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A B S T R A C T

Angular diffractive lenses have been proven to achieve a narrow beam waist with a long depth of focus. We
generalize these type of lenses by defining the angular distribution of the focal length as a Fourier series.
The Fourier coefficients of the lens are optimized, using Particle Swarm Optimization algorithm, to minimize
the beam width and increase its uniformity for a given depth of focus. In order to obtain a fast simulation
during the optimization process, we used Chirp Z-transform algorithm. Finally, we performed an experimental
verification of the results using a Spatial Light Modulator. The Fourier series diffractive lens presents a more
uniform and narrower beam than previous angular lenses, in both simulations and experiments. These results
may find applications in the design of contact and intraocular lenses with extended depth of focus, laser

focusing and imaging systems.
1. Introduction

Optical imaging systems normally require a wide focusing range
with reliable resolution. Conventional refractive lenses can achieve a
narrow beam waist when they have high numerical aperture, with the
disadvantage that there is a sharp reduction in depth of focus. Trying to
solve the problem of narrow depth of focus, diffractive elements with
extended depth of focus (EDOF) have been proposed. Such elements
are useful in a range of applications. In microscopy [1,2], where high
numerical aperture is required to achieve good resolution, EDOF lenses
allow to relax the mechanical restrictions of the system and, thus, the
complexity and cost. Material laser processing techniques also benefit
from an EDOF lens, again by relaxing the mechanical constrains in the
laser positioning. In addition, it is also possible to shape the laser beam
to obtain specific properties of the processed materials [3]. Other field
in which EDOF lenses have found application is in the design of new
contact and intraocular lenses for compensating presbyopia [4–7]. In
this case, EDOF lenses allow the presbyopic patient to enhance the
depth of focus of the eye, focusing objects placed at different distances
in a similar way as a not presbyopic subject does by means of ocular
accommodation. Several types of optical elements have been proposed
to enlarge the lenses depth of focus such as apodizers [8], computer
generated holograms [9,10] or diffractive optical elements (DOEs) [11,
12]. Within the last group, it is quite common to combine conventional
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refractive lenses with amplitude or phase DOEs to achieve longer depth
of focus. These DOEs can present a radial distribution, like axicons,
axilenses or optical elements with a certain number of rings [1,13,14].
Another possibility are the diffractive angular EDOF lenses. Daschner
et al. proposed the Daisy lens, which presents a sinusoidal angular
variation of the focal length, producing a dual focus intensity distribu-
tion [15,16]. Sabatyan and Golbandi proposed the petal-like lens which
still generate a dual focus intensity distribution [17,18]. Nevertheless,
for Daisy and petal-like lenses, when both focii are close enough, the
intensity distribution is similar to an elongated focus. A better design
to obtain extended depth of focus is the Lotus lens [19,20], where
the focal length variation is linear, instead of sinusoidal. However,
diffractive effects still produce a certain non-uniformity at the intensity
distribution around the focusing area. As a consequence, the Sector-
based Fresnel zone plate (SFZP) was defined to slightly modify the
histogram distribution of the focal length variation, including quadratic
and cubic terms [21].

In the present work, we improve the behavior of previous EDOF
lenses, and propose the most general angular diffractive lens, where
the angular variation of the focal length is defined as a Fourier series.
As the number of degrees of freedom is greatly increased, optimization
techniques must be used to obtain the Fourier coefficients of the lens [2,
12,22,23]. The optimization procedures are mainly devoted to reduce
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the beam width, while maintaining the uniformity of the beam. With
this purpose, using Particle Swarm Optimization algorithm [24,25], we
select the optimal Fourier coefficients in terms of the wavelength, mean
focal length, diameter of the lens, and desired depth of focus (DOF). In
addition, we perform an experimental verification of the FSDL using a
Spatial Light Modulator (SLM).

