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Abstract: In this paper, we introduce the new concept of mutual Reich contraction that involves
a pair of operators acting on a distance space. We chose the framework of strong b-metric spaces
(generalizing the standard metric spaces) in order to add a more extended underlying structure. We
provide sufficient conditions for two mutually Reich contractive maps in order to have a common
fixed point. The result is extended to a family of operators of any cardinality. The dynamics of
iterative discrete systems involving this type of self-maps is studied. In the case of normed spaces,
we establish some relations between mutual Reich contractivity and classical contractivity for linear
operators. Then, we introduce the new concept of mutual functional contractivity that generalizes
the concept of classical Banach contraction, and perform a similar study to the Reich case. We
also establish some relations between mutual functional contractions and Banach contractivity in
the framework of quasinormed spaces and linear mappings. Lastly, we apply the obtained results
to convolutional operators that had been defined by the first author acting on Bochner spaces of
integrable Banach-valued curves.
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1. Introduction

A standard way of constructing a fractal set is its definition as the fixed point of a
contractive operator in a suitable metric space; for instance, the space of compact sets of
some distance space endowed with the Hausdorff metric. Thus, the fractal set is the limit
of an iteration of the contractive operator. If this operator is replaced by a family and a
different self-map intervenes at each step, the problem of convergence is far from solved.
In the case of fractal functions, a usual construction procedure is to consider an operator
on a complete space of mappings and define the fractal function as the result of a Picard
iteration. However, if the operator is replaced by a family of mappings, we face an open
problem of fractal theory.

The well-known Banach contraction theorem is one of the most useful results in
nonlinear analysis and applied mathematics. A huge number of numerical algorithms and
mathematical methods were established by using this principle (for instance, the solution of
equations of all types: algebraic, differential, integral). The Banach theorem was extended
by many authors to some larger and different classes of contractive mappings; see more
details in [1–7] and the references therein. Here, we introduce two generalizations of the
classical (Banach) contraction involving two operators on a metric space instead of a single
map. In some instances, we obtain the singular case studied in the recent bibliography [8].
We establish theorems of the existence of a common fixed point when there are mutual
relations of contraction between operators. We then generalize the results to a family of
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operators and study the convergence of the iterative schemes when a different operator
is taken at each step of the algorithm. This type of iteration was studied in [9] for the
case of Banach contractions. In the last section, we consider the problem of convergence
of iterations related to the fractal convolution of mappings valued in Banach spaces and
algebras [10].

Definition 1. Let X be a metric space, and T : X → X. T a Reich contraction on X if it satisfies
the following condition for any x, y ∈ X:

d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty), for a, b, c ≥ 0 and a + b + c < 1. (1)

If X is complete, the Reich contraction admits a unique fixed point [3].

Remark 1. Reich contractivity contains Kannan and Banach contractions as particular cases,
taking a = 0 and b = c for Kannan contractions [1,2,5], and b = c = 0 for Banach contractions.
Reich’s theorem is stronger than Banach and Kannan’s theorems. For example, let X = [0, 1] and
T(x) = x

2 , 0 ≤ x < 1, T(1) = 1
4 . Then, T is not a Banach contraction, as it is not continuous

at x = 1. If we take x = 0, y = 1
2 , then d

(
T(0), T( 1

2 )
)
= d(0, T(0)) + d

(
1
2 , T( 1

2 )
)

, T does not

satisfy the required condition to be Kannan’s contraction. However, for values a = 1
2 , b = 1

4 , c = 1
6 ,

T satisfies the condition of Reich’s contraction.

Remark 2. Banach’s contraction is trivially a Reich contraction, but the converse is not true in
general. For instance, map T : [0, 1] → [0, 1], defined as T(x) = 0 for any x ∈ [0, 1) and
T(1) = 1/4, is not Banach contractive, but it is a Reich contraction for a = b = c = 1/4.

A Reich contraction does not need to be continuous, unlike a classical contraction.
In this sense, the Reich concept is much more general than classical contractivity. The
applications of Reich contractions include those of Kannan and Banach maps. Thus,
their study is greatly important in applied mathematics and generally the sciences. The
applications of the Banach contraction principle are well-known. Next, we define the
concept of mutual Reich contractivity for two mappings and show the existence of a
common fixed point for a given collection under some suitable conditions of mutual
contraction. This is conducted in the framework of strong b-metric spaces that contain the
metric spaces as a remarkable particular case.

2. Strong b-Metric Spaces

In this section, we first outline the rudiments of the structure of strong b-metric spaces
(see, for instance, [11–13]).

Definition 2. A strong b-metric space X is a set endowed with mapping ds : X× X → R+ with
the following properties:

1. ds(x, y) ≥ 0, ds(x, y) = 0 if and only if x = y.
2. ds(x, y) = ds(y, x) for any x, y ∈ X.
3. There exists s ≥ 1, such that ds(x, y) ≤ ds(x, z) + sds(z, y) for any x, y, z ∈ X.

Constant s is the index of the strong b-metric space, and ds is called a strong b-metric. If the
inequality in Property (3) is substituted by

ds(x, y) ≤ s(ds(x, z) + ds(z, y)), (2)

for any x, y, z ∈ X, X is a b-metric space, and ds is a b-metric (see, for instance, [14]). In both cases,
s is the index of the metric.

Remark 3. A metric space is a strong b-metric space taking s = 1.
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Remark 4. As the inequality in Property (3) implies (2), a strong b-metric space is a b-metric space.

Example 1. Let set X = {x, y, z} be endowed with map ds : X× X → R+ defined as ds(x, x) =
ds(y, y) = ds(z, z) = 0, ds(x, y) = ds(y, x) = 1/2, ds(y, z) = ds(z, y) = 5 and ds(x, z) =
ds(z, x) = 6. Then, X is a strong b-metric space with index s = 2 (see Example 2.3 of [11]).

Example 2. Let us consider set X = {x, y, z} with ds : X × X → R+ defined as ds(x, x) =
ds(y, y) = ds(z, z) = 0, ds(x, y) = ds(y, x) = 2, ds(y, z) = ds(z, y) = 1 and ds(x, z) =
ds(z, x) = 6. Then, X is a strong b-metric space with index s = 4 (see Example 2.1 of [12]).

Example 3. Lebesgue space Lp(I), where I is a real bounded interval and 0 < p < 1, with ds
defined as

ds( f , g) = (
∫

I
| f − g|pdt)1/p,

is a b-metric space with index s = 2
1
p−1.

Example 4. Let us consider set X = {x1, x2, x3, x4} with ds : X × X → R+ defined as
ds(xi, xi) = 0, for any i, ds(x1, x2) = 4, ds(x1, x3) = ds(x1, x4) = ds(x2, x3) = ds(x2, x4) =
ds(x3, x4) = 1, ds(xi, xj) = ds(xj, xi), for any i, j. Then, X is a b-metric space with index s = 2
(see Example 2.1 of [13]).

