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Ubiquitin and ubiquitin-like conjugation systems in
trypanosomatids
Rebecca J Burge1, Jeremy C Mottram1 and

Anthony J Wilkinson2

In eukaryotic cells, reversible attachment of ubiquitin and

ubiquitin-like modifiers (Ubls) to specific target proteins is

conducted by multicomponent systems whose collective

actions control protein fate and cell behaviour in precise but

complex ways. In trypanosomatids, attachment of ubiquitin and

Ubls to target proteins regulates the cell cycle, endocytosis,

protein sorting and degradation, autophagy and various

aspects of infection and stress responses. The extent of these

systems in trypanosomatids has been surveyed in recent

reports, while in Leishmania mexicana, essential roles have

been defined for many ubiquitin-system genes in deletion

mutagenesis and life-cycle phenotyping campaigns. The first

steps to elucidate the pathways of ubiquitin transfer among the

ubiquitination components and to define the acceptor

substrates and the downstream deubiquitinases are now being

taken.
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Introduction
Ubiquitin is a single-domain protein of 76 residues with a
β-grasp fold. Its sequence is highly conserved with just 2–4
residue differences between the ubiquitins of Trypanosoma

species and their mammalian hosts [1]. Its attachment to
target proteins is a widespread post-translational modifica-
tion controlling molecular fate and cellular processes.

Ubiquitination is mediated by tripartite enzyme systems
comprising ubiquitin-activating (E1), ubiquitin-con-
jugating (E2) and ubiquitin-ligation (E3) components
(Figure 1). Cellular homoeostasis is ensured by deubiqui-
tinases (DUBs), which return the ubiquitin to the cellular
pool (Figure 1). Ubiquitin can be attached in multiple
copies and in different linkages to target proteins, giving
rise to enormous complexity in what has been termed the
Ubiquitin Code [2]. For example, Lys48-linked ubiquiti-
nation is associated with proteasomal protein degradation,
while Lys-63-linked ubiquitination plays a role in protein
recruitment to sites of DNA damage. This complexity is
augmented by an array of structurally similar, but se-
quence-divergent, ubiquitin-like modifiers (Ubls), which
have cognate E1, E2 and E3 components and Ubl-specific
proteases. In trypanosomatids, hundreds of proteins are
predicted to be involved in the attachment and removal of
ubiquitin and Ubls [3]. Here, we review recent progress in
defining and functionally characterising the ubiquitination
systems of trypanosomatids to complement an excellent
review of the ubiquitination system as a drug target in
trypanosomatid diseases [4].

Ubiquitination and deubiquitination
components in trypanosomatids
A survey of ubiquitination-system genes in Leishmania

mexicana has been presented in recent papers [5–7]. These
analyses identified 2 ubiquitin-activating (E1), 13 ubi-
quitin-conjugating (E2) and 79 ubiquitin-ligating (E3) en-
zymes together with 20 family C12, C19 and C65 cysteine
protease deubiquitinases, 5 C97 PPPDE1-containing pro-
teins that may have deubiquitinase activity and 3 JAMM
(JAB1/MPN/MOV34) metallopeptidase DUBs. Deletion
mutagenesis was used to generate a set of 58 null mutant
parasites, each possessing a unique barcode for subsequent
life-cycle phenotyping experiments. Null mutants of the
E1, UBA1a, the E2s, UBC3, UBC7, UBC12 and UBC13,
and the DUBs, DUB1, DUB2, DUB12 and DUB16, were
not obtained, implying essential promastigote roles for
these factors [5,6]. Twenty-three null mutants were pooled
as procyclic promastigotes and grown to stationary phase
before differentiation was induced and the survival of the
parasites as axenic or intra-macrophage amastigotes, and in
mouse footpads, was determined [5,6].

Among the ubiquitination components, the Δubc2 and
Δuev1 mutants exhibited the most severe loss-of-fitness
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during differentiation [6]. Knockdown of the UBC2 or-
thologue in T. brucei using RNA-interference (RNAi)
also leads to a severe reduction in viability [8]. The
crystal structure of a complex of UBC2 and UEV1, a
ubiquitin E2 variant lacking the conserved cysteine re-
quired for catalytic activity, revealed a heterodimeric
structure and an interface that is conserved in human
and yeast orthologues. Ubiquitination assays showed
that in the presence of Leishmania UBA1a and the
human E3s RNF8 or BIRC2, UBC2 promoted the for-
mation of polyubiquitin chains on proteins present in the
assay. The inclusion of UEV1 restricted the products to
K63-linked ubiquitin dimers [6].