2. Definition of the Fourier series diffractive lens

Let us consider an aberration-corrected standard lens illuminated by
a monochromatic and collimated Gaussian beam. The main parameters
of its focus are the beam width and the depth of focus, which are
interrelated since a small value of the beam waist, 2𝜔0, gives a small
value of DOF and vice-versa [26],

𝜔0 = 2𝜆
𝜋

(

𝑓 ′

𝐷

)

, (1)

𝐷𝑂𝐹 =
2𝜋𝜔2

0
𝜆

= 8𝜆
𝜋

(

𝑓 ′

𝐷

)2
, (2)

here 𝜆 is the wavelength of the beam, 𝐷 is the diameter of the lens
nd 𝑓 ′ is the lens focal length.

As we can see, when we try to increase the DOF, reducing the
ens diameter or increasing the focal length, the focal width is also
ncreased. Angular lenses are an alternative to standard lenses, since
hey do not present the previous restrictions. They are defined in a
imilar way, but with a periodical angular focal length variation. Their
ransmittance is given by [20]

𝐺(𝑟, 𝜃) = 𝑃 (𝑟) 𝑒𝑥𝑝
[

−𝑖𝑘 𝑟2

2𝑔 (𝑀 ⋅ 𝜃)

]

, (3)

where 𝑘 = 2𝜋∕𝜆 is the wavenumber, 𝑟 and 𝜃 are the radial and angular
coordinates, 𝑔 (𝜃) is a periodic function in 𝜃 ∈ [0, 2𝜋] which generates
the angular focal variation, 𝑀 is the number of periods in the 2𝜋 range
(number of petals) [17], 𝑃 (𝑟) represents the pupil function of the lens

𝑃 (𝑟) =
{

1 𝑟 ≤ 𝑅,
0 𝑟 > 𝑅,

(4)

and 𝑅 is the radius of the lens.
One of the first angular lenses was the Daisy lens, which presents a

sinusoidal angular variation of the focal length with discrete symmetry
[19]

𝑔𝐷(𝜃) = 𝑓 ′ +
𝛥𝑓
2

𝑠𝑖𝑛 (𝜃) , (5)

where 𝑓 ′ is the mean focal length, and 𝛥𝑓 represents the design DOF
ength. The minimum and maximum focal values are 𝑓 ′ − 𝛥𝑓∕2 and
′ + 𝛥𝑓∕2, respectively. A Daisy lens with low 𝛥𝑓 produces a beam
imilar to an elongated focus, but with higher 𝛥𝑓 it still generates a
ual-focus intensity distribution. In order to improve the performance
f this lens and obtain a uniform and extended focus, the Lotus lens
as proposed [20], which presents a linear focal length distribution,

𝐿(𝜃) = 𝑓 ′ +
𝛥𝑓
2

[

4
|

|

|

|

𝜃
2𝜋

− floor
( 𝜃
2𝜋

+ 1
2

)

|

|

|

|

− 1
]

, (6)

where floor(⋅) represents the floor function (round to the nearest integer
ower than the function argument). Although the histogram of 𝑔𝐿(𝜃) is

linear between 𝑓 ′ − 𝛥𝑓∕2 and 𝑓 ′ + 𝛥𝑓∕2, diffractive effects produce a
on-uniform focal intensity distribution. As a consequence, sectorized
resnel zone plate (SFZP) was proposed [21], where the histogram of
he focal length is not linear, but quadratic and cubic terms are added,

𝑖 = (1 − 𝑘1 − 𝑘2)𝑓1,𝑖 + 𝑘1𝑓2,𝑖 + 𝑘2𝑓3,𝑖, (7)

with

𝑓1,𝑖 = (𝑓 ′ − 𝛥𝑓∕2) + 𝛥𝑓 𝑖
𝑛𝑓

, (8)

𝑓2,𝑖 = (𝑓 ′ − 𝛥𝑓∕2) + 𝛥𝑓
(

𝑖
)2

,

2

𝑛𝑓
𝑓3,𝑖 = 𝑓 ′ + 4𝛥𝑓
( 𝑖 − 𝑛𝑓∕2

𝑛𝑓

)3

.

In these equations, 𝑖 represents a certain sector and 𝑛𝑓 is the total
number of sectors. The effect of these quadratic and cubic terms is
controlled by two parameters, 𝑘1 and 𝑘2, which are optimized in order
to obtain a more uniform focal intensity distribution.