Let us consider a strong b-metric space X. Sometimes, we write the b-metric space
as BMS.

Definition 3. A sequence (xn) ⊆ X is Cauchy if ds(xm, xn)→ 0 as m, n tend to infinity.

Definition 4. Sequence (xn) ⊆ X is convergent if there exists x ∈ X, such that ds(xn, x)→ 0 as
n tends to infinity.

Definition 5. Subset A ⊆ X is complete if every Cauchy sequence in A is convergent to an element
of A.

Remark 5. The strong b-metric spaces described in Examples 1 and 2 are complete (see [11,12]).

Definition 6. A self-map T : X → X, where X is a strong BMS, is continuous if xn → x implies
Txn → Tx.

3. Mutual Reich Contractions

This section searches for the existence of common fixed points for a set of opera-
tors with mutual relations of the Reich type. We first propose the definition of mutual
Reich contractions.

Definition 7. Let T1, T2 : X → X and X be a strong BMS. T1, T2 are mutually Reich contractive
if ∃ a, b, c ≥ 0, a + b + c < 1, such that for all x, y ∈ X

ds(T1x, T2y) ≤ ads(x, y) + bds(x, T1x) + cds(y, T2y). (3)

Remark 6. The definition of a mutual Reich contraction generalizes that of Kannan mutual
contractions introduced in [8] by taking a = 0, and mutual Banach contraction for b = c = 0 and
x 6= y.
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Lemma 1. If (X, ds) is a strong BMS for any finite collection of elements x0, x1, . . . , xj ∈ X the
following inequality is satisfied:

ds(x0, xj) ≤ s

(
j−1

∑
k=0

ds(xk, xk+1)

)
.

Proof. We used induction on j ∈ N. For j = 1 the proposed inequality holds trivially. Let
us assume that it is true for j = n. Applying the third condition of a strong b-metric:

ds(x0, xn+1) ≤ ds(x0, xn) + sds(xn, xn+1) ≤ s
n−1

∑
k=0

ds(xk, xk+1) + sds(xn, xn+1)

and the result is obtained.

Theorem 1. Let (X, ds) be a complete strong b-metric space with index s ≥ 1 and T1, T2 be mutual
Reich contractions with constants a, b, c such that a + b + c < 1 and max{b, c} < s−1. Then,
T1, T2 have a unique common fixed point.

Proof. Let x ∈ X. Let us define sequence x0 = x, x1 = T1(x0), x2 = T2(x1), x3 =
T1(x2), x4 = T2(x3). Then, according to the definition of mutual Reich contractivity,

ds(x1, x2) = ds(T1(x0), T2(x1)) ≤ ads(x0, x1) + bds(x0, T1x0) + cds(x1, T2x1)

= ads(x0, x1) + bds(x0, x1) + cds(x1, x2).

Therefore, we obtained ds(x1, x2) ≤ (a+b)
(1−c) ds(x0, x1). Analogously,

ds(x2, x3) = ds(T1(x2), T2(x1)) ≤ ads(x1, x2) + bds(x2, T1x2) + cds(x1, T2x1)

= ads(x1, x2) + bds(x2, x3) + cds(x1, x2).

Consequently, we obtained ds(x2, x3) ≤ (a+c)
(1−b)ds(x1, x2) ≤ λ2ds(x0, x1), where

λ = max
{
(a + b)
(1− c)

,
(a + c)
(1− b)

}
< 1.

Thus, ds(xn, xn+1) ≤ λnds(x0, x1). We show that (xn) is a Cauchy sequence. For p ≥ 1,
applying Lemma 1,

ds(xn, xn+p) ≤ s

(
p−1

∑
j=0

ds(xn+j, xn+j+1)

)
≤ s

(
n+p−1

∑
k=n

λk

)
ds(x0, x1).

Since
∞
∑

k=0
λk is convergent, (xn) is a Cauchy sequence with a limit x∗ ∈ X. We now

show that x∗ is a common fixed point of T1 and T2. For instance, for n ∈ N, n even,

ds(x∗, T1x∗) ≤ ds(x∗, xn) + sds(xn, T1x∗) = ds(x∗, xn) + sds(T2(xn−1), T1x∗).

Applying the definition of Reich contractivity for T1, T2,

ds(x∗, T1x∗) ≤ ds(x∗, xn) + asds(xn−1, x∗) + bsds(x∗, T1x∗) + csds(xn−1, T2(xn−1))

⇒ (1− bs)ds(x∗, T1x∗) ≤ ds(x∗, xn) + asds(xn−1, x∗) + csds(xn−1, xn).
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Since all the right terms tend to 0, x∗ = T1x∗. The same analysis can be performed for
T2 taking an odd natural n. Now, we show that x∗ is unique. Let us assume that there is
another common fixed point x̄.

ds(x̄, x∗) = ds(T1(x̄), T2(x∗)) ≤ ads(x̄, x∗) + bds(x∗, T1(x∗)) + cds(x̄, T2(x̄)) = ads(x̄, x∗).

Since a < 1, x̄ = x∗.

Corollary 1. If X is a complete strong b-metric space with index s and T : X → X is a Reich
contraction with max{b, c} < s−1, then T has a unique fixed point.

Remark 7. In this way, the Reich’s Theorem is generalized to the framework of a complete strong
b-metric space.

Corollary 2. If X is a complete strong b-metric space and T : X → X is a Banach contraction,
then T has a unique fixed point.

Corollary 3. If X is a complete strong b-metric space and T : X → X is a Kannan contraction
with constant β < s−1, then T has a unique fixed point.

Remark 8. T is a Reich contraction if and only if it is mutually Reich contractive with respect to
itself. In this sense the concept of mutual Reich contraction generalizes the usual Reich contractivity.

Example 5. Let T1, T2 : [0, 1]→ [0, 1] be defined by

T1(x) =
x
6

and T2(x) =
x
8

and [0, 1] be endowed with the usual metric. It is easy to check that

d(T1(x), T2(y)) =
∣∣∣ x
6
− y

8

∣∣∣ ≤
∣∣∣ x
6

∣∣∣+
∣∣∣y
8

∣∣∣ ≤ 1
5

{∣∣∣x− x
6

∣∣∣+
∣∣∣y− y

8

∣∣∣
}

≤
{

ad(x, y) + bd(x, T1x) + cd(y, T2y)
}

,

where a = b = c = 1
5 . Thus, T1 and T2 are mutual Reich contractions.

Below, we find the existence of a common fixed point for a set of operators of any
cardinality on a strong b-metric space.

Definition 8. Let (X, ds) be a strong b-metric space and F = {Ti : X → X; i ∈ I}. x∗ ∈ X is a
fixed point of F if Ti(x∗) = x∗ ∀ i ∈ I .

Example 6. Let X be interval [0, 1] with the usual metric, and set F composed of the maps
Ti : [0, 1]→ [0, 1], defined as Ti(x) = xi for i ∈ N. Real 0, 1 are fixed points of F .

