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Abstract: Intervals of low-quality photoplethysmogram (PPG) signals might lead to significant
inaccuracies in estimation of pulse arrival time (PAT) during polysomnography (PSG) studies. While
PSG is considered to be a “gold standard” test for diagnosing obstructive sleep apnea (OSA), it also
enables tracking apnea-related nocturnal blood pressure fluctuations correlated with PAT. Since the
electrocardiogram (ECG) is recorded synchronously with the PPG during PSG, it makes sense to use
the ECG signal for PPG signal-quality assessment. (1) Objective: to develop a PPG signal-quality
assessment algorithm for robust PAT estimation, and investigate the influence of signal quality on
PAT during various sleep stages and events such as OSA. (2) Approach: the proposed algorithm
uses R and T waves from the ECG to determine approximate locations of PPG pulse onsets. The
MESA database of 2055 PSG recordings was used for this study. (3) Results: the proportions of
high-quality PPG were significantly lower in apnea-related oxygen desaturation (matched-pairs
rc = 0.88 and rc = 0.97, compared to OSA and hypopnea, respectively, when p < 0.001) and arousal
(rc = 0.93 and rc = 0.98, when p < 0.001) than in apnea events. The significantly large effect size of
interquartile ranges of PAT distributions was between low- and high-quality PPG (p < 0.001, rc = 0.98),
and regular and irregular pulse waves (p < 0.001, rc = 0.74), whereas a lower quality of the PPG signal
was found to be associated with a higher interquartile range of PAT across all subjects. Suggested
PPG signal quality-based PAT evaluation reduced deviations (e.g., rc = 0.97, rc = 0.97, rc = 0.99
in hypopnea, oxygen desaturation, and arousal stages, respectively, when p < 0.001) and allowed
obtaining statistically larger differences between different sleep stages and events. (4) Significance:
the implemented algorithm has the potential to increase the robustness of PAT estimation in PSG
studies related to nocturnal blood pressure monitoring.

Keywords: electrocardiogram; R wave; T wave; photoplethysmogram; pulse onset; PAT; SpO2;
polysomnography; obstructive sleep apnea; hypopnea; irregular heart rhythm

1. Introduction

Photoplethysmography (PPG) is a non-invasive technology that enables tracking
changes of human blood volume in peripheral blood vessels in order to assess hemody-
namic activity. In clinical practice, PPG is commonly used in pulse oximeters to estimate
arterial blood oxygen saturation (SpO2) [1–4]. Variations in SpO2 are often observed during
full night polysomnography (PSG) studies [5–8]. The PSG test is considered the “gold
standard” for diagnosing obstructive sleep apnea (OSA) and other sleep-related breathing
disorders [9]. During PSG, many different biosignals are recorded to extract clinically
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relevant information on sleep apnea. For instance, fluctuations in blood pressure can be
tracked [10–13], as these are known to be associated with OSA [12,14–17]. Furthermore,
nocturnal blood pressure can be an independent predictor of cardiovascular events [18]
providing useful information on cardiac activity. For long-term monitoring purposes,
a commonly applied method to indirectly estimate blood pressure response involves the
extraction of pulse arrival time (PAT) [11–13,19]. PAT is defined as the time delay from the
R wave peak of the electrocardiogram (ECG) to the fiducial point of the PPG pulse wave-
form [13]. One of the technological solutions that uses the combined analysis of ECG and
PPG signals for cuffless blood pressure assessment is the SOMNOtouch NIBP device [20,21].
However, in study [22] it demonstrated poor agreement with a validated oscillometric
device during 24-hour ambulatory blood pressure monitoring. Based on this, we assume
that these large deviations in PAT can appear in part due to the poor quality of the PPG
signal during different sleep stages and disturbances such as OSA. During pathological
sleep, PPG signals might be sensitive to motion artifacts, micro-arousals, OSA-related body
motions, or altered hemodynamics due to cardiac arrhythmia. Consequently, it is impor-
tant to exclude low-quality PPG segments from such analyses before extracting clinically
relevant information to ensure accurate diagnoses.

Many algorithms have been suggested to assess the quality of the PPG pulse wave-
form [23–29]. For instance, Elgendi [30] investigated eight methods to evaluate the quality
of the pulse waveform and found that the skewness of the signal is an optimal index
for this purpose. However, the estimation of higher-order statistics such as the skew-
ness requires a longer time window than other metrics. Thus, it is less suitable for the
analysis of short signals, e.g., a single-pulse waveform or during sleep events such as
OSA. In addition, the method should be fast as PSG signals are always long. Another
frequently applied method calculates a correlation coefficient between PPG pulse waves
and a template pulse wave [28,29]. In this case, the estimation of correlation between pulse
waveforms can require a resampling procedure for each PPG pulse [31], which is not very
computationally efficient.

Other PPG signal quality indexes take into account limits on physiological viability,
such as mean heart rate [28], maximum pulse-to-pulse interval [28], the ratio between max-
imum and minimum pulse-to-pulse intervals [28], instantaneous pulse-rate tracking [32],
or pulse-rise time duration [27]. However, these physiological features can vary widely
during cardiac arrhythmia, often seen in PSG signals [33–35]. Utilizing this type of tech-
nique may increase the probability that irregular rhythms (such as atrial fibrillation) could
result in PPG pulse waves being incorrectly classified as artifactual.

OSA has been found to be associated with the development of cardiovascular disease
and impaired cardiac function [33–38]. Therefore, it may be expected that periods of irregu-
lar rhythm will occur in PPG signals recorded from patients with OSA [39]. Consequently,
it is important that algorithms used to analyse PPG signals during PSG remain robust
during irregular heart rhythms.

