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Mathematical modeling has been fundamental to achieving near real-time

accurate forecasts of the spread of COVID-19. Similarly, the design of

non-pharmaceutical interventions has played a key role in the application of

policies to contain the spread. However, there is less work done regarding

quantitative approaches to characterize the impact of each intervention, which

can greatly vary depending on the culture, region, and specific circumstances of

the population under consideration. In this work, we develop a high-resolution,

data-driven agent-basedmodel of the spread of COVID-19 among the population

in five Spanish cities. These populations synthesize multiple data sources that

summarize the main interaction environments leading to potential contacts. We

simulate the spreading of COVID-19 in these cities and study the e�ect of several

non-pharmaceutical interventions. We illustrate the potential of our approach

through a case study and derive the impact of the most relevant interventions

through scenarios where they are suppressed. Our framework constitutes a first

tool to simulate di�erent intervention scenarios for decision-making.

KEYWORDS
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1. Introduction

The COVID-19 pandemic has globally impacted a plethora of systems, with health

(1), socio-economic (2, 3), and environmental (4) consequences. To control the spread

of SARS-CoV-2, policymakers implemented a diversity of procedures, grouped into

either mitigation or suppression strategies. Lockdowns, implying home confinement, were

frequently introduced to stop the spreading in early 2020 when the dynamics of the infection

mechanisms were not clear. However, these lockdowns resulted in deep impacts on the

economy, and later on, other non-pharmaceutical interventions were designed, such as the

use of face masks, the closure of restaurants, universities, or schools, as well as contact

tracing, testing, and isolation of close contacts of infected individuals.

The initial stages of the pandemic represented a high degree of uncertainty, both

regarding the original transmission of the pathogen to human beings and reliable

surveillance data [due to low testing efforts and inappropriate surveillance systems (5)].

Nowadays the situation has improved, as the availability of more data—even if many times

of poor quality and low reliability—in principle allows to characterize the spreading at a large

scale. Moreover, the existent data enables the development of mathematical models that help
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quantify the observed evolution of the pandemic and evaluate the

effects of the intervention scenarios.

The first wave of COVID-19 raised a challenge for modeling

approaches due to the general bad data quality. Specifically, the lack

of knowledge about the COVID-19 spread, the similarity between

the symptoms of COVID-19 and those of influenza, and the low

testing effort led together to lower rates of diagnosis and hence

underreporting mainly in the number of cases (6), but also in the

number of deaths. Seroprevalence studies (7) and the analysis of

anomalies on the temporal series of deaths (8) were needed to

estimate the real impact of the spreading process, showing that

there were up to 10 times more cases than the reported ones. In

this regard, spreading models can shed light on the real outcome of

the infection across the population.

To properly model the spreading of a disease in the population,

it is fundamental to acknowledge that human interactions are

highly heterogeneous. Although network epidemiology can capture

part of this diversity, such as the broad nature of the distribution of

the number of interactions, the variability of contexts remains out

of this formalism. These contexts can be effectively captured using

multilayer networks, which are networks with multiple layers, each

one describing the interactions in a different context (9, 10). In this

work, we leverage anonymous, publicly available data to build high-

resolution synthetic cities and encode them in multilayer networks

(11, 12). We use these synthetic networks to study the propagation

of the first wave of COVID-19 in five Spanish cities. Furthermore,

we extend the simulation to the second wave for the particular case

of the city of Zaragoza and thoroughly characterize the impact of

non-pharmaceutical interventions during this period.

2. Materials and methods

2.1. Multilayer contact networks

We create five digital populations describing the inhabitants

and the interactions between them in the cities of Barcelona,

Valencia, Seville, Zaragoza, and Murcia, all of them located

in Spain (Figures 1A–F). Their population ranges between 450

thousand and 1.7 million inhabitants (Figures 1G–I). Additionally,

we include external individuals that may not be registered in the

census but with most of their interactions expected to happen

in these cities. These external individuals include old people

living in nursing homes and non-local university students. Each

inhabitant is represented in the population as a node connected

to other inhabitants. These links were built according to the

specific data sources for each city and each feature, as listed in the

Supplementary material.

2.1.1. Demography
We obtained the geographical distribution, sex, and age of the

inhabitants of the cities at the beginning of 2020 from multiple

demographic data sources. The maximum spatial resolution was

the census district (Figures 1B–F), at which we found most of the

needed information to create the synthetic digital cities. Ages were

available in age groups with a resolution of 5 years. Thus, we

interpolated these age groups to consider a resolution of 1 year

between 0 and 30 years, which was necessary to properly infer the

interactions at schools and universities. This allowed us to create a

synthetic population for each city resembling the characteristics of

the real ones.

2.1.2. Contact networks
We modeled the contacts between individuals through

networks described by the aggregation of multiple interaction

layers (13). Specifically, we considered six interaction layers: home,

nursing homes, school, work, university, and community. We

incorporated empirical data from multiple datasets available from

national, regional, and local sources to infer the connections

between the individuals in the different environments introduced

by the interaction layers. In Figure 2, we show the age mixing

patterns of the population extracted from our synthetic cities (12).