Definitions concerning discrete dynamical systems can be found (for instance) in [15].
For all r ≥ 1, x0 ∈ X, Tir ∈ F , consider the iterative scheme

xr = Tir xr−1. (4)

Definition 9. x ∈ X is a global attractor for the scheme (4) if lim
n→∞

ωn(x) = x∗ ∀x ∈ X, where
ωn := Tin ◦ Tin−1 ◦ . . . Ti2 ◦ Ti1 .

Example 7. Let X be the interval [0, 1) with the usual metric, and the set F composed of the maps
Ti : [0, 1) → [0, 1), defined as Ti(x) = xi for i ∈ N. The point 0 is a global attractor for the
iteration (4).
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Theorem 2. Let (X, d) be a complete strong b-metric space and F = {Ti : X → X, i ∈ I}. If
there exists i0 ∈ I such that ∀i ∈ I , Ti, Ti0 are mutually Reich contractive with constants ai, bi, ci
such that supi bi < s−1, supi ci < s−1; then the following hold:

1. F has a unique fixed point x∗ ∈ X.
2. x∗ is the only fixed point of each Ti ∀i ∈ I .

Proof. According to Corollary 1, since Ti0 is a Reich contraction, it has a unique fixed point
x∗ ∈ X, Ti0(x∗) = x∗. Let us examine if this element is a fixed point of every Ti. The
definition of mutual Reich contraction implies that

ds(Ti(x∗), Ti0(x∗)) ≤ bids(x∗, Ti(x∗)) + cids(x∗, Ti0(x∗)),

then
ds(Ti(x∗), x∗) ≤ bids(x∗, Ti(x∗)).

Since bi < 1 then ds(Ti(x∗), x∗) = 0 and x∗ is a fixed point of any Ti. Let us prove now
that x∗ is the only fixed point of Ti. If there were another fixed point, Ti(y∗) = y∗,

ds(y∗, Ti0(y
∗)) = ds(Ti(y∗), Ti0(y

∗)) ≤ cids(y∗, Ti0(y
∗)),

as ci < 1 then y∗ would be another fixed point of Ti0 and consequently x∗ = y∗.

Theorem 3. Let (X, ds) be a complete strong b-metric space and F = {Ti : X → X, i ∈ I}, such
that ∀i, j ∈ I , Ti, Tj are mutually Reich with constants aij, bij, cij, such that max{sup bij, sup cij} <
s−1 for any i, j ∈ I . Then, F has a unique fixed point x∗ that is a global attractor for any scheme of
type (4).

Proof. According to Theorem 2, F has a unique fixed point x∗. For any x ∈ X let us define
x0 = x, x1 = Ti1(x0), x2 = Ti2(x1), . . . , xn = Tin(xn−1). Then

ds(x1, x2) = ds(Ti1(x0), Ti2(x1)) ≤ ai1i2 ds(x0, x1) + bi1i2 ds(x0, Ti1(x0)) + ci1i2 ds(x1, Ti2(x1)),

and
ds(x1, x2) ≤ ai1i2 ds(x0, x1) + bi1i2 ds(x0, x1) + ci1i2 ds(x1, x2).

Let us define a := sup aij, b := sup bij, c := sup cij, then

ds(x1, x2) ≤
a + b
1− c

ds(x0, x1).

we Iteratively obtain
ds(xn, xn+1) ≤ λnds(x0, x1), (5)

where λ := max{ a+b
1−c , a+c

1−b} < 1. It is easy to check that (xn) is a Cauchy sequence as in the
proof of Theorem 1. Thus, there exists x̃ ∈ X such that x̃ = lim

n→∞
xn.

We now show that x̃ is the fixed point of F . For i ∈ I and n ∈ N:

ds(x̃, Ti(x̃)) ≤ ds(x̃, xn) + sds(Tin(xn−1), Ti(x̃)).

Applying condition (3) for Tin and Ti,

ds(x̃, Ti(x̃)) ≤ ds(x̃, xn) + asds(xn−1, x̃) + bsds(xn−1, Tin(xn−1)) + csds(x̃, Ti(x̃))

and
(1− cs) ds(x̃, Ti(x̃)) ≤ ds(x̃, xn) + asds(xn−1, xn) + bsds(xn−1, x̃).
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The terms of the right hand tend to zero, and consequently x̃ = Ti x̃, and x̃ = x∗.
Additionally lim

n→∞
xn = x∗ and consequently x∗ is the limit of the orbit of any point x

defined by iteration (4).

Definition 10. Subset M of X is called an invariant set of the sequence {Ti}i∈I if for all i ∈ I
and ∀x ∈ M, Ti(x) ∈ M.

Example 8. Let X be the real line with the usual metric, and theF composed of the maps Ti(x) = xi

for i ∈ N. Interval [0, 1] is an invariant set of F .

Definition 11. x̃ ∈ X is Lyapunov stable for System (4) if ∀ ε > 0, ∃ δ > 0 such that d(x, x̃) < δ
implies d(ωn(x), ωn(x̃)) < ε, where ωn := Tin ◦ Tin−1 ◦ · · · ◦ Ti1 for all n. An element x̃ ∈ X is
asymptotically stable if it is stable and attractor ( lim

n→∞
ωn(x) = x̃ for any x ∈ X).

Example 9. Let X be interval [0, 1) with the usual metric, and set F composed of the maps
Ti(x) = kix, where sup ki < 1 for i ∈ N. The origin is asymptotically stable.

Proposition 1. Let us consider the assumptions of Theorem 2, and let x∗ be the fixed point of F .
If the constants a := sup ai, b := sup bi and c := sup ci are such that a + b + ds < 1, where
d := max{b, c}, then for r > 0 any ball Br = B(x∗, r) is an invariant set of F .

Proof. Let z ∈ Br, and i, j ∈ I . Since x∗ = Ti0 x∗,

ds(Ti(z), x∗) ≤ aids(z, x∗) + bids(z, Ti(z))

ds(Ti(z), x∗) ≤ (a + b)ds(z, x∗) + bsds(x∗, Ti(z)).

Consequently,

ds(Ti(z), x∗) ≤ a + b
1− bs

ds(z, x∗) ≤ ds(z, x∗) < r

and Ti(z) ∈ Br. Since i ∈ I is arbitrary, Br is an invariant set of F .

Theorem 4. Under the assumptions of Theorem 3, if a := sup aij, b := sup bij, c := sup cij are
such that a + b + ds < 1 where d := max{b, c}, the fixed point of F is asymptotically stable for
the scheme (4).

Proof. x∗ is a fixed point of ωn for all n. For any ε > 0, let us take δ = ε. If ds(x, x∗) < δ
then, from the previous proposition Ti1(x) ∈ B(x∗, δ), ω2(x) = Ti2 ◦ Ti1(x) ∈ B(x∗, δ), etc.
In general, we have ds(ωn(x), x∗) < δ = ε.

