, some 
authors (Heringstad et al., 2009) have presented models 
that have complex causal structures and include several 
Gaussian and Categorical traits. In those studies, the 
most frequent assumption to ensure identification was 
to set the residual covariances between traits to zero.

Traditionally, RM have proposed causal effects be-
tween phenotypes; however, in some cases, the number 
of traits can be many and clustered in latent pseudo-
phenotypes or latent variables that summarize each 
group of phenotypes. For example, Peñagaricano et al. 
(2015) analyzed 19 traits associated with postweaning 
growth, carcass quality, fat composition, or meat qual-
ity in pigs, which they summarized in 5 latent variables 
through factor analysis and were used to develop an 
RM. The use of latent variables might be useful to un-
derstand the causal structure of large sets of variables, 
such as those generated in massive phenotypic devices 
(Fernandes et al., 2020) or those that result from the 
omics analysis (Lippolis et al., 2019), as proposed by 
Saborío-Montero et al. (2021).

Recently, the use of RM in GWAS analysis has gained 
popularity. GWAS has become the main method for 
identifying genomic regions that harbor the genes that 
cause the genetic variation in quantitative traits. The 
influence of those genomic regions on the phenotypic 
traits can be caused by the direct influence of the genes 
within the genomic region or mediated by another trait 
that has a causal dependency on them. For that reason, 
some (Momen et al., 2019; Wang et al., 2020) have 
developed RM for use in GWAS that provide several 
types of signals, direct, indirect, and overall. The direct 
signals point to the genomic regions that directly affect 
the dependent trait, and the indirect signals identify 
the regions that affect the trait through the phenotypic 
dependency between traits. The overall signals indicate 
the genomic regions that affect the genetic variability 
of the traits, either directly or indirectly.

EXTENSIONS OF RECURSIVE MODELS

Recursive Inference from the Output of an MTM

The inference results on the (co)variance components 
and the recursive parameters of an RM can be trans-
formed into the results of an MTM. Instead, in the op-
posite direction, as the number of parameters increases, 
there are an infinite number of combinations of the (co)
variance components and recursive parameters, and the 
transformation cannot be performed directly. In some 
scenarios and under some specific restrictions, however, 
the statistical equivalence of MTM and RM can be used 
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to obtain the recursive parameters and the (co)variance 
components (R and G) in RM from the estimates of 
the R* and G* achieved in the MTM.

Complete Recursiveness. In this scenario, R is 
assumed to be diagonal, the traits are ordered by fixing 
the independent variables before the dependent vari-
ables, and every preceding trait has a causal influence 
on all the subsequent traits (i.e. Λ has not any zero 
element below the diagonal). Then, R* can LDL’ fac-
torized, where D corresponds to the R matrix and L is 
Λ−1. Subsequently, the G matrix can be obtained as 
G G= ′Λ Λ* . An important advantage of that approach 
is that it can be used with data sets that have missing 
information, i.e., when only some traits of a given indi-
vidual are available and the rest are missing.

Recursiveness in a Sequential Scenario. A more 
complex case that can be inferred from the output of an 
MTM is the scenario in which the traits are recorded 
sequentially. Suppose we evaluate n+m traits that are 
divided into 2 groups that are expressed at 2 different 
times (n traits at time A and m traits at time B). One 
possible assumption is that the n traits at a first time 
(A) have a causal effect on the m traits at time B (See 
Figure 4), and that there are no cofounders (i.e., re-
sidual covariances are equal to zero) between the traits 
of the different groups.

If an MTM is used, it is possible to estimate R* and 
G*, which are (n+m) x (n+m) matrices. They must be 
transformed into R and G matrices and a set of recur-
sive effects (λ) between the n traits recorded at time A 
and the m traits recorded at time B. The R* matrix 
can be divided into 2 symmetric matrices of n x n (A) 
and m x m (C) elements and one rectangular matrix of 
m x n (B) and its transpose (B′). Subsequently, a block 
LDL′ decomposition can be applied:

 R A B
B C

I

BA I

A

C BA B
I A* =

′









 =
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− −

−0 0

01 1

11
1 1

0

′ ′
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I
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and, as before, G G= ′Λ Λ* . If the number of time points 
is >2, additional block LDL′ decompositions can be 
used sequentially. A numerical example is presented in 
the Appendix.