In this work, we present a different approach to improve the per-
formance of EDOF lenses. As we are studying lenses with angular
symmetry, we generalize them as a cosine Fourier series, which is
described as

𝑔𝐹 (𝜃) = 𝑓 ′ +
𝛥𝑓
2

𝐿
∑

𝑙=1
𝑎𝑙 cos (𝑙 ⋅ 𝜃) , (9)

here 𝑙 corresponds to the Fourier coefficients order and 𝑎𝑙 represents
heir values which are calculated according to

𝑙 =
1
𝜋

2𝜋

∫
0

𝑔𝐹 (𝜃) cos(𝑙 ⋅ 𝜃) 𝑑𝜃. (10)

s an example, Fig. 1 shows a standard lens and a Fourier Series
iffractive Lens (FSDL) with 𝐷 = 4 mm and 𝑓 ’ = 250 mm. The FSDL

is designed with a depth of focus of 𝛥𝑓 = 25 mm and five non-zero
Fourier coefficients. Also, a scheme of the expected behavior of the
FSDL, compared to that of a standard Fresnel lens, is shown.

As Eq. (9) is the most general case for angular lenses, Daisy and
Lotus lenses are included in this kind of Fourier series representation.
The coefficients for the Daisy lens are

𝑎1𝑙 =
{

0.5 𝑙 = 1,
0 𝑙 ≠ 1.

(11)

The coefficients for the Lotus lens are

𝑎1𝑙 =

{ 8
(𝑙𝜋)2

𝑙 odd,
0 𝑙 even.

(12)

The SFZP also presents a Fourier series representation. For better
comparison, we will compute the Fourier coefficients of the equivalent
phase lens (not the binarized version). The Fourier coefficients of this
lens are

𝑎𝑙 = (1 − 𝑘1 − 𝑘2)𝑎1𝑙 + 𝑘1𝑎
2
𝑙 + 𝑘2𝑎

3
𝑙 , (13)

where 𝑎1𝑙 are the same as those of Lotus lens, and the quadratic and
cubic coefficients are

𝑎2𝑙 =
8

(𝑙𝜋)2
∀𝑙, (14)

𝑎3𝑙 =

{

−6
𝑙4𝜋

+ 3𝜋
4𝑙2 𝑙 odd,

0 𝑙 even.
(15)

The Fourier coefficients given in Eq. (13) depend on 𝑘1 and 𝑘2
parameters, and they need to be optimized for each lens design. In
Section 3, we will use these coefficients as seeds for the optimization
process of FSDL.

Once the FSDL is defined, we calculate the intensity distribution
around the focus using a numerical approach based on Rayleigh-
Sommerfeld equation [27]. In order to obtain fast and accurate re-
sults, we use Chirp Z-transform algorithm (CZT), also called Bluestein
method [28,29]. With CZT, the region of interest (number and size
of pixels) can be selected and it is not fixed by the resolution of the
initial field. Since the focal region is very small compared to the lens
size, the focal intensity distribution can be properly sampled with a
much lower computing time and memory usage than with the standard
Rayleigh-Sommerfeld algorithm [30].

For the simulations, we need to set the maximum number of Fourier
coefficients, 𝐿 = max(𝑙), that influence the lens performance. For
this, we have determined the beam width of a Fourier lens whose
coefficients are those shown in Eq. (13). As an example, the parameters
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Fig. 1. Phase maps of (a) Fresnel and (b) FSDL lens with 𝐷 = 4 mm and 𝑓 ′ = 250 mm. The FSDL presents a depth of focus 𝛥𝑓 = 25 mm and 5 Fourier coefficients:
𝑎𝑙 = [0.9, 0.7, −0.2, 0.3, −0.1]. (c) Optical scheme for the Fresnel lens and the FSDL, including the expected results for extended depth of focus. The intensity distribution for
the FSDL is obtained with coefficients of Table 1a.
Fig. 2. Beam width, computed as FWHM, for a Fourier lens (whose Fourier coefficients are obtained using Eq. (13)) in terms of the number of Fourier coefficients. At the bottom
of the figure, we show the intensity distribution XZ, obtained by numerical CZT approach, when 𝐿 = 1, 𝐿 = 5, and 𝐿 = 9. The illumination is a plane wave with 𝜆 = 632.8 nm and
the lens has a diameter 𝐷 = 4 mm, focal length 𝑓 ′ = 125 mm, and ▵ 𝑓 = 12.5 mm.
of the lens studied are 𝑓 ′ = 125 mm, 𝐷 = 4 mm and 𝛥𝑓 = 12.5 mm.
We calculate the Full Width at Half Maximum (FWHM) for different
number of coefficients. Fig. 2 shows that the beam width stabilizes with
𝐿 = 9. Although this value may depend on the lens parameters, we have
checked that 𝐿 = 9 is valid for all the simulations performed in this
work. This value is high enough so that the beam width stabilizes and,
also, it is small enough to avoid manufacturing issues and to reduce the
optimization process time.

