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A B S T R A C T   

Background: Current procedures for diagnosing multiple sclerosis (MS) present a series of limitations, making it 
critically important to identify new biomarkers. The aim of the study was to identify new biomarkers for the 
early diagnosis of MS using spectral-domain optical coherence tomography (OCT) and artificial intelligence. 
Methods: Spectral domain OCT was performed on 79 patients with relapsing-remitting multiple sclerosis (RRMS) 
(disease duration ≤ 2 years, no history of optic neuritis) and on 69 age-matched healthy controls using the 
posterior pole protocol that incorporates the anatomic Positioning System. Median retinal thickness values in 
both eyes and inter-eye difference in healthy controls and patients were evaluated by area under the receiver 
operating characteristic (AUROC) curve analysis in the foveal, parafoveal and perifoveal areas and in the overall 
area spanned by the three rings. The structures with the greatest discriminant capacity — retinal thickness and 
inter-eye difference — were used as inputs to a convolutional neural network to assess the diagnostic capability. 
Results: Analysis of retinal thickness and inter-eye difference in RRMS patients revealed that greatest alteration 
occurred in the ganglion cell (GCL), inner plexiform (IPL), and inner retinal (IRL) layers. By using the average 
thickness of the GCL (AUROC = 0.82) and the inter-eye difference in the IPL (AUROC = 0.71) as inputs to a two- 
layer convolutional neural network, automatic diagnosis attained accuracy = 0.87, sensitivity = 0.82, and 
specificity = 0.92. 
Conclusion: This study adds weight to the argument that neuroretinal structure analysis could be incorporated 
into the diagnostic criteria for MS.   

1. Introduction 

Studies demonstrating the potential feasibility of using neuroretinal 
thickness values, obtained by optical coherence tomography (OCT), to 
demonstrate dissemination in space and time in multiple sclerosis (MS) 
diagnosis have increased considerably in recent years (Alonso et al., 

2018; Petzold et al., 2017). The neuroaxonal damage produced by MS 
manifests as thinning of both the peripapillary retinal nerve fibre layer 
(pRNFL) and the macular ganglion cell and inner plexiform layer 
(GCIPL) and this neuroaxonal loss correlates with physical disability in 
patients with relapsing-remitting multiple sclerosis (RRMS) (Garcia--
Martin et al., 2017; Petzold et al., 2017). There is also evidence to 
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suggest that thickening of the inner nuclear layer (INL) may be associ-
ated with inflammatory activity in MS (Bsteh et al., 2020). 

As MS progresses, inter-eye structural differences develop both in 
eyes with a clinical history of optic neuritis and in those without such a 
history (Kenney et al., 2022). It was therefore proposed to use inter-eye 
difference cut-offs of pRNFL ≥ 5 μm and GCIPL ≥ 4 μm to identify 
unilateral optic neuritis (Nolan et al., 2018; Nolan-Kenney et al., 2019). 
Values close to these thresholds were subsequently confirmed in further 
studies (Bsteh et al., 2020). 

Nevertheless, further validation is required using other exploratory 
protocols (e.g. Early Treatment Diabetic Retinopathy Study (ETDRS) 
and the Posterior Pole protocol) and other technologies such as swept- 
source OCT (Yasin Alibhai et al., 2018). The Posterior Pole protocol is 
based on the high reliability provided by applying the Anatomical 
Positioning System (APS) to OCT imaging. The APS works by locating 
points on the eye using two fixed structural landmarks: the centre of the 
fovea and the centre of the Bruch membrane opening. This allows much 
more precise monitoring, detecting even the slightest alteration or 
inter-eye difference because using the APS, in conjunction with the True 
Track (TruTrack, Heidelberg Engineering) eye-tracking system, ensures 
accurate identification of macula position in each eye based on head tilt 
and eye cyclotorsion. 