This study aimed to develop a PPG signal-quality assessment algorithm for robust PAT
estimation, and investigate the influence of signal quality on PAT estimation during various
sleep stages and events. Since the ECG is recorded synchronously with the PPG during
PSG, the proposed algorithm uses information from the ECG signal for PPG signal-quality
assessment. Specifically, the proposed algorithm determines approximate locations of PPG
pulse waves onsets from the locations of R and T waves in the ECG.

The investigation of this study consists of the following stages: (i) PPG signal-quality
assessment in different sleep stages and events related to sleep-disordered breathing; (ii)
PAT estimation in high- and low-quality PPG segments and during regular and irreg-
ular rhythms; (iii) PAT estimation in different sleep stages and events related to sleep-
disordered breathing.
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2. Materials and Methods
2.1. Data

In this study, the Multi-Ethnic Study of Atherosclerosis (MESA) dataset [40,41] was
used to implement and investigate the PPG signal-quality assessment algorithm. The MESA
dataset contains data from 2055 patients aged 54–95 years old, totaling 16,300 h full
overnight annotated PSG signals. Recordings were performed at home using the Com-
pumedics Somte system. ECG and PPG signals with a sampling rate of 256 Hz were
analyzed. PPG signals were recorded from the finger using the Nonin 8000 sensor. Figure 1
shows examples of MESA multichannel physiological signals recorded during OSA and
hypopnea episodes.

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure 1. Examples of MESA multichannel physiological signals recorded during (a) OSA and
(b) hypopnea episodes: electroencephalogram (EEG), electrocardiogram (ECG), photoplethys-
mogram (PPG), arterial blood oxygen saturation (SpO2), nasal cannula flow, abdomen, and
thorax movements.

The quality of PPG signals was analyzed in following annotated categories of the
MESA dataset:

(1) sleep stages—NREM1, NREM2, NREM3, REM, and the wake stage;
(2) sleep-disordered breathing related events—OSA, hypopnea, SpO2 desaturations,

and arousal episodes.

2.2. ECG & PPG Pre-Processing

The ECG signal was filtered by a zero-phase forth-order Butterworth low-pass filter
with a cut-off frequency of 25 Hz to remove high-frequency interference. The baseline was
removed to facilitate detection of ECG waves as follows [42]. The baseline was calculated
by using a median filter with overlapping windows of 1 s duration and 0.5 s overlap. This
was interpolated and subtracted from the ECG signal.

The PPG signal was filtered by a zero-phase forth-order Butterworth band-pass filter
with a pass-band of 0.4–6 Hz.

2.3. PPG Signal-Quality Assessment

The implemented PPG signal-quality assessment algorithm for robust PAT estimation
(see Figure 2) has five stages: (i) identifying R and T waves in ECG signals; (ii) determining
the locations of PPG pulse onsets; (iii) assessing the variability in PPG pulse amplitudes; (iv)
identifying low-quality PPG pulse waves; and (v) robust PAT estimation. A pseudocode
of the implemented ECG-guided PPG signal-quality assessment algorithm is presented in
Algorithm 1.
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Figure 2. The block diagram of the PPG signal-quality assessment algorithm for robust PAT estimation.

Algorithm 1 ECG-Guided PPG Signal-Quality Assessment.

1: procedure IDENTIFYING R AND T WAVES IN ECG SIGNALS
2: ECG→ R waves→ R waves positions
3: R waves positions→ T waves positions
4: procedure DETERMINING THE LOCATIONS OF PPG PULSE ONSETS
5: PPG onsets = min(PPG(R waves positions : T waves positions))
6: PPG onsets→ PPG onsets positions
7: procedure ASSESSING THE VARIABILITY IN PPG PULSE AMPLITUDES
8: step 1: PPG Envelope Estimation
9: for i = 1 : length(PPG onsets positions) - 1 do

10: ePPG(i) = max(PPG(PPG onsets positions(i) : PPG onsets positions(i+1)))
11: end
12: step 2: Absolute Second Derivative of PPG Envelope Estimation
13: for i = 1 : length(ePPG) - 2 do
14: |e”PPG(i)| = |ePPG(i + 2)− 2 · ePPG(i + 1) + ePPG(i)|
15: end
16: step 3: Absolute Second Derivative of PPG Envelope Smoothing
17: order = 5
18: |e”PPG(i)|s = median filter(|e”PPG(i)|, order)
19: step 4: Absolute Second Derivative of PPG Envelope Offsetting
20: k-subtraction constant; N = length(|e”PPG|s)
21: |e”PPG|center = |e”PPG|s(round(0.25 · N) : round(0.75 · N))
22: |e”PPG(i)|o = |e”PPG(i)|s − k ·mean(|e”PPG|center)

23: procedure IDENTIFYING LOW-QUALITY PPG PULSE WAVES
24: thresholds: θ1 and θ2
25: if (|e”PPG|o < θ1) & (ePPG > θ2) then
26: SQI = 1 - High Quality
27: otherwise
28: SQI = 0 - Low Quality
29: end

2.3.1. Identifying R and T Waves in ECG Signals

The R-DECO algorithm [43–45] was used to detect R waves in ECG signals. Due to
its small number of operations and simplicity, the algorithm is particularly suitable for
processing long-term recordings, such as ECG signals registered during PSG. The R-DECO
algorithm has been found to perform well, with sensitivity of 99.6% and positive predictive
value of 99.7% [43] in the MIT/BIH arrhythmia database [46].