3. Numerical analysis and optimization

The FSDL represents a generalization of angular lenses and, de-
pending on the value of their coefficients, many types of focii can
be produced. Since our objective is to obtain narrow, long, and ho-
mogeneous focal distributions, we need to find out the appropriate
3

Fourier coefficients. For this, we have used an efficient and quick
optimization algorithm, Particle Swarm Optimization (PSO) [24,25].
It is a metaheuristic optimization algorithm based on a population of
particles, whose movement is influenced by its best local position but
it is also guided towards the best global position, which is constantly
updated by the rest of the particles (swarm). The movement of the
particles around the search space is ruled by two equations, the velocity
of each particle of the swarm and its position

𝑣(𝑘+1)𝑖,𝑗 = 𝜔 𝑣(𝑘)𝑖,𝑗 + 𝑐1𝑟
(𝑘)
1

(

𝑝(𝑘)𝑖,𝑗 − 𝑥(𝑘)𝑖,𝑗

)

+ 𝑐2𝑟
(𝑘)
2

(

𝑔(𝑘)𝑗 − 𝑥(𝑘)𝑖,𝑗

)

, (16)

𝑥(𝑘+1)𝑖,𝑗 = 𝑥(𝑘)𝑖,𝑗 + 𝑣(𝑘+1)𝑖,𝑗 , (17)

where the indexes i, j, k represent the number of particles, dimensions
and iterations respectively. The first one has an inertial component
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Fig. 3. Flow chart of particle swarm optimization. First, we initialize the optimization
process using SFZP seed. Then, the position and velocity of the particles are constantly
being updated to minimize the merit function. The algorithm finishes when the set
number of iterations is reached, and the solution is given by the particle with the best
position.

which depends on the velocity at the previous instant, a cognitive term
which directs the particle to the best local position and a social term
which leads the particle to the best global position. In Eq. (16), 𝜔
corresponds to the inertia weight parameter, 𝑐1 and 𝑐2 are cognitive
and social constants respectively, 𝑟1 and 𝑟2 are two random values
set between [0, 1], 𝑝𝑖,𝑗 represents the previous best position of each
particle, and 𝑔𝑗 indicates the global best position of the swarm. For
computation, we have used a Python library called PySwarms [31],
which allows solving optimization tasks intuitively. This library has
implemented global-best PSO, local-best PSO, as well as a general
optimizer for custom topologies.

3.1. Optimized Fourier series diffractive lens

Now, we analyze the viability of converting a FSDL into a EDOF lens
through the optimization of its Fourier coefficients. As a first example,
we have designed a FSDL with focal length 𝑓 ′ = 125 mm, diameter
𝐷 = 4 mm and 𝜆 = 633 nm for two cases: 𝛥𝑓 = 12.5 mm and 𝛥𝑓 = 25 mm.

The PSO algorithm needs a seed for the initial values of the Fourier
coefficients. Random seed coefficients can be used in the optimization
algorithm. However, we found that the algorithm does not always
converge to an optimal solution since many local minima exist. As
a consequence, we opted to provide the optimized coefficients of the
SFZP lens as the initial values, Eq. (13), since, to our knowledge, it is
the best EDOF angular lens up-to-date. The seed coefficients used for
the two example lenses, 𝛥𝑓 = 12.5 mm and 𝛥𝑓 = 25 mm, are shown
in Table 1 (Initial column). Then, we have performed a PSO process to
optimize the Fourier coefficients of the FSDL (see flow chart of Fig. 3).
We used L = 9 degrees of freedom, 20 particles and 10 iterations. We
4

Table 1
Fourier coefficients before and after optimization for FSDL with (a) 𝛥𝑓 = 12.5 mm
and (b) 𝛥𝑓 = 25 mm.

