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Abstract
We study discrete-time predictable forward processes
when trading times do not coincide with performance
evaluation times in a binomial tree model for the
financial market. The key step in the construction of
these processes is to solve a linear functional equa-
tion of higher order associated with the inverse problem
driving the evolution of the predictable forward pro-
cess. We provide sufficient conditions for the existence
and uniqueness and an explicit construction of the
predictable forward process under these conditions. Fur-
thermore, we find that these processes are inherently
myopic in the sense that optimal strategies do not make
use of future model parameters even if these are known.
Finally, we argue that predictable forward preferences
are a viable framework to model human-machine inter-
actions occurring in automated trading or robo-advising.
For both applications, we determine an optimal interac-
tion schedule of a human agent interacting infrequently
with a machine that is in charge of trading.
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2 LIANG et al.

1 INTRODUCTION

Classical expected utility maximization requires to determine ex ante three basic elements: the
investment horizon, the market model, and the performance criterion in terms of a utility func-
tion applying at the chosen terminal time. This fundamental setup has, however, two important
limitations. First, the investor must pre-specify her future risk preference for evaluating the per-
formance of investment strategies and the market model for describing asset dynamics for the
entire investment horizon. As a consequence, the risk preference and the market model cannot
be adjusted to newmarket observations over time. This is problematic, especially when the invest-
ment horizon lies in the distant future. Second, the investment horizon needs to be set before the
investor enters the market.
Forward performance processes are an alternative performance criterion that can address

these issues. Their continuous-time version was introduced in various forms in Musiela and
Zariphopoulou (2006), Musiela and Zariphopoulou (2008), Musiela and Zariphopoulou (2009),
Musiela and Zariphopoulou (2010), Henderson and Hobson (2007), Choulli et al. (2007), Žitković
(2009), and El Karoui and Mrad (2013), and further developed in, for example, Avanesyan et al.
(2020), Chong (2019), Bo et al. (2022), El Karoui et al. (2014, 2018, 2022), El Karoui andMrad (2021),
He et al. (2021), Hu et al. (2020), Källblad et al. (2018), Källblad (2020), Liang and Zariphopoulou
(2017), Nadtochiy and Tehranchi (2017), and Shkolnikov et al. (2016).
In contrast, the discrete-time case is less well understood. To the best of our knowledge, the

only studies concerned with the analysis thereof are Angoshtari et al. (2020), where the frame-
work was first introduced, Strub and Zhou (2021) who extend some of the key results therein to
more general models for the financial market and investigate the associated dynamics of risk pref-
erences, and the recent Angoshtari (2022), who establishes existence results in general complete
markets and a new solution method for the generalized integral equations associated with the
construction of discrete-time, predictable forward processes based on the Fourier transform for
tempered distributions.
An advantage of the discrete-time formulation of forward performance processes is that they are

predictable instead of just adapted. This leads to a more intuitive relation of the utility functions
at two consecutive time points. We herein build on the work of Angoshtari et al. (2020) and aim
to extend their key results to the multi-period binomial tree model for the financial market. A
key feature, both conceptually and technically, of this extension is that performance evaluation
times generally do not coincide with trading times, but occur at a lower frequency. This setting is
of particular relevance for wealth management, where interaction with the client often occurs at
a lower frequency than trading.
According to the general scheme developed in Angoshtari et al. (2020), the key step in the

construction of a predictable forward process is to solve an associated inverse investment problem,
where one is given an initial utility function and model for the market and seeks to determine a
utility function applying at terminal time such that the initial utility function becomes the value
function of the resulting expected utility maximization problem. Whereas this is a single-period
problem in the binomial case studied in Angoshtari et al. (2020), we herein face a multi-period
inverse investment problem. Because the financial market for each single evaluation period is
complete, the results of Strub and Zhou (2021) apply and a solution to the multi-period inverse
investment problem can be obtained by solving an associated generalized integral equation. In the
binomial tree model considered herein, the associated generalized integral equation is a linear
functional equation of higher order. Our main technical contributions are sufficient conditions
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LIANG et al. 3

for existence and uniqueness for the associated equation as well as an explicit construction of a
solution under those conditions. An overview of the general theory of functional equations can be
found for example in Kuczma et al. (1990), Kress et al. (1989), Polyanin and Manzhirov (2008), or
Zemyan (2012). There are interesting applications of this theory in fields as diverse as geometry,
probability theory, financial management, or information theory.
An interesting observation is that optimal strategies associated with a predictable discrete-time

forward performance process are inherently myopic in the sense that they do not make use of
information about future market parameters. This is in stark contrast to the classical, backward
expected utility maximization problem where optimal strategies generally depend on future mar-
ket parameters or characteristics thereof. Another observation is that discrete-time predictable
forward performance processes are decreasing in the evaluation period. In continuous time, for-
ward performance processes are not necessarily monotone in time. However, continuous-time
forward performance processes that are time-monotone often allow for more explicit results, see,
for example, Musiela and Zariphopoulou (2009) and Berrier et al. (2009).
The second major contribution of this paper is an application of discrete-time predictable for-

ward processes with infrequent evaluation as a framework tomodel human-machine interactions
such as automated trading and robo-advising. To the best of our knowledge, this is the first appli-
cation of the theory of forward preferences to the asset allocation problems faced by an automated
trading system (ATS) or a robo-advisor.
Automated trading dates back as far as the 1970s and was developed out of the introduction of

designated orders turnaround system, see Grossman (1988). Broadly defined, automated trading
refers to the execution of orders by an algorithm according to a pre-defined trading strategy. To
date, ATS are widely used by institutional and retail traders alike. The literature on automated
trading strategies is vast, see for example the monographs Cartea et al. (2015) and Aldridge (2013).
Another ongoing and controversial topic of research is studying the impact of automated trading
on financial markets. For example, Hendershott et al. (2011) found that automated trading can
improvemarket efficiency and liquidity, Chaboud et al. (2014) andBrogaard et al. (2014) argue that
automated trading improves price and informational efficiency, and the implications on behaviors
and strategies of traders are investigated in O’hara (2015).
Robo-advisors constitute a class of wealth management tools that offer asset allocation rec-

ommendations and implementations based on algorithms and automated by software, see, for
example, D’Acunto and Rossi (2021) for an overview and taxonomy. They contribute to the democ-
ratization of finance by making wealth management services that were previously limited to a
select group of wealthy investors available for all. Since emerging in the late 2000s, robo-advising
services have experienced rapid growth and are now estimated to manage over USD 1600 billion
of over 500 million clients globally.
In both applications, we consider a machine trading on behalf of a human agent at a high fre-

quency and interacting with the agent at a lower frequency. In the case of automated trading,
the human agent is a market expert that periodically communicates updated assessments of the
market as inputs for an ATS. In the case of robo-advising, the human agent is a client that period-
ically communicates her risk-preferences to the robo-advisor. Predictable forward processes with
infrequent evaluationhave three important featuresmaking themexpedient for such applications.
First, the construction of forward processes assures that optimal investment strategies are

time-consistent. This is in stark contrast to the dynamic mean-variance objective. Whenever
preferences are time-inconsistent, one has to decide on whether to work with pre-committed
or equilibrium strategies, and there does not seem to be a canonic choice for the two applica-
tions. For example, when modeling the asset allocation problem of a robo-advisor, Capponi et al.
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4 LIANG et al.