After detection of R waves, a low-complexity detection of T waves was performed
(see Figure 3). It was observed that this implemented approach works more accurately and
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efficiently on MESA ECG signals than other open-access algorithms to detect T waves [47,48].
To facilitate detection of the T wave, the smoothed ECG signal was obtained by additionally
filtering the prepossessed ECG. This was performed using a zero-phase 4th order Butter-
worth band-pass filter with a pass-band of 1–6 Hz. In the next step, the position of the T
peak was located in a search region of the smoothed ECG signal. It was assumed that the
approximate duration of the RS interval is equal to half of the maximum duration of the
QRS complex in the normal range, i.e., 0.12 s [49]. Therefore, to detect T waves as accurately
as possible, a search region was limited from the approximate position of the S peak till
the following R wave and defined as [Ri + 0.06 (s) : Ri+1]. This limitation in the smoothed
ECG helped us to avoid misattributions of T waves. Then the position of the first peak in a
search region was identified as the position of the T wave.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.5

0

0.5

1

Figure 3. A low-complexity detection of T waves from the ECG signal by using additional filtering.

2.3.2. Determining the Locations of PPG Pulse Onsets

The locations of PPG pulse onsets were determined as PPG minimum points between
ECG R and T waves. The pulse onset is caused by the heart starting to pump blood into
the vessels, whereas the ECG T wave reflects ventricular repolarization, and its location is
nearby with that of the PPG pulse onset [50,51].

2.3.3. Assessing the Variability in PPG Pulse Amplitudes

It might be complicated to exploit pulse intervals for assessing the quality of the PPG
signal characterized by an irregular pattern of cardiac activity. For instance, pulse intervals
vary greatly during arrhythmia, thus their use could result in PPG signals collected during
arrhythmia being falsely classified as low quality. The alternative proposed approach is to
use the finite differences of the PPG signal envelope.

First, the absolute second derivative of the PPG signal envelope, |e”PPG|, was cal-
culated as follows. The PPG signal envelope, ePPG, was defined as the maximum value
of the PPG signal in the delineated interval between each pair of adjacent pulse onsets
(see Algorithm 1 description for further details). Then, ePPG was absolutely differentiated
twice (i.e., the absolute second derivative |e”PPG| of the PPG signal envelope, ePPG) as
described below:

|e”PPG(i)| = |ePPG(i + 2)− 2 · ePPG(i + 1) + ePPG(i)|, (1)

where ePPG is the PPG signal envelope, |e”PPG| is the absolute second derivative of the
ePPG, and i is a beat index.

Second, |e”PPG| was processed for analysis. To do so, |e”PPG| was smoothed by using
a fifth-order median filter, and then |e”PPG|s was obtained. In addition, |e”PPG|s was offset
as follows. In most cases, the initial and final segments of PSG signals, especially signals
sensitive to motion artifacts such as PPG, were corrupted as subjects were often awake
at these times. Since the analysis of the PPG signal was off-line, in order to separate the
DC component of |e”PPG|s, the DC component was calculated as the mean value of a
central 50% of the signal. Only a central part of the signal was selected due to observed
PPG quality issues in the initial and final segments of PSG signals, thus allowing a more
robust assessment of the mean value of |e”PPG|s. |e”PPG|s was then offset by subtracting the
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estimated DC component from it k times, and then |e”PPG|o was calculated. The procedure
is described as follows:

|e”PPG(i)|o = |e”PPG(i)|s − 2 · k ·

≈ 0.75·N
∑

i≈ 0.25·N
|e”PPG(i)|s

N
, (2)

where k is the subtraction constant for offsetting, N is the length of the |e”PPG|s, and i is a
beat index.

2.3.4. Identifying Low-Quality PPG Pulse Waves

Two thresholds, θ1 and θ2, were used to identify low-quality pulses in PPG. The first
threshold θ1 was defined as the limit value of the |e”PPG|o. The second threshold θ2 was
defined as the limit value of the PPG signal envelope, ePPG. The segmentation of low-quality
pulse waves is described as follows:

SQI =

{
1, if (|e”PPG|o < θ1) & (ePPG > θ2)

0, otherwise,
(3)

where signal quality index SQI = 1 indicates that a PPG pulse wave was of high quality,
and SQI = 0 indicates low quality.

Figure 4 shows an example of the segmentation of low-quality PPG pulse waves.
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Figure 4. The segmentation of low-quality PPG pulse waves: (a) ECG signal with detected T
waves; (b) PPG signal with detected pulse onsets and estimated maximum values of the PPG
signal envelope, ePPG (black circles); (c) the second derivative of the PPG signal envelope after
offsetting, |e”PPG|o (shown in green) was calculated from the PPG signal envelope, ePPG (black
circles); (d) the identification of low-quality pulses according to thresholds θ1 and θ2 (red stars
indicate low- quality pulses).
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2.4. PAT Estimation

PAT was estimated as the time interval between the ECG R peak and the PPG systolic
peak. It was decided to use the PPG systolic peak for PAT estimation, rather than the
PPG pulse onset because it allowed us to obtain more noticeable dipping pattern of PAT
during apnea events. The PPG systolic peak was defined as the maximum value of the PPG
signal in the delineated interval between each pair of adjacent pulse onsets, which were
determined as described in Section 2.3.2. Figure 5 shows an example of PAT variations and
its relations with estimated PPG signal quality.