(a)

𝑎𝑙 Initial Optimized

𝑎1 0.7632 0.7133
𝑎2 −0.0162 0.0031
𝑎3 0.1093 0.1142
𝑎4 −0.0040 0.0006
𝑎5 0.0400 0.0398
𝑎6 −0.0018 0.0003
𝑎7 0.0205 0.0241
𝑎8 −0.0010 0.0002
𝑎9 0.0124 0.0112

(b)

𝑎𝑙 Initial Optimized

𝑎1 0.7468 0.6363
𝑎2 −0.0073 0.0133
𝑎3 0.116 0.1008
𝑎4 −0.0018 0.0033
𝑎5 0.0427 0.0400
𝑎6 −0.0008 0.0019
𝑎7 0.0219 0.0214
𝑎8 −0.0005 0.0008
𝑎9 0.0133 0.0178

also used bounds (± 20%) to the coefficients to prevent the particles
to scatter too far from the initial values. At each iteration, we obtain
the intensity distribution at several z-planes around its focal plane,
and estimate the beam width, using FWHM. Then, we define the merit
function as a sum of two terms

𝑀𝐹 =

√

∑𝑁
𝑖=1

[

𝐼(𝑥 = 0, 𝑦 = 0, 𝑧𝑖) − 𝐼𝑜𝑏𝑗 (𝑥 = 0, 𝑦 = 0, 𝑧𝑖)
]2

𝑁
(18)

+𝛼

√

∑𝑁
𝑖=1

[

𝐹𝑊𝐻𝑀(𝑧𝑖) − 𝐹𝑊𝐻𝑀𝑜𝑏𝑗 (𝑧𝑖)
]2

𝑁
.

The first term is related to uniformity of the intensity distribution at
axis and the second term minimizes the beam width (given by FWHM),
being 𝛼 a balance factor that, in the examples presented is 𝛼 = 1. In
this function, 𝐼𝑜𝑏𝑗 is the target intensity distribution

𝐼𝑜𝑏𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑧 𝜖
[

𝑓 ′ − 𝛥𝑓∕2, 𝑓 ′ + 𝛥𝑓∕2
]

,
1

1+𝛽2(𝑧−𝑧1)2
𝑧 < 𝑓 ′ − 𝛥𝑓∕2,

1
1+𝛽2(𝑧−𝑧2)2

𝑧 > 𝑓 ′ − 𝛥𝑓∕2,

(19)

where 𝑧1 = 𝑓 ′ − 𝛥𝑓∕2, 𝑧2 = 𝑓 ′ + 𝛥𝑓∕2 and 𝛽 = 0.25 is a parameter
that controls the curve drop. This function simulates a beam whose
axial intensity is completely uniform along its depth of focus. 𝐼 is
the normalized intensity distribution and 𝑁 is the total number of
measures. On the other side, 𝐹𝑊𝐻𝑀𝑜𝑏𝑗 corresponds to a beam with
the desired width normalized along its depth of focus, which can be
expressed as

𝐹𝑊𝐻𝑀𝑜𝑏𝑗 =

⎧

⎪

⎨

⎪

⎩

1 𝑧 𝜖
[

𝑓 ′ − 𝛥𝑓∕2, 𝑓 ′ + 𝛥𝑓∕2
]

,

1 −
(

𝑧 − 𝑧1
)

𝑧 < 𝑓 ′ − 𝛥𝑓∕2,

1 +
(

𝑧 − 𝑧2
)

𝑧 > 𝑓 ′ + 𝛥𝑓∕2.

