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A B S T R A C T   

Cancer represents a major public health issue and a primary cause of death for the mankind and the search for 
alternative cancer treatments that assist or alleviate the drawbacks of current cancer therapies remains imper-
ative. Nanocatalytic medicine represents a new discipline that aims at exploiting the unique response of het-
erogeneous catalysts exposed to unconventional conditions such as those encountered in the tumor 
microenvironment (TME). Photo-triggered cancer therapies using light-activable catalytic materiales can stim-
ulate and activate multiple biological processes and represent a very promising field of study. Herein, we 
evaluate the use of carbon nanodots with different composition (CNDs) retrieved by laser pyrolysis as potential 
near-infrared (NIR) photosensitizers able to activate P25 semiconductor nanostructured photocatalysts. We 
describe the enhanced photocatalytic response towards glucose conversion and reactive oxygen species (ROS) 
generation upon irradiation with NIR-LEDs when CNDs doped with heteroatoms were tested. The most active 
photocatalysts were evaluated in the presence of cancer cells and revealed a promising photodynamic effect 
under NIR irradiation. This work represents one of the scarce examples of a conventional inorganic photocatalyst 
containing TiO2 that is translated into a biomedical application with a successful outcome.   

1. Introduction 

Cancer continues to be one of the leading causes of death worldwide. 
By current estimates, in 2030 close to 22 million new cases will be 
diagnosed and cancer will cause 13 million deaths worldwide [1]. 
Among current developing cancer therapies, bionanomedicine and 
heterogeneous catalysis have merged into the Nanocatalytic Medicine 
approach [2]. This interdisciplinary field takes advantage of the speci-
ficity and enabling ability of heterogeneous catalysts to perform chem-
ical reactions in otherwise passive environments. Furthermore, this 
unconventional therapeutic approach lies on the consideration of the 

growing tumor microenvironment (TME) as a specific type of reactor. 
Only in recent years, inorganic and hybrid nanoplatforms have spurred 
interest to perform abiotic and enzyme-mimicking catalysis inside living 
systems [3–10]. So far, the use of nanocatalysts for TME-mediated 
therapy has shown promising results in the following processes: i) 
bio-orthogonal anticancer pro-drug activation using noble metal NPs 
[11–13]; ii) accelerated depletion of key analytes essential in the 
metabolism and homeostasis of cancer cells (i.e. glucose, glutathione, 
glutamine) [2,6,9,14,15]; iii) in situ generation of short-lived, toxic 
species (i.e. Reactive oxygen species-ROS) to induce damage in DNA, 
lipids, proteins or membranes [4,14]. In addition, selective delivery and 
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remote activation of the catalytic function after it has reached the TME 
also pose as highly challenging objectives [16,17]. 

Photocatalysts are among the nanomaterials with multifunctional 
redox activity that can be remotely activated in the presence of light to 
induce the generation of ROS. Semiconductors based on SnOx and TiO2 
exhibit good activity toward biomass and carbohydrate photo-induced 
conversion [18,19]. The major shortcoming associated to their limited 
response beyond the UV- region has been overcome by the addition of 
organic photosensitizers [20–24], metallic co-catalysts [7,25–29] or the 
induced generation of defects and vacancies in the semiconductor oxides 
(e.g. blue and black titania) [30–32]. The redox ability of titania to 

produce ROS is well established and a number of increasing studies has 
additionally exploited the strong affinity between titania and glucose 
[26,33–37] to carry out the photoreforming of the carbohydrate as 
sacrificial agent to produce hydrogen [38]. Still, the number of 
titania-based catalysts able to perform under the TME constraint con-
ditions upon remote triggering by external stimuli is scarce [18,39–42]. 
This work aims at exploring the potential role of P25 nanoparticles (NPs) 
to simultaneously form ROS and deplete glucose in the unconventional 
TME. To do so, we have taken advantage of the versatility of carbon 
nanodots (CNDs) as organic sensitizers able to activate P25 NPs and 
expand their photocatalytic response towards the visible-NIR range 