2.1.3. Home layer
Individuals in the home layer are connected if they live

together. We extracted the information on the number of homes

of a specific size, the average home size, and the home structure at

the district level. We use the information from the national census

of 2011 (14), themost recent one that is currently available, (see also

the Supplementary material) for all the cities except for Barcelona,

for which this information is available from local sources with

higher resolution.We also use the age difference of the home nuclei,

at district resolution, from the national census. This information

is key for reproducing realistic home contact matrices, as the

home structures include in the “adults” category any individual

aged between 25 and 64 years old. Connecting randomly pairs of

individuals in this broad group could lead to less representative

links in most homes, composed of two adults alone or with children

or old people. As we do not know if these nuclei are assortative or

disassortative, we include the data on the age difference of the nuclei

to create this synthetic layer.

2.1.4. School layer
This layer connects all the students and a teacher within

the same scholar unit. Besides, all the teachers that work in

the same center are also connected. We included in this layer

the infant levels (0–3 and 3–6 years old), primary school (7–

12), secondary school (13–16), high school (17–18), and job

training (from 17). We inferred these connections using data

on the number of students per level, the number of units

per level, and the number of schools, taking into account

the levels offered by each kind of school. This information

was available at the district level for Barcelona and Valencia.

Additionally, data on the specific size of each specific unit at

each center was available for Valencia and used for that layer

inference. For Seville, Zaragoza, and Murcia, this information

was available at the municipality level, so we mapped the school

coordinates to the districts, and we inferred the rest of the

needed information from the one at the municipality level. Once

the synthetic units, at each center, were created, we assigned

individuals from the population to those units. First, we filled

each unit with individuals of that specific age that have their

homes located in the same district. Secondly, the units that

had not been filled totally with individuals from the same
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FIGURE 1

Geography and demography of the five cities represented through synthetic populations. (A) Location of the five cities. (B–F) Geographical

representation (Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL) of the district structure at each city (source:

Instituto Nacional de Estadística, INE), with colors representing the population of each district. (G) Local and non-local populations (nursing homes

residents and university students). The five cities studied are Barcelona (BCN), Valencia (VLC), Seville (SEV), Zaragoza (ZGZ), and Murcia (MUR).

district were filled with individuals from other districts, with

a priority determined by the distance between the centroids

of the districts, until all the units in the city were full. We

assumed that, after that step, the remaining individuals were not

included in the education system. Teachers were chosen randomly

among individuals aged between 30 and 70 from any district in

the city.

2.1.5. University layer
We generated the university contact layer using the national

statistics of the number of registered students per university and

per degree, split by sexes, available from the Spanish Ministry

of Education, considering both undergraduate and graduate

programs, for the academic year 2019–2020. We considered

the universities located in the same province as the studied
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FIGURE 2

Contact matrices between age groups in (A) Barcelona (BCN), (B) Valencia (VLC), (C) Seville (SEV), (D) Zaragoza (ZGZ), and (E) Murcia (MUR). (A–E)

Each entry wij is computed as the total number of observed links between individuals belonging to the age group in row i and column j, normalized

with the number of individuals in each column. Thus, they represent, for a given column, the expected number of links of a random individual to

individuals from each row. (F) Link distribution among the di�erent layers in the five studied cities expressed as a percentage of the total number of

contacts in each city.
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cities, after removing distance-learning universities. Then, we

estimated which students are registered and live in the city,

and which ones are external, either registered in the same or

another province. Local students have also interactions in the

other layers, while externals are only in the university layer.

Finally, we obtained the national age profiles by sex of university

students, picked individuals from our synthetic population, and

introduced those external, according to these profiles. We designed

a connectivity pattern of all-to-all for degrees that had sizes

lower than 50 people, and otherwise generated patches with

all-to-all connectivity of a maximum size of 50 people for the

larger ones.

2.1.6. Work layer
In the work layer, individuals that belong to the same

company are connected together. We obtained the distribution

of companies’ sizes (S) throughout all the Spanish provinces,

which follows a power-law distribution pdf (S)∼ S−2. Then,

we generated companies with sizes that follow this distribution,

and, when sizes were higher than 20 people, we distributed the

workers among patches with a maximum size of 20 people. We

estimated the number of workers by subtracting the number of

autonomous workers from the number of registered workers in

each city, according to the Social Security reports. We extracted

sex and age features also from Social Security reports on a

national scale. We did not consider as potential workers those

that were assigned a school patch, either as teachers or students.

The synthetic companies were filled with individuals from the

synthetic population following the corresponding distributions by

age and gender.

2.1.7. Nursing homes layer
We collected information on the number of nursing homes

and their capacity in each municipality. Additionally, we gathered

national statistics on the age and gender of the people that

reside in nursing homes. We assumed that the nursing homes

need one caretaker for every four places, and chose that

uniformly from those in the dataset older than 16 years

old (minimum age for being allowed to work). Inside each

nursing home, we assumed an all-to-all connection. Note that

individuals residing in nursing homes do not interact in the

household layer.

2.1.8. Community layer
We generated a synthetic community layer connecting

randomly pairs of individuals living in the same district, according

to the contact matrices for Spain in Prem et al. (15). There

were contact matrices available for home, work, school, and other

locations, and we chose the latter. This dataset reported the

probability of connecting pairs of individuals according to their

ages, in age groups of 5 years up to 75 years old. For individuals

older than 75 years old, we extrapolated the data of the oldest

available group.

2.2. Epidemic spreading

2.2.1. Spreading model
We used the COVASIM software for modeling the spread

of COVID-19 (16). COVASIM is an open-source Python-based

agent-based modeling tool. COVASIM considers a susceptible-

exposed-infected-recovered or dead (SEIRD) epidemic model that

includes disease parameters informed by the medical literature.