The life-cycle phenotyping assay emphasised the im-
portant role played by DUBs in L. mexicana with three of
the deubiquitinases required for transformation to
amastigotes and seven more required for proliferation in
mice [5]. These findings are consistent with the ex-
tensive protein turnover that accompanies the changes
in cell structure during differentiation. DUB2, which
was further characterised, exhibits broad linkage speci-
ficity in cleaving diubiquitin substrates [5]. This sug-
gests that a broad repertoire of ubiquitin linkages may be
formed in trypanosomatids, but so far, direct evidence is
lacking.

Ubiquitination in the cell cycle of
trypanosomatids
The levels of many cell-cycle regulators oscillate during
the eukaryotic cell cycle because of periodic ubiquiti-
nation and proteolysis. Two key multisubunit E3 com-
plexes important for cell-cycle progression are the
anaphase-promoting complex or cyclosome (APC/C) and
the SKP1–CULLIN1–F-box (SCF) complex. APC/C
controls chromosome segregation and exit from mitosis
by triggering ubiquitination and degradation of cell-
cycle regulators. Depletion of key components of the
APC/C leads to metaphase arrest in T. brucei procyclic
forms and anaphase arrest in bloodstream forms [9,10],
suggesting that mitosis is regulated in a stage-specific
manner. Depletion of another APC/C component, AP2,
results in mitotic arrest of procyclic forms and stabilisa-
tion of a potential substrate, the mitotic cyclin CycB2/
cyc6 [11]. Interestingly, deletion of only three of the 10
identified core APC/C components produces a pheno-
type, showing that the T. brucei APC/C has a smaller
group of core components than the corresponding com-
plex in S. cerevisiae. A further four non-core APC/C-as-
sociated proteins were later shown to play essential roles
in regulating cell-cycle progression [12]. All are anno-
tated as regulatory subunits of the proteasome, effec-
tively coupling the ubiquitination of cell-cycle regulators
in T. brucei to their proteolytic degradation [12].
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Meanwhile, depletion of components of a putative T.

brucei SCF complex revealed a conserved role for SKP1
in the G1/S transition, a possible role for RBX1 in ki-
netoplast DNA replication and a role for the E2 ubi-
quitin-conjugating enzyme CDC34 in cytokinesis [13].
CDC34 is essential for infection progression in mice,
consistent with the rapid growth arrest observed in cells
in which CDC34 is depleted. Interestingly, no pheno-
type was observed following depletion of CULLIN1,
suggesting redundancy in cullin function in T. brucei or
incomplete knockdown [13].

Roles for ubiquitin in trypanosomatid
endocytosis
In eukaryotes, ubiquitination plays an important role in
receptor endocytosis and the sorting of proteins through
the endosomal system [14]. In T. brucei, the glycosomal
matrix receptor PEX5 is ubiquitinated by the E2 ubi-
quitin-conjugating enzyme PEX4, which also localises to
the glycosome. This function of PEX4 is at least partially
redundant, however, since PEX5 remains ubiquitinated
in a Δpex4 background [15]. Furthermore, two ubiquitin-
associated (UBA) domains in Leishmania myosin XXI are
required for normal endocytic trafficking, although the
underlying mechanism is not known [16].

A high-throughput RNAi screen implicated genes en-
coding the DUBs, Usp7 and Vdu1 in the susceptibility of
T. brucei to suramin [17]. Usp7 regulates expression of the
invariant-surface glycoprotein ISG75, which is involved in
suramin uptake and sensitivity, and ubiquitination of its
cytoplasmic domain leads to its internalisation and de-
gradation [18,19]. Cycloheximide-chase experiments
showed that knockdown of Usp7 and Vdu1 destabilised
ISG75 by increasing the rate of its turnover, presumably
by blocking ISP75 deubiquitination [20]. It was proposed
that silencing of the DUBs diverts ISG proteins from the
endosome-recycling pathway into its degradative arm [20].
Aquaglyceroporin 2, which contributes to the sensitivity of
T. brucei to pentamidine and melarsoprol, is also directed
to the lysosomal-degradation pathway following its ubi-
quitination [21].