-0.5
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1.5

-4

-2

0
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0 2 4 6 8 10 12 14 16 18

0.2
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0.8

PAT
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Figure 5. The relationship between PPG signal quality and PAT: (a) ECG signal; (b) PPG signal with
labeled signal quality (SQI); (c) PAT variations estimated as time intervals between ECG R peaks and
PPG systolic peaks—PAT before post-processing, PATb, and PAT after post-processing, PATa.

2.5. PAT Post-Processing

PAT post-processing consisted of correcting low-quality intervals and interpolation of
PAT sequences (see Figure 2). PAT values corresponding to low-quality PPG pulse waves
were obtained as the mean of the M following PAT values as described below:

PATi =

∑i+M
j=i+1 PATj

M , if SQI = 0
PATi, otherwise,

(4)

where i is a beat index, and M is the order of averaging.
Additionally, obtained PAT sequences were processed by using a n-order median filter.
As PAT was estimated for each pulse-to-pulse interval and indexed by i, where i is

the order of the beat occurring at time t(i), modified Akima cubic Hermite interpolation
method [52] was used to obtain a PAT signal uniformly sampled in time with a sampling
rate of 5 Hz. Figure 5c shows PAT before post-processing, PATb, and after post-processing,
PATa, respectively.

2.6. PAT Changes during Sleep-Disordered Breathing

PAT changes during OSA episodes are illustrated in Figure 6. Additionally, variations
in SpO2 are provided for comparison. Based on SpO2 variability, we can see that after PPG
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quality-based post-processing the dipping pattern of PAT is distinguished more obviously.
More precisely estimated dipping pattern shows that PAT tended to decrease significantly
more after the OSA episode or at the end of the event than during it.
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Figure 6. An example of PAT variations during OSA episodes: (a) respiration flow signal with
labeled OSA episodes; (b) SpO2 variations; (c) PAT before post-processing, PATb; (d) PAT after
post-processing, PATa.

After post-processing obtained PAT estimates were compared with SpO2. The per-
centage change was calculated as the range of values, divided by the maximum value.
The changes during and 30 s after OSA and hypopnea episodes were assessed for PAT
and SpO2.

2.7. Irregular Rhythm Detection

Intervals of irregular rhythm were identified in order to investigate the signal quality
and PAT distributions during regular and irregular beat-to-beat intervals. To do so, a fast
and simple low-complexity algorithm for continuous long-term monitoring [53] was used
to detect irregular rhythms, based on sequences of RR intervals from ECG signals. This
detector has been found to perform well on the MIT–BIH database (sensitivity of 97.1%,
specificity of 98.3%) [53]. The detector consists of ectopic beat filtering, bigeminal suppres-
sion, characterization of RR interval irregularity, and signal fusion [53]. Thus, it is based on
the observation that atrial fibrillation episodes have increased RR irregularity and usually
are associated with increased heart rate. The algorithm was implemented with just a few
arithmetic operations per beat, using an 8-beat sliding window [53].

The last annotated segment of the wake stage at the end of PSG tests, during which a
subject was already fully awake, was not analyzed for irregular rhythm detection.
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2.8. Comparison of PPG Signal-Quality Assessment Algorithms

Our ECG-guided PPG signal-quality assessment algorithm was compared with the
template matching (TM) approach proposed by Orphanidou et al. [28]. The TM-based
approach searches for regularity in a segment which is an indicator of reliability, since a
segment contaminated by artefact would be irregular in morphology [28]. This algorithm
consists of [28]: (i) estimation of median beat-to-beat interval by using all the detected
PPG pulse peaks of each sample; (ii) extraction of individual PPG pulse waves by using a
window, the width of which is the median beat-to-beat interval, centered on each detected
PPG pulse peak; (iii) generation of the mean PPG pulse wave template by taking the mean
of all PPG pulse waves in the sample; (iv) estimation of the correlation coefficient of each
individual PPG pulse wave with the obtained average template; and (v) estimation of the
average correlation coefficient obtained by averaging all correlation coefficients over the
whole PPG sample. In this work, the TM-based algorithm uses a 10 s window in order to
assess the quality of the PPG.

2.9. Statistical Analysis

The quality of PPG signals was assessed by using two algorithms on the nine categories
of MESA data mentioned in Section 2.1: NREM1, NREM2, NREM3, REM, and wake stages;
OSA, hypopnea, SpO2 desaturation, and arousal episodes.

Additionally, the computational efficiency of both algorithms was assessed by mea-
suring the time taken to analyze the PPG signals (with approximate duration of 12 h).
The main parameters of the computer used for this purpose are provided as follows:
processor—AMD Ryzen Threadripper PRO 5995WX 64-Cores, 2.70 GHz, 64-bit operating
system, RAM—128 GB.

The Anderson–Darling test found no Gaussian distribution in the analyzed data.
The non-parametric paired Wilcoxon signed rank test was used to test for statistical dif-
ferences between: (i) proportions of high-quality PPG in different sleep stages and events
related to sleep-disordered breathing; (ii) interquartile ranges of PAT distributions in high-
and low-quality PPG segments/regular and irregular rhythms, and proportions of high-
quality PPG in them; (iii) interquartile ranges of PAT distributions in different sleep stages
and events related to sleep-disordered breathing; (iv) percentage changes of PAT and
SpO2 during and after apnea event. Additionally, the effect size was estimated by using
matched-pairs rank biserial correlation coefficient rc values [54]. For this purpose, median
values for each subject were obtained and compared. The effect size is considered small
when matched-pairs rc < 0.30, medium—rc ≥ 0.30, and large—rc ≥ 0.50 [55].