Machine learning (ML) techniques are capable of identifying com-
plex relationships or patterns in empirical data and applying that 
knowledge to new datasets. Conventional neural networks, support 
vector machines and other traditional automatic classifiers can be used 
in MS diagnosis supported by OCT if the available information com-
prises peripapillary measurements or the average thickness values in the 
regions defined by the ETDRS grid (Cavaliere et al., 2019; Ciftci Kava-
klioglu et al., 2022; Garcia-Martin et al., 2021; Kenney et al., 2022). 
When analysing a greater number of measurements, such as those pro-
duced by a 45 × 60 thicknesses matrix, it is preferable to use a con-
volutional neural network (CNN) (López-Dorado et al., 2021). 

Although according to the McDonald criteria there is not yet suffi-
cient evidence to consider OCT tests as biomarkers of MS, further 
research, development, and clinical implementation of the technology is 
considered a high priority (Thompson et al., 2018). 

The aim of this paper is to evaluate the extent to which inter-eye 
asymmetry and the thicknesses of different retinal structures obtained 
using the Posterior Pole protocol are able to discriminate between 
control subjects and patients with recently diagnosed MS. In a second 
phase, the dataset with the greatest discriminant capacity is selected and 
used as the input of a CNN to implement an assisted diagnosis system. 

2. Methods 

The design of this study adhered to the tenets of the Declaration of 
Helsinki and all participants provided written informed consent. The 
study protocol was approved by the Clinical Research Ethics Committee 
of Aragon (Zaragoza, Spain). 

2.1. Study cohort 

Two independent samples, one comprising RRMS patients and the 
other comprising healthy controls (HC), were prospectively recruited 
from two clinics (ophthalmology clinic specializing in neuro- 
ophthalmology and neurology clinic specializing in demyelinating 
diseases). 

Based on our preliminary studies in MS patients, we calculated the 
sample size needed to detect differences of at least 3 μm in OCT- 
measured thicknesses by applying a bilateral test with α 5% risk and β 
10% risk (i.e. with a power of 90%). In order to obtain a sufficient 
sample of MS patients to allow an in-depth study of the natural history of 
the disease, the non-exposed/exposed ratio was determined to be 0.5. 
From these data it was concluded that at least 50 eyes would be needed 
in each group. 

The definitive MS diagnosis was based on standard clinical and 
neuroimaging criteria (Thompson et al., 2018). To ensure a homoge-
neous population, only patients with the RRMS phenotype without a 
history of optic neuritis in either eye were included. The healthy controls 
had no history of ocular or neurological disease and presented no signs 
or symptoms of them. 

The exclusion criteria were best-corrected visual acuity lower than 
0.5 according to Snellen charts, refractive errors higher than 5 dioptres 
of spherical equivalent refraction or 3 dioptres of astigmatism, intra-
ocular pressure higher than 20 mmHg, media opacifications (nuclear 
colour/opalescence, cortical or posterior subcapsular lens opacity lower 
than 2 according to the Lens Opacities Classification System III) (Chy-
lack, 1993), concomitant ocular disease (including glaucoma or retinal 
pathology), and other systemic conditions potentially affecting the vi-
sual system. 

Related medical records were carefully reviewed, including disease 
duration, Expanded Disability Status Scale (EDSS) score, treatments, and 
the presence of prior episodes of optic neuritis. 

All participants underwent a full ophthalmological examination, 
including clinical history, visual acuity, biomicroscopy of the anterior 
segment using a slit lamp, Goldmann applanation tonometry, and 
ophthalmoscopy of the posterior segment to check that they did not 
meet the exclusion criteria. OCT measurements of the neuroretinal 
structure were then taken. 