The infected compartment is divided into asymptomatic and

symptomatic infectious individuals, with the latter including

presymptomatic, mild, severe, and critical stages. The three

symptomatic stages can evolve to the recovered state, while the

critical state can alternatively lead to the death of the individual

(Supplementary Figure S1). The probabilities of developing

symptoms, severe symptoms, a critical case, and from it the

death of the individual are specified by age groups, arranged in

10-year-long age cohorts. This software has been used for studying

different scenarios, for example, assessing the test-trace-quarantine

strategy (17) or quantifying the risk of outbreaks after international

border opening (18). We modified COVASIM to include the

specific details of our synthetic cities. Specifically, we included the

age, sex, and contacts of the individuals in each of the considered

cities. We ran independent simulations where each simulation

chose one randomly infected seed as the first infected individual.

Then, we kept the endemic realizations, defined as those leading to

a finite number of deaths, which we set higher than 10 for the first

wave. For the second wave, we also requested that there were more

than 10 death observations in the last 10 days of the realization.

Apart from the internal parameters of COVASIM, we considered

independently the infection rate and the date of arrival of the first

infected individual. We calibrated both parameters for each city

analyzing the official time series of deaths (see section 2.2.2), which

were more reliable than the number of cases that could suffer from

high underdetection rates (6).

2.2.2. Epidemic data
We obtained the temporal series of the number of deaths and

the number of confirmed cases from the SpanishMinistry of Health

(19) at the province level, with daily resolution. Then, wemultiplied

these values by the fraction of the province’s population living in the

city. We averaged the rescaled data over a moving window of 7 days

(the specific day± 3 days) to smooth the fluctuations.

2.3. Quantifying public health policies

To illustrate the potential of our approach, after calibrating

the first wave of COVID-19 in our model with synthetic digital

cities, we implemented a case study of the second wave focusing

on the city of Zaragoza. This second wave occurred between July

and December 2020.

The non-pharmaceutical interventions that were introduced in

this city to mitigate the spread of COVID-19 were the following:

• Testing and tracing. Positive tested individuals and their close

contacts were isolated for 14 days until 30th September, and

from then on for 10 days.
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• Restrictions on restaurants, cafes, and nightlife. Starting on

5th August, lifted on 4th September, and re-started on

19th October.

• Opening of the schools with reduced group sizes and safety

measures. Different levels started progressively, from 7th

September to 17th September.

• Opening of the universities with reduced group sizes. The

university was opened on 14th September.

• Interventions impacting the community layer. We considered

the interventions related to the State of Alarm and those

related to the capacity and schedules of restaurants and bars.

In addition to these policies, we also took into account the

annual leave period of workers and considered a reduced number

of interactions in the work layer starting on 15th July until the

middle of September, with the maximum reduction on 1st August.

In terms of the model, this implies a higher amount of time (e.g.,

more weight of this layer) associated with the interactions in the

community layer.

We used the infection rate (β) and date of arrival of the

infected seed obtained in the calibration of the first wave and ran

the model from the estimated arrival of the first case (see section

3.2) to 1st December 2020. Since we ran the simulations from the

beginning of the first wave, we lifted progressively the restrictions

that were active from the 14th of March in two steps: on the 1st and

20th of June, following the progressive lift of the restrictions that

actually happened.

We kept 25% of the contacts in the school and university layers

to simulate the small group’s policy, and reduced β by 50% in

the school layer, considering the strict protocol to avoid contagion

at schools.

After calibrating the model of the second wave with these

non-pharmaceutical interventions and considering the results of

the simulation, we introduced different counterfactual scenarios in

which we quantified the effect of each of the non-pharmaceutical

interventions adopted. More specifically, we computed the number

of deaths and the disease prevalence by performing simulations

with the same epidemiological parameters but switching on and off

alternative interventions. Finally, we computed the relative change

in the relevant quantity X (X = deaths or prevalence) as r =

(Xcounterfactual − Xsimulated-2nd-wave)/Xsimulated-2nd-wave. Therefore,

the absolute change can be obtained as Xcounterfactual = (1 + r) ·

Xsimulated-2nd-wave.

We considered the following nine different counterfactuals:

• No testing and no contact tracing. The testing intervention

was removed. Hence, as contact tracing depends on

the results of the testing process, contact tracing was

automatically removed.

• No contact tracing. To analyze the impact of the contact

tracing strategy and decouple it from the testing process, we

kept the testing intervention and its parameters but removed

contact tracing interventions.

• Opening 100% university. We considered the opening of the

university layer with 100% of the contacts, instead of the 25%

contacts estimated through the small group’s intervention.

• Not opening university. We simulated a scenario where the

university layer remained closed.

• Opening all schools together (x2). The school opening was

done following a staggered strategy, such that each level

started on a different date. We simulated scenarios where

all the levels started on the same date, either on the date of

the earliest opening (7th September) or the latest opening

(17th September).

• 100% β in schools, whole groups. Schools were one of the

sectors where strong protocols were introduced, reducing

considerably the infection rate and also the group size. We

simulated the absence of these protocols, keeping the same

infection rate as in the rest of the layers, and considering this

layer with whole groups, that is, 100% of the contacts.