(2022) and Dai et al. (2021a) work with equilibrium strategies while Cui et al. (2022) introduce
mean-variance induced utility functions to avoid the issue altogether. However, it seems also
plausible toworkwith pre-committed strategies and regard themachine (viz., theATS or the robo-
advisor) as a pre-commitment device. Working with forward processes avoids this discussion and
leads to strategies that are globally optimal.
Second, forward processes accommodate dynamically changing investment horizons. While

this feature is an advantage for portfolio selection in general, it is of particular relevance for our
applications. Imagine a situation where the investment horizon the human agent is reached, but
the agent forgets to withdraw her funds or otherwise communicate with the trading platform.
How should the trading platform act in this situation if it aims to continue investing in the best
interest of the human agent? Forward preferences provide an elegant solution to this problem:
Continue investing in a manner that is consistent with previous preferences and decisions by
updating preferences according to the martingale optimality principle.
Third, in addition to these general advantages of forward performance processes, the specific

class we investigate herein allow for the additional feature that trading times do not necessarily
coincide with performance evaluation times. This is of practical relevance for the applications
we have in mind, as trading typically occurs at a higher frequency than interaction with the
human agent.
In the automated trading application, we consider a human expert operating an ATS whose

preferences are described by a discrete-time predictable performance process. The expert gath-
ers information about the time-varying parameters describing the financial market and updates
these at infrequently occurring interactions with the ATS. On the other hand, the ATS manages
the portfolio on behalf of the expert period-by-period based on the assessment of the market com-
municated by the expert at the last interaction time. The expert seeks to determine an optimal
schedule for interacting with the ATS that balances a tradeoff between accuracy about the current
values of the market parameters and a cost incurred when assessing the market. We characterize
the optimal interaction schedule and find that it balances a tradeoff between the cost required to
assess the market parameters and expected loss in performance due to the inaccuracy about the
market parameters. As one could intuitively expect, the optimal interaction schedule is increas-
ing in the interaction cost and decreasing in a uniform increase of uncertainty about the market
parameters. However, the effect of a non-uniform increase in the uncertainty is more intricate,
and it can indeed happen that the optimal interaction schedule increases when uncertainty about
the market parameters in the near future increases. This occurs because an increase in the uncer-
tainty aboutmarket parameters in the near future harms performance after each interaction time.
Interacting more frequently therefore does not necessarily lead to better performance. We also
numerically investigate how the optimal interaction schedule depends on the risk-aversion of the
human expert. Typically, a more risk-averse expert is interacting more frequently with the ATS
than a less risk-averse expert. However, when the interaction cost is large and either the expected
return of the risky asset is close to the risk-free return or the risk-aversion is already large, then an
increase in risk-aversion can lead to an increase of the optimal interaction schedule. In this case,
the investment in the risky asset is very small, and the updating of the probability for a positive
outcome does not lead to a significant change in optimal investment strategies.
In the robo-advising application, we consider a client of a robo-advisor whose preferences are

described by a general stochastic utility process. The robo-advisormanages the portfolio on behalf
of the client, but only has accurate knowledge about the client’s risk preferences whenever there
is an interaction. The robo-advisor also has an accurate understanding of the parameters specify-
ing the current financial market. But as associated optimal strategies have to be approved by the
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LIANG et al. 5

client, market parameters are effectively only updated whenever there is an interaction as well.
We seek to determine an optimal schedule of interaction between robo-advisor and client that
bounds the deviation between the actual strategy implemented by the robo-advisor and an ideal
strategy that would be obtained if the robo-advisor always has accurate knowledge about the risk
preferences of the client and can update market parameters period-by-period. We characterize
an optimal interaction schedule under a robust approach and find that the client should interact
more frequently when she is less tolerant about deviations from an ideal strategy or when there
is greater uncertainty about market or preference parameters. Interestingly, we also show that it
is optimal to interact less frequently in a more volatile market environment all else being equal.
The intuition is that both the ideal strategy and the strategy implemented by the robo-advisor are
less aggressive in a volatile environment and their deviation consequentially smaller. A further
numerical analysis indicates that the optimal interaction schedule is more sensitive about the
uncertainty in market parameters than about the uncertainty in preference parameters.
The remainder of this paper is organized as follows. In Section 2, we introduce themodel for the

financial market and review the definition and preliminary results for discrete-time predictable
performance processes. We provide sufficient conditions for existence and uniqueness and an
explicit construction of the discrete-time predictable forward process in Section 3. In Sections 4
and 5, we discuss discrete-time predictable forward processes as a potential framework to model
preferences for automated trading and robo-advising applications. Section 6 concludes the paper.

2 DISCRETE-TIME PREDICTABLE FORWARD PERFORMANCE
PROCESSES: MODEL AND DEFINITION

In this section, we introduce the notion of discrete-time predictable forward performance process
with evaluation period larger than one in a binomial tree model which was originally presented
in Cox et al. (1979) for option pricing. Discrete-time predictable forward performance processes
were introduced in Angoshtari et al. (2020) for general models of the financial market. However,
their analysis is limited to the single-period binomial model where trading dates and performance
evaluation dates coincide. The complete semimartingale model in Strub and Zhou (2021) is more
general than the setup of this paper, but they do not provide conditions for existence and do not
explicitly construct discrete-time predictable forward processes as we will herein.
The investor starts at time zero with preferences over wealth represented by a utility function

𝑈0. We herein assume that any utility function𝑈 ∶ ℝ+ → ℝ is twice continuously differentiable,
strictly increasing, strictly concave and satisfies the Inada conditions. We fix a probability space
(Ω, , ℙ), where ℙ denotes the real (historical) probability measure on (Ω, ). Throughout the
paper, ℕ denotes the set of positive integers and ℕ0 is the set of nonnegative integers.
We suppose that the investor trades at discrete times 𝑛, 𝑛 ∈ ℕ0, between a risk-free bondwhose

(discounted) price offers zero interest and a single risky stock. The (discounted) price process
𝑆 = (𝑆𝑛)𝑛∈ℕ0

of the stock is described by a binomial model

𝑆𝑛 = 𝑆𝑛−1(𝑢𝑛𝐵𝑛 + 𝑑𝑛(1 − 𝐵𝑛)), 𝑛 ∈ ℕ,

and 𝑆0 = 1, where𝐵𝑛 ∈ {0, 1} for all 𝑛 ∈ ℕ, that is, (𝐵𝑛)𝑛∈ℕ is a sequence of Bernoulli randomvari-
ables with transition probabilities (𝑝𝑛)𝑛∈ℕ. We allow for the market parameters (𝑢𝑛)𝑛∈ℕ, (𝑑𝑛)𝑛∈ℕ,
and (𝑝𝑛)𝑛∈ℕ to be stochastic processes satisfying 𝑑𝑛, 𝑝𝑛 ∈ (0, 1) and 𝑢𝑛 > 1, 𝑛 ∈ ℕ. For methods
to calibrate binomial models we refer to Cox et al. (1979), Rubinstein (1994), or Jackwerth (1999).
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6 LIANG et al.