2.2. OCT method 

Structural measurements of the retina were obtained using the 
Spectralis OCT device (Heidelberg Engineering Inc., Germany). The 
Posterior Pole Retinal Thickness Map protocol (Asrani et al., 2011) was 
used for all subjects. This protocol incorporates the APS, which describes 
a horizontal line between the fovea and the Bruch membrane opening. 
Based on that reference line, 61 parallel B-scans are performed inside an 
area measuring 25◦ x 30◦ Each B-scan consists of 768 A-scans. There are 
123 µm of spacing between B-scans and 10 frames are averaged per 
B-scan location. The APS plus the True Track (TruTrack, Heidelberg 
Engineering) eye-tracking system ensure accurate identification of the 
position of the macula in each individual based on head tilt and eye 
cyclotorsion. 

The 25◦ x 30◦ analysed area is represented as an 8 × 8 grid that 
provides overall retinal thickness, and segments each layer thickness 
into 64 independent cells. The Spectralis OCT device has an axial (in 
tissue) resolution of 3.9 μm and the thickness value is obtained from the 
average of each cell (860 × 860 µm). 

For the 64 cells, the segmentation software (HRA version 6.0.7.0) 
used by the Spectralis OCT device provided the mean thickness of the 
following nine retinal layers (Fig. 1): retinal nerve fibre layer (RNFL), 
ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear 
layer (INL), outer plexiform layer (OPL), and outer nuclear layer (ONL), 
as well as the retinal pigment epithelium (RPE) and the mean thickness 
of the neuroretina between the internal and external limiting mem-
branes (inner retinal layers: IRL), and the mean thickness of the outer 
retinal layers (ORL) between the external limiting membrane and the 
Bruch membrane. 

No manual correction was applied to the OCT output. The quality of 
the scans was assessed prior to analysis and poor-quality scans or images 
with less than 25/40 quality points were rejected (Balasubramanian 
et al., 2009). The quality of the images was checked using the OSCAR-IB 
guidelines (Petzold et al., 2021a). 

Due to the number of cells with data, and in the interest of better 
visualization and understanding of the information, the descriptive data 
of 64 cells were grouped into the foveal, parafoveal and perifoveal areas; 
analysis of the region formed by grouping these three rings together 
(GLOBAL) is also included. 
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2.3. Statistical methods 

In continuous variables the normality criterion was evaluated using 
the Shapiro-Wilk test. Normally distributed data were presented as the 
mean and the standard deviation (SD). The median and interquartile 
range (Q3–Q1) were shown for non-Gaussian data. Categorical data 
were presented as absolute numbers with their corresponding percent-
ages. Difference analysis was performed using Student’s t-test and χ2 for 
the categorical variables. 

The area under the receiver operating characteristic (AUROC) curve 
was calculated to test whether two distributions of thickness data or the 
inter-eye difference were similar or not. This test is identical to the non- 
parametric Mann–Whitney U statistic (Hanley and McNeil, 1982). The 
DeLong non-parametric test was performed to evaluate the statistical 
difference between the AUROC values. P-values < 0.05 were considered 
to indicate a significant difference. Statistical analysis was performed 
with Python 3.10.4. 

2.4. Convolutional neural network 

A CNN is a feed-forward artificial neural network in which the first 
processing layers perform feature map extraction based on the convo-
lution between input information and the kernels of certain dimensions 
(Alzubaidi et al., 2021). This process can be configured to span several 
convolution layers, in which it is also common to implement sub-
sampling, pooling, batch normalization and non-linear transformation 
operations in order to improve CNN training. If the input information 
comprises images, the CNN can detect local features such as edges, 
corners, luminance, etc. After one or more convolution layers, arranged 
in a pipeline structure, a classification module (e.g. a fully connected 
neural network) is implemented and the CNN output is generated. The 
CNN’s trainable parameters can be adjusted using one of the variants of 
the backpropagation algorithm (e.g. Adam optimizer). 