Fig. 1. Laser-assisted synthesis of CNDs, assembly and photocatalytic response under LED-NIR illumination: a) Scheme of the laser pyrolysis of toluene and pyridine 
using an infrared CO2 continuous laser source; the particles are collected in TREG, purified after centrifugation and assembled onto P25 NPs; b) High-Resolution TEM 
image of the CNDs@P25 composites obtained from the toluene feed; white arrows are indicative of representative examples of CNDs attached to the P25 NPs; c) HR- 
TEM of the N-CNDs@P25 hybrids retrieved from the pyridine feed; lattice fringes at 0.352 nm corresponding to (101) anatase planes are also indicated; d) UV-Vis 
absorption spectra of the P25 NPs before (black) and after assembly with the undoped (blue) and N-doped CNDs (red), respectively; e) NIR-driven photocatalytic 
conversion glucose in the presence of P25 NPs before and after assembly with the undoped and N-doped CNDs; f) Evaluation of the in situ generation of hydroxyl 
radicals upon photoirradiation (time = 60 min) with a high radiance NIR-LED (λexc= 740 nm) in the presence of P25 NPs before and after assembly with undoped and 
doped CNDs using disodium terephthalate (NaTA) as fluorescent probe selective to •OH radicals; g) Schematic display of the role of CNDs as photosensitizers able to 
delay the electron-hole recombination rates of P25 and provide positive charges for the specific conversion of glucose molecules that tend to assembly well onto the 
surface of the titania support. 
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[43–46]. 
In the past two decades, the study of CNDs has flourished based on 

their excellent optical and photocatalytic activity, providing a successful 
range of applications both in the environmental and biomedical fields. 
Interestingly, the optical behavior of CNDs can be tuned up by the 
presence of doping heteroatoms such as N, P or S [43] and most recently 
Fe [47]. Nitrogen-doping of CNDs represents the most exploited alter-
native to modify CNDs and previous studies have established that 
depending on the level of substitution and the type of bond, the energy 
levels of the carbogenic dots provide different optical response [42,43, 
48]. The upconversion response of these N-CNDs has boosted their 
application toward the environmental remediation of organic pollutants 
taking advantage of the full-solar spectrum [37,42,46,49,50]. Alterna-
tively, N-CNDs have been successfully exploited as theranostic agents 
able to simultaneously act as NIR-bioimaging markers and photody-
namic agents able to induce the generation of ROS preferentially in 
cancer cells [45,48,51]. In this work, we have taken advantage of the 
exquisite control of the laser pyrolysis of liquid precursors to obtain 
undoped and N-doped CNDs [42]. This synthesis strategy enables a 
controlled doping of the generated carbon nanostructures with light 
elements (i.e. N, S, F) to tune their photoluminescence (PL) properties. 
We have assembled these CNDs onto P25 NPs and tested them against 
the photocatalytic conversion of glucose, the generation of hydroxyl 
radicals and for in cellulo photocatalytic tests to treat glioblastoma cells 
(U251-MG) using Near-Infrared (NIR) light remote stimuli. 

2. Results and discussion 

2.1. Synthesis of the photocatalysts and NIR-driven tests for glucose 
conversion and ROS generation under cell-free conditions 

A schematic display of the synthesis of the CNDs and their assembly 
onto P25 NPs is summarized in Fig. 1a. The synthesis of undoped and N- 
doped CNDs was carried out by laser pyrolysis of toluene and pyridine 
using precursor concentrations, gas flow rates and working pressures 
similar to those reported by Mas et al. [42] and summarized in Table S1. 
A higher laser power of 275 W was applied to obtain the CNDs reported 
in this work (Table S1). Toluene or pyridine were fed into the reaction 
chamber from a sealed vessel equipped with regulatory opening-close 
valves. Sulfur hexafluoride (SF6) was fed to sensitize the infrared laser 
(CO2, λ = 10.6 µm) and Argon (Ar) was used as carrier gas passing 
through the organic precursor reservoir. The laser was placed to interact 
with the reactant streams in a 90 º configuration, thereby providing 
well-defined residence times, with fast activation and post reaction 
quenching [42,52–54]. The as-prepared NPs were directly collected in a 
liquid trap containing triethylenglycol (TREG) that helped to improve 
their stability when resuspended in aqueous media. Transmission elec-
tron microscopy (TEM) revealed similar mean diameters of ca. 1.9 nm 
for both CNDs retrieved from toluene and pyridine pyrolysis, respec-
tively (Fig. S1a). High resolution TEM analysis and XRD further 
confirmed the crystalline nature of the CNDs exhibiting characteristic 
lattice fringes of graphite (Fig. S1b-S1d). XPS revealed a higher content 
of N in the surface of the carbon nanodots retrieved from pyridine 
(hereafter labelled N-CNDs) (see Fig. S2). In addition, a marginal pres-
ence of S and F was also detected and attributed to partial decomposition 
of the sensitizer used during the laser pyrolysis (SF6). The presence of a 
higher fraction of C-N/C-O bonds in the C1s region of the N-CNDs was 
also indicative of higher disorder degree due to the higher fraction of sp3 
bonds (Fig. S2b-S2e) induced by the major presence of defects and/or 
intercalation of N atoms. Raman spectroscopy also corroborated the 
increased presence of defects, stacking faults, lack of symmetry and 
impurities in the N-CNDs retrieved from pyridine (Fig. S3). The fitted 
Raman bands typically associated to carbon defects were more promi-
nent in comparison with the CNDs from toluene (see Fig. S3). 