• Not opening schools. We quantified the changes in the

outcome of the second wave if the schools had not been open.

• No interventions in October. We observed that the

interventions in October were key to controlling the second

wave. Thus, we removed these interventions and computed

this counterfactual, keeping the same final date, such that the

result was comparable with the rest of the counterfactuals.

However, we assumed that removing these interventions

would imply that the second wave continued growing on

time. To characterize this growth (in terms of both time extent

and outcome), we ran additional simulations for 15 and 30

days more and compared them with extrapolations of the

original second wave simulation for the same period (without

including additional measurements introduced on December

2020 or calibrating the observed data in that period).

3. Results

3.1. Contact matrices

With the information contained in the multilayer networks

we can infer the contact matrices of the population (12). These

matrices can be used to inform classical epidemiological models for

studies not based on agent-basedmodels, or to obtain an aggregated

picture of the interactions in the system, as in this case. Indeed, as

we can see in Figures 2A–E, the shape of the matrices indicates that

our networks display an assortative pattern with blocks of infants,

adults, and the older adults with a higher preference to interact

with other individuals with similar ages. The number of contacts

per layer is also significantly different both within and across cities

(Figure 2F). For instance, workplace contacts are predominant

in Barcelona and Zaragoza, the university ones in Valencia and

Murcia, and the school contacts in Seville. Note that our agent-

based model explicitly contains each link between two individuals,

and thus these matrices are not used to model the spreading.

3.2. First wave

In order to be able to explore realistic counterfactuals for the

effectiveness of the most important NPIs adopted, we started by

simulating the first wave to calibrate the model for each of the

cities considered. Specifically, we ran simulations of the spread

of COVID-19 in these cities using the software COVASIM. We

estimated the transmission rate and the arrival of the initial seed,
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FIGURE 3

First wave of infections of COVID-19 in five Spanish cities: (A) Barcelona (BCN), (B) Valencia (VLC), (C) Seville (SEV), (D) Zaragoza (ZGZ), and (E)Murcia

(MUR). The number of deaths D estimated by our model (solid line, the shaded area represents the 5-95% CI) agrees with the data (properly rescaled,

see section 2) reported by the Spanish Ministry of Health (dots), with an excess of deaths in the initial stages of the wave.

TABLE 1 Starting date (Start), infection rate (β), prevalence (Prev.), and number of deaths (Deaths) from the model output of the first wave.

City Start β Prev. (5–95% CI) Deaths (5–95% CI) Ref. Prev. (5–95% CI)

Barcelona Jan 05 0.0300 14.6 (13.1–16.1) 2,334 (2,188–2,477) 7.4 (6.2–8.9)

Valencia Dec 20 0.0251 3.1 (1.5–4.7) 227 (141–313) 2.1 (1.5–3.0)

Seville Dec 26 0.0232 2.4 (1.1–4.7) 195 (75–314) 2.7 (1.9–3.8)

Zaragoza Jan 1 0.0280 6.1 (3.9–8.3) 599 (465–733) 5.2 (3.9–6.9)

Murcia Dec 29 0.0260 2.4 (1.6–3.3) 89 (67–111) 1.6 (1.0–2.5)

The reference prevalence (Ref. Prev.) is that provided in the first phase of the national study of seroprevalence for the first wave in its second round, finished on June 1st (7).

considered as a single infected individual (Figure 3, Table 1). Our

multilayer approach allowed us to introduce the effects of the

national lockdown declared on 14th March 2020, reducing the

contacts in the work layer to 20% (10% for Barcelona) and 0% in

the university, school, and community layers. Our results indicate

an earlier arrival of COVID-19 to these cities (upon the assumption

of a single initial seed), and they highlight the earlier occurrence

of deaths at the beginning of the first wave, not considered

in the official statistics, in Barcelona, Valencia, Seville, and

Zaragoza. The prevalence estimates from our model are compatible

with those obtained from the nationwide seroprevalence study

in Spain (see Table 1). Note that this seroprevalence study

detected 10 times more cases than the ones reported by the

surveillance system.

3.3. Second wave. Counterfactuals

When restrictions were progressively lifted after the end of

the first wave, a second wave started growing (Figure 4), and we

calibrated our model to obtain the impact of the interventions on

our model parameters (see section 2).

The calibration of the second wave led to the following results:

• Varying number of links in the community layer: connections

were set at 50% of the baseline value (1st June, progressive lift

of restrictions), 80% (20th June, end of the national State of

Alarm), 50% (5th August, regional limits on restaurant and

bar schedules), 100% (4th September, lift of restrictions), 30%

(19th October, regional limits on the schedule and capacity of
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restaurants and bars), and 10% (26th October, national State

of Alarm).

• Varying the weight of the links in the community layer:

increase by 50% from 20th June to 26th October (end and

beginning, respectively, of the national State of Alarm).

• Varying the number of links in the work layer: connections

were set at 70% of the baseline value (1st June), 50% (15th

July), 30% (1st August), and 50% (20th September). These

changes in summer accounted for the summer holidays

period. Mobility reports (20) showed a slow return to mobility

associated with work in September.

• Testing. The probability of symptomatic individuals being

tested (per day with symptoms) was estimated to be 15%

between 1st July and 14th September, and 9% from 15th

September. The delay between the test and the result

notification (with the beginning of the associated isolation

period) was fixed to 1 day.