3. Results
3.1. Parameter Settings

In order to detect low-quality pulses in PPG, after |e”PPG|s offsetting, the first threshold
was defined as θ1 = 0, assuming that no amplitude disturbances in high-quality PPG exists.
The second threshold was defined with assumption as θ2 = 0.0005, the limit value of
the PPG signal envelope, ePPG, with which it is still possible to reliably investigate the
morphology of the PPG pulse waveform. The subtraction constant for |e”PPG|s offsetting
(see Equation (2)) was selected k = 3, allowing θ1 = 0 to be meaningful for distinguishing
low-quality PPG segments correctly in most cases.

The definition of the subtraction constant, k, is related to the threshold, θ1. The aim was
to subtract the mean value of the |e”PPG|s so many times that after this kind of offsetting the
values of the obtained |e”PPG|o in high-quality PPG intervals would be less than the first
threshold, θ1. By using grid search within the range k = 0.5 ÷ 5, the first such determined
value satisfying these conditions was k = 3.

The second threshold, θ2, was used to exclude low-quality PPG segments with dis-
torted morphology due to possible poor contact of the sensor with the skin. By investigating
four cases—θ2 = 0.05, 0.005, 0.0005, 0.00005, we found that θ2 = 0.0005 allows us to distin-
guish these distorted PPG segments from high-quality PPG intervals correctly.
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The orders of averaging and median filtering for PAT sequences were selected M = 5
and n = 15, respectively, which allowed us to significantly reduce deviations in PAT beat-to-
beat intervals of long-term signals.

The linear and non-linear averaging in PAT post-processing reduces outliers occurring
due to low PPG signal-quality pulses. The order of linear averaging, M, was selected with
the assumption that the PAT value corresponding to a low-quality PPG pulse should be
approximately similar to the PAT values of the adjacent five pulses with a high quality.
The order of non-linear filter was also selected empirically to n = 15 as it is a maximum
value still preserving the PAT dipping pattern correlated with desaturations during apnea
events without losing specific characteristics. We opted to use both linear and non-linear
filters for post-processing of PAT time series. Since the linear averager is suitable for
removing high frequency variations, while the median averager is suitable for removing
outliers with the preservation of steep slopes of PAT signals.

3.2. Signal Quality of PPG in Different Sleep Stages and Sleep-Disordered Breathing Events

The proportion of sleep time in the MESA data was 42.6± 13.5% awake and 57.3± 13.5%
asleep. The average number of events related to sleep-disordered breathing across all
subjects was: 22.7 ± 45.8 OSA, 192.4 ± 118.9 hypopnea, 331.3 ± 171.6 oxygen desaturation,
and 125.3 ± 96.3 arousal.

The proportions of high-quality PPG pulse waves across all subjects in each category
were obtained by using the ECG-guided algorithm: 80.9% whilst awake, 98.8% whilst
asleep (NREM1, NREM2, NREM3, and REM), 99.4% during apnea (OSA and hypopnea),
93.3% during oxygen desaturation, and 88.9% during arousal. This indicates that PPG
signals were mostly of higher quality during sleep and apnea episodes, but of lower
quality whilst awake and during oxygen desaturation and arousal events associated with
sleep-disordered breathing. Figure 7 shows examples of PPG signals in wake, oxygen
desaturation, and arousal segments, in which the proportions of high-quality PPG were the
lowest. Additionally, low-quality segments of PPG signals classified by ECG-guided and
TM-based algorithms were compared with each other. It might be observed that the ECG-
guided algorithm tends to detect large amplitude variations quite well and classify them
as poor quality, but in some cases it classifies segments with low amplitude disturbances
as high quality. Meanwhile, the TM-based algorithm often classifies PPG pulse waves of
high-quality as poor-quality intervals.
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Figure 7. Examples of PPG signals with labeled poor-quality segments obtained by ECG-guided and
TM-based algorithms: (a) wake, (b) oxygen desaturation, and (c) arousal.
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The proportions of PPG pulse waves classified as high quality by the ECG-guided
and the reference TM-based algorithms are shown for different sleep stages in Figure 8a,
and for different events in Figure 8b. For six out of the nine categories a large effect size
was obtained (p < 0.001). This means that the proportion of high-quality PPG in these
segments obtained by using the TM-based approach is much lower comparing it with the
ECG-guided algorithm.
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Figure 8. The proportion of PPG pulse waves classified as high quality by the two signal-quality as-
sessment algorithms with estimated matched-pairs rc values: ECG-guided and TM-based approaches.
Results are shown (a): whilst awake and for different sleep stages; (b) for different events related to
sleep-disordered breathing. p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and rc ≥ 0.30— ∗∗, p < 0.001
and rc ≥ 0.50— ∗∗∗.

The matched-pairs rc values of proportions of high-quality PPG between different sleep
stages and events related to sleep-disordered breathing are provided in Table 1 and Table 2,
respectively (p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and rc ≥ 0.30— ∗∗, p < 0.001 and
rc ≥ 0.50— ∗∗∗). Table 1 and Figure 8a show that the proportion of high-quality PPG was
significantly lower in the wake stage than in different sleep stages (p < 0.001, rc > 0.90).
According to Table 2 and Figure 8b, it can be seen that the proportions of high-quality PPG
were significantly lower in apnea-related oxygen desaturation (e.g, with the ECG-guided
algorithm obtained rc = 0.88 and rc = 0.97, compared to OSA and hypopnea, respectively,
when p < 0.001) and arousal (rc = 0.93 and rc = 0.98, when p < 0.001) than in apnea events.
As well as, the effect sizes were larger in most cases when the quality of PPG signals was
assessed by using the TM-based approach than the ECG-guided algorithm.