(20)

Fig. 4 shows the optimized intensity patterns and Table 1 the
optimized coefficients (Optimized column). The beam width and, espe-
cially, the uniformity have been improved significantly. In fact, for the
lens with 𝛥𝑓 = 12.5 mm, the average beam width reduces from 39.23 μm
to 38 μm and the standard deviation is 38.18% lower after optimization.
Respect to the lens with 𝛥𝑓 = 25 mm, FWHM takes a value of 50.64 μm
compared to the initial width of 53.01 μm and the standard deviation of
the beam intensity decreases a 58.49% at the cost that the DOF length
is 2.5 millimeters shorter than its initial value.

To check the results obtained with the FSDL, we have compared
them with previous angular lenses such as the sectorized Fresnel zone
plate (SFZP) and the Lotus lens. Fig. 5 shows a noticeable improvement
in DOF lenses behavior since FSDL presents lower FWHM and standard
deviation of the axial intensity. For the lens with 𝛥𝑓 = 12.5 mm (upper
row of Fig. 5) we observe that the Lotus lens generates a dual focus
pattern, result enhanced by the SFZP. Nevertheless, FSDL presents a
much lower FWHM at the beam center and as a consequence, it does
not form two focii and generates a smooth intensity pattern along the
direction of propagation. For the FSDL lens with 𝛥𝑓 = 25 mm (see lower
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Fig. 4. Intensity distribution XZ around the focus of a FSDL with seed coefficients (upper row) and optimized coefficients (lower row). The intensity patterns obtained correspond
to a FSDL with 𝑓 ′ = 125 mm and 𝛥𝑓 = 12.5 mm for (a) and (c), and 𝛥𝑓 = 25 mm for (b) and (d).
Fig. 5. (a, c) FWHM and (b, d) normalized intensity pattern along axis of several types of lenses (Fresnel Zone Plate (FZP), Lotus lens, SFZP, and FSDL) with (a, b) 𝛥𝑓 = 12.5 mm
and (c, d) 𝛥𝑓 = 25 mm, respectively.
row of Fig. 5), the width and intensity fluctuation is greater than the
FSDL with lower depth of focus. However, these parameters are still
better than those of other EDOF lenses.

We have also checked the intensity distribution of the FSDL at the
focal plane, 𝑧 = 𝑓 , and at distances 𝑧 = 𝑓 ±𝛥𝑓∕2 for the case of Fig. 4c
(Fig. 6a). We can see that the profile at the focal plane is similar to a
Bessel profile, while at 𝑧 = 𝑓 ± 𝛥𝑓∕2 it is closer to a Lorentz profile.
In order to analyze the focusing efficiency of the lens, we have also
computed the encircled energy for these three profiles [32], and they
have been compared to those of a Fresnel lens. We see that at focus,
𝑧 = 𝑓 , the Fresnel lens produces a narrower beam than the FSDL, but
out of focus, 𝑧 = 𝑓 ± 𝛥𝑓∕2, the FSDL is much better than the Fresnel
lens.

Finally, we study the dependence of beam width on 𝛥𝑓 for Lotus
lens, SFZP and FSDL. For this purpose, we design lenses with 𝑓 ′ =
125 mm and different 𝛥𝑓 , from 10 mm to 37 mm. We optimize their
coefficients using the previous procedure, and determine the intensity
distribution around the focus. Then, we calculate the average beam
width for 𝑓 ′ − 𝛥𝑓∕2 ≤ 𝑧 ≤ 𝑓 ′ + 𝛥𝑓∕2. Fig. 7a shows that the FWHM
presents a square-root dependence with 𝛥𝑓 . With the numerical data,
we have plotted the fitting performed in dashed line and their 1𝜎 error
5

bands in shading. This fitting has been performed using Kriging, which
is a family of best linear unbiased estimators in the minimal squared
sense [33–35]. This figure also shows that the FSDL presents the lowest
width beam for each 𝛥𝑓 . Moreover, we analyze the behavior of the
beam uniformity for these lenses (Fig. 7b). FSDL presents the best beam
uniformity, especially for low 𝛥𝑓 . The average standard deviation of
the intensity patterns reaches values of 13.46%, 10.57% and 8.92% for
Lotus, SFZP and FSDL, respectively, thus showing the improvement of
FSDL over other EDOF lenses.