• Contact tracing. The contacts from positive-tested individuals

were traced with a general probability Pt . Additionally, Pt was

weighted for each layer of contacts, fixing the weights 1 for

home, 0.8 for school, 0.6 for university, 0.8 for work, 0.0 for

the community [until the introduction of the contact tracing

app Radar COVID (21), which increased it to 0.05], and 0.0

for nursing homes. We fixed the time between the positive

notification and the communication with close contacts to 2

days. Pt was estimated to be 0.4 between 1st July and 19th

August, 0.45 between 20th August (introduction of Radar

COVID) and 30th September, and 0.5 from 1st October (extra

support to contact tracing from trained soldiers).

Overall, the model (Figure 4) estimated that there were 1,354

deaths (5–95 CI), with a prevalence of 22.6% (21.0–24.2% 5–95 CI).

This prevalence was higher than the reported in the fourth phase

of the national seroprevalence study carried out in mid November

(7), which estimated a prevalence of 12.7% (10.1–15.8% 5–95 CI) at

the province level. Even though the data at the municipality level

is not available, it reported that the prevalence in municipalities

with more than 100,000 inhabitants was 50% larger than in the

smaller ones. The province of Zaragoza is highly heterogeneous

in terms of size, with one municipality (out of 293) containing

69% of the almost 1,000,000 inhabitants in the province. Thus, it

is expected that the prevalence at the city level should be much

larger. Similarly, our model in the first wave agreed with the

empirical observations of the temporal evolution of the number

of deaths documented, with a minor overestimation for Murcia

but a larger one for Barcelona. We interpret these divergences as

possibly missing data, in line with other studies that have claimed a

higher number of deaths than that reported by the official statistics,

which was particularly significant in the administrative region of

Catalonia, where Barcelona is located (8).

The results of the counterfactual analysis shown in Figure 5

indicate that the combination of tracing and testing, with the

associated isolation of positive individuals, was very effective in

reducing the number of both deaths and infections. Note that for

this case, the counterfactual (i.e., lack of such measures) led to

more than twice the number of infected individuals, and also nearly

doubled the number of deaths. Next, we quantified the impact of

FIGURE 4

Modeling the first and second waves of COVID-19 spreading on

Zaragoza from January to December 2020. We represent the

temporal evolution of the number of deaths D, with shaded regions

depicting the 5–95% confidence intervals of the model.

contact tracing alone by keeping the testing process, together with

the isolation of individuals with a positive test, but removing the

contact tracing. This scenario also showed an increase in both the

number of infections and deaths. However, the increase of both

observables was twice lower than if both contact-tracing and testing

are removed, highlighting the importance of combining these two

interventions to achieve the best result. The third-most important

counterfactual according to the increase in deaths was the removal

of the interventions in schools, which however produce the second-

largest increase in the number of infections, but with a smaller

impact in the number of deaths because most infections would

occur in non-risk age groups. Interestingly, opening the university

without restrictions would lead to fewer infections than with

schools completely opened, however leading to more deaths. The

synchronous opening of the schools for different levels also implied

an increase in prevalence and deaths, but with a lower impact than

other interventions. Finally, there were also some counterfactual

scenarios that produced a decrease in the observables, such as

keeping schools or the university closed. However, their impact

was minor.

For the sake of completeness, we also assessed the impact of the

interventions in October to control the outbreak. In principle, these

measures did not have a big impact as shown in Figure 5. However,

the interpretation is not straightforward, because our second wave

simulations finish on December 1st, and the absence of these

interventionsmay have implied a later end of this wave. To quantify

this, we extended, without adding any new intervention, both the

calibrated and counterfactual simulations, finishing the simulation

on (a) 15th December and (b) 31st December. Our results showed

that the relative change between the real extrapolated framework

and this counterfactual kept increasing after 1st December (9.5%

for deaths, 50.9% for prevalence), as the extrapolated values were

higher on 15th December (40.3% for deaths, 71.1% for prevalence),

and slightly decreased at 31st December (25.3% for deaths, 66.5%
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FIGURE 5

Estimating the impact of non-pharmaceutical interventions on the second wave of COVID-19 spreading in Zaragoza. We compute the relative

change with respect to the outcome of the model in terms of prevalence and number of deaths for di�erent simulated scenarios. The relative

di�erence in the relevant quantity X (X = deaths or prevalence) is computed as (Xcounterfactual − Xsimulated-2nd-wave)/Xsimulated-2nd-wave .

for prevalence), indicating that by this date, the counterfactual wave

would have finished. Hence, this extrapolation suggests that this

counterfactual would have implied, compared with the rest of the

counterfactuals, the second-largest increase in prevalence, and the

fourth-largest increase in the number of deaths.