The assembly of the CNDs onto P25 NPs was carried out following a 
protocol described elsewhere for anatase [42,44]. It consisted on 

heating and drying under vacuum a suspension of the resulting CNDs 
and the commercial P25 NPs (see Experimental section for further de-
tails). HR-TEM images shown in Figs. 1b-1c accounted for the successful 
attachment and homogeneous distribution of the CNDs (some of them 
highlighted by white arrows for the sake of clarity) onto the P25 NPs. 
Remarkably, the addition of the CNDs expanded the UV-Vis-NIR ab-
sorption spectrum of commercial P25 NPs towards the visible-NIR range 
(Fig. 1d). This effect became especially evident with the N-doped CNDs. 
Nitrogen doping is able to introduce additional energy levels that couple 
with the TiO2 energy levels, thereby reducing their energy band gap and 
allowing the absorption of additional photons with lower energy. It may 
also favor anti-Stokes luminescence shifts that do not require large 
fractions of coherent photons (i.e. upconversion vs two-photon absorp-
tion) [43–46]. 

The naked P25 NPs and the corresponding composites containing the 
CNDs were tested as potential photocatalysts for glucose conversion 
under LED-NIR irradiation at 740 nm. The initial dispersion of the CNDs 
in TREG helped to improve their stability in aqueous suspensions for the 
photocatalytic tests. Reducing the glucose levels to induce starvation in 
cancer cells with a highly glucose-dependent metabolism represents an 
interesting therapeutic strategy and the use of light stimulation in the 
NIR transparent biological window (i.e. higher penetration depth) is also 
extremely convenient for remotely triggered photodynamic processes in 
spatially localized targets [18,39,55]. Fig. 1e shows the evolution of the 
glucose levels at different irradiation intervals. The commercial P25 NPs 
and the corresponding composite decorated with the CNDs retrieved 
from toluene pyrolysis (i.e. undoped) exhibited a negligible 
photo-activity and no glucose was converted. In contrast, the 
N-CND@P25 catalyst was able to yield up to 45% glucose conversion 
after 60 min of NIR-illumination (Fig. 1e and Fig. S4). Analogous 
glucose photo-conversion levels have been recently reported by Da Vià 
et al.[56] using P25 NPs under UV and visible light irradiation but not 
reported the use of NIR illumination sources. Other recent articles have 
also reported the photo-reforming of glucose and biomass derivatives as 
a sacrificial electron donor to favour a green alternative to generate H2 
[19,38,57–59]. Most of these studies attribute their positive results to 
the great chemical affinity of the glucose molecule to accommodate onto 
the surface of TiO2 forming either a mono or a bidentate complex able to 
transfer electrons and expand the response of P25 towards the visible 
range [34,35,37,56,59] (Fig. 1 g). In our case, the specific photo-
catalytic response under NIR illumination must be attributed to the role 
of N-doped CNDs as photosensitizers and light harvesters [42,47]. This 
role of CNDs has been previously reported in other TiO2-based photo-
catalysts containing N-doped CNDs [34,42–44,59,60], in TiO2 networks 
doped with heteroatoms [30,38,61], in O2-deficient or hydrogenated 
TiO2 NPs [31,62] or in different semiconductors (ZnO, SnO2 or TiO2) 
containing porphyrazines or upconverting lanthanides [20,24,63]. 