4. Experimental results

We have experimentally verified the performance of the designed
FSDL using a SLM. A scheme of the set-up is shown in Fig. 8. A He–Ne
laser with a working wavelength of 𝜆 = 632.8 nm and a Gaussian beam
profile (Melles Griot, United States) has been used as light source. The
beam has been filtered with a spatial filter and enlarged with a beam
expander in order to illuminate the SLM as much as possible. For this
purpose, we have used a 40x microscope objective, a 10 μm pinhole and
a collimating lens. Then, the light beam goes through a polarizer (𝑃0)
and a quarter-waveplate (𝑄𝑊 ) to change the light polarization from
0



Optics and Laser Technology 164 (2023) 109491A. Soria-Garcia et al.
Fig. 6. (a) Intensity profiles at focus 𝐼(𝑥) at locations 𝑧 = 𝑓 , 𝑧 = 𝑓 − 𝛥𝑓∕2, and 𝑧 = 𝑓 + 𝛥𝑓∕2 for the lens of Fig. 4c and intensity distribution 𝐼(𝑥, 𝑦), respectively. (b) Normalized
encircled energy for the FSDL (continuous line) and for the Fresnel lens (dash-dotted line).
Fig. 7. (a) FWHM and (b) standard deviation of the axis intensity as a function of depth of focus for several EDOF lenses with 𝑓 ′ = 125 mm, 𝐷 = 4 mm and 𝜆 = 632.8 nm.
linear to circular. There are two other pairs of polarizer and quarter-
waveplate (𝑃1 − 𝑄𝑊1 and 𝑄𝑊2 − 𝑃2), which form a state generator
and a state analyzer, respectively. These elements are rotated until a
phase modulation configuration is achieved since we want to study the
behavior of a Fourier phase lens. After the state generator (𝑃1 −𝑄𝑊1),
the light goes through a 50:50 beam splitter, so that half of the light
is directed to the SLM. We have used PLUTO Holoeye reflective LCoS
modulator, which has a 1920 × 1080 resolution and a pixel size of
8 μm × 8 μm.

Then, the light reflected by the modulator passes again the beam
splitter and is directed to the state analyzer (𝑄𝑊2 − 𝑃2). As shown
in Fig. 8, between the plates of the analyzer there is a 4-f system in
order to generate the SLM image near to the camera. We have used a
72BUC02-ML CMOS camera (Imaging Source Europe GmbH, Germany)
with 2592 × 1944 pixels and a pixel size of 2.2 × 2.2 μm2. Moreover,
this camera is placed over a linear motor (Physik Instruments GmbH,
Germany), which allows to move the camera in the beam propagation
direction to study the behavior of the EDOF lenses. Furthermore, since
the SLM introduces aberrations to the reflected beam, we have removed
them adding an astigmatic phase map to the SLM.

First, we have analyzed the performance of the FSDL for lenses with
𝑓 ′ = 125 mm, and 𝛥𝑓 = 12.5 mm and 𝛥𝑓 = 25 mm respectively. We sent
our optimized DOF lenses to the SLM. Then, using the linear motor,
we moved the camera around the focal position in order to calculate
the FWHM for 𝑓 ′ − 𝛥𝑓∕2 ≤ 𝑧 ≤ 𝑓 ′ + 𝛥𝑓∕2. Fig. 9 shows the results
obtained for both lenses. In the case of the lens with 𝛥𝑓 = 12.5 mm,
the average FWHM is 43.63 μm, only 5.6 μm larger than the numerical
value. Similarly, the FWHM curve of 𝛥𝑓 = 25 mm is quite close to
the theoretical one, reaching an average experimental beam width of
59.24 μm. For the experimental results, we have plotted the fitting,
performed with kriging [33–35], and the 1𝜎 and 2𝜎 error bands in
6

shading. In addition, we have determined the mean differences between
experimental, 𝐹𝑊𝐻𝑀𝑒𝑥𝑝(𝑧), and numerical data, 𝐹𝑊𝐻𝑀𝑛𝑢𝑚(𝑧), using