4. Discussion and conclusions

The quick spread of a deadly infection among a population

represents a threat to public health systems, which requires

immediate action and extra resources in order to mitigate and

eventually control the impact of the associated disease on the

population. However, interventions need to be carefully evaluated,

as our society is a complex interdependent system in which

mitigating the effects of one disease might result in non-desirable

side effects such as the reduction of the services provided to

both prevent and treat other diseases (22–24). To avoid these

effects, scientists and policy-makers need computational resources

that allow for a fast assessment of the possible outcome of

interventions whenever pharmaceutical interventions, such as

vaccination campaigns, are not possible. This is often the case

when new diseases emerge, as seen with the virus SARS-CoV-2,

which currently represents one of the major threats to public health

systems. On the one hand, governments and health organizations

need to allocate significant resources in order to develop and

test vaccines and/or specific pharmacological treatments. On the

other hand, traditional surveillance methods are likely to miss

large numbers of new infections in the population, leading to

a high number of undocumented infections during the early

stages of the disease, as also happened in the case of SARS-

CoV-2 (25). In such situations, non-pharmaceutical interventions

represent the alternative to at least earning time. This is where

data-driven and computational frameworks are fundamental to

inform models that can illustrate the outcome of different non-

pharmaceutical interventions. In this paper, we have presented

a model that could be used to characterize the consequences

of a plethora of non-pharmaceutical interventions. We applied

the model to study the first and second waves of COVID-

19 in Spain, finding that testing, tracing, and isolation were

among the most effective interventions to reduce both the

number of deaths and infections, in line with similar studies

for other geographical locations (13, 26, 27). Our study also

shows that, on the whole, the interventions adopted during

the second wave for the city of Zaragoza, were effective and

reduced the number of deaths and infections by around 10% and

50%, respectively. The effort presented in this work, informing

a computational model of COVID-19 spreading with synthetic

populations based on real data, has the potential to speed up the

analysis of different intervention scenarios in future large-scale

epidemic emergencies.

This work has some limitations that deserve further discussion.

First of all, our simulations considered a single randomly chosen

initial seed, and from this, we estimated the date of arrival of

the disease. Nevertheless, the spreading process could have started

by the arrival of several infected individuals either synchronously

or asynchronously. However, we think that these approaches are

equivalent, as they would lead to the same number of infected

individuals at later dates. In contrast, different effects could emerge

when specific individuals, according to, for example, their age,

district of residence, or employment status, display a higher

likelihood to introduce the infection. Another limitation is the

isolation of the cities, as they are considered closed systems.

This can be solved by introducing a spontaneous infection rate

reflecting the imported cases from other locations, although we

assume that in the cases of generalized local transmission this rate

would lead to minor differences. The emergence of variants with

different infection and recovery rates and death probabilities is

challenging for these models, requesting the parameter correction

for subsequent waves happening when other variants were present.

The latter, however, does not impact predictions at the early stages

of an emerging disease, which is when evaluating possible NPIs is

most needed. Finally, we considered the main non-pharmaceutical

interventions that were applied in the city of Zaragoza, but their

calibration may include the effect of other interventions that we

assumed to have minor effects.
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Our multilayer network method, informed from multiple data

sources, contrasts with other approaches used for modeling the

spread of COVID-19. These include the introduction of meta-

population approaches representing recurrent mobility (28, 29), the

use of demography to infer social contact data (6), information

from real-time human mobility indices (30), or the use of high-

resolution individual trajectories (13). We acknowledge that the

latter method would be the ideal scenario in terms of accuracy, but

it would request the availability of detailed mobility data, which

is not directly linked to layers whose dynamics are shaped by

interventions. When such data is not available, our method can

inform mathematical models of spreading while keeping realistic

social contact data.

In summary, our work shows how models of digital cities

can be coupled to agent-based epidemiological models of disease

dynamics and be used for scenario evaluation. Our approach aligns

with the spirit of developing digital twins to face the challenges

raised by the Sustainable Development Goals (https://sdgs.un.org),

related for example with environmental problems or health issues.

After the extensive data search needed for creating these cities

(see Supplementary material), updating these digital cities will

be a more straightforward task, allowing them to timely inform

the models that help design non-pharmaceutical interventions to

mitigate the effects of future pandemics.

Data availability statement

The data sources are specified in the Supplementary material.

The code used for simulating the first and second waves in

Zaragoza is available in the following URL: https://github.com/

jorgeprodriguezg/digicovid. Digital Cities are available from JR

(jorgeprodriguezg@gmail.com) upon reasonable request.

Author contributions

JR, AA, and YM contributed to conception and design of the

study and analyzed the results. JR collected, cleaned, organized the

data, performed the statistical analysis, and wrote the first draft of

the manuscript. All authors contributed to the article and approved

the submitted version.

Funding

JR, AA, and YM acknowledge support from the Government

of Aragon (FONDO–COVID19-UZ-164255). JR is supported

by Juan de la Cierva Formacion program (Ref. FJC2019-

040622-I) funded by MCIN/AEI/ 10.13039/501100011033. AA

acknowledges support through the grant RYC2021-033226-I

funded by MCIN/AEI/10.13039/501100011033 and the European

Union NextGenerationEU/PRTR. YM was partially supported

by the Government of Aragon, Spain and ERDF A way

of making Europe through grant E36-20R (FENOL), and by

Ministerio de Ciencia e Innovación, Agencia Española de

Investigación (MCIN/AEI/10.13039/501100011033) Grant No.

PID2020-115800GB-I00. The authors acknowledge the use of the

computational resources of COSNET Lab at Institute BIFI, funded

by Banco Santander through grant Santander-UZ 2020/0274, and

by the Government of Aragon (FONDO–COVID19-UZ-164255).

JR and AA acknowledge funding from la Caixa Foundation under

the project code SR20-00386 (COVID-SHINE). The funders had

no role in the study design, data collection, analysis, decision to

publish, or preparation of the manuscript.

Acknowledgments

The authors acknowledge the Department of University

Statistics of the Spanish Ministry of Universities for

facilitating the number of registered students at the

university per municipality, which is not currently publicly

available online.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.2023.