3. Results 

3.1. Participating subjects 

A total of 79 patients (68 women and 11 men) with RRMS and 69 (46 
women and 23 men) HCs were enroled. Mean age was 45.64 ± 13.59 
years in MS group and 46.94 ± 12.64 years in healthy controls group (p 
= 0.604). Mean disease duration in patients was 1.42 ± 0.72 years and 
median EDSS score was 1.28 (range: 0–3). Treatment distribution in MS 
group was 3 patients with Avonex (intramuscular interferon beta-1a), 7 
patients with Betaseron (inteferon beta-1b), 6 patients with Rebif 
(subcutaneous interferon beta-1a), 6 patients with Copaxone (glatir-
amer acetate), 55 patients received oral last generation treatments: 
Tecfidera (dimetilfumarato) for 11 patients, Gilenya (fingolimod) for 32 
patients, Mayzent (siponimod) for 3 patients and Aubagio (teri-
flunomida) for 9 patients and 2 patients did not received treatment. 

3.2. Retinal structure thicknesses 

Fig. 2 shows the median average thickness values for both eyes of the 
nine retinal structures, represented in heat map form, both for controls 
and patients. As would be expected, in most of the layers and zones 
analysed the thicknesses are greater in the control subjects. 

Fig. 3 presents a graphical representation of the AUROC value in 
each of the cells analysed, revealing an annular distribution of the dif-
ferences found in certain layers of the neuroretina in both cohorts. 
Table A.1 (supplementary appendix) shows the numerical values of the 
thicknesses in the foveal, parafoveal and perifoveal rings and for all 
three rings overall (GLOBAL). The discriminant capacity in each 
grouping is evaluated using the AUROC. 

Analysis of the grouping of the three rings reveals that the most 
pronounced thinning occurs in the inner layers of the patients’ retina: in 
the GCL (composed of the ganglion cell somas or nuclei) and the IPL, 
both of which have an AUROC value of 0.82. The second-most affected 
structure is the IRL (AUROC = 0.78). There is no significant difference 
between the ROC curves of these three variables. The thinning of these 
inner layers of the retina confirms that neuroaxonal degeneration 
associated with development of the disease occurs, even when patients 
do not present any signs or symptoms of ophthalmological disease or 
optic neuritis. 

Fig. 4 shows in heat map form the inter-eye difference for control 
subjects and patients in the 64 cells of each of the nine retinal structures. 
The image shows that, in general, inter-eye difference is greater in pa-
tients than in control subjects, especially in the GCL and the IPL. The 
numerical results are presented in Table A.2 (supplementary appendix). 

It is still the inner layers of the retina, specifically the GCL (AUROC 
= 0.75), IRL (AUROC = 0.74) and IPL (AUROC = 0.71), which provide 
the greatest discriminant capacity when evaluating the inter-eye dif-
ference between the healthy and patient cohorts. No tomographic area 
within these three layers presents significantly greater alteration due to 
the disease than any other, and discriminant capacity is fairly similar in 
the foveal, parafoveal, and perifoveal zones (Fig. 3). Overall affectation 
of the ganglion cells and of the thickness of their axons therefore appears 
to occur equally in the different rings into which the neuroretinal 
analysis is divided. 

3.3. CNN input selection 

To determine which are the most appropriate inputs to the CNN, the 
AUROC value of the GLOBAL zone, which spans the foveal, parafoveal 
and perifoveal rings, is taken as reference. The variables that meet the 
condition AUROC > 0.70, ranked from highest to lowest discriminant 
capacity, are as follows: GCL (AUROC = 0.82, CI: 0.89–0.75), IPL 
(AUROC = 0.82, CI: 0.89–0.75), IRL (AUROC = 0.78, CI = 0.85–0.70) in 
measurements of the thicknesses of both eyes and GCL (AUROC = 0.75, 
CI = 0.83–0.67), IRL (AUROC = 0.74, CI = 0.82–0.66) and IPL (AUROC 
= 0.71, CI = 0.79–0.63) in measurements of inter-eye difference. 