𝛥𝜎𝑎𝑏𝑠 = 𝑠𝑡𝑑
[

𝐹𝑊𝐻𝑀𝑒𝑥𝑝(𝑧) − 𝐹𝑊𝐻𝑀𝑛𝑢𝑚(𝑧)
]

, (21)

𝛥𝜎𝑟𝑒𝑙 =
𝛥𝜎𝑎𝑏𝑠

⟨𝐹𝑊𝐻𝑀𝑛𝑢𝑚(𝑧)⟩
,

where 𝑠𝑡𝑑 is the standard deviation. For the lens with 𝛥𝑓 = 12.5 mm,
we have obtained 𝛥𝜎𝑎𝑏𝑠 = 6.7 μm and 𝛥𝜎𝑟𝑒𝑙 = 13%, and for the lens with
𝛥𝑓 = 25 mm, the values are 𝛥𝜎𝑎𝑏𝑠 = 10.6 μm and 𝛥𝜎𝑟𝑒𝑙 = 17%.

Then, we compare the experimental beam width of FSDL with that
of the SFZP and Lotus lenses for the cases 𝛥𝑓 = 12.5 mm and 𝛥𝑓 =
25 mm. Fig. 10 shows the experimental results of these three lenses.
For both cases, the beam width at 𝑧 = 𝑓 ′ increases significantly with
respect to the width between 𝑧 = 𝑓 ′ − 𝛥𝑓∕2 and 𝑧 = 𝑓 ′ + 𝛥𝑓∕2
positions for SFZP and Lotus lenses. Nevertheless, the FSDL presents
a more uniform intensity pattern and lower FWHM (red curve). For
example, for 𝛥𝑓 = 25 mm (Fig. 10b), the Lotus lens present an average
beam width of 74.50 μm, the SFZP 73.50 μm, and the FSDL 59.70 μm,
a 19.8% lower.

5. Conclusions

Lenses that produce a long, narrow, and uniform focal intensity
distribution are of crucial importance in many fields of science and
technology, such as imaging systems, intraocular lenses, or laser ma-
terial processing. We present a new petal-shaped lens design, named
Fourier Series Diffractive Lens (FSDL), whose focal length is defined as
an angular Fourier series distribution. We have used Particle Swarm
Optimization (PSO) algorithm to determine best Fourier coefficients
in terms of the lens parameters (wavelength, focal length, depth of
focus, diameter, number of petals) and Chirp Z-Transform (CZT) algo-
rithm for a fast computation of the intensity distribution. The results
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Fig. 8. Experimental set-up used to analyze the FSDL performance with a SLM. A motorized camera allows us to determine the beam parameters of the optimized FSDL around
the focus.
Fig. 9. Comparative between numerical and experimental FWHM for the Fourier lenses with 𝑓 ′ = 125 mm, 𝐷 = 4 mm, (a) 𝛥𝑓 = 12.5 mm and (b) 𝛥𝑓 = 25 mm. Also, we have
included 1𝜎 error bands (purple) and 2𝜎 error bands (orange).
Fig. 10. Experimental beam width, calculated by FWHM approach, for FSDL, SFZP and Lotus lens with 𝑓 ′ = 125 mm, 𝐷 = 4 mm, (a) 𝛥𝑓 = 12.5 mm and (b) 𝛥𝑓 = 25 mm.
obtained with the FSDL have been compared with previous designs,
such as Lotus lens and Sectorized Fresnel Zone Plate (SFZP). In all
cases, FSDL presents a smaller beam width and better uniformity for
a given depth of focus. In addition, we have studied how increasing
the depth of focus affects the beam width, concluding that it presents
a square root dependence. Finally, we have experimentally verified
the performance of the FSDL using a Spatial Light Modulator (SLM)
and a motorized camera determining the intensity distribution in the
focal region. The experimental results are in good agreement with the
numerical simulations, and verify better performance of the FSDL in
comparison to previous designs. For example, for a lens with focal
distance 𝑓 ′ = 125 mm, and 𝛥𝑓 = 25 mm the Lotus and SFZP lenses
presents a average beamwidth of 74.5 μm and 73.5 μm, respectively
while the FSDL results in 59.7 μm.
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