Here and throughout the paper, we assume that all relations hold ℙ-almost surely. The investor
evaluates her portfolio at performance evaluation times (𝜏𝑘)𝑘∈ℕ0

given by 𝜏𝑘 = 𝑘𝑚, where𝑚 ∈ ℕ

is the evaluation period length. One could more generally consider (𝜏𝑘)𝑘∈ℕ0
to be a stochastic pro-

cess taking values inℕ0 such that 𝜏0 = 0 and 𝜏𝑘+1 > 𝜏𝑘 and ameasurability requirement implying
that the length of each evaluation period is known at the beginning of the respective period.
We specify the filtration 𝔽 = (𝑛)𝑛∈ℕ0

by supposing that 𝑛 is the augmented 𝜎-algebra gener-
ated by (𝐵𝑗)

𝑛
𝑗=1

and (𝑢𝑗, 𝑑𝑗, 𝑝𝑗)
𝑘𝑚
𝑗=1

with 𝑘 such that (𝑘 − 1)𝑚 ≤ 𝑛 ≤ 𝑘𝑚 − 1. This specification of
the filtration is to be interpreted as follows. At any point in time, the investor knows the past price
levels of the stock and the market parameters of the past and current (performance) evaluation
period. However, the market parameters of subsequent evaluation periods remain stochastic. We
complete the specification of the market by assuming that

ℙ[𝐵𝑛 = 1|𝑛−1] = 1 − ℙ[𝐵𝑛 = 0|𝑛−1] = 𝑝𝑛, 𝑛 ∈ ℕ.

This assures that 𝑝𝑛 satisfies the usual interpretation of the conditional probability of an upward
move of the stock in the 𝑛th trading period.
Performance evaluation occurring less frequently than trading and the enlargement in filtration

are the exact differences between the model studied herein and Angoshtari et al. (2020). When
𝑚 = 1, trading times and performance evaluation times coincide and the model reduces to the
one extensively studied therein. However, in general, the evaluation period length is strictly larger
than one and trading thus occurs at a higher frequency than performance evaluation. This sepa-
ration between trading times and performance evaluation times is a key feature of our model and
will be at the heart of our analysis and applications. We remark that wemake an implicit assump-
tion that trading is more frequent than performance evaluation and that the investor can trade at
every performance evaluation time. This is natural. Performance evaluation without concurrent
trading would not be observable.
Trading strategies are described by means of predictable processes 𝜋 = (𝜋𝑛)𝑛∈ℕ, where 𝜋𝑛

denotes the dollar amount invested in the risky asset over trading period [𝑛 − 1, 𝑛). A portfolio
is constructed by following the trading strategy on the stock while investing all the remaining
wealth in the risk-free bond. Given an initial wealth 𝑥 > 0 and self-financing trading strategy
𝜋, the wealth process 𝑋𝜋 = (𝑋𝜋

𝑛 )𝑛∈ℕ evolves according to 𝑋𝜋
𝑛 = 𝑥 +

∑𝑛

𝑖=1
𝜋𝑖(

𝑆𝑖

𝑆𝑖−1
− 1). A trading

strategy 𝜋 as well as the associated wealth process 𝑋𝜋 are called admissible if 𝑋𝜋 is nonnegative.
We denote by(𝑛, 𝑥) the set of admissible trading strategies (𝜋𝑘)𝑘⩾𝑛 and by(𝑛, 𝑥) the associated
wealth processes (𝑋𝜋

𝑘
)𝑘⩾𝑛 starting from 𝑋𝜋

𝑛 = 𝑥, 𝑛 ∈ ℕ, and abbreviate(0, 𝑥), (0, 𝑥) by(𝑥),
(𝑥). We often drop the explicit dependence of a wealth process on the trading strategy and write
𝑋 ∈ (𝑛, 𝑥).
We remark that the model for the financial market described above is sequentially complete

across each evaluation period in the following sense. For any 𝑘 ∈ ℕ and 𝑘𝑚-measurable ran-
dom variable 𝑋𝑚 ≥ 0 there exists an (𝑘−1)𝑚-measurable random variable 𝑋(𝑘−1)𝑚 such that
𝑋𝑚 ∈ (𝑚,𝑋(𝑘−1)𝑚). In other words, any random variable measurable with respect to the fil-
tration at the end of an evaluation period can be generated by admissible trading starting from
a random variable measurable at the beginning of the same evaluation period. This feature is a
straightforward consequence from the fact that model parameters are known at the beginning
of each evaluation period and that, thus, each evaluation period in isolation is nothing but a
standard binomial model. However, the model is not necessarily complete across multiple evalu-
ation periods. For example, an 2𝑚-measurable random variable𝑋2𝑚 is not necessarily replicable
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LIANG et al. 7

by admissible trading from a deterministic initial wealth. This is because the model parameters
over the second evaluation period (𝑚, 2𝑚] are not known at the beginning of the first evaluation
period. Hence, 𝑋2𝑚 cannot be hedged by admissible trading if the model parameters are deter-
mined in part through some exogenous random noise. The market would become complete if
market parameters are adapted to the filtration generated by the stock price. We study an exam-
ple of such a market in greater detail in Subsection 4.2 where we consider a specific rule of how
market parameters are updated in response to previous outcomes of the stock.
We next present the definition of discrete-time predictable forward performance processes with

evaluation period length𝑚.

Definition 2.1. A family of random functions {𝑈𝑘𝑚 ∶ ℝ+ × Ω → ℝ|𝑘 ∈ ℕ0} is called a
discrete-time predictable forward performance process with evaluation period length𝑚 ∈ ℕ (an
𝑚-forward process in short) if the following conditions hold:

(i) 𝑈0(𝑥, ⋅) is constant and 𝑈𝑘𝑚(𝑥, ⋅) is (𝑘−1)𝑚-measurable for each 𝑥 ∈ ℝ+ and 𝑘 ∈ ℕ.
(ii) 𝑈𝑘𝑚(⋅, 𝜔) is a utility function for almost all 𝜔 ∈ Ω and all 𝑘 ∈ ℕ0.
(iii) For any initial wealth 𝑥 > 0 and admissible wealth process 𝑋 ∈ (𝑥),

𝑈(𝑘−1)𝑚

(
𝑋(𝑘−1)𝑚

)
⩾ 𝔼

[
𝑈𝑘𝑚(𝑋𝑘𝑚)||(𝑘−1)𝑚

]
, 𝑘 ∈ ℕ.

(iv) For any initial wealth 𝑥 > 0, there exists an admissible wealth process 𝑋∗ ∈ (𝑥) such that

𝑈(𝑘−1)𝑚

(
𝑋∗
(𝑘−1)𝑚

)
= 𝔼

[
𝑈𝑘𝑚

(
𝑋∗
𝑘𝑚

)||(𝑘−1)𝑚

]
, 𝑘 ∈ ℕ.