Table 1. The matched-pairs rc values of proportions of high-quality PPG between different sleep
stages obtained by using ECG-guided (orange background) and TM-based algorithms (green back-
ground). p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and rc ≥ 0.30—∗∗, p < 0.001 and rc ≥ 0.50—∗∗∗.

Matched-Pairs rc Wake NREM1 NREM2 NREM3 REM
Wake 0.99 ∗∗∗ 0.99 ∗∗∗ 0.96 ∗∗∗ 0.99 ∗∗∗

NREM1 0.99 ∗∗∗ 0.49 ∗∗ 0.58 ∗∗∗ 0.60 ∗∗∗

NREM2 0.99 ∗∗∗ 0.67 ∗∗∗ 0.45 ∗∗ 0.29 ∗

NREM3 0.99 ∗∗∗ 0.83 ∗∗∗ 0.72 ∗∗∗ 0.19 ∗

REM 0.99 ∗∗∗ 0.39 ∗∗ 0.17 ∗ 0.66 ∗∗∗
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Table 2. The matched-pairs rc values of proportions of high-quality PPG between sleep-disordered
breathing events obtained by using ECG-guided (orange background) and TM-based algorithms
(green background), where OSA—obstructive sleep apnea, HA—hypopnea, OxyDes —oxygen
desaturation, Ar—arousal events. p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and rc ≥ 0.30—∗∗,
p < 0.001 and rc ≥ 0.50—∗∗∗.

Matched-Pairs rc OSA HA OxyDes Ar
OSA 0.20 ∗ 0.88 ∗∗∗ 0.93 ∗∗∗

HA 0.32 ∗∗ 0.97 ∗∗∗ 0.98 ∗∗∗

OxyDes 0.72 ∗∗∗ 0.99 ∗∗∗ 0.62 ∗∗∗

Ar 0.87 ∗∗∗ 0.97 ∗∗∗ 0.61 ∗∗∗

In terms of computational efficiency, the ECG-guided algorithm took an average of
11.6 s, whereas the TM-based algorithm result was 90.1 s for quality assessment through
one signal. Therefore, the ECG-guided algorithm took approximately one eighth of the
time of the TM-based approach.

3.3. PAT in High & Low-Quality PPG and Regular & Irregular Rhythms

An example of PAT variations during regular and irregular rhythms is provided in
Figure 9. In addition, the PPG signal recorded during throughout PSG and signal quality
estimated by the ECG-guided algorithm are shown.
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Figure 9. An example of PAT variations during regular and irregular rhythms: (a) PPG signal;
(b) detected episodes of irregular rhythm (1—irregular rhythm, 0—regular rhythm); (c) PPG signal
quality estimated by the ECG-guided algorithm, SQI (SQI = 1—high-quality, SQI = 0—low-quality);
(d) PAT after post-processing, PATa.

Since we did not have reference PAT, the way to test the effect of the signal-quality
assessment is to study the variations in PAT estimates, assuming that low-quality PPG
pulse waveforms lead to outlier PAT values. Therefore, interquartile ranges of PAT were
analyzed in order to investigate the relationship between PPG signal quality and deviations
in PAT.
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Interquartile ranges of PAT distributions across all 2055 MESA subjects in high-
(SQI = 1) and low-quality (SQI = 0) PPG segments are provided in Figure 10a, in which it
can be seen that PPG signal quality caused deviations in PAT. For instance, interquartile
range of PAT was statistically higher (p < 0.001, rc = 0.98) in low- rather than high-quality
PPG segments.

The proportion of high-quality PPG during irregular rhythm was statistically lower
(p < 0.001, rc = 0.75) than during regular rhythm intervals (see Figure 10c), which also might
be related with a statistically higher (p < 0.001, rc = 0.74) interquartile range of PAT during
irregular rhythm pulse waves (see Figures 9 and 10b).
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Figure 10. The relationship between PPG signal quality and PAT with estimated matched-pairs rc

values. Interquartile range of PAT across all MESA subjects in: (a) high- (SQI = 1) and low-quality
(SQI = 0) PPG segments, and (b) regular and irregular rhythm PPG beat-to-beat intervals; (c) the
proportion of high-quality PPG during regular and irregular rhythm PPG pulse waves. p < 0.001 and
rc ≥ 0.50 is marked ∗∗∗.

3.4. PAT in Different Sleep Stages & Sleep-Disordered Breathing Events

An example of PAT variations in different sleep stages (wake, NREM1, NREM2,
NREM3, REM) and during sleep-disordered breathing events (OSA, hypopnea, oxygen
desaturation, and arousal) is provided in Figure 11. Additionally, the PPG signal and signal
quality estimated by the ECG-guided algorithm are shown.
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Figure 11. An example of PAT variations in different sleep stages: (a) PPG signal; (b) recorded
hypnogram during PSG; (c) PPG signal quality estimated by the ECG-guided algorithm, SQI (SQI = 1—
high-quality, SQI = 0—low-quality); (d) PAT after post-processing, PATa, with annotated obstructive
sleep apnea (OSA), hypopnea (HA), oxygen desaturation (OxyDes), and arousal (Ar) episodes.
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Interquartile ranges of PAT distributions in different sleep stages (wake, NREM1,
NREM2, NREM3, REM) and in different events related to sleep-disordered breathing (OSA
(obstructive sleep apnea), HA (hypopnea), OxyDes (SpO2 desaturation), and Ar (arousal
episodes)) are provided in Figure 12a and b, respectively.
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Figure 12. The interquartile range of PAT across all MESA subjects with estimated matched-pairs rc

values in: (a) different sleep stages; (b) different events related to sleep-disordered breathing. Results
are shown before and after PAT post-processing, PATb and PATa, respectively. p < 0.001 and rc ≥ 0.50
is marked ∗∗∗.