Table A.3 (supplementary appendix) analyses the statistical 

Fig. 1. Visualization of the retinal layers by 
Spectralis Optical Coherence Tomography 
(OCT). The left image shows the line of the 
tomographic slice and its location within the 
retina, between the optic nerve and the macula 
of the eye. The middle image shows the retinal 
layers visualised by OCT in one of our patients 
and the delineation of the layers made by the 
OCT software in an automated way, using 
greyscale differences. Abbreviations: ILM: inner 
limiting membrane; GCL: ganglion cell layer; 
IPL: inner plexiform layer; INL: inner nuclear 

layer; OPL: outer plexiform layer; ELM: external limiting membrane (the structure that separates the inner segments from the outer nuclear layer); PR1: photore-
ceptor inner segments; PR2: photoreceptor outer segments; RPE: retinal pigment epithelium; BM: Bruch membrane. The right figure shows a schematic of the retinal 
layers that can be identified by OCT.   
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difference between these AUROC values using the DeLong test. 
The input to the neural classifier will comprise the information with 

the highest AUROC value: GCL (thickness). Although there is no statis-
tical difference with the next four datasets (P > 0.05), there is a differ-
ence with the IPL value (inter-eye difference). The classifier inputs will 
therefore be GCL (thickness) and IPL (inter-eye difference). 

3.4. Automatic classification 

Fig. 5a shows the architecture of the CNN. The 8 × 8 × 82 input is 
made up of images of the two retinal structures with greatest discrimi-
nant capacity. The best classification results were obtained with a CNN 
comprising two convolution layers. The first convolution layer uses 16 
kernels (dimensions: 3 × 3; stride = 1, padding = 1) producing 16 

feature maps (dimensions: 8 × 8). The second convolution layer im-
plements 32 kernels (dimensions: 3 × 3; stride = 2, padding = 1) 
generating 32 feature maps (dimensions: 4 × 4). Batch normalization 
and a non-linear activation function are implemented in both layers 
after the convolution function. The output information of the second 
convolution layer (4 × 4 × 32) is applied to a fully connected network 
with 128 inputs and two outputs indicating the probability of belonging 
to either the control subject or patient cohort, respectively. 

The number of trainable parameters is 71,506 and the error is 
defined as the CrossEntropyLoss. The training parameters for the Adam 
optimizer are learning rate η = 1e-5, momentum rate γ = 0.9, β1 = 0.9, 
β2 = 0.999, and ε = 1e− 8, and the training epochs were set to 200. 

The performance of the classification is represented by a confusion 
matrix obtained using leave-one-out cross validation: 69+79 CNN 

Fig. 2. Heat map visualization of median average thickness for both eyes in μm. The figure shows the average thickness value in each of the 64 cells measured using 
the exploratory protocol in healthy controls subjects (a) and in MS patients (b). 

Fig. 3. Heat map visualization of the AUROC (area under ROC curve) values between HC and MS patients. a AUROC of median average thickness for both eyes. b 
AUROC of inter-eye difference. 
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training processes were executed from scratch (random initialization of 
the weights of the fully connected layer and in the coefficients of the 
kernels). Under these conditions, the assisted diagnostic system imple-
mented attains accuracy = 0.87, sensitivity = 0.82, and specificity =
0.92 (Fig. 5b). 

4. Discussion 

In this work we have used state-of-the-art SD-OCT technology that 
allows us to obtain highly accurate structural measurements thanks to 
an automatic positioning system (APS) and the separate segmentation of 

the GCL and IPL layers. Under these conditions, we have obtained results 
relating to 1) analysis of neuroretinal thinning in patients recently 
diagnosed with RRMS versus age-matched control subjects; 2) variation 
in inter-eye thickness in both cohorts (healthy controls and patients); 3) 
analysis of the discriminant capacity of thickness and inter-eye differ-
ence; and 4) the creation and application of a CNN to assess the ability to 
distinguish between patients and healthy controls using the retinal 
structures with the greatest discriminant capacity (thickness and inter- 
eye difference). 