Ubiquitination and infection
During the acute phase of T. cruzi human infection, the
host E3 ubiquitin ligase GRAIL (gene related to anergy
in lymphocytes), a negative regulator of CD4 T-cell re-
sponsiveness, is upregulated. This is achieved through
disruption of the Akt–mTOR pathway, resulting in the
downregulation of otubain-1, a human DUB that nega-
tively regulates GRAIL function [22,23]. During later
stages of infection, GRAIL expression is downregulated
as otubain-1 expression is upregulated [23]. Elsewhere,
recombinant L. infantum otubain was reported to sti-
mulate lipid-droplet biogenesis and cytokine secretion
in macrophages [24]. While this hints at a role for this

DUB in the pro-inflammatory response of macrophages
during infection, secretion of the parasite otubain into
host cells is yet to be demonstrated.

A clearer example of parasite ubiquitination-system
components modifying host-cell targets is the SPRING
(secretory protein with a RING finger domain) E3 ligase
of T. cruzi [25]. Amastigotes secrete SPRING into host
cells where it becomes localised to the nucleus. A pos-
sible target is breast cancer-associated protein 3 (BCA3),
which coimmunoprecipitates with SPRING following
their coexpression in wheat germ lysates, and which is
ubiquitinated by SPRING in vitro [25].

A screen of a bloodstream-form T. brucei RNAi library
for sensitivity to recombinant apolipoprotein-L1
(apoL1), a component of the TLF1 and TLF2 trypa-
nolytic complexes found in human serum, identified
six putative ubiquitin-system components among 63
hits [26]. These included two RING E3 ligases
(Tb927.10.12940 and Tb927.11.4860), an E2 ubiquitin-
conjugating enzyme (Tb927.9.8000), two DUBs
(Tb.927.9.5520 and Tb.927.9.14470) and a p97/cdc48
cofactor (Tb927.11.6340). The most prominent hit was
Tb927.10.12940, a putative lysosomal RING E3 ubi-
quitin ligase, whose knockdown led to a dramatic
reduction in parasite sensitivity. Contrastingly,
knockdown of Tb927.10.12940 enhanced parasite
sensitivity to human serum in which TLF1 is the
dominant trypanolytic complex, suggesting that other
components shape the response to apoL1. Follow-up
analysis suggested that the activity of Tb927.10.12940
was dependent on the function of Tb927.9.8000, the
E2 ubiquitin-conjugating enzyme identified in the
screen, though the target(s) of ubiquitination have yet
to be identified. These observations may help to ex-
plain the susceptibility of different African trypano-
some species to lysis by human serum [26].

Ubiquitination in translation and protein
quality control
The RNA helicase DDX3 is important for optimal elon-
gation of translating ribosomes and for stimulating the
dissociation and recycling of ribosomes that have arrested.
Prolonged ribosome stalling in L. infantum cells lacking
DDX3 induces quality-control responses, including re-
cruitment of ubiquitination and proteasome components
that degrade nascent polypeptides [27]. Among the com-
ponents found to be enriched at stalled ribosomes are a
HECT (homologous to E6AP C terminus) family E3
ubiquitin ligase (LINF_350029800), subunits APC3,
APC6 and APC10 of the APC/C complex, the E2 factor,
UBC2, the ubiquitin C-terminal hydrolase DUB15 and
the proteasomal ubiquitin receptor Rpn13. Interestingly,
the deubiquitinase DUB10 is upregulated in cells de-
pleted of DDX3 [27].
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A quality-control system has recently been described in
T. brucei that removes mistargeted aggregation-prone
mitochondrial proteins that accumulate in the cytosol
[28]. Its components include an E3 ubiquitin ligase
(TbE3HECT1), TbUbl1, which harbours a ubiquitin-
like protein domain, a mitochondrial protein of unknown
function (Tb927.9.7200) and the proteasome. The
system is triggered by ablation of ATOM69, a compo-
nent of the atypical outer membrane translocase and the
mitochondrial import receptor for hydrophobic proteins
[28]. Upon triggering of the pathway, TbUbl1, a nor-
mally nuclear protein, is released into the cytosol, where
it binds to mislocalised mitochondrial proteins and, by
mechanisms yet to be elucidated, facilitates their ubi-
quitination and degradation by the proteasome.

Ubiquitin-like modifiers in trypanosomatids
Excellent reviews of ubiquitin-like modifiers in proto-
zoan parasites have been published [29,30]. In Leish-

mania, the best-characterised Ubls are Atg8 and Atg12,
which play roles in parasite autophagy [31,32]. In Leish-

mania, conjugation of ATG12–ATG5 is promoted by the
E1-like enzyme ATG7 and the E2-like enzyme ATG10.
ATG12–ATG5 is required for phagophore development,
including the attachment of ATG8-phosphatidyletha-
nolamine to autophagic membranes [32]. In L. donovani,
where Atg8 was observed to accumulate around the da-
maged mitochondrion, deletion of Atg8 compromised
parasite differentiation and infectivity [33]. A functional
ATG8-conjugation system has also been found in
T. brucei and T. cruzi [34,35].