Since x∗ is a global attractor and stable, x∗ is asymptotically stable for the scheme (4).

Definition 12. Let x ∈ X. The orbit of x is the sequence {ωn(x)}n≥0, where ω0 := Id.

We now find the rate of convergence of the orbits ωn(x) to x∗:
ds(ωn(x), x∗) = ds(Tin(xn−1), Tin(x∗)) ≤ ads(xn−1, x∗) + bds(xn−1, Tin(xn−1)) + cds(x∗, Tin(x∗)),

then,

ds(ωn(x), x∗) ≤ ads(xn−1, x∗)+ bds(xn−1, xn) ≤ ads(xn, x∗)+ asds(xn, xn−1)+ bds(xn−1, xn).

Bearing in mind that ωn(x) = xn, according to (5),

ds(ωn(x), x∗) ≤ as + b
1− a

ds(xn−1, xn) ≤
as + b
1− a

λn−1ds(x0, x1),
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where
λ = max{ a + b

1− c
,

a + c
1− b

}

and the convergence is of exponential type. For the convergence of different orbits,
d(ωn(x), ωn(y)) for all x, y ∈ X as

ds(ωn(x), ωn(y)) = ds(Tin(xn−1), Tin(yn−1)) ≤ k λn[ds(x, Ti1(x)) + ds(y, Ti1(y))
]
.

Other Properties of Mutual Reich Contractions

Using Theorem 1, we obtain the following generalization of [3] (Theorem 4). We need
a previous lemma.

Lemma 2. If (X, ds) is a strong BMS, mapping ds is continuous.

Proof. Let us consider that, for any x, x0, y, y0 ∈ X

|ds(x, y)− ds(x0, y0)| ≤ |ds(x, y)− ds(x0, y)|+ |ds(x0, y)− ds(x0, y0)| ≤ s(ds(x, x0) + ds(y, y0)).

Taking x = xn, y = yn, x0 = lim
n→∞

xn, y0 = lim
n→∞

yn we obtain the convergence of

ds(xn, yn) to ds(x0, y0).

Remark 9. Distance ds of a general b-metric space need not be continuous. However, if ds is
continuous, balls B(x, r) = {y ∈ X : ds(y, x) < r}, where r > 0, are open sets and B(x, r) =
{y ∈ X : ds(y, x) ≤ r} are closed sets (see [14], Proposition 3.5).

Theorem 5. Let (X, d) be a complete strong b-metric space, and Sn, Tn(n = 1, 2, . . . ) be conver-
gent and mutually Reich contractive with convergent constants an, bn, cn such that lim

n→∞
an +

lim
n→∞

bn + lim
n→∞

cn < 1, supn an < 1, supn bn < s−1 and supn cn < s−1. Let zn be the

common fixed point of Sn, Tn. Suppose that mappings S, T : X → X are defined as S(x) =
lim

n→∞
Sn(x), T(x) = lim

n→∞
Tn(x) for any x ∈ X,; then S, T are mutually Reich contractive and

z = lim
n→∞

zn is the common unique fixed point of S, T.

Proof. Since ds is a continuous function, and S, T are the limit functions of Sn, Tn, it im-
mediately follows that S, T satisfy the mutual Reich condition and hence have a unique
common fixed point, z ∈ X.

Now,

ds(zn, z) = ds(Sn(zn), T(z)) ≤ ds(Sn(zn), Tn(z)) + sds(Tn(z), T(z))

≤ ands(zn, z) + bnds(Sn(zn), zn) + cnds(Tn(z), z) + sds(Tn(z), T(z))

= ands(zn, z) + (cn + s)ds(Tn(z), z).

Then,

ds(zn, z) ≤ s + cn

1− an
ds(Tn(z), z). (6)

Hence, z is the limit of the sequence zn.

Remark 10. An analogous expression of (6) can be found for the sequence Sn. The rate of conver-
gence of sequence zn to z depends on those of Tn(z), Sn(z) to z.

Remarks 1 and 2 show that operators with mutual relation of the Reich type do not
need to be contractive. Our next objective is to find a relation between contractivity and
mutual Reich contractivity for linear operators.
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Proposition 2. Let X be a Banach space and T1, T2 : X → X be linear and mutually Reich
contractive with constants a, b, c such that b ≤ c. Then T1 is bounded, contractive,

‖T1‖ ≤
a + b
1− b

< 1

and Id− T1 is invertible. If c ≤ b then T2 is bounded, contractive,

‖T2‖ ≤
a + c
1− c

< 1

and Id− T2 is invertible.

Proof. Using Definition 1 for x ∈ X and y = 0, and the condition b ≤ c, we have

‖T1x‖ ≤ a‖x‖+ b‖T1x− x|| ≤ (a + b)‖x‖+ b‖T1x‖.

Thus, obtaining

‖T1‖ ≤
a + b
1− b

< 1.

Therefore, T1 is contractive and Id − T1 is invertible. Similarly, if c ≤ b then T2 is
contractive,

‖T2‖ ≤
a + c
1− c

< 1

and Id− T2 is invertible.

Proposition 3. Let X be a normed space and T : X → X be linear and mutually Reich contractive
with the null operator with constants a, b, c such that b ≤ c. Then, T is contractive. If T is linear
and contractive, then T is mutually Reich contractive with the null operator.

Proof. If T is mutually Reich contractive with the null operator, for any x ∈ X,

‖Tx‖ ≤ a||x||+ b‖x− Tx‖+ c‖y‖.

Taking y = 0,
‖Tx‖ ≤ (a + b)||x||+ b‖Tx‖

and

‖Tx‖ ≤ (a + b)
(1− b)

||x||.

With the conditions on the constants, ||T|| < 1 and T is contractive.
For the second statement, let T be contractive with ratio α. Then, for any x ∈ X,

‖Tx‖ ≤ α||x|| ≤ α||x||+ b‖x− Tx‖+ c‖y‖.

Taking b, c ≥ 0 such that b + c < 1− α, we obtain the mutual Reich condition for T
and the null operator.

Let X, Y be Banach spaces and let us denote the set of all bounded invertible linear
operators as L(X, Y). If X = Y, the space is denoted as L(X).

Lemma 3 ([16]). Let T : X → X be a linear operator. If there exist constants k1, k2 ∈ [0, 1) such
that ‖Tx− x‖ ≤ k1‖x‖+ k2‖Tx‖, then T ∈ L(X) and

1− k1

1 + k2
‖x‖ ≤ ‖Tx‖ ≤ 1 + k1

1− k2
‖x‖,
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1− k2

1 + k1
‖x‖ ≤ ‖T−1x‖ ≤ 1 + k2

1− k1
‖x‖,

for x ∈ X.