The glucose conversion must be driven by the generation of reactive 
electron-hole pairs leading to the formation of ROS. ROS generation has 
become another important strategy to tackle cancer by PDT and the 
capacity to locally induce ROS via an external stimuli [5] (i.e. light, 
ultrasounds, microwaves, magnetic field, X-rays, γ-rays) may represent 
an enormous advantage with nanostructured catalysts that take advan-
tage of the enhanced permeation and retention (EPR) effect in the TME 
[18]. Therefore, we evaluated the specific capacity of each of the pho-
tocatalysts to generate hydroxyl radicals (•OH) under NIR illumination 
using disodium terephthalate (NaTA) as fluorescent probe selective to 
•OH radicals [44,45,48]. Fig. 1f shows that only the N-CND@P25 NPs 
exhibited a significant photo-activity to form the fluorescent hydroxyl-
ated compound after 60 min of NIR irradiation. These results further 
addressed that only the CNDs retrieved from the laser-assisted pyrolysis 
of pyridine were responsive to the NIR wavelengths, as observed in the 
glucose conversion experiments. We can assume that N atoms provide 
additional electronic levels that accommodate below the conduction 
band of P25 reducing its intrinsic energy bandgap. In addition, it has 
been also reported that N-doped CNDs may hold upconversion 

A. Madrid et al.                                                                                                                                                                                                                                 



Catalysis Today 419 (2023) 114154

4

capabilities to harvest longer wavelength photons and convert them into 
more energetic emissive photons [43–46,48,60,64,65] (Fig. 1 g). In this 
regard, the photoluminescence (PL) spectra of both the undoped and 
N-doped CNDs corroborated the upconversion response of the latter 
when excited at 740 nm (Fig. S5). As a result, this latter photocatalyst 
combining the synergistic action of N-doped CNDs and P25 NPs was 
selected to perform photocatalysis with cancer cells. 

2.2. Internalization and photocatalytic tests in cancer cells under NIR- 
irradiation 

The tolerability of cancer cells (U251-MG) to the exposure of 
increasing amounts of N-CND@P25 NPs was determined by incubating 
the photocatalyst with the respective cells during 6, 24 and 48 h, 
respectively. Fig. 2a shows that no signs of cytotoxicity were found at 
any of the catalyst concentrations evaluated for all the incubation pe-
riods. Optical images revealed an elevated internalization of NPs at 
concentrations of 0.1 mg mL− 1 and this value was selected in the sub-
sequent experiments (Fig. 2b). The internalization of N-CND@P25 NPs 

into U251-MG cells was further assessed by confocal microscopy. Fig. 2c 
includes representative images from U251-MG cells, after incubation 
with the photocatalyst for 4, 6, 8, 10, 24 and 48 h. A significant accu-
mulation of N-CND@P25 NPs inside the U251-MG cells was preferen-
tially observed in the 8–10 h incubation window (Fig. 2c). The 
internalization route was evaluated by marking lysosomes and CD63 
positive endosomes and investigating their co-localization with N- 
CND@P25 NPs under confocal microscopy. The results (see the Z-stack 
sections of the images in Fig. 2c) confirmed the localization of the N- 
CND@P25 NPs via an endosomal pathway, with preference to the 
lysosomal route. 

U251-MG cells were treated with 0.1 mg N-CND@P25 NPs⋅mL− 1 

during 24 h following by 10 or 30 min irradiation with the NIR-LED 
light. The identification of ROS species was monitored by confocal mi-
croscopy using a CellROX kit (see Figs. 3a-3b and Experimental section 
in SI for further details). The production of intracellular ROS and the 
potential effect of NIR irradiation itself was negligible in the absence of 
N-CND@P25 NPs, regardless of the selected irradiation time (Figs. 3a- 
3b) [66]. In contrast, cells treated with N-CND@P25 NPs showed a 