Definition 2.1 is analogous to its single-period counterpart, but we are now interested in the
case where trading occurs more often than performance evaluation. See Angoshtari et al. (2020)
for a detailed discussion of the definition and a theoretical framework of discrete-time predictable
forward performance processes. Considering discrete-time predictable forward performance pro-
cess with evaluation period larger than one is more general mathematically and also relevant for
applications. It is increasingly the case that trading is automated and executed by machines at a
higher frequency than monitoring and analyzing of the investment portfolio by a human agent.
Modeling a framework where trading occurs at a higher frequency than performance evaluation
and preference updating is thus important for investment practice.
Property (𝑖) requires that preferences applying at the end of an evaluation period are known at

the beginning of that period. This reflects the predictability of discrete-time predictable forward
processes adapted tomulti-period evaluation of the performance. Properties (𝑖𝑖𝑖) and (𝑖𝑣) demand
that an 𝑚-forward process evolves under the guidance of Martingale Optimality Principle and
ensure time-consistency of optimal strategies. In addition, properties (𝑖𝑖𝑖) and (𝑖𝑣) imply that

𝑈(𝑘−1)𝑚

(
𝑋∗
(𝑘−1)𝑚

)
= ess sup

𝑋𝑘𝑚∈((𝑘−1)𝑚,𝑋∗
(𝑘−1)𝑚

)𝔼
[
𝑈𝑘𝑚(𝑋𝑘𝑚)

||||(𝑘−1)𝑚

]
. (1)

Iteratively solving (1) leads to the construction of the 𝑚-forward process, see Angoshtari et al.
(2020) for a detailed exposition. The crucial step is to solve the following inverse investment prob-
lem: Given an initial utility function 𝑈0, we seek for a forward utility function 𝑈𝑚 such that for
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8 LIANG et al.

any 𝑥 > 0,

𝑈0(𝑥) = sup
𝑋𝑚∈(𝑥)

𝔼[𝑈𝑚(𝑋𝑚)] = sup
𝜋∈(𝑥)

𝔼

[
𝑈𝑚

(
𝑥 +

𝑚∑
𝑖=1

𝜋𝑖(𝑅𝑖 − 1)

)]
. (2)

One can then construct𝑈2𝑚,𝑈3𝑚,… by repeatedly solving a problem of the form (2) conditionally
on updated information available at next evaluation point and arguing that this solution satisfies
the requiredmeasurability conditions. We emphasize that obtaining a solution that is measurable
as a function of the market parameters is necessary for the construction of a predictable forward
process, cf. Strub and Zhou (2021, Remark 2.2) for details.

Remark 2.2. When deriving the solution to the inverse investment problem (2), we will carefully
argue that the constructed forward utility function depends in a measurable way on all market
parameters at the previous evaluation time, and that this will allow us to obtain a predictable
process. Therefore, the dynamic version of the sequence of random problems (1) can be reduced
to the deterministic version (2).

In analogy to the terminology in Strub andZhou (2021), wewill refer to an initial utility function
𝑈0 and a utility function𝑈𝑚 solving (2) as anm-forward pair (𝑈0,𝑈𝑚). Note that our assumptions
imply that the model input is known at the beginning for the evaluation period as a determinis-
tic triplet ((𝑝𝑖)𝑖=1,…,𝑚, (𝑢𝑖)𝑖=1,…,𝑚, (𝑑𝑖)𝑖=1,…,𝑚). Recall from the above discussion that the market is
sequentially complete across each evaluation period and that the equivalent martingale measure
for the truncated model of a single evaluation period is therefore unique. We denote it by ℚ and
let 𝑞𝑖 =

1−𝑑𝑖

𝑢𝑖−𝑑𝑖
, 𝑖 = 1, … ,𝑚, be the risk-neutral probability for an upward move of the stock in the

𝑖th trading period.
A key result for the theory of discrete-time predictable forward processes is the equivalence

between the inverse investment problem (2) and a generalized integral equation for the inverse
marginal or the conjugate corresponding to the involved forward pair. This was shown for the
binomial market in Angoshtari et al. (2020) and generalized to complete semimartingale models
in Strub and Zhou (2021). To state this result, we recall the definition of an inverse marginal func-
tion. An inverse marginal function 𝐼 ∶ ℝ+ → ℝ+ is continuously differentiable, strictly decreasing
and satisfies lim𝑦→+∞ 𝐼(𝑦) = 0 and lim𝑦→0+ 𝐼(𝑦) = ∞. For a given utility function 𝑈(𝑥), 𝑥 ∈ ℝ+,
𝐼(𝑦) = (𝑈′)−1(𝑦) is the inversemarginal function corresponding to𝑈(𝑥).We denote the set of util-
ity functions by , the set of inverse marginal functions by . According to Theorem 2.4 in Strub
and Zhou (2021), see also Theorems 5.1 and 5.2 in Angoshtari et al. (2020) for an earlier version in
the single-period binomial setting, solving the inverse investment problem (2) in the space  of
utility functions is equivalent to finding a solution to

𝐼0(𝑦̂) = 𝔼ℚ

[
𝐼𝑚

(
𝑦̂
𝑑ℚ

𝑑ℙ

)]
, 𝑦̂ > 0, (3)

in the space  of inverse marginal functions in the following sense: If (𝑈0,𝑈𝑚) is an 𝑚-forward
pair solving (2), then the associated inverse marginal functions (𝐼0, 𝐼𝑚) solve (3). Vice versa, if
(𝐼0, 𝐼𝑚) is a pair of inverse marginal functions satisfying (3), then the associated utility functions
satisfy (2) up to a constant, that is, there is a constant 𝑐 ∈ ℝ, which can be expressed explicitly in
terms of𝑈0, 𝐼𝑚, and the market parameters, such that 𝑈̃𝑚(𝑥) ∶= 𝑈𝑚(𝑥) + 𝑐 satisfies (2). Because
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LIANG et al. 9

it is often the case that finding a solution to the generalized integral equation (3) is considerably
easier than solving the inverse investment problem (2), the generalized integral equation (3) plays
an important role in the theory of discrete-time predictable forward processes. Ourmain technical
contribution is to provide a solution to (3) for the binomialmarket when trading times do not coin-
cide with performance evaluation times, and thus (3) reduces to a linear functional equation as
in Angoshtari et al. (2020) but of higher order. Solving (3), together with a thorough analysis of
the result, will be the content of the following Section 3 for the case of time-homogeneous and
time-heterogeneous market parameters respectively.

3 THE LINEAR FUNCTIONAL EQUATION OF HIGHER ORDER

In this section, we first develop a general approach to solving the linear functional equation (3)
associated with the inverse investment problem (2). We then study a special market setting with
time-homogeneous market parameters. This slight loss of generality will allow us to derive more
explicit and interpretable results.

3.1 The heterogeneous case

In the general case, the agent has possibly heterogeneous beliefs on future price movements
across the trading periods constituting a given evaluation period. Given the deterministic
triplet ((𝑝𝑖)𝑖=1,…,𝑚, (𝑢𝑖)𝑖=1,…,𝑚, (𝑑𝑖)𝑖=1,…,𝑚) characterizing the multi-period binomial tree, we fol-
low Angoshtari et al. (2020) and set 𝑎𝑖 =

1−𝑝𝑖

𝑝𝑖

𝑞𝑖

1−𝑞𝑖
, 𝑏𝑖 =

1−𝑞𝑖

𝑞𝑖
, 𝑐𝑖 =

1−𝑝𝑖

1−𝑞𝑖
for 𝑖 = 1, 2, … ,𝑚, where

𝑞𝑖 =
1−𝑑𝑖

𝑢𝑖−𝑑𝑖
is the risk-neutral probability for an upwardmove of the stock in the 𝑖th trading period.