Proposition 4. Let X be a Banach space and T1 : X → X be linear and mutually Reich contractive
with T2 ∈ L(X) such that ||I − T−1

2 || < 1. Then, T1 is bounded, invertible and

1− (a + b + c)
1 + b

‖x‖ ≤ ‖T1x‖ ≤ 1 + (a + b + c)
1− b

‖x‖, (7)

1− b
1 + (a + b + c)

‖x‖ ≤ ‖T−1
1 x‖ ≤ 1 + b

1− (a + b + c)
‖x‖. (8)

Proof. Let us consider y = T−1
2 x in Equation (3), then

‖T1x− x‖ = ‖T1x− T2y‖ ≤ a||x− y||+ b‖x− T1x‖+ c‖y− T2y‖.

‖T1x− x‖ ≤ a||x− T−1
2 x||+ b‖x− T1x‖+ c‖x− T−1

2 x‖.
Since ||I − T−1

2 || < 1,

‖T1x− x‖ ≤ (a + c)||x||+ b‖x‖+ b‖T1x‖

and
‖T1x− x‖ ≤ (a + b + c)||x||+ b‖T1x‖.

Thus, as per Lemma 3, we have k1 = a + b + c < 1, k2 = b < 1. Consequently
T1 ∈ L(X), and Inequalities (7) and (8) hold.

Proposition 5. Let X be a Banach space, and T1 : X → X be linear and mutually Reich contractive
with T2 ∈ L(X) such that ||T−1

2 x|| ≤ ||T1x|| for any x ∈ X. Then, T1 is bounded, invertible, and

1− (a + b + c)
1 + (a + b + c)

‖x‖ ≤ ‖T1x‖ ≤ 1 + (a + b + c)
1− (a + b + c)

‖x‖, (9)

1− (a + b + c)
1 + (a + b + c)

‖x‖ ≤ ‖T−1
1 x‖ ≤ 1 + (a + b + c)

1− (a + b + c)
‖x‖. (10)

Proof. Let us consider y = T−1
2 x in Equation (3), then

‖T1x− x‖ = ‖T1x− T2y‖ ≤ a||x− y||+ b‖x− T1x‖+ c‖y− T2y‖.

‖T1x− x‖ ≤ a||x− T−1
2 x||+ b‖x− T1x‖+ c‖x− T−1

2 x‖.
Since ||T−1

2 x|| ≤ ||T1x||,

‖T1x− x‖ ≤ (a + b + c)||x||+ (a + b + c)‖T1x‖.

Thus, as per Lemma 3, we have k1 = a + b + c < 1, k2 = a + b + c < 1. Consequently
T1 ∈ L(X) and the stated inequalities hold.

4. Systems of Mutually Functional Contractive Operators

In this section, we define a mutual functional contraction and find the existence
of common fixed point for systems of operators with mutual relations of functional Ba-
nach contractivity.
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Definition 13. Operators T, S : X → X, where X is a strong b-metric space are mutually
functional contractive if there exists α : X× X → R+ such that 0 < α(x, y) < 1 and for x, y ∈ X,
x 6= y,

ds(T(x), S(y)) ≤ α(x, y)ds(x, y). (11)

The map α(x, y) is the functional factor of the mutual contraction.

Case α(x, y) = r for any x, y ∈ X, where 0 < r < 1, was treated in [8] for the
usual metric spaces. The following results generalize the given propositions for mutually
functional contractive operators on strong b-metric spaces.

Let F be a set of self-maps on a strong b-metric space X:

F = {Ti : X → X; i ∈ I},

where I may have any cardinality (finite or infinite). As before, x∗ is a fixed point of F if
Ti(x∗) = x∗, for any Ti ∈ F .

In the following results, we provide the conditions for the existence of a common fixed
point of a family of operators with relations of mutual functional contraction.

Theorem 6. Let X be a complete strong b-metric space, and F be a set of self-maps F = {Ti :
X → X, i ∈ I}. If there exists Ti0 ∈ F such that ∀i ∈ I , Ti0 and Ti are mutually functional
contractive with factor αi(x, y) such that a := sup{αi(x, y) : x, y ∈ X, i ∈ I} < s−1/3, then

1. Ti is contractive ∀i ∈ I .
2. F has a unique fixed point.

Proof. Since Ti0 is contractive, according to Corollary 2, it has a unique fixed point x̄. For
i 6= i0, if x 6= y, using Lemma 1,

ds(Ti(x), Ti(y)) ≤ s(ds(Ti(x), Ti0(y)) + ds(Ti0(y), Ti0(x)) + ds(Ti0(x), Ti(y))) ≤ 3asds(x, y).

Consequently Ti is also contractive. Let x̄i be its fixed point. If x̄ 6= x̄i then

ds(x̄, x̄i) = ds(Ti0(x̄), Ti(x̄i)) ≤ ads(x̄, x̄i).

Since a < 1 agree.

Theorem 7. Let X be a complete strong BMS and F a set of self-maps F = {Ti : X → X, i ∈ I}.
Let Ti0 ∈ F be such that, ∀i ∈ I , Ti0 and Ti be mutually functional contractive with factor αi(x, y)
and a := sup{αi(x, y) : x, y ∈ X, i ∈ I} be such that s−1/3 ≤ a < 1. Let us assume that
there exists y ∈ X such that the sequence yn := (Ti0)

n(y), y0 := y, tends to x̄ and satisfies the
inequalities yn 6= x̄, for all n > n0, where n0 is a natural number such that n0 ≥ 1, and x̄ is the
fixed point of Ti0 . Then

1. F has a unique fixed point x̄ ∈ X.
2. x̄ is the only fixed point of every Ti ∈ F .

Proof. Since Ti0 is a contraction and X is a complete strong BMS, according to Corollary 2,
there exists x̄ ∈ X such that x̄ is the fixed point of Ti0 . Given y ∈ X such that the sequence
yn = (Ti0)

n(y), y0 = y, satisfies the conditions described in the statement, let us consider
for i 6= i0 and n > n0. Then

ds(x̄, Ti(x̄)) ≤ ds(x̄, yn) + sd(yn, Ti(x̄)) ≤ ds(x̄, yn) + sds(Ti0(yn−1), Ti(x̄))

and
ds(x̄, Ti(x̄)) ≤ ds(x̄, yn) + as ds(yn−1, x̄).
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Since both summands on the right hand tend to zero, x̄ = Ti(x̄) and x̄ is a fixed point
of Ti, ∀i ∈ I . Ti0 has a unique fixed point and consequently F has only the fixed point x̄.

For i 6= i0, if x̄i is another fixed point of Ti and x̄i 6= x̄, then

ds(x̄i, x̄) = ds(Ti(x̄i), Ti0(x̄)) ≤ a ds(x̄i, x̄),

where a < 1. Hence x̄i = x̄, and Ti has only a fixed point (equal to x̄).