Parsimonious Recursive Models

Recursive models posit that independent traits can 
be related to dependent traits by causal effects that are 
governed by a set of recursive parameters that must be 
inferred. In some cases, the number of independent 
traits that can have a causal effect can be very large. 
For instance, a plethora of new omics data (e.g., tran-

scriptomics, proteomics, microbiomics) have dramati-
cally increased the availability of new biological vari-
ables (Lippolis et al., 2019). All of them can be under-
stood as intermediate traits that affect the phenotypes 
of economic interest and can be treated as independent 
traits that have a causal relationship with the target 
traits. The number of recursive parameters (nr) will be 
vast, and the amount of statistical information to infer 
each one would be limited. Therefore, it is possible to 
define a model that introduces some degree of regular-
ization in the recursive relationships. Christensen et al. 
(2021) suggested introducing a shrinkage or a prior 
distribution within the Bayesian framework by assum-
ing a Gaussian prior distribution for the set of recursive 
relationships λ λ λ λ= …{ }1 2, , , nr  between the intermedi-
ate traits and the target (yT) as follows:

 y y Xb Zu eT i T T T= + + +
=
∑
i

nr

i
1

λ  

 y Xb Zu ei i i i= + +  

 λ ~ , .N 0 2Iσλ( )  

Another type of regularization for the recursive pa-
rameter inference was proposed by Onogi et al. (2019). 
They developed a recursive model that proposes that 
the weights throughout the growth process can be par-
tially phenotypically determined by the initial weight. 
Because the influence of the initial weight is expected 
to depend on its temporal distance from each recorded 
weight, they defined a recursive function based on 
B-splines that modeled the evolution of the recursive 
effect over time. The model was applied to a cow 
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growth data set, which showed that the influence of 
initial weight was high in the early growth period and 
decreased thereafter.

Heterogeneous Causal Structures

If there is population stratification, phenotypic 
causality may differ between subpopulations. In that 
case, RM can be reformulated to identify an alternative 
causal relationship between the traits. Strata might 
be known (e. g., male or female) or unknown (e. g., 
healthy or sick) categories of individuals. With known 
stratification, the use of an RM is straightforward with 
standard REML or Bayesian approaches, although 
equivalence with MTM no longer holds because the 
covariance structure in the MTM differs between sub-
populations. If the distribution of individuals among 
subpopulations is unknown (Jamrozik and Schaeffer, 
2010), an additional latent variable (Wu et al., 2007) 
about the unknown strata of the individuals must be 
included. The inference can be achieved, under a Mar-
kov Chain Monte Carlo approach to Bayesian inference, 
by using a Metropolis-Hasting step (Hastings, 1970) 
within a Gibbs sampler (Gelfand and Smith, 1990) to 
sample the latent variables.

Nonlinear Relationship Between Traits

The traditional definitions of MTM and RM imply a 
linear relationship between traits; however, the causal 
or non-causal relationship between traits can be non-
linear (Fuerst-Waltl et al., 1997, 1998; Mulder et al., 
2015). A special case of heterogeneous causal structures 
occurs if the causal influence of the independent trait 
on the dependent trait varies along its range of values. 
For example, López de Maturana et al. (2009, 2010) de-
veloped a series of recursive models that had a hetero-
geneous structural coefficient between gestation length, 
calving difficulty, and perinatal mortality in dairy 
cattle. They defined 4 segments along the parameter 
space of gestation length (261–267, 268–273, 274–279, 
280–291 d), and showed that the recursive relationships 
differed among the segments, which confirmed that the 
relationship between traits was nonlinear. Similarly, 
Jamrozik et al. (2010) proposed a model that defines 
heterogeneous structural coefficients between milk yield 
and somatic cell score across (the first 3 lactations) and 
between (4 intervals) lactations. Likewise, Ibáñez-Es-
criche et al. (2010) described a change-point recursive 
model for the relationship between litter size and the 
number of stillbirths in pigs. The study did not fix the 
segments within the litter size parameter space a-priori, 
and used change-point techniques (Chib, 1998) to infer 
the size of the regions of the parameter space associated 