Comparing differences between distributions of different sleep stages (see Figure 12a)
and events related to sleep-disordered breathing (see Figure 12b), interquartile ranges
of PAT were the largest during wake (see Figure 11), oxygen desaturation, and arousal
events, in which the proportions of high-quality PPG were the lowest. However, after post-
processing and eliminating PAT measurements derived from low-quality PPG signals
deviations in PAT decreased, especially, in hypopnea, oxygen desaturation, and arousal
segments (rc = 0.97, rc = 0.97, rc = 0.99, respectively, when p < 0.001). The decrease in
deviations of PAT could be explained by the fact that a lower quality of the PPG signal
results in a higher variability of PAT estimates.

The matched-pairs rc values of interquartile ranges of PAT distributions between
different sleep stages and events related to sleep-disordered breathing are provided in
Table 3 and Table 4, respectively (p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and
rc ≥ 0.30—∗∗, p < 0.001 and rc ≥ 0.50—∗∗∗). According to Tables 3 and 4, it can be seen that
PAT post-processing allows to obtain larger differences between different distributions in
most cases. This is especially true during sleep stages, where PAT assessment might be
used as a supplementary tool for hypnogram evaluation.

Table 3. The matched-pairs rc values of interquartile ranges of PAT distributions between different
sleep stages after (blue background) and before post-processing (red background). p < 0.001 and
rc ≥ 0.30 is marked ∗∗, p < 0.001 and rc ≥ 0.50—∗∗∗.

Matched-Pairs rc Wake NREM1 NREM2 NREM3 REM
Wake 0.99 ∗∗∗ 0.99 ∗∗∗ 0.98 ∗∗∗ 0.65 ∗∗∗

NREM1 0.97 ∗∗∗ 0.38 ∗∗ 0.69 ∗∗∗ 0.87 ∗∗∗

NREM2 0.97 ∗∗∗ 0.49 ∗∗ 0.65 ∗∗∗ 0.96 ∗∗∗

NREM3 0.94 ∗∗∗ 0.54 ∗∗∗ 0.42 ∗∗ 0.95 ∗∗∗

REM 0.82 ∗∗∗ 0.56 ∗∗∗ 0.77 ∗∗∗ 0.77 ∗∗∗
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Table 4. The matched-pairs rc values of interquartile ranges of PAT distributions between different
events related to sleep-disordered breathing after (blue background) and before post-processing (red
background), where OSA—obstructive sleep apnea, HA—hypopnea, OxyDes—oxygen desaturation,
Ar—arousal events. p < 0.001 and rc < 0.30 is marked ∗, p < 0.001 and rc ≥ 0.30—∗∗, p < 0.001 and
rc ≥ 0.50—∗∗∗.

Matched-Pairs rc OSA HA OxyDes Ar
OSA 0.69 ∗∗∗ 0.34 ∗∗ 0.70 ∗∗∗

HA 0.50 ∗∗∗ 0.99 ∗∗∗ 0.29 ∗

OxyDes 0.45 ∗∗ 0.94 ∗∗∗ 0.97 ∗∗∗

Ar 0.61 ∗∗∗ 0.93 ∗∗∗ 0.30 ∗∗

The percentage changes of PAT during and 30 s after OSA and hypopnea episodes
across all subjects are provided in Figure 13. Additionally, the percentage changes of SpO2
are provided for comparison. The results show that the percentage change is significantly
higher after apnea rather than during apnea events. Statistically higher differences were
obtained when comparing the distributions related to hypopnea than OSA (rc—0.97 > 0.88;
0.99 > 0.78, in SpO2 and PAT, respectively, when p < 0.001). However, the percentage
changes of parameters were larger in value during and after OSA than hypopnea. For in-
stance, median percentage changes of PAT were 3.1% > 2.1%, during OSA and hypopnea,
respectively, and 4.4% > 3.2% after OSA and hypopnea, respectively. While median per-
centage changes of SpO2 were 3.1% > 1.1%, during OSA and hypopnea, respectively,
and 5.2% > 2.1% after OSA and hypopnea, respectively.
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Figure 13. The percentage changes of PAT and SpO2 during and 30 s after (a) OSA and (b) hypopnea
episodes across all subjects with estimated matched-pairs rc values. p < 0.001 and rc ≥ 0.50 is
marked ∗∗∗.

4. Discussion

This study aimed to develop a PPG signal-quality assessment algorithm for robust PAT
estimation, and investigate the influence of signal quality on PAT estimation during various
sleep stages and events. The algorithm consisted of: (i) identifying R and T waves in ECG
signals; (ii) determining the locations of PPG pulse onsets; (iii) assessing the variability
in PPG pulse amplitudes; (iv) identifying low-quality PPG pulse waves; and (v) robust
PAT estimation. The key findings were as follows. First, PPG signals were of mostly high
quality during sleep and apnea episodes, but of lower quality whilst awake and during
oxygen desaturation and arousal events. Second, a greater proportion of PPG signals were
deemed to be of high quality when using the new approach compared to the reference
algorithm. Third, a lower quality of the PPG signal was found to be significantly associated
with a higher interquartile range of PAT distribution, which shows that assessing signal
quality would lead to a more accurate PAT estimation. Fourth, PPG signal quality-based
PAT post-processing reduced PAT deviations during PSG studies. Fifth, PAT tended to
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change significantly more after the apnea episode than during it, and these changes often
correlate with SpO2.