Theorem 8. Let X be a complete strong b-metric space and F = {Ti : X → X; i ∈ I} satisfying
the conditions of Theorems 6 or 7. Let us define ∀ x ∈ X the sequence x0 = x, and for k ≥ 1

xk = Tik (xk−1),

where Tik ∈ F . Let x̄ be the fixed point of F . Then

1. For any x ∈ X
lim

n→∞
τn(x) = lim

n→∞
Tin ◦ Tin−1 ◦ · · · ◦ Ti1(x) = x̄.

2. x̄ is globally asymptotically stable.

Proof. Let us consider any x ∈ X and define the sequence xn = τn(x) = Tin ◦ Tin−1 ◦ · · · ◦
Ti1(x), x0 = x. If xn 6= x̄ ∀n ≥ 0, then

ds(xn, x̄) = ds(Tin(xn−1), Ti0(x̄)) ≤ ads(xn−1, x̄) ≤ . . . ands(x0, x̄). (12)

If there exists m > 0 such that xm = x̄, then xm+1 = Tim+1(xm) = xm = x̄ and so
on. In any case, ds(xn, x̄) ≤ and(x0, x̄). Consequently, lim

n→∞
τn(x) = x̄, and therefrom the

attraction.
For any ε > 0, if ds(x, x̄) < δ, then via (12) ds(τn(x), x̄) ≤ an ds(x, x̄) < an δ < δ.

Selection δ = ε satisfies the definition of stability. Hence, x̄ is asymptotically stable.

Proposition 6. In the hypotheses of Theorems 6 or 7, any ball B(x̄, r), where x̄ is the fixed point of
F and r > 0, is an invariant set of F .

Proof. Let x̄ be the fixed point of F . If x ∈ B(x̄, r) and x 6= x̄,

ds(Ti(x), x̄) = ds(Ti(x), Ti0(x̄)) ≤ a ds(x, x̄) < a r < r.

Thus, Ti(x) ∈ B(x̄, r) ∀ i ∈ I .
If x = x̄, Ti(x) = Ti(x̄) = x̄ ∈ B(x̄, r).

Theorem 9. Let (X, ds) be a complete strong b-metric space and Sn, Tn (n = 1, 2, . . . ) be mutual
functional contractions with functional factors αn(x, y) such that a := sup{αn(x, y) : x, y ∈
X, n ∈ N} < s−1/3. If Tn is contractive with factor βn(x, y) such that b := sup{βn(x, y) :
x, y ∈ X, n ∈ N} < s−1/3, according to Theorem 6, Sn, Tn have a common fixed point zn.
Suppose Sn, Tn are convergent to the mappings S, T respectively. Then, S, T are mutually functional
contractive, the sequence zn is convergent and z = lim

n→∞
zn is the unique common fixed point of

S, T.

Proof. Via the continuity of ds, S, T satisfy Definition 13, and T is contractive; hence, they
have a unique common fixed point z.
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Now, if zn 6= z,

ds(zn, z) = ds(Sn(zn), T(z)) ≤ ds(Sn(zn), Tn(z)) + sds(Tn(z), T(z))

≤ ads(zn, z) + sds(Tn(z), T(z))

⇒ ds(zn, z) ≤ s
1− a

ds(Tn(z), T(z)).

If zn = z, then ds(zn, z) = 0 and the last inequality is also true. Since the right=hand
term tends to zero, z = lim

n→∞
zn.

Let us recall the concept of the quasinorm (see, for instance, [17]).

Definition 14. If B is a real linear space, mapping || · ||q : B× B→ R+ is a quasinorm of index s
if

1. ||x||q ≥ 0; x = 0 if and only if ||x||q = 0.
2. ||λx||q = |λ|||x||q.
3. There exists s ≥ 1, such that ||x + y||q ≤ s(||x||q + ||y||q) for any x, y ∈ B.

and space B is quasinormed.

Distance associated with a quasinorm ds(u, v) := ||u− v||q is a b-metric since:

||u− v||q = ||u− w + w− v||q ≤ s(||u− w||q + ||w− v||q) = s(ds(u, w) + ds(w, v)).

Proposition 7. Let X be a quasinormed space with quasinorm ‖ · ‖q and let us define the b-metric:

d(x, y) := ‖x− y‖q + ‖x‖q + ‖y‖q. (13)

Let L, L′ : X → X be two linear and bounded operators such that k := max{‖L −
L′‖q, ‖L‖q, ‖L′‖q} < 1/(s + 1). Then, L, L′ are mutually functional contractive with respect to
any functional factor α(x, y) such that (s + 1)k < α(x, y) < 1 for any x, y ∈ X, with respect to
the b-metric d.

Proof. Let us prove the relaxed triangular inequality for map d:

d(x, z) = ‖x− z‖q + ‖x‖q + ‖z‖q ≤ s‖x− y‖q + s‖y− z‖q + ‖x‖q + ‖z‖q,

where s is the index of the quasi-norm. The quantity on the right is lower than or equal to
s(d(x, y) + d(y, z)). Now, let us prove the property of being mutually contractive:

d(L(x), L′(y)) = ‖L(x)− L′(y)‖q + ‖L(x)‖q + ‖L′(y)‖q

≤ s‖L(x)− L′(x)‖q + s‖L′(x)− L′(y)‖q + ‖L(x)‖q + ‖L′(y)‖q,

and

d(L(x), L′(y)) ≤ s‖L− L′‖q‖x‖q + s‖L′‖q‖x− y‖q + ‖L‖q‖x‖q + ‖L′‖q‖y‖q.

This quantity is lower than or equal to

(s + 1)kd(x, y),

Thus,
d(L(x), L′(y)) ≤ α(x, y)d(x, y),

for any map α(x, y) with the described conditions.
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Example 10. Maps f (x) = (1/4)x and g(x) = (1/6)x are mutually contractive with respect
to metric d in R according to the previous proposition with functional factor α(x, y) such that
1/2 < α(x, y) < 1.

We now give an inverse of the previous result.

Proposition 8. Let X be a quasinormed space with quasinorm ‖ · ‖q and L, L′ : X → X be two
linear and bounded operators. If L, L′ are mutually functional contractive with functional factor
α(x, y) such that α(x, y) ≤ k < 1, where k := max{‖L− L′‖q, ‖L‖q} < (s + 1)−1. Then, L is
contractive with respect to the distance d defined in (13).

Proof. Applying the contractivity condition of L, L′ for x 6= y:

‖L(x)− L(y)‖q ≤ s‖L′(x)− L(y)‖q + s‖L(x)− L′(x)‖q

≤ (s + 1)k‖x− y‖q + s‖L− L′‖q‖x‖q.

Thus

d(L(x), L(y)) = ‖L(x)− L(y)‖q + ‖L(x)‖q + ‖L(y)‖q

≤ (s + 1)k‖x− y‖q + sk‖x‖q + k‖x‖q + k‖y‖q

≤ (s + 1)k(‖x− y‖q + ‖x‖q + ‖y‖q) = (s + 1)kd(x, y).

In particular, for linear operators, the following results were obtained.