Observe that there are 2𝑚 possible outcomes for the 𝑚-period binomial tree with heterogeneous
market parameters.When ordered from the lowest price level to the highest, they occurwith prob-

abilities
𝑚∏
𝑖=1

𝑝
𝛾𝑗,𝑖
𝑖

(1 − 𝑝𝑖)
1−𝛾𝑗,𝑖 , 𝑗 = 0, 1, … , 2𝑚 − 1, where 𝛾𝑗,𝑖 is defined as the 𝑖′𝑡ℎ digit of the binary

representation of 𝑗, that is, (𝑗)10 = (𝛾𝑗,𝑚 … 𝛾𝑗,2𝛾𝑗,1)2 and zeros are filled in the front of the binary
representation if it contains less than 𝑚 digits. In the current setting, the generalized integral
equation (3) can thus be written as the linear functional equation

𝐼0(𝑦̂) =
∑2𝑚−1

𝑗=0

𝑚∏
𝑖=1

𝑞
𝛾𝑗,𝑖
𝑖

(1 − 𝑞𝑖)
1−𝛾𝑗,𝑖 𝐼𝑚

⎛⎜⎜⎜⎜⎝
𝑚∏
𝑖=1

𝑞
𝛾𝑗,𝑖
𝑖

(1 − 𝑞𝑖)
1−𝛾𝑗,𝑖

𝑚∏
𝑖=1

𝑝
𝛾𝑗,𝑖
𝑖

(1 − 𝑝𝑖)
1−𝛾𝑗,𝑖

𝑦̂

⎞⎟⎟⎟⎟⎠
. (4)

Analyzing (4) is challenging because the argument of 𝐼𝑚 can in general not be transformed to an
iterative form. However, we are still able to characterize solutions to (4) within the class of inverse
marginal functions and provide conditions for the uniqueness of such a solution. This will be the
main technical contribution of this section.
For a given initial utility function𝑈0 ∈  and associated inverse marginal function 𝐼0 ∈  we

define the following auxiliary functions,

Φ0(𝑦) = 𝐼0(𝑎1𝑐1𝑦) − 𝑏1𝐼0(𝑐1𝑦) and Ψ0(𝑦) = 𝑦
−loga1

b1𝐼0(𝑐1𝑦), 𝑦 > 0, (5)
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10 LIANG et al.

and

Φ
(𝑣1,…,𝑣𝑖)

𝑖
(𝑦) =

𝑖∏
𝑙=1

(1 + 𝑏𝑙)

𝑖∏
𝑗=1

𝑏
𝑣𝑗
𝑗

(
∞∑

𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑄(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)
𝐼0
(
𝑅(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)

𝑎𝑖+1𝑦
)

−𝑏

∞∑
𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑄(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)
𝐼0
(
𝑅(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)

𝑦
))

,

Ψ
(𝑣1,…,𝑣𝑖)

𝑖
(𝑦) = 𝑦

−(log𝑎𝑖+1
𝑏𝑖+1)

𝑖∏
𝑙=1

(1 + 𝑏𝑙)

𝑖∏
𝑗=1

𝑏
𝑣𝑗
𝑗

×

∞∑
𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑄(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)
𝐼0
(
𝑅(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)

𝑦
)
,

(6)

for 𝑦 > 0, 𝑖 = 1, … ,𝑚 − 1, and (𝑣1, … , 𝑣𝑖) ∈ {0, 1}𝑖 , where 𝑄(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)
=

𝑖∏
𝑘=1

𝑏
𝑛𝑘(1−2𝑣𝑘)

𝑘
,

𝑅(𝑣1,…,𝑣𝑖);(𝑛1,…,𝑛𝑖)
=

𝑖∏
𝑠=1

𝑎
𝑛𝑠(2𝑣𝑠−1)+(𝑣𝑠−1)
𝑠

𝑖+1∏
𝑢=1

𝑐𝑢 and𝑝(𝑛1,…,𝑛𝑖) =
∑𝑖

𝑘=1
𝑛𝑘. For a given pair of functions

(Φ,Ψ), we say that the pair satisfies condition (𝐶1) if

Φ′(𝑦) > 0 and either 𝑎 > 1 and lim
𝑦→∞

Ψ(𝑦) = 0 or 𝑎 < 1 and lim
𝑦→0+

Ψ(𝑦) = 0.

We say that the pair of functions (Φ,Ψ) satisfies condition (𝐶2) if

Φ′(𝑦) < 0 and either 𝑎 > 1 and lim
𝑦→0+

Ψ(𝑦) = 0 or 𝑎 < 1 and lim
𝑦→∞

Ψ(𝑦) = 0.

Next, we iteratively define a sequence {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 starting with (𝛼1) = (1) if (Φ0, Ψ0)

satisfies (𝐶1) or (𝛼1) = (0) if (Φ0, Ψ0) satisfies (𝐶2). We then define

(𝛼1, … , 𝛼𝑖+1) =

⎧⎪⎨⎪⎩
(𝛼1, … , 𝛼𝑖, 1) if

(
Φ
(𝛼1,…,𝛼𝑖)

𝑖
, Ψ

(𝛼1,…,𝛼𝑖)

𝑖

)
satisf ies (𝐶1),

(𝛼1, … , 𝛼𝑖, 0) if
(
Φ
(𝛼1,…,𝛼𝑖)

𝑖
, Ψ

(𝛼1,…,𝛼𝑖)

𝑖

)
satisf ies (𝐶2),

for 𝑖 = 1, …𝑚 − 1.
The following theorem constitutes the main result of this section and provides an explicit

expression for 𝐼𝑚 in terms of 𝐼0 with their corresponding utility functions being an 𝑚-forward
pair. This expression in turn leads to a construction method for the𝑚-forward pair. This theorem
is the multi-period analogue to the single-period result in (Angoshtari et al., 2020, Theorem 7.1).
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LIANG et al. 11

Theorem 3.1. Let 𝑈0 ∈  be a utility function with associated inverse marginal function 𝐼0 and
suppose that {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists. Define 𝐼𝑚 by

𝐼𝑚(𝑦) =

𝑚∏
𝑖=1

(1 + 𝑏𝑖)

𝑚∏
𝑗=1

𝑏
𝛼𝑗
𝑗

∞∑
𝑛1=0,…,𝑛𝑚=0

(−1)𝑝(𝑛1,…,𝑛𝑚)

𝑚∏
𝑘=1

𝑏
𝑛𝑘(1−2𝛼𝑘)

𝑘
𝐼0

(
𝑚∏
𝑠=1

𝑎
𝑛𝑠(2𝛼𝑠−1)+(𝛼𝑠−1)
𝑠

𝑚∏
𝑢=1

𝑐𝑢𝑦

)
, (7)

and

𝑈𝑚(𝑥) ∶= 𝑈0(1) + 𝔼ℙ

[
∫

𝑥

𝐼𝑚(
𝑑ℚ

𝑑ℙ
𝑈′
0
(1))

𝐼−1𝑚 (𝑡)𝑑𝑡

]
, 𝑥 > 0.