1122230/full#supplementary-material

References

1. Barber RM, Sorensen RJ, Pigott DM, Bisignano C, Carter A, Amlag JO, et al.
Estimating global, regional, and national daily and cumulative infections with SARS-
CoV-2 through Nov 14, 2021: a statistical analysis. Lancet. (2022) 399:2351–80.
doi: 10.1016/S0140-6736(22)00484-6

2. Bonaccorsi G, Pierri F, Cinelli M, Flori A, Galeazzi A, Porcelli F, et al.
Economic and social consequences of human mobility restrictions under
COVID-19. Proc Nat Acad Sci USA. (2020) 117:15530–5. doi: 10.1073/pnas.20076
58117

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1122230
https://sdgs.un.org
https://github.com/jorgeprodriguezg/digicovid
https://github.com/jorgeprodriguezg/digicovid
mailto:jorgeprodriguezg@gmail.com
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1122230/full#supplementary-material
https://doi.org/10.1016/S0140-6736(22)00484-6
https://doi.org/10.1073/pnas.2007658117
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Rodríguez et al. 10.3389/fpubh.2023.1122230

3. Pak A, Adegboye OA, Adekunle AI, Rahman KM, McBryde ES, Eisen DP.
Economic consequences of the COVID-19 outbreak: the need for epidemic
preparedness. Front Publ Health. (2020) 8:241. doi: 10.3389/fpubh.2020.
00241

4. Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, et al.
Global COVID-19 lockdown highlights humans as both threats and custodians of the
environment. Biol Conserv. (2021) 263:109175. doi: 10.1016/j.biocon.2021.109175

5. Starnini M, Aleta A, Tizzoni M, Moreno Y. Impact of data accuracy on
the evaluation of COVID-19 mitigation policies. Data Policy. (2021) 33:e28.
doi: 10.1017/dap.2021.25

6. Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C, Debin M, et al.
Underdetection of cases of COVID-19 in France threatens epidemic control. Nature.
(2021) 590:134–9. doi: 10.1038/s41586-020-03095-6

7. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-
Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a
nationwide, population-based seroepidemiological study. Lancet. (2020) 396:535–44.
doi: 10.1016/S0140-6736(20)31483-5

8. García-García D, Vigo MI, Fonfría ES, Herrador Z, Navarro M, Bordehore
C. Retrospective methodology to estimate daily infections from deaths
(REMEDID) in COVID-19: the Spain case study. Sci Rep. (2021) 11:11274.
doi: 10.1038/s41598-021-90051-7

9. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer
networks. J Compl Netw. (2014) 2:203–71. doi: 10.1093/comnet/cnu016

10. Aleta A, Moreno Y. Multilayer networks in a nutshell. Annu Rev Condens Matter
Phys. (2019) 10:45–62. doi: 10.1146/annurev-conmatphys-031218-013259

11. Fumanelli L, Ajelli M,Manfredi P, Vespignani A,Merler S. Inferring the structure
of social contacts from demographic data in the analysis of infectious diseases spread.
PLoS Comput Biol. (2012) 8:e1002673. doi: 10.1371/journal.pcbi.1002673

12. Mistry D, Litvinova M, Pastore y Piontti A, Chinazzi M, Fumanelli L, Gomes
MFC, et al. Inferring high-resolution humanmixing patterns for disease modeling.Nat
Commun. (2021) 12:323. doi: 10.1038/s41467-020-20544-y

13. Aleta A, Martin-Corral D, Pastore y Piontti A, Ajelli M, Litvinova M,
Chinazzi M, et al. Modelling the impact of testing, contact tracing and household
quarantine on second waves of COVID-19. Nat Hum Behav. (2020) 4:964–71.
doi: 10.1038/s41562-020-0931-9

14. Censo de Población y Viviendas, Instituto Nacional de Estadística. (2011).
Available online at: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=
Estadistica_C&cid=1254736176992&menu=ultiDatos&idp=1254735576757#:~:
text=Censos%20de%20Poblaci%C3%B3n%20y%20Viviendas%202011.,y%20alcanza
%20los%204.193.319 (accessed August 4, 2021).

15. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries
using contact surveys and demographic data. PLoS Comput Biol. (2017) 13:e1005697.
doi: 10.1371/journal.pcbi.1005697

16. Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart
GR, et al. Covasim: an agent-based model of COVID-19 dynamics and

interventions. PLOS Comput Biol. (2021) 17:e1009149. doi: 10.1371/journal.pcbi.10
09149

17. Kerr CC, Mistry D, Stuart RM, Rosenfeld K, Hart GR, Núñez RC, et al.
Controlling COVID-19 via test-trace-quarantine. Nat Commun. (2021) 12:2993.
doi: 10.1038/s41467-021-23276-9

18. Pham QD, Stuart RM, Nguyen TV, Luong QC, Tran QD, Pham TQ, et al.
Estimating and mitigating the risk of COVID-19 epidemic rebound associated with
reopening of international borders in Vietnam: a modelling study. Lancet Glob Health.
(2021) 9:e916–24. doi: 10.1016/S2214-109X(21)00103-0

19. Red Nacional de Vigilancia Epidemiologica (Spain) (2022). Available online at:
https://cnecovid.isciii.es/covid19 (accessed March 16, 2021).