An important innovation of this study is that the Posterior Pole 
protocol has been used to improve measurement reliability with the 

Fig. 4. Heat map visualization of the inter-eye difference in μm. It shows the mean value in each of the 64 cells measured using the exploratory protocol in a healthy 
controls subjects and b in MS patients. 

Fig. 5. Classifier architecture and confusion matrix obtained in the leave-one-out cross validation process. a Convolutional neural network (CNN) architecture. b 
Confusion matrix. 
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incorporation of the APS to locate the centres of the fovea and the Bruch 
membrane opening, respectively, as fixed structural landmarks, thus 
ensuring that the tomographic analysis is performed on the macula and 
not on another nearby area of the retina. In addition to being more ac-
curate as regards following up and monitoring changes in patients over 
time, this protocol constitutes a significant advance in our study because 
it reduces inter-eye variability not attributable to the pathology itself. 
The APS ensures that the right and left eye measurements match exactly. 
This is achieved by using the same criteria to align the centre of the fovea 
in both eyes and, therefore, ensuring the measurements are precisely 
mirrored in both eyes. This provides a significant advantage when 
evaluating inter-eye thickness differences by ensuring that the differ-
ences found are due either to the pathology or to possible episodes of 
subclinical optic neuritis. Without the APS, differences could be due to 
different degrees of vergence between a patient’s eyes, to the position of 
the patient’s head in the scanner, or even to minor anatomical differ-
ences such as refractive differences, peripapillary atrophy, etc. 

As regards the first analysis, we found that the inner retinal layers 
(GCL, IPL, and IRL), which contain the ganglion cell somas and axons, 
showed the highest affectation and so possessed the greatest power to 
discriminate between control subjects and patients. The AUROC values 
obtained in our study are consistent with those reported in previous 
papers (including those employing other OCT technologies and pro-
tocols) and suggest that the neuroaxonal loss that occurs in RRMS causes 
a reduction in ganglion cells, an outcome that previous authors have 
observed correlates with the functional disability associated with this 
disease (Garcia-Martin et al., 2017; Petzold et al., 2017; Montolío et al., 
2021, 2022). 

One of the current issues in clinical care and clinical research in MS is 
the concept of disease progression without evidence of clinical or 
neuroradiological relapse. The patients in our study never experienced a 
history of optic neuritis, so our results demonstrate the recorded pres-
ence of neurodegeneration in the absence of inflammatory attacks. 

Our analyses also show that affectation of the ganglion cells and of 
the thickness of their axons occurs in all the different areas of the retina 
and is not greater in the foveal area than elsewhere. Detailed study of the 
papillomacular bundle may find some differences, since this bundle 
contains the greatest number of fibres originating from the ganglion cell 
somas that converge to form the optic nerve. 

In relation to the analysis of the difference in inter-eye thickness in 
each subject’s two eyes, we observed that once more the inner retinal 
layers (GCL, IRL, and IPL) exhibited the greatest capacity to discriminate 
between patients and control subjects. According to their medical his-
tories, our patients had not previously suffered episodes of optic neuritis, 
although it is possible that they may have suffered subclinical episodes 
or may simply exhibit different axonal affectation between the two eyes. 
This finding suggests that axonal affectation at neuroretina level in pa-
tients is an asymmetrical process that affects each eye of each subject 
differently even when there is no clinical history of affectation of visual 
acuity in one of the eyes in particular. Our findings are consistent with 
those reported by (Petzold et al., 2021b) where OCT images of 71,939 
control subjects and 144 patients without optic neuritis were analysed, 
finding that the highest AUROC value was achieved for inter-eye dif-
ference in the mGCIPL (AUC = 0.71, CI: 0.6646–0.7575). Our study has 
improved on these results, achieving AUROC values of 0.75 (CI: 
0.83–0.67) in the GCL and of 0.74 (CI: 0.82–0.66) in the IRL. This may 
be because our analysis uses the APS, which increases the reproduc-
ibility of the OCT measurements, and also because our study separates 
the GCL and IPL while Petzold et al. analysed both layers (mGCIPL) 
together, which may produce greater variability because it includes 
more cells in the measurements. Likewise, and in line with the conclu-
sions of (Petzold et al., 2021b), in our study we observed that inter-eye 
difference in the RNFL possesses low discriminatory power (AUROC =
0.68). 