Then 𝑈𝑚 is the unique utility function solving (2) and 𝐼𝑚 is the unique inverse marginal function
solving the generalized integral equation (4). Moreover, the optimal wealth solving (2) is given by

𝑋∗
𝑚(𝑥) = 𝐼𝑚

(
𝑈′

0
(𝑥)

𝑑ℚ

𝑑ℙ

)
(8)

We remark that the introduction of these auxiliary functions is to help to establish the unique-
ness and existence conditions of the solutions in the class of inverse marginal functions, cf. the
proof of Theorem 3.1 for details. Whether {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists needs to be determined on
an ad hoc basis given an initial datum. For example, when the initial datum belongs to a fam-

ily of CRRA utility functions, 𝑈0(𝑥) = log 𝑥, 𝑥 > 0 and 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, where

1 ≠ 𝜃 > 0, then {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 is typically well defined. Exceptions are the cases where 𝑝𝑖 =
1

2

or 𝜃 = − log𝑎𝑖
𝑏𝑖 . In these cases, (Φ

(𝛼1,…,𝛼𝑖)

𝑖
, Ψ

(𝛼1,…,𝛼𝑖)

𝑖
) satisfy neither (𝐶1)nor (𝐶2), but one can still

provide a natural candidate for the forward processwithin the family of power and log utilities and
show that this is indeed a forward process. However, uniqueness generally does not hold in this
case, cf. (Angoshtari et al., 2020, Example 6.1). Therefore, we emphasize that the condition that
{(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists is sufficient, but not necessary for the existence and uniqueness of the
forward process. Another example will be treated in Example 3.7. How to solve the correspond-
ing functional equation and construct the forward performance process when {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚
does not exist remains an open problem for future research.
From the explicit construction of an 𝑚-forward pair in Theorem 3.1, we obtain the following

result showing that the forward utility 𝑈𝑚 depends in a measurable manner on the parameters
of the financial market. This measurable dependence is crucial because it allows us to extend
all results derived for an 𝑚-forward pair back to the level of a discrete-time predictable forward
performance process with evaluation period length𝑚.

Corollary 3.2. Let𝑈0 ∈  be a utility function and let

 ∶=
{
(𝑝, 𝑢, 𝑑) ∈ ℝ𝑚×3||0 < 𝑝𝑖 < 1, 0 < 𝑑𝑖 < 1 < 𝑢𝑖, {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚exists

}
be the set of market parameters under which {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists and 𝑝, 𝑢, and 𝑑 denote the
𝑚 × 1 vectors (𝑝𝑖)𝑚𝑖=1, (𝑢𝑖)

𝑚
𝑖=1
, and (𝑑𝑖)𝑚𝑖=1, respectively. The mapping → ℝ defined by (𝑝, 𝑢, 𝑑) ↦

𝑈𝑚(𝑥), where𝑈𝑚(𝑥) is defined as in Theorem 3.1, is Borel-measurable for any 𝑥 > 0.
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12 LIANG et al.

Remark 3.3. We remark that𝑚-forward processes, when they exist, are naturally decreasing in the
evaluation period. This is a direct consequence from the fact that putting all one’s wealth into the
risk-free asset is an admissible strategy together with the martingale optimality principle satisfied
by the𝑚-forward process.

Having established an explicit construction of an𝑚-forward process, we next provide a compar-
ison between the discrete-time predictable forward performance process with evaluation period
length𝑚 and the single-period discrete-time forward process after𝑚-periods.We denote the latter
process by 𝑈̃ = (𝑈̃𝑘)𝑘∈ℕ0

, the optimal wealth process corresponding to 𝑈̃ by 𝑋̃. We are interested
in comparing 𝑈̃𝑚 with 𝑈𝑚. Given an initial performance criterion 𝑈0 and the market parame-
ters (𝑝, 𝑢, 𝑑) ∈ ℝ3𝑚, the process {𝑈̃1, 𝑈̃2, … , 𝑈̃𝑚} is constructed according to the general scheme
outlined in Section 7 of Angoshtari et al. (2020).

Proposition 3.4. If the sequence {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists, then the single-period forward process
𝑈̃𝑖 exists for 𝑖 = 1, … ,𝑚, and satisfies 𝑈̃𝑚(𝑥) = 𝑈𝑚(𝑥) and 𝑋̃∗

𝑚(𝑥) = 𝑋∗
𝑚(𝑥) for all 𝑥 > 0.

Let us emphasize that Proposition 3.4 does not imply that the single-period forward process
generally coincides with the𝑚-forward. In the general setting of single-period forward processes,
market parameters are allowed to be updated period-by-period and only required to be pre-
dictable; therein it does not even make sense to define the 𝑚-period forward utility. But in the
setting of this paper,market parameters are known across evaluation periods and, thus, the single-
period forward utility is𝑚-period ahead predictable, that is, 𝑈̃𝑚 ∈ 0. Only if this is the case, the
single-period forward process coincides with the𝑚-forward at the end of the evaluation period.
According to Proposition 3.4, the optimal strategies of the single-period and 𝑚-forward coin-

cide, even if market parameters are heterogeneous. This implies that the optimal strategies
corresponding to an𝑚-forward process are inherentlymyopic. They donotmakeuse of the knowl-
edge about future market parameters, even though this information is available. This myopic
behavior of optimal strategies constitutes a fundamental difference to the classical, backward
expected utility setting. In our setting where market parameters are known across the evaluation
period,maximizing expected utility from terminalwealth typically leads to optimal strategies that,
at an intermediate time, depend on the market parameter values at future times. We will further
discuss this difference between the forward and backward setting at the end of this section in
Example 3.7. We also state the hypothesis that the myopic behavior of optimal strategies corre-
sponding to predictable forward processes is not specific to the binomial tree model of this paper
but also holds for more general models studied in Strub and Zhou (2021) and Angoshtari (2022).

3.2 The homogeneous case

Allowing for heterogeneous market comes at the expense of quite involved notation and for-
mulas. To build more insights, we will next consider the special case where model parameters
are time-homogeneous across the given evaluation period. This will lead to considerably simpli-
fied expressions. Specifically, while market parameters are still updated at the beginning of each
evaluation period, we assume that they are constant throughout each evaluation period, that is,
𝑝𝑖 = 𝑝, 𝑢𝑖 = 𝑢, and 𝑑𝑖 = 𝑑 for 𝑖 = 1, …𝑚. Accordingly, we set 𝑎 =

1−𝑝

𝑝

𝑞

1−𝑞
, 𝑏 =

1−𝑞

𝑞
, and 𝑐 = 1−𝑝

1−𝑞
.

The price process of the risky asset in a given evaluation period corresponds to an 𝑚-period
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LIANG et al. 13

binomial tree with homogeneous coefficients: There are 𝑚 + 1 possible outcomes which, when
ordered from the lowest price level to the highest, occur with the probabilities

(𝑚
𝑖

)
𝑝𝑖(1 − 𝑝)𝑚−𝑖 ,

𝑖 = 0, 1, … ,𝑚, where the transition probability is denoted by 𝑝 and
(𝑚
𝑖

)
=

𝑚!

𝑖!(𝑚−𝑖)!
are binomial

coefficients. Therefore, (3) in this case can be written as

𝐼0(𝑦̂) =

𝑚∑
𝑖=0

(𝑚
𝑖

)
𝑞𝑖(1 − 𝑞)𝑚−𝑖𝐼𝑚

(
𝑦̂
𝑞𝑖(1 − 𝑞)𝑚−𝑖

𝑝𝑖(1 − 𝑝)𝑚−𝑖

)
, 𝑦̂ > 0. (9)

Next, we characterize solutions to the linear functional equation (9) in the class of inverse
marginal functions and provide conditions for uniqueness.
For a given initial utility function𝑈0 ∈  and associated inverse marginal function 𝐼0 ∈ , the

above auxiliary functions (5) and (6) reduce to

Φ0
0
(𝑦) = 𝐼0(𝑎𝑐𝑦) − 𝑏𝐼0(𝑐𝑦) and Ψ0

0
(𝑦) = 𝑦−logab𝐼0(𝑐𝑦), 𝑦 > 0, (10)

and

Φ
𝑗

𝑖
(𝑦) =

(1 + 𝑏)𝑖

𝑏𝑗

(
∞∑

𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…𝑛𝑖 )𝑏𝑞𝑗;(𝑛1,…𝑛𝑖 ) 𝐼0

(
𝑎𝑟𝑗;(𝑛1,…𝑛𝑖 )+1𝑐𝑖+1𝑦

)