A SUMO (small ubiquitin-like modifier) -conjugation
system has been characterised in T. brucei. Aos1/Uba2
(heterodimeric SUMO E1), Ubc9 (SUMO E2) and SIZ1
(SUMO E3 ligase) play a role in SUMO conjugation. A
SUMO-specific protease, sentrin-specific protease
(SENP), has also been described [36–38]. SUMO, which
has a nuclear localisation, is required for cell-cycle reg-
ulation, expression of variant-surface glycoprotein (VSG)
genes and chromatin organisation [38–40]. Additionally,
the RNA pol-I complex, which is responsible for VSG
transcription, is SUMOylated in bloodstream forms by
SIZ1, demonstrating one way in which SUMOylation
could contribute towards VSG expression [38]. SU-
MOylation of Centrin, which plays an important role in
cell motility, has also been observed in vitro [36,41].
These studies point towards nuclear and non-nuclear
SUMO functions. In L. mexicana, a SUMO orthologue
has been identified together with a putative E1 catalytic
subunit, UBA2 and an E2 enzyme, UBC9 [6]. SUMO
and an associated SENP are constitutively expressed
[42]. SENP null mutants are viable albeit with reduced
vitality, while SUMO null mutants were not obtained,

pointing to an essential role. In the SENP null mutants,
C-terminal processing of SUMO precursors is disrupted
and covalent SUMO attachment to proteins is pre-
vented, as is the translocation of SUMO to the nucleus.
Curiously, in vitro infectivity is not affected by loss of
SENP-mediated SUMO processing, leading these au-
thors to conclude that functions of unprocessed SUMO
are critical for viability [42].

In T. brucei, Nedd8 and its putative E2-conjugating en-
zyme, Ubc12, are enriched in the nucleus and flagellum.
Depletion of Nedd8 by RNAi led to reduced levels of
protein ubiquitination and caused DNA rereplication in
post-mitotic cells [43]. It also impaired spindle assembly
and compromised the flagellum-attachment zone fila-
ment, leading to flagellum detachment. Six cullins,
TbCUL1–TbCUL6, were identified as substrates of
TbNedd8 [43]; neddylation is known to positively reg-
ulate the activity of Cullin-RING ubiquitin ligases [44].
In L. mexicana, E1 catalytic (UBA3) and E2 (UBC12)
neddylation components have been proposed based on
orthology [6].

The structures of T. brucei URM1 and UFM1 have been
determined using NMR spectroscopy [45,46]. In L. do-

novani, UFM1 conjugation involves the action of UBA5,
an E1 enzyme, and UFC1, an E2 enzyme. UFM1, UBA5
and UFC1 localise to the mitochondrion and ufmylation
is important for β-oxidation and amastigote growth in
macrophages [47,48]. L. donovani Urm1, which is asso-
ciated with early endosome proteins, and its E1,
LdUba4, have also been identified [49].

Conclusions
A current challenge is to elucidate the pathways of
ubiquitin transfer among the E1s, E2s and E3s of try-
panosomatids and link these to the acceptor substrate
proteins and downstream DUBs. This in turn will illu-
minate cellular function and regulation in these para-
sites. Many of these functions will be common to model
organisms, but given their ancient evolutionary character
and often-divergent biochemistry, insights into parasite-
specific processes can be anticipated.

Structural biology will contribute to this understanding
with accurate models of individual components pre-
dicted on deep-learning platforms such as AlphaFold2
[50] and RoseTTAFold [51]. Structure predictions for
proteins from trypanosomatids have to date tended to be
of lower confidence. The cause is the poor sampling of
this branch of life in the protein-sequence databases that
underpin structure prediction. By gathering openly
available protein-sequence data for species from this
lineage, significant improvements to protein- structure
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prediction have been demonstrated [52]. This will en-
able description of the structural context of ubiquitina-
tion on a proteome-wide scale [53].

The proteasome is a validated therapeutic target in the
treatment of leishmaniasis, Chagas disease and sleeping
sickness, and potent and selective inhibitors of high ef-
ficacy have been developed [54,55]. Since many com-
ponents of the trypanosomatid ubiquitin and Ubl-
modification systems belong to the ubiquitin-protea-
some pathway, they also have great potential as drug
targets in neglected tropical diseases.
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