Fig. 2. Internalization, cell viability and trafficking of N-CND@P25 nanohybrids in the presence of U251-MG cells: a) Tolerability study of N-CND@P25 NPs 
incubated with U251-MG cells after 6 h, 24 h and 48 h (n = 4); b) Optical microscopy image corresponding to U251-MG cells after 48 h incubation with a con-
centration of 0.1 mg⋅mL− 1 of N-CND@P25 NPs; c) Evaluation of the internalization strategy of the N-CND@P25 NPs by in vitro confocal trafficking study of the 
endosomal and lisosomal pathways. Cross and top view images of U251-MG cells incubated with 0.1 mg⋅mL− 1 of N-CND@P25 NPs during 4, 6, 10, 24 and 48 h; Actin 
appears in green, nuclei in cyan, N-CND@P25 in blue and CD63 positive vesicles in red. Scale = 20 µm. 
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significant increase of ROS production compared to non-treated cells, 
even without irradiation (Figs. 3a-3b). N-CNDs and P25 NPs induced 
intracellular ROS generation in a dose dependent manner, even in the 
absence of light activation, as it has been previously described [41,55, 
65,67–72]. Still, the intracellular production of ROS increased upon 
activation of the N-CND@P25 NPs under 740 nm LED light in a 
time-dependent manner (Figs. 3a-3b). 

Since the generation of ROS is directly related to the induction of 
DNA damage, DNA damage response activation and reduction of cell 
viability was also evaluated [73,74]. It has been previously reported that 
eukaryotic cells phosphorylate the subtype of histone H2A, called H2AX, 

in the position of Ser139 occurs in response to DNA damage, generating 
the phosphorylated form called γH2AX [75]. Having demonstrated the 
generation of ROS after incubation with N-CND@P25 NPs, we pro-
ceeded to determine the generation of DNA damage by detecting 
γH2AX. Since the γH2AX response is maximal 30 min after exposure of 
damage and declines over a period of hours as the cells repair the 
damage [76–78], we examined the γH2AX foci 30 min after irradiation. 
As we show in Figs. 3c-3d and Fig. S6, a significant increase in γH2AX 
foci was observed in cells treated with N-CND@P25 NPs, which showed 
that the generation of ROS by N-CND@P25 NPs induced DNA damage. 
However the phosphorylation of the histone, H2AX, has not been related 

Fig. 3. Reactivity of the N-CNDs@P25 NPs with U251-MG cancer cells after irradiation with NIR light: a) Confocal images illustrating the generation of intracellular 
ROS after NIR-LED (740 nm) irradiation in the absence and in the presence of N-CNDs@P25 NPs in U251MG cells; Negative control treatment correspond to non- 
treated cells (no photocatalyst added) and negative control irradiation (non-irradiated photocatalyst). Irradiation time: 30 min; Phase contrast as displayed in grey 
tones and ROS species are detected with a CellROX staining (green); b) Quantification of fluorescence generated by CellROX dye both in the absence and presence of 
photocatalyst without irradiation and after 10 or 30 min of NIR illumination, respectively. Scale bar: 200 µm; c) Generation of DNA damage: Phase contrast and 
fluorescence images corresponding to DNA damage marker (gH2AX). Images of negative irradiation controls (No LED), as well as non-treated cells (no photocatalyst), 
are shown against cells loaded with N-CNDs@P25 NPs (previously treated with 0.1 mg⋅mL− 1). Irradiation times: 0 and 30 min. Scale bar 200 µm; d) Quantification of 
DNA damage activation by gH2AX fluorescence; e) Viability of U251-MG cells after NIR-irradiation in the absence and presence of N-CNDs@P25 NPs. Comparison 
between non-irradiated cells and irradiated cells, non-treated cells (No photocatalyst) and loaded with N-CNDs@P25 NPs (pre-treated with 0.1 mg⋅mL− 1). After LED 
irradiation cells were kept in culture during 72 h and 96 h, respectively; cell survival were determined by measurement of the metabolic activity. Obtained values 
were relativized to non-irradiated cells; f) Schematic illustration of the proposed intracellular reaction mechanism of the N-CNDs@P25 NPs, including photo- 
excitation under NIR-irradiation (1) and (2) to generate reactive electron-hole pairs that further react leading to ROS production (3) to induce irreversible DNA 
damage (4) reducing the viability of the cancer cells. 
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with RNA damage. In fact, RNA polymerases and RNA itself have been 
implicated at various stages of the DNA damage repair, including 
damage sensing, recruitment of DNA repair factors and tethering of 
broken DNA ends. Therefore, DNA damage do not affect to the RNA, and 
the RNA may even serve as a template for DNA repair under certain 
conditions [79]. No significant differences were observed between 
irradiated and non-irradiated cells treated with N-CND@P25 NPs. These 
results are in agreement with the trend observed with the intracellular 
ROS generation levels (Figs. 3a-3b). We could confirm that the ROS 
generated by the N-CND@P25 NPs led to DNA damage but it has been 
also extensively reported that the consequences of DNA damage depend 
on the severity of the damage. Mild DNA damage can be repaired with or 
without cell-cycle arrest, although more severe and irreparable DNA 
damage leads to cell cycle arrest [80]. Therefore, we proceeded to 
monitor and analyze the severity of the DNA damage induced by the 
N-CND@P25 NPs and the NIR irradiation and their consequences on cell 
survival. 