−𝑏

∞∑
𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑏𝑞𝑗;(𝑛1,…,𝑛𝑖 ) 𝐼0
(
𝑎𝑟𝑗;(𝑛1,…,𝑛𝑖 ) 𝑐𝑖+1𝑦

))
,

Ψ
𝑗

𝑖
(𝑦) = 𝑦−log𝑎𝑏

(1 + 𝑏)𝑖

𝑏𝑗

∑∞

𝑛1=0,…,𝑛𝑖=0
(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑏𝑞𝑗;(𝑛1,…,𝑛𝑖 ) 𝐼0

(
𝑎𝑟𝑗;(𝑛1,…,𝑛𝑖 ) 𝑐𝑖+1𝑦

)
,

(11)

for 𝑦 > 0, 𝑖 = 1, … ,𝑚 − 1 and 𝑗 = 0, 1, … , 𝑖, where the exponents are defined as 𝑝(𝑛1,…,𝑛𝑖) =∑𝑖

𝑘=1
𝑛𝑘, 𝑞𝑗;(𝑛1,…,𝑛𝑖) = −

∑𝑗

𝑘=1
𝑛𝑘 +

∑𝑖

𝑘=𝑗+1
𝑛𝑘, and 𝑟𝑗;(𝑛1,…,𝑛𝑖) =

∑𝑗

𝑘=1
𝑛𝑘 −

∑𝑖

𝑘=𝑗+1
(𝑛𝑘 + 1). We

next define the sequence (𝐴𝑖)𝑖=0,…,𝑚, which will play a similar role as {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚, start
by letting 𝐴0 = 0 and then iteratively set

𝐴𝑖+1 =

⎧⎪⎨⎪⎩
𝐴𝑖 + 1 if

(
Φ
𝐴𝑖

𝑖
, Ψ

𝐴𝑖

𝑖

)
satisf ies (𝐶1),

𝐴𝑖 if
(
Φ
𝐴𝑖

𝑖
, Ψ

𝐴𝑖

𝑖

)
satisf ies (𝐶2),

for 𝑖 = 0, …𝑚 − 1. Here in the homogeneous market, we only need to count how many times is
either (𝐶1) or (𝐶2) is satisfied, that is, only the cumulative number of times where the functional
pair (Φ,Ψ) is in case (𝐶1) respectively (𝐶2)matters, the location or order where each condition is
satisfied is irrelevant. This is in contrast to the more general case of heterogenous market param-
eters, where also the instance in time where the pair satisfies either of the conditions needs to be
recorded and influences the definition of the subsequent functional pair.
The following corollary follows directly from Theorem 3.1. It yields a construction method of

the homogeneous setting for an𝑚-forward pair and presents an explicit relationship between the
associated inverse marginal functions, 𝐼0 and 𝐼𝑚.
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14 LIANG et al.

Corollary 3.5. Let 𝑈0 ∈  be a utility function with associated inverse marginal function 𝐼0 and
suppose that (𝐴𝑖)𝑖=0,…,𝑚 exists. Define 𝐼𝑚 ∶ (0,∞) → (0,∞) by

𝐼𝑚(𝑦) ∶=
(1 + 𝑏)𝑚

𝑏𝐴𝑚

∞∑
𝑛1=0,…,𝑛𝑚=0

(−1)𝑝(𝑛1,…,𝑛𝑚)𝑏𝑞𝐴𝑚;(𝑛1,…,𝑛𝑚)𝐼0(𝑎
𝑟𝐴𝑚;(𝑛1,…,𝑛𝑚)𝑐𝑚𝑦), 𝑦 > 0, (12)

and𝑈𝑚 ∶ (0,∞) → (0,∞) by

𝑈𝑚(𝑥) ∶= 𝑈0(1) + 𝔼ℙ

⎡⎢⎢⎣∫
𝑥

𝐼𝑚

(
𝑑ℚ

𝑑ℙ
𝑈′
0
(1)

) 𝐼−1𝑚 (𝑡)𝑑𝑡

⎤⎥⎥⎦, 𝑥 > 0.

Then𝑈𝑚 is the unique utility function solving the inverse investment problem (2) and 𝐼𝑚 is the unique
inverse marginal function solving the linear functional equation (9). Moreover, the optimal wealth
solving (2) is given by

𝑋∗
𝑚(𝑥) = 𝐼𝑚

(
𝑈′

0
(𝑥)

𝑑ℚ

𝑑ℙ

)
.

3.3 Two examples

We close this section with two examples. The first example with a power utility function gener-
alizes Corollary 6.4 in Angoshtari et al. (2020). In the second example, the initial utility function
corresponds to an inverse marginal function that is a sum of two power functions, see also He
et al. (2021) and Geng and Zariphopoulou (2017).

Example 3.6. Let 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, and assume that 1 ≠ 𝜃 > 0, 𝜃 ≠ −log𝑎𝑏. By
applying Theorem 3.1, the unique inverse marginal function and the associated utility function in
the case of heterogeneous market are given by

𝐼𝑚(𝑥) =

𝑚∏
𝑖=1

(
1 + 𝑏𝑖

𝑐𝜃
𝑖
(𝑎−𝜃

𝑖
+ 𝑏𝑖)

)
𝑦−𝜃,

𝑈𝑚(𝑥) =

𝑚∏
𝑖=1

(
1 + 𝑏𝑖

𝑐𝜃
𝑖
(𝑎−𝜃

𝑖
+ 𝑏𝑖)

)1∕𝜃

(1 −
1

𝜃
)−1𝑥

1−
1

𝜃 =

𝑚∏
𝑖=1

(
1 + 𝑏𝑖

𝑐𝜃
𝑖
(𝑎−𝜃

𝑖
+ 𝑏𝑖)

)1∕𝜃

𝑈0(𝑥).

The corresponding optimal investment policy is given by

𝜋𝑖 =
𝑥

𝑢𝑖 − 𝑑𝑖

𝑖∏
𝑘=1

𝛿𝑘𝑃(1,…,𝑖−1)

(
(
𝑝𝑖
𝑞𝑖
)𝜃 − (

1 − 𝑝𝑖
1 − 𝑞𝑖

)𝜃
)
,

where 𝑃(1,…,𝑖−1) =
𝑖−1∏
𝑗=1

((
𝑝𝑗

𝑞𝑗
)𝜃𝟙{𝑆𝑗>𝑆𝑗−1} + (

1−𝑝𝑗

1−𝑞𝑗
)𝜃𝟙{𝑆𝑗<𝑆𝑗−1}), and 𝛿𝑘 =

1+𝑏𝑘

𝑐𝜃
𝑘
(𝑎−𝜃

𝑘
+𝑏𝑘)

.
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LIANG et al. 15

Example 3.7. Let𝑈0(𝑥) =
2
1
𝜃
−1

(1−
1

𝜃
)(2−

1

𝜃
)
(
√
4𝑥 + 1 − 1)