Another study [56] also reveals that the highest quality of the PPG signal is observed
during sleep (93.1% of the time). This is consistent with the results of our study, which
showed that the majority of PPG signals during sleep were suitable for analysis. In addition,
a lower PPG signal quality was observed during sleep-disordered breathing events, such
as apnea-related oxygen desaturations and arousals, and during irregular rhythm episodes
potentially related to arrhythmia.

The interquartile range of PAT distribution across all subjects was the highest in those
segments in which the proportions of high-quality PPG were the lowest (see Figure 10a),
i.e., wake, oxygen desaturation, and arousal events (see Figure 12). Furthermore, interquar-
tile range of PAT during irregular rhythm was also higher than during regular rhythm
beat-to-beat intervals (see Figure 10b), which corresponds to a lower proportion of high-
quality signal during irregular rhythm PPG pulse waves (see Figure 10c).

The results (see Figure 12) also revealed that PPG signal quality-based PAT post-
processing reduced PAT deviations (see Tables 3 and 4). Thus, this study showed that
assessing PPG signal quality can lead to a more accurate PAT estimation. Consequently, it
is important to exclude low-quality PPG segments from PSG analyses before evaluating
nocturnal blood pressure response from PAT. Since the ECG signal is less susceptible
to artifacts, it makes sense to use the ECG for evaluation of PPG signal quality during
PSG. Therefore, such PPG signal quality-based PAT evaluation could enable to reduce
obtained deviations and be used to identify outliers of PSG-derived PAT. On the other hand,
the information on the higher interquartile range of PAT might be used to detect episodes
of insomnia and micro-arousals, or be a supplementary tool for hypnogram evaluation
during PSG.

In terms of PAT variability during apnea events, the percentage change analysis (see
Figure 13) showed that PAT tended to change significantly more after the apnea episode
with some time delay than during it. Considering that the quality of PPG signals can be
affected by arousals occurring after apnea episodes, quality analysis for PAT monitoring
becomes crucial. It is worth mentioning that PPG quality-based post-processing helped to
highlight the dipping pattern of PAT, which could provide a clinically useful aid for sleep
apnea monitoring during PSG studies.

The implemented ECG-guided algorithm was compared with the reference TM-based
approach [28] for PPG signal-quality assessment. In the obtained results (see Figure 8),
we might see a correlation between the distributions of different stages, but in some cases
(e.g., wake and arousal segments) the proportion of high-quality PPG obtained by using the
TM-based approach is much lower comparing it with the distributions of the ECG-guided
algorithm. This could be explained by the fact that the TM-based approach assesses the
quality of the PPG by using a 10-s window. Thus, even if only a few seconds are low quality,
all 10 s will be classified as low quality. Therefore, it might underestimate the amount of
high-quality data. Furthermore, it is important to note that the ECG-guided algorithm can
be tuned to be more or less restrictive by changing the subtraction constant k or thresholds
values, θ1 and θ2, respectively.

It is important to mention that the TM-based approach is based on the assumption
that in a high-quality PPG signal, all the pulse waves are similar in shape. However, this
is not always the case. For instance, during cardiac arrhythmia, the pulse waves differ in
duration and shape, even in a high-quality recording. These differences are caused by the
physiology rather than by poor quality signals. Therefore, perhaps the TM-based approach
is erroneously classifying PPG signals during irregular heart rhythms as low quality, when
they should be classified as high quality.

Regarding computational efficiency, the implemented ECG-guided algorithm requires
less computations than the reference algorithm, which is one of the advantages of our
proposed approach. Thus, it would be more suitable to analyze long-term PPG signals
rather than the TM-based approach.
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By assessing the quality of PPG signals during PSG, not only PAT could be precisely
estimated. For instance, PPG signals could be used to evaluate pulse rate, its variabil-
ity [57–59], and the morphological characteristics of pulse waves [60–62]. In this way,
the PPG signal could provide information on myocardial function, the cardiovascular
system and its components [2,57–59,63,64], blood perfusion [65], the balance of autonomic
nervous system [60,61,66], and respiratory activity [67,68].

The proposed algorithm has several limitations. The first limitation is the dependence
of the parameters k, θ1, θ2 of the algorithm on a specific equipment to record the PPG
signal. Different amplifications and filtering of the PPG signal require new settings for
the parameters k, θ1, and θ2. The algorithm could be modified to use normalized PPG
signals in the future. Another limitation is the assumption that the T wave in the ECG is
always present. However, in myocardial ischemia or injury, during electrolyte imbalances,
or due to the use of certain medications, the T wave could be flat. In this case, the algorithm
should be forced to switch to the mode of “No T wave detected” and relay only on PPG
signal-based fiducial point detection.

5. Conclusions

To our knowledge, the quality of PPG signals during sleep stages and sleep-disordered
breathing events has not previously been assessed. Our study revealed that PPG signals
are of high quality during sleep and apnea events, whereas they are of lower quality whilst
awake and during apnea-related oxygen desaturations and arousals. As well as, a lower
quality of the PPG signal was found to be significantly associated with a higher interquar-
tile range of PAT. Therefore, the implemented algorithm has a potential to increase the
robustness of PAT estimation in PSG studies related to nocturnal blood pressure monitoring.
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EMG Electromyogram

HA Hypopnea

OSA Obstructive sleep apnea

OxyDes SpO2 desaturation

PAT Pulse arrival time

PPG Photoplethysmography

PSG Polysomnography

SpO2 Arterial blood oxygen saturation

SQI Signal-quality index
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