with each recursive parameter. The results suggested 
that the causal effect was higher for large litters than 
for small litters. Another way to model nonlinear rela-
tionships between the dependent and the independent 
trait is to use a nonlinear function (González-Rodríguez 
et al., 2014; Varona and Sorensen, 2014; Varona et al., 
2020). However, in complex analyses that have more 
than 2 traits, the model can be affected by identifica-
tion problems (Gianola and Sorensen, 2004).

A nonlinear causality between traits implies that the 
genetic parameters of the dependent trait vary along 
the parameter space of the independent trait. To il-
lustrate this, let us assume a nonlinear recursive model 
with 2 traits:

 y u ei i i i1 1 1 1 1= ′ + +x β  

 y f y u ei i i i i2 1 2 2 2 2= ( )+ ′ + +x β , 

where f y y yi i i1 1 1 2 1
2( ) = +λ λ , the independent trait (y1) 

takes values from 80 to 120 units, the recursive param-
eters are λ1 1 00= . , and λ2 0 005= − . , and the covariance 
matrices are as follows:
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The plots of the recursive function, the heritability of 
the dependent traits, and residual and genetic correla-
tions along the parametric space of the independent 
trait (80 to 120 units) are presented in Figure 5.

It can be seen that a nonlinear recursive function 
(Figure 5a) leads to a modification of the heritability 
along the parametric space of y1. In this example (Fig-
ure 5b), the heritability decreases from >0.25 at y1 = 80 
to <0.21 at y1 = 120, and the genetic and the residual 
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correlations decrease from 0.50 to 0.15 (Figure 5c) and 
from 0.20 to −0.20 (Figure 5d) when y1 changes from 
80 to 120 units. It implies that the genetic and residual 
correlations between the 2 traits are also modified by 
an external intervention that modifies the phenotypic 
mean of y1. Let us imagine that, in our population, the 
average independent trait is 80 and, at that point in 
the parametric space, it is strongly correlated with the 
dependent trait. Therefore, it can be used to achieve a 
correlated response under a breeding scheme. However, 
if there are some external interventions or selection 
processes that increase the independent trait to 120, 
the genetic correlation would be reduced to 0.15, and 
the correlated response in the dependent trait will be 
much lower.

Note that these statements are conditioned on a 
model that has very strict assumptions, e.g., the non-
linear relationship is caused by the phenotypic effect 
of the independent trait on the dependent trait, only. 
Nevertheless, nonlinear recursive models might provide 
a new and interesting area of research about the rela-
tionships among the traits of livestock populations.

Recursive Models as Operational Tools

Recursive (or structural equation) models have been 
developed to describe the causal relationships between 
variables (or traits); however, RM can be useful for 
operational reasons, even if there is no causality be-
tween traits, because they may perform better than 
MTM in terms of computational requirements, conver-

gence properties, or stability of estimates (Jamrozik 
and Schaeffer, 2011). Moreover, they can be used to 
propose alternative models for complex problems. For 
instance, modeling non-genetic (or residual) sources 
of covariance in bivariate models that includes traits 
with Gaussian and non-Gaussian (Binomial, Poisson) 
residuals is challenging; however, some Gaussian and 
non-Gaussian traits have a strong phenotypic covari-
ance caused by nongenetic factors. In fact, the assump-
tion of statistical independence of the residuals in cases 
where there is nongenetic covariance can lead to unde-
sirable bias in the predictions of breeding values. Va-
rona and Sorensen (2014) suggested using an RM and 
setting the non-Gaussian trait as dependent and the 
Gaussian trait as independent. Statistical equivalence 
of the MTM and the RM can be invoked to reconstruct 
the breeding values of the non-Gaussian trait. With 
that approach, the covariance between the Gaussian 
and non-Gaussian residuals is taken into account in the 
prediction of breeding values and bias is avoided.