With this aim, cells were irradiated during 10 and 30 min and 
maintained in culture for 72 and 96 h, determining their viability at 
these time intervals. LED irradiation did not induce decrease of cell 
viability in non-treated cells due to the absence of ROS generation 
(Fig. 3e). A 10 min NIR irradiation did not induce a significant decrease 
of cell viability in U251-MG cells loaded with N-CND@P25 NPs 
(Fig. 3e). In contrast, increasing up to 30 min the NIR irradiation led to a 
significant decrease of the viability 72 and 96 h after the initial activa-
tion by the NIR-LED (up to 40% and 50% respectively) (see Fig. 3e). We 
can conclude that even though the only presence of N-CND@P25 NPs 
without irradiation was enough to induce ROS, the DNA damage was 
mild and reversible and it could be repaired by the DNA damage 
response pathways (Fig. 3e). In contrast, longer NIR irradiations induced 
a more severe DNA damage, able to decrease the cellular viability of 
U251-MG cells (Fig. 3e). These results show how N-CND@P25 NPs 
under light activation can be useful to treat cancer, decreasing the sur-
vival of tumor cells, thereby translating the activity of a conventional 
photocatalyst typically devoted to environmental catalysis into a less 
conventional application scenario against the TME. We ran an addi-
tional set of analogous irradiation experiments with uncoated P25 NPs, 
leading to a much less significant cell damage after 72 and 96 h (Fig. S7). 
Therefore, although the influence of P25 NPs in the reduction of cell 
viability at 96 h cannot be ruled out as previously described Long et al. 
[81], we can conclude that N-CNDs provide a synergistic and photo-
therapeutic activity that can be tentatively attributed to the combination 
of ROS generation and irreversible DNA damage (Fig. 1 f). In addition, 
the affinity and photo-reactivity between N-CND@P25 NPs and glucose 
can be another potential reason of interference in the regulation of 
glucose uptake. Fig. S8 shows the glucose percentages determined in the 
U251-MG cell media after 24 h of incubation and how only the NIR 
stimulation of the photocatalyst affected the glucose levels. 

3. Conclusions 

Laser pyrolysis of different solvents such as toluene and pyridine that 
hold a similar chemical structure mainly differentiated by the presence 
of N induces the generation of CNDs with different optical behavior, 
especially in the NIR window. Nitrogen-doping of the CNDs retrieved 
from the laser-driven pyrolysis of pyridine is able to harvest light in the 
NIR region and favors the expanded photocatalytic response of P25 NPs 
under NIR excitation towards the efficient conversion of glucose and the 
generation of ROS. Remarkably, this photocatalyst can be successfully 
internalized in glioblastoma cells and induce their irreversible death 
after illumination with NIR light. This work represents an alternative use 
of conventional photocatalysts into a less conventional reaction scenario 
involving the tumor microenvironment. The use of alternative photo-
dynamic agents based on regular photocatalysts paves the way to novel 
and promising routes where the use of composites with a well-controlled 
design can be strongly beneficial to regulate and alter the homeostasis 

and metabolism of cancer cells upon on-demand stimulation. CNDs 
represents one of the most promising and versatile alternative as co- 
catalyst with a photosensitizing role and broad-range of light 
response. In addition, P25 appear as attractive photocatalytic platforms 
to regulate glucose upon remote light triggering, thereby opening new 
potential avenues in the area of starvation therapy. 
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[66] A. Cios, M. Ciepielak, A. Szymański, S. Lewicka, W. Cierniak, M. Stankiewicz, 
S. Mendrycka, Lewicki, Effect of Different Wavelengths of Laser Irradiation on the 
Skin Cells, Int. J. Mol. Sci. (2021). 