Theorem 10. If X is a quasinormed space, F is a family of linear and bounded operators, and there
exists j0 ∈ I such that the constants ki := max{‖Li − Lj0‖q, ‖Li‖q, ‖Lj0‖q} satisfy the condition
(s + 1)k < 1, where k := sup ki, then Li, Lj0 are mutually functional contractive for any i ∈ I
with respect to distance d defined in (13) and

1. 0 is an equilibrium asymptotically stable for the system xk = Lik (xk−1) for k ≥ 1.
2. 1 does not belong to the point spectrum of Li for any i.

Proof. According to Proposition 7, Li, Lj0 are mutually contractive with respect to the
distance d. Set F has the fixed point zero. If some Li has another fixed point x̄i 6= 0 then,
following the proof of Proposition 7,

d(x̄i, 0) = d(Li(x̄i), Lj0(0)) ≤ (s + 1)kid(x̄i, 0).

Since (s + 1)k < 1, d(x̄i, 0) = 0, and Li has a single fixed point. Let us consider any
x ∈ X and define the sequence xn = τn(x) = Lin ◦ Lin−1 ◦ · · · ◦ Li1(x), x0 = x. Then, if
c = (s + 1)k,

ds(xn, 0) = ds(Lin(xn−1), Lj0(0)) ≤ cds(xn−1, 0) ≤ . . . ≤ cnds(x0, 0). (14)

The proof for stability is similar to that in Theorem 8.

5. A Problem of Convergence of Iterations of a Family of Convolution Operators on
Bochner Spaces

In this section, we apply the results of previous sections to the iterations of a system of
linear operators on Bochner spaces related to fractal convolution [10].

We consider a real Banach space A with norm || · ||, and remind the definitions of the
Bochner spaces of order p, Bp(I,A):
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Definition 15. Let the map u : I → A be strongly measurable, then u ∈ Bp(I,A), for 0 < p < ∞
if the function t ↪→ ||u(t)||p is Lebesgue integrable. In this case we define:

||u||p = (
∫

I
||u(t)||pdt)1/p.

The map u belongs to the class B∞(I,A), u ∈ B∞(I,A), if the function t ↪→ ||u(t)|| is
essentially bounded. Then

||u||∞ = esssupt∈I ||u(t)||.

If 1 ≤ p ≤ +∞, Bp(I,A) is a real Banach space with respect to the norm || · ||p.
For 0 < p < 1,

||u||p = (
∫

I
||u(t)||pdt)1/p

is a quasinorm with index s = 21/p−1. In both cases, Bochner spaces are complete b-
metric spaces.

We first introduce the formalism of a type of an iterated function system (IFS).
Let us define in E = I ×A, where A is a Banach space or algebra and I = [a, b] is a real

compact interval, an IFS {wn : n = 1, . . . , N} associated with a partition of the interval, a =
t0 < t1 < t2 < . . . tN = b, where N > 1, and a set of scale factors {αn, n = 1, . . . , N} such
that |αn| < 1 for all n. Let us denote In = [tn−1, tn), for i = 1, 2, N − 1 and IN = [tN−1, tn].

The IFS is composed of the mappings wn(t, x) = (hn(t), Fn(t, x)) where hn : I → In
are affine and such that hn(t0) = tn−1, hn(tN) = tn and Fn : I ×A→ A given by Fn(t, x) =
αn(x− b(t)) + v ◦ hn(t), for n = 1, . . . N, where v, b are Bochner integrable.

The described iterated function system has an associated operator, Tv,b : Bp(I,A)→
Bp(I,A) defined as:

Tv,bw = Fn(h−1
n (t), w ◦ h−1

n (t))

for t ∈ In. Then,
|Tv,b(w)− Tv,b(w′)|p ≤ a|w− w′|p,

where
a := sup{|αn| : n = 1, 2, . . . , N}.

If a < 1 the operator is a Banach contraction and it has a fixed point vα : I → A, whose
graph has a fractal structure [10].

vα can be seen as the result of an operation between v and b. This operation is the
fractal convolution of v and b. Thus

vα = v ∗ b.

Let us now consider the case 1 ≤ p ≤ +∞, and the space of linear and bounded
operators on the space of Bochner p-integrable mappings, L(Bp(I,A)). This set is a Banach
algebra, since Bp(I,A) is a Banach space. Let us denote as | · |p the operator norm with
respect to || · ||p.

For S, T linear and bounded operators on Bp(I,A), let us define the convolution
S ∗ T as

(S ∗ T)(u) = S(u) ∗ T(u),

for any u ∈ Bp(I,A). The next result is proved in [10].

Proposition 9. The convolution of operators satisfies the following properties:

• S ∗ S = S for any S ∈ L(Bp(I,A)).
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• S ∗ T ∈ L(Bp(I,A)) if S, T ∈ L(Bp(I,A)) and

|S ∗ T|p ≤
|S|p + a|T|p

1− a
. (15)

• For any S, T, S′, T′ ∈ L(Bp(I,A)),

|S ∗ T − S ∗ T′|p ≤
a

1− a
|T − T′|p, (16)

|S ∗ T − S′ ∗ T|p ≤
1

1− a
|S− S′|p.

The convolution of operators satisfies all the conditions required to be a metric convo-
lution in the metric space L(Bp(I,A)) as defined in [18] and the properties deduced for the
operation are applicable to it.

Let us consider for instance a family of operators defined by convolution: F = {S ∗ Ti :
i ∈ I}, where S, Ti are linear and bounded operators defined on Bp(I,A) as:

S f (t) = f (t) · u(t)

for some u ∈ B∞(I,A) (the dot represents the product in the algebra A), and

Ti f (t) = ci f (t),

where ci ∈ R+. S and Ti are linear and bounded:

||S f ||p = (
∫

I
|| f (t) · u(t)||pdt)1/p ≤ ||u||∞|| f ||p,

and clearly
||Ti f ||p = ci|| f ||p.

Let us define Li = S ∗ Ti, for i ∈ I . Inequality (16) implies that

|Li − Lj0 |p ≤
a

1− a
|Ti − Tj0 |p ≤

aK
1− a

,

where K = supi |ci − cj0 |. Moreover, bearing in mind (15),

|Li|p ≤
||u||∞ + aK′

1− a
,

where K′ = supi ci. According to Theorem 10, if

max
{

aK
1− a

,
||u||∞ + aK′

1− a

}
<

1
2

,

the null function is an equilibrium asymptotically stable for the system fk = Lik ( fk−1) for
k ≥ 1, f0 = f .