Another operational application of RM has been de-
veloped for the analysis of Residual feed intake (Koch 
et al., 1963), which is one of the most commonly used 
approaches to assess feed efficiency in livestock popula-
tions. The usual method for analyzing genetic variation 
in residual feed intake has a 2-stage approach (Berry 
and Crowley, 2013). First, a linear regression model 
relating dry matter intake (DMI) to the energy sinks 
is used. Second, the estimated residuals (residual feed 
intake) are analyzed using an MTM. Recently, Jam-
rozik et al. (2021) and Wu et al. (2021) suggested an 
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RM that jointly analyzed DMI and all energy sinks 
by postulating a recursive relationship between each 
energy variable and the observed DMI. As such, the 
systematic and breeding values for the residual feed 
intake are obtained directly, without the need for the 
2-stage approach.

A third scenario that can benefit from operational 
RM is that in which traits are defined as the ratio of 
2 Gaussian traits (y2/y1); e.g., the percentages of fat 
and protein in milk, the feed conversion ratio. Ratio 
traits have a Cauchy distribution only if the 2 traits 
are Gaussian and uncorrelated; otherwise, the distribu-
tion cannot be assigned to any standard distribution. 
Therefore, usually, breeding values for ratio traits are 
obtained from ad hoc models. To solve this problem, 
Jamrozik et al. (2017) proposed using an RM to model 
those kinds of traits as y2 = λ × y1. Note that, in the 
RM, breeding values for the dependent trait (y2) can 
be understood as the additive effect of the genes after 
holding the independent trait (y1; Valente et al., 2013). 
Therefore, the breeding values provided by the model 
for y2 are proxies for the breeding values of the ratio 
(y2/y1). The main advantage of that approach is that it 
avoids the use of statistical approximations to the ratio 
trait, and it can be easily implemented in most mixed 
model software.

FINAL REMARKS AND CONCLUSIONS

In recent decades, RM have gained popularity in 
animal breeding. Recursiveness between 2 traits under 
quantitative genetic analyses implies that the genetic 
parameters such as heritability of the dependent trait 
or genetic correlation are influenced by both the genetic 
variability of the independent trait and the recursive 
effect between the 2 traits. Moreover, it must be noted 
that the heritability and correlation estimates under 
MTM may change if the environmental circumstances 
determining this nongenetic causal link are modified.

In most cases, RM are statistically equivalent to 
MTM but, because RM have additional parameters, 
their implementation requires imposing constraints 
that imply several strict assumptions. Essentially, there 
are 2 types of constraints, either to impose indepen-
dence of the residuals between traits or to dispose of an 
auxiliary variable. In animal breeding, both of those as-
sumptions are difficult to meet. The first requires that 
the only cause for the statistical association between 
the 2 traits is phenotypic causality and that there are 
no environmental effects acting on both traits, simulta-
neously. The second constrain requires the disposition 
of an auxiliary variable (systematic effect or covariate) 

that affects the independent trait without any direct 
effect of the dependent trait.