20. Google. Google COVID-19 Community Mobility Reports (2021). Available online
at: http://www.google.com/covid19/mobility (accessed April 26, 2021).

21. Rodríguez P, Graña S, Alvarez-León EE, Battaglini M, Darias FJ,
Hernán MA, et al. A population-based controlled experiment assessing the
epidemiological impact of digital contact tracing. Nat Commun. (2021) 12:587.
doi: 10.1038/s41467-020-20817-6

22. Roberts L. Pandemic brings mass vaccinations to a halt. Science. (2020) 368:116–
7. doi: 10.1126/science.368.6487.116

23. Jewell BL, Mudimu E, Stover J, Ten Brink D, Phillips AN, Smith JA, et al.
Potential effects of disruption to HIV programmes in sub-Saharan Africa caused by
COVID-19: results frommultiple mathematical models. Lancet HIV. (2020) 7:e629–40.
doi: 10.1016/S2352-3018(20)30211-3

24. Tovar M, Aleta A, Sanz J, Moreno Y. Modeling the impact of COVID-19 on
future tuberculosis burden. Commun Med. 2:77. doi: 10.1038/s43856-022-00145-0

25. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented
infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).
Science. (2020) 368:489–93. doi: 10.1126/science.abb3221

26. Steinbrook R. Contact tracing, testing, and control of COVID-19-learning from
Taiwan. JAMA Intern Med. (2020) 180:1163–4. doi: 10.1001/jamainternmed.2020.2072

27. Salathé M, Althaus CL, Neher R, Stringhini S, Hodcroft E, Fellay J, et al. COVID-
19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation.
Swiss Med Wkly. (2020) 150:w20225. doi: 10.4414/smw.2020.20225

28. Eguíluz VM, Fernández-Gracia J, Rodríguez JP, Pericàs JM, Melián C. Risk of
secondary infection waves of COVID-19 in an insular region: the case of the Balearic
Islands, Spain. Front Med. (2020) 7:563455. doi: 10.3389/fmed.2020.563455

29. Arenas A, Cota W, Gómez-Gardeñes J, Gómez S, Granell C, Matamalas JT,
et al. Modeling the spatiotemporal epidemic spreading of COVID-19 and the impact
of mobility and social distancing interventions. Phys Rev X. (2020) 10:041055.
doi: 10.1103/PhysRevX.10.041055

30. Kraemer MU, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM,
et al. The effect of human mobility and control measures on the COVID-
19 epidemic in China. Science. (2020) 368:493–7. doi: 10.1126/science.ab
b4218

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1122230
https://doi.org/10.3389/fpubh.2020.00241
https://doi.org/10.1016/j.biocon.2021.109175
https://doi.org/10.1017/dap.2021.25
https://doi.org/10.1038/s41586-020-03095-6
https://doi.org/10.1016/S0140-6736(20)31483-5
https://doi.org/10.1038/s41598-021-90051-7
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1371/journal.pcbi.1002673
https://doi.org/10.1038/s41467-020-20544-y
https://doi.org/10.1038/s41562-020-0931-9
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176992&menu=ultiDatos&idp=1254735576757#:~:text=Censos%20de%20Poblaci%C3%B3n%20y%20Viviendas%202011.,y%20alcanza%20los%204.193.319
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176992&menu=ultiDatos&idp=1254735576757#:~:text=Censos%20de%20Poblaci%C3%B3n%20y%20Viviendas%202011.,y%20alcanza%20los%204.193.319
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176992&menu=ultiDatos&idp=1254735576757#:~:text=Censos%20de%20Poblaci%C3%B3n%20y%20Viviendas%202011.,y%20alcanza%20los%204.193.319
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176992&menu=ultiDatos&idp=1254735576757#:~:text=Censos%20de%20Poblaci%C3%B3n%20y%20Viviendas%202011.,y%20alcanza%20los%204.193.319
https://doi.org/10.1371/journal.pcbi.1005697
https://doi.org/10.1371/journal.pcbi.1009149
https://doi.org/10.1038/s41467-021-23276-9
https://doi.org/10.1016/S2214-109X(21)00103-0
https://cnecovid.isciii.es/covid19
http://www.google.com/covid19/mobility
https://doi.org/10.1038/s41467-020-20817-6
https://doi.org/10.1126/science.368.6487.116
https://doi.org/10.1016/S2352-3018(20)30211-3
https://doi.org/10.1038/s43856-022-00145-0
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1001/jamainternmed.2020.2072
https://doi.org/10.4414/smw.2020.20225
https://doi.org/10.3389/fmed.2020.563455
https://doi.org/10.1103/PhysRevX.10.041055
https://doi.org/10.1126/science.abb4218
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Digital cities and the spread of COVID-19: Characterizing the impact of non-pharmaceutical interventions in five cities in Spain
	1. Introduction
	2. Materials and methods
	2.1. Multilayer contact networks
	2.1.1. Demography
	2.1.2. Contact networks
	2.1.3. Home layer
	2.1.4. School layer
	2.1.5. University layer
	2.1.6. Work layer
	2.1.7. Nursing homes layer
	2.1.8. Community layer

	2.2. Epidemic spreading
	2.2.1. Spreading model
	2.2.2. Epidemic data

	2.3. Quantifying public health policies

	3. Results
	3.1. Contact matrices
	3.2. First wave
	3.3. Second wave. Counterfactuals

	4. Discussion and conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