Let us illustrate the procedure in a real case. Let us consider the interval
I = [0, 2π], and a partition of N = 10 subintervals, the maps hn are affine satisfying
the join-up conditions prescribed. Let the scale vector associated with the partition
α = (0.3,−0.2, 0.3,−0.2, 0.1,−0.2, 0.3, 0.1, 0.2,−0.2). Let us define the operators S f (t) =
f (t) · u(t), where u(t) = cos(t)/6, and the self-maps Ti( f ) = ci f where c1 = 1/2, c2 = 1/3
and c3 = 1/4. The family of convolved operators {Li := S ∗ Ti; i ∈ {1, 2, 3}} satisfies
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the conditions described, being |S|p ≤ ||u||∞ = 1/6, a = 0.3, K = 1/4 and K′ = 1/2.
Consequently, by applying Theorem 10, any Picard iteration

fn = Lin ◦ Lin−1 ◦ Li1( f )

tends asymptotically to zero for f ∈ Lp(I).
Figure 1 represents the graph of function f (t) = exp(−t/2) sin(5t) (zero-th iteration).
Figure 2 represents the outcome of the action of the first iteration on the map f taking

i1 = 1 (L1 f = (S ∗ T1) f ).
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Theorem 58. If X is a quasi-normed space, F is a family of linear and bounded operators and there 346

exists j0 ∈ I such that the constants ki := max{‖Li − Lj0‖q, ‖Li‖q, ‖Lj0‖q} satisfy the condition 347

(s + 1)k < 1, where k := sup ki, then Li, Lj0 are mutually functional contractive for any i ∈ I 348

with respect to the distance d defined in (13) and 349

1. 0 is an equilibrium asymptotically stable for the system xk = Lik (xk−1) for k ≥ 1. 350

2. 1 does not belong to the point spectrum of Li for any i. 351

Proof. According to Proposition 55, Li, Lj0 are mutually contractive with respect to the 352

distance d. The set F owns the fixed point zero. If some Li has another fixed point x̄i 6= 0 353

then, following the proof of Proposition 55, 354

d(x̄i, 0) = d(Li(x̄i), Lj0(0)) ≤ (s + 1)kid(x̄i, 0).

Since (s + 1)k < 1, d(x̄i, 0) = 0, and Li owns a single fixed point. Let us consider any x ∈ X 355

and define the sequence xn = τn(x) = Lin ◦ Lin−1 ◦ · · · ◦ Li1(x), x0 = x. Then, if c = (s + 1)k, 356

357

ds(xn, 0) = ds(Lin(xn−1), Lj0(0)) ≤ cds(xn−1, 0) ≤ . . . ≤ cnds(x0, 0). (14)

The proof for stability is similar to Theorem 51. 358

0 1 2 3 4 5 6

-0.5

0.0

0.5

Figure 1. Graph of the function f (t) = exp(−t/2) sin(5t) (zero-th iteration, Section 5).

5. A problem of convergence of iterations of a family of convolution operators on 359

Bochner spaces 360

In this section we apply the results of previous sections to the iterations of a system of 361

linear operators on Bochner spaces related to fractal convolution [10]. 362

We consider a real Banach space A with norm || · ||, and remind the definitions of the 363

Bochner spaces of order p, Bp(I,A): 364

Definition 59. Let the map u : I → A be strongly measurable, then u ∈ Bp(I,A), for 365

0 < p < ∞ if the function t ↪→ ||u(t)||p is Lebesgue integrable. In this case we define: 366

||u||p = (
∫

I
||u(t)||pdt)1/p.

The map u belongs to the class B∞(I,A), u ∈ B∞(I,A), if the function t ↪→ ||u(t)|| is 367

essentially bounded. Then 368

||u||∞ = esssupt∈I ||u(t)||.

Figure 1. Graph of function f (t) = exp(−t/2) sin(5t) (zero-th iteration).
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Figure 2. Graph of the first iteration of the function f (t) = exp(−t/2) sin(5t) by the operator
L1 = S ∗ T1 in the interval I = [0, 2π] (Section 5).

If 1 ≤ p ≤ +∞, Bp(I,A) is a real Banach space with respect to the norm || · ||p. 369

For 0 < p < 1, 370

||u||p = (
∫

I
||u(t)||pdt)1/p

is a quasi-norm with index s = 21/p−1. In both cases, Bochner spaces are complete b-metric 371

spaces. 372

373

We introduce first the formalism of a type of Iterated Function System (IFS). 374

375

Let us define in E = I × A, where A is a Banach space or algebra and I = [a, b] 376

is a real compact interval, an IFS {wn : n = 1, . . . , N} associated with a partition of 377

the interval, a = t0 < t1 < t2 < . . . tN = b, where N > 1, and a set of scale fac- 378

tors {αn, n = 1, . . . , N} such that |αn| < 1 for all n. Let us denote In = [tn−1, tn), for 379

i = 1, 2, N − 1 and IN = [tN−1, tn]. 380

381

The IFS is composed of the mappings wn(t, x) = (hn(t), Fn(t, x)) where hn : I → In 382

are affine and such that hn(t0) = tn−1, hn(tN) = tn and Fn : I × A → A given by 383

Fn(t, x) = αn(x− b(t)) + v ◦ hn(t), for n = 1, . . . N, where v, b are Bochner integrable. 384

385

The Iterated Function System described has an associated operator Tv,b : Bp(I,A)→
Bp(I,A) defined as:

Tv,bw = Fn(h−1
n (t), w ◦ h−1

n (t))

for t ∈ In. Then 386

|Tv,b(w)− Tv,b(w′)|p ≤ a|w− w′|p,

where 387

a := sup{|αn| : n = 1, 2, . . . , N}.
If a < 1 the operator is a Banach contraction and it has a fixed point vα : I → A, whose 388

graph has a fractal structure [10]. 389

Also, vα can be seen as the result of an operation between v and b. This operation has 390

been called fractal convolution of v and b. Thus 391

vα = v ∗ b.

Figure 2. Graph of the first iteration of the function f (t) = exp(−t/2) sin(5t) by the operator
L1 = S ∗ T1 in the interval I = [0, 2π].

6. Conclusions

In this paper, we introduced the concept of mutual Reich contraction between opera-
tors T1 and T2 defined on a strong b-metric space (X, ds) (that generalizes the structure of
metric space). Mutual Reich contractivity extends the concept of Reich contraction on a
metric space to a pair of self-maps. When T1 = T2, we obtained the classical Reich maps.

We provided sufficient conditions for the existence of a common fixed point for T1 and
T2 when they are mutually Reich contractive. This result was then considered in a set F of
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operators of any cardinality (finite or infinite). We also studied the convergence of iterative
schemes of the type

xk = Tik (xk−1),

where xk ∈ X and Tik ∈ F . Under some conditions, the common fixed point of F is a global
attractor for this kind of systems.

Further results established some relations between classical (Banach) contractivity and
mutual Reich contractions in the case where X was a normed space and T1, T2 were linear.

We also introduced the new concept of mutual functional contractivity for two opera-
tors, and provided results similar to the Reich case. For quasinormed spaces, we also set
some relations between mutual functional contractivity and single classical contractions,
in the case of linear operators. In the last section we study the latter case for convolution
operators, defined in ([10]), acting on Bochner spaces Bp(I,A) of integrable curves in a
Banach space or algebra A.
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