[67] Y. Ding, J. Yu, X. Chen, S. Wang, Z. Tu, G. Shen, H. Wang, R. Jia, S. Ge, J. Ruan, K. 
W. Leong, X. Fan, Dose-Dependent Carbon-Dot-Induced ROS Promote Uveal 
Melanoma Cell Tumorigenicity via Activation of mTOR Signaling and Glutamine 
Metabolism, Adv. Sci. 8 (2021) 2002404. 

[68] X.Z. Yuan, J. Zhang, M. Yan, M.Y. Si, L.B. Jiang, Y.F. Li, H.B. Yu, J. Zhang, G. 
M. Zeng, Nitrogen doped carbon quantum dots promoted the construction of Z- 
scheme system with enhanced molecular oxygen activation ability, J. Colloid 
Interface Sci. 541 (2019) 123–132. 

[69] C. Disdier, J. Devoy, A. Cosnefroy, M. Chalansonnet, N. Herlin-Boime, E. Brun, 
A. Lund, A. Mabondzo, Tissue biodistribution of intravenously administrated 
titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain 
inflammation in rat, Part. Fibre Toxicol. 12 (2015). 

[70] M. Dorier, D. Beal, C. Tisseyre, C. Marie-Desvergne, M. Dubosson, F. Barreau, 
E. Houdeau, N. Herlin-Boime, T. Rabilloud, M. Carriere, The food additive E171 

and titanium dioxide nanoparticles indirectly alter the homeostasis of human 
intestinal epithelial cells in vitro, Environ. Sci. -Nano 6 (2019) 1549–1561. 

[71] M.L. Jugan, S. Barillet, A. Simon-Deckers, N. Herlin-Boime, S. Sauvaigo, T. Douki, 
M. Carriere, Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA 
repair activity in A549 cells, Nanotoxicology 6 (2012) 501–513. 

[72] T. Lopez-Goerne, P. Ramirez, D. Alvarez, F. Rodriguez-Reinoso, A.M. Silvestre- 
Albero, E. Gomez, E. Rodriguez-Castellon, Physicochemical properties and in vivo 
evaluation of Pt/TiO2-SiO2 nanopowders, Nanomedicine 13 (2018) 2171–2186. 

[73] A. Martín-Pardillos, A. Tsaalbi-Shtylik, S. Chen, et al., Genomic and functional 
integrity of the hematopoietic system requires tolerance of oxidative DNA lesions, 
Blood. 2017;130(13):1523-1534, Blood 131 (2018), 710-710. 

[74] U.S. Srinivas, B.W.Q. Tan, B.A. Vellayappan, A.D. Jeyasekharan, ROS and the DNA 
damage response in cancer, Redox Biol. 25 (2019), 101084. 

[75] M. Podhorecka, A. Skladanowski, P. Bozko, H2AX phosphorylation: its role in DNA 
damage response and cancer therapy, J. Nucleic Acids 2010 (2010), 920161. 

[76] C.E. Redon, J.S. Dickey, W.M. Bonner, O.A. Sedelnikova, γ-H2AX as a biomarker of 
DNA damage induced by ionizing radiation in human peripheral blood 
lymphocytes and artificial skin, Adv. Space Res. 43 (2009) 1171–1178. 

[77] L.G. Mariotti, G. Pirovano, K.I. Savage, M. Ghita, A. Ottolenghi, K.M. Prise, 
G. Schettino, Use of the γ-H2AX Assay to Investigate DNA Repair Dynamics 
Following Multiple Radiation Exposures, PLOS ONE 8 (2013), e79541. 
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