The estimates of variance components and breeding 
values can be transformed from an RM to an MTM, 
but the biological interpretation differs. In MTM, 
the breeding values predict the complete effects of 
genes on the traits and those values should be used 
for selection, whereas, in RM, breeding values reflect 
the additive genetic effects while holding constant the 
causal trait. If there is a recursive effect between 2 (or 
more) traits, it may be preferred to consider it in an 
RM framework for a more reliable prediction of the 
breeding values. The implementation of RM allows 
the splitting of the breeding values and the genetic 
variances and covariances into direct and indirect ef-
fects. It ensures a deeper interpretation of the direct 
and correlated response to selection, mainly under 
nonlinear recursive effects, or when the recursive ef-
fect goes in opposite direction to the additive genetic 
covariance. Furthermore, RM allow a more thorough 
understanding of the distribution of the genetic effects 
throughout the genome.

This review presented the particularities of the mod-
els, their interpretation, and some interesting and novel 
applications. Among these applications we mentioned 
(1) the statistical equivalence of RM and MTM can 
be invoked to obtain the estimates of the recursive re-
lationships from the MTM estimates, (2) RM can be 
expanded to describe more complex relationships be-
tween traits including heterogeneous causal structures 
and nonlinear relationship between traits, (3) RM can 
be expanded to models that introduce some degree of 
regularization in the recursive structure that aims to 
estimate a very large number of recursive parameters, 
and (4) RM can be used for operational reasons because 
of their simplicity for implementation, even though 
there is no causality between traits. In conclusion, the 
use of RM in animal breeding is expected to increase 
due to their properties for causal inference and the pos-
sibility to use them as operational models. A plethora 
of applications of RM are expected with the advent of 
multiomic (including phenomics) data. We hope that 
this review will contribute to the development of future 
applications of RM in animal breeding.
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APPENDIX

Example of the calculation the additive and residual 
(co)variances matrices in a recursive model (RMM) 
from the estimates under a standard mixed models 
(SMM) in traits recorded sequentially at 3 time points.

Let us suppose that we dispose phenotypes for 6 traits 
recorded at time 1 (y1,y2), 2 (y3,y4) and 3 (y5,y6) and 
there is causal relationship between the traits recorded 
at time 1 with the traits recorded at times 2 and 3, and 
between traits recorded at time 2 with the recorded at 
time 3 as is described in Figure A1.

Let us suppose that we dispose of the following esti-
mates of the additive (G*) and the residual (R*) (co)
variances matrices achieved from a standard multitrait 
mixed model (SMM):

 G* =
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First, we use a first Block LDL decomposition as:
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Now, we use a new Block LDL decomposition for R1 as:
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Figure A1. Causal structure between the traits recorded at times 1 (y1,y2), 2 (y3,y4), and 3 (y5,y6).



Journal of Dairy Science Vol. 106 No. 4, 2023

2212

 A B1 1

5 2 0 0
2 5 0 0
0 0 4 714 1 714
0 0 1 714 4 714

0
=

























=
. .
. .

 
00 0 857 0 857

0 0 0 857 0 857
4 929 1 928
1 928 4 9291

. .

. .
 

. .

. .











 =




C 








 

R1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 133 0 133 1 0
0 0 0 133 0 133 0 1

=







. .

. .




























5 2 0 0 0 0
2 5 0 0 0 0
0 0 4 714 1 714 0 0
0 0 1 714 4

. .

. ..
. .
. .

714 0 0
0 0 0 0 4 7 1 7
0 0 0 0 1 7 4 7

1 0 0 0 0

































00
0 1 0 0 0 0
0 0 1 0 0 133 0 133
0 0 0 1 0 133 0 133
0 0 0 0 1 0
0 0 0 0 0 1

. .

. .

































= − − ′Λ Λ2
1

2 2
1R .

 

Then, the residual (co)variance matrix with the RMM 
(R) is

 R R= =2
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The Λ−1 matrix is
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Therefore, the recursive effects between the traits re-
corded at time 1 and the traits recorded at time 2 are 
0.143, the recursive effects between traits recorded at 
time 1 and traits recorded at time 3 are 0.033, and 
between traits recorded at time 2 with the recorded at 
time 3 are 0.133.

Finally, the additive (co)variance matrix with the 
RMM (G) is calculated as:

 G G= ′Λ Λ =*  
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