In another study, (Nij Bijvank et al., 2022) found that inter-eye dif-
ference in the mGCIPL proved highly accurate in diagnosing patients 

with multiple sclerosis suffering both unilateral and bilateral optic 
neuritis over time. The diagnostic accuracy of using inter-eye difference 
to differentiate between patients with multiple sclerosis without optic 
neuritis and control subjects was moderate to good (AUC: 0.66–0.73, 
disease duration: 20.3 years; this study includes different types of pa-
tients with multiple sclerosis), attaining better results and at earlier 
stages of relapsing-remitting multiple sclerosis. Bijvank et al. come to 
the conclusion, as we did, that some of the patients had subclinical optic 
neuritis or asymmetrical pathologies further along the visual pathway 
causing trans-synaptic retrograde degeneration of the visual pathway. 

In our study, which drew on patients who had not been diagnosed 
with optic neuritis, we found that the average thickness of the inner 
retinal layers of both eyes had greater discriminant capacity than the 
inter-eye difference measurement in the same subject. According to the 
results presented in Table A.3 (supplementary appendix), however, the 
only significant difference exists between the GCL (thickness) and the 
IPL (inter-eye difference). To the best of our knowledge, this is the first 
time this analysis has been conducted. 

As regards the fourth and final analysis in this study, recent papers 
have explored automatic diagnosis of MS in early and incipient stages of 
the disease using ML techniques. Analysing data obtained with a swept- 
source OCT device (45 × 60 matrix) with an effect size metric (Cohen’s 
distance) to detect the regions most altered by the disease and a feed- 
forward neural network as a classifier, accuracy = 0.98 was attained 
(disease duration: 7.35 ± 1.95 months, EDSS score = 1.07) (Garcia--
Martin et al., 2021). With the same database but using convolutional 
neural networks to implement data augmentation using generative 
adversarial networks and a classifier, a perfect classification was ob-
tained (accuracy = 1.0) (López-Dorado et al., 2021). In a paediatric 
population (disease duration: 0.6 years) it yielded accuracy = 0.80 when 
classifying multiple sclerosis patients versus controls using a Random 
Forest classifier (Ciftci Kavaklioglu et al., 2022). Since the results re-
ported to date depend on factors such as the patient cohort character-
istics, the technology used to take the readings (spectral domain OCT 
versus swept-source OCT), the exploratory protocol employed, the data 
analysis and classification method, as well as consideration of the sub-
jects’ other biological variables, etc., further studies are needed to 
determine the most appropriate procedure. 

The best results in the classification were obtained using combined 
thickness and inter-eye difference data values as inputs to the CNN. 
Importantly, the sensitivity and specificity of OCT when diagnosing MS 
using the new CNN-based analysis methodology come close to that of the 
current diagnostic gold standard, MRI, and may represent an extra 
diagnostic tool. Some authors propose the incorporation of OCT analysis 
in the diagnostic criteria for multiple sclerosis (Kenney et al., 2022; 
Petzold et al., 2017). 

Diagnosing neurodegenerative diseases rapidly and in their early 
stages is one of the main challenges facing neurodegenerative disease 
clinicians worldwide and, in the case of MS, OCT may help achieve this 
goal. Earlier disease detection allows doctors to provide earlier treat-
ment to slow down the progression of the disease, thus achieving an 
increase in Quality-Adjusted Life Years (QALY), namely a higher number 
of years with a higher quality of life for these patients. 
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