1−
1

𝜃 ((1 −
1

𝜃
)
√
4𝑥 + 1 + 1), 𝑥 > 0, and assume

that 𝜃 ≠ 1 and 𝜃 > max
𝑖=1,…,𝑚

−logai
bi or 𝜃 < min

𝑖=1,…,𝑚
−

1

2
logai

bi. The marginal and inverse marginal of

the initial datum can be, respectively, computed by

𝑈′
0
(𝑥) =

(√
4𝑥 + 1 − 1

2

)−
1

𝜃

, 𝑥 > 0

𝐼0(𝑦) = (𝑈′
0
)−1(𝑦) = 𝑦−𝜃 + 𝑦−2𝜃, 𝑦 > 0,

One can easily argue that the sequence {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists under the assumption on 𝜃 and
that 𝑎𝑖 ≠ 1, 𝑖 = 1, … ,𝑚. Indeed, (Φ(𝛼1,…,𝛼𝑖)

𝑖
, Ψ

(𝛼1,…,𝛼𝑖)

𝑖
) satisfies (𝐶1) when 𝑎𝑖 > 1 and 𝜃 > −logai

bi

or 𝑎𝑖 < 1 and 𝜃 < −
1

2
logai

bi, (Φ
(𝛼1,…,𝛼𝑖)

𝑖
, Ψ

(𝛼1,…,𝛼𝑖)

𝑖
) satisfies (𝐶2) when 𝑎𝑖 > 1 and 𝜃 > −logai

bi or

𝑎𝑖 < 1 and 𝜃 < −
1

2
logai

bi.Moreover,wenote that the sequence {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 always exists for
any 1 ≠ 𝜃 > 0 if logaibi > 0, 𝑖 = 1, … ,𝑚. By Theorem 3.1, the unique𝑚-forward inverse marginal
function in the case of heterogeneous market is then given by

𝐼𝑚(𝑦) =

𝑚∏
𝑗=1

𝛿
(1)
𝑗
𝑦−𝜃 +

𝑚∏
𝑗=1

𝛿
(2)
𝑗
𝑦−2𝜃,

where 𝛿
(1)
𝑗

=
1+𝑏𝑗

𝑐𝜃
𝑗
(𝑎−𝜃

𝑗
+𝑏𝑗)

, 𝛿
(2)
𝑗

=
1+𝑏𝑗

𝑐2𝜃
𝑗
(𝑎−2𝜃

𝑗
+𝑏𝑗)

, and the corresponding unique 𝑚-forward utility

function is given by

𝑈𝑚(𝑥) =

2
1

𝜃
−1

𝑚∏
𝑗=1

(
𝛿
(2)
𝑗

) 1

𝜃
−1

(
1 −

1

𝜃

)(
2 −

1

𝜃

) ⎛⎜⎜⎝
√√√√4

𝑚∏
𝑗=1

𝛿
(2)
𝑗
𝑥 +

𝑚∏
𝑗=1

(
𝛿
(1)
𝑗

)2
−

𝑚∏
𝑗=1

𝛿
(1)
𝑗

⎞⎟⎟⎠
1−

1

𝜃

×

⎛⎜⎜⎝
(
1 −

1

𝜃

)√√√√4

𝑚∏
𝑗=1

𝛿
(2)
𝑗
𝑥 +

𝑚∏
𝑗=1

(
𝛿
(1)
𝑗

)2
+

𝑚∏
𝑗=1

𝛿
(1)
𝑗

⎞⎟⎟⎠,
with the optimal investment policy given by

𝜋𝑖 =

√
4𝑥 + 1 − 1

2(𝑢𝑖 − 𝑑𝑖)

(
𝑚∏
𝑗=1

𝛿
(1)
𝑗
𝑃(1,…,𝑖−1)

((
𝑝𝑖
𝑞𝑖

)𝜃

−

(
1 − 𝑝𝑖
1 − 𝑞𝑖

)𝜃
)

+

(√
4𝑥 + 1 − 1

2

)
𝑚∏
𝑗=1

𝛿
(2)
𝑗
𝑃
(2)

(1,…,𝑖−1)

((
𝑝𝑖
𝑞𝑖

)2𝜃

−

(
1 − 𝑝𝑖
1 − 𝑞𝑖

)2𝜃
))

,

where 𝑃(2)

(1,…,𝑖−1)
=

𝑖−1∏
𝑗=1

((
𝑝𝑗

𝑞𝑗
)2𝜃𝟙{𝑆𝑗>𝑆𝑗−1} + (

1−𝑝𝑗

1−𝑞𝑗
)2𝜃𝟙{𝑆𝑗<𝑆𝑗−1}).

Remark 3.8. We further illustrate the independence of optimal strategies on future parameters. For
this sake, we compute the 𝑚-forward utility and the corresponding optimal investment under a
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16 LIANG et al.

market setup consisting of two trading periods, note that here we only consider the case of𝑚 = 2

to avoid complicated permutations of model parameters. We denote the market parameters by
{(𝑝𝑖, 𝑢𝑖, 𝑑𝑖)}

2
𝑖=1

and the 2-forward inversemarginal by 𝐼2(𝑦).We further setmarket parameters such
that 𝑞1 = 𝑞2 = 𝑞 < 𝑝1 < 𝑝2, where 𝑞𝑖 =

1−𝑑𝑖

𝑢𝑖−𝑑𝑖
, 𝑖 = 1, 2 are the associated risk-neutral probabilities

for period [𝑖 − 1, 𝑖). This implies a worse market for the first period and a better market for the
second period.
Let 𝛿

(1)
1

=
1

𝑝𝜃
1
𝑞1−𝜃+(1−𝑝1)𝜃(1−𝑞)1−𝜃

, 𝛿
(2)
1

=
1

𝑝2𝜃
1
𝑞1−2𝜃+(1−𝑝1)2𝜃(1−𝑞)1−2𝜃

, 𝛿
(1)
2

=
1

𝑝𝜃
2
𝑞1−𝜃+(1−𝑝2)𝜃(1−𝑞)1−𝜃

,

and 𝛿
(2)
2

=
1

𝑝2𝜃
2
𝑞1−2𝜃+(1−𝑝2)2𝜃(1−𝑞)1−2𝜃

. By Theorem 3.1, one can derive that 𝐼2(𝑦) = 𝛿
(1)
1
𝛿
(1)
2
𝑦−𝜃 +

𝛿
(2)
1
𝛿
(2)
2
𝑦−2𝜃, and the optimal strategy for trading period [0,1) is given by

𝜋∗
1
(𝑥) =

1

𝑢1 − 𝑑1

((
𝑈′

0
(𝑥)

)−𝜃
𝛿
(1)

1

((
𝑝1

𝑞

)𝜃

−

(
1 − 𝑝1

1 − 𝑞

)𝜃
)

+ (𝑈′
0
(𝑥))−2𝜃𝛿

(2)

1

((
𝑝1

𝑞

)2𝜃

−

(
1 − 𝑝1

1 − 𝑞

)2𝜃
))

,

Conforming with the implications of Proposition 3.4, the optimal strategy depends only on the
market information of the first period and do not make use of the information about future
market parameters.
To further highlight the myopic nature of forward optimal policies, we compare it with the

classical, backward setting considering𝑈0 as a utility from terminalwealth. The associated inverse
marginal at time 𝑡 = 2 is given by 𝐼0(𝑦) = 𝑦−𝜃 + 𝑦−2𝜃. We readily obtain the optimal strategy for
the backward setting and find that

𝜋∗
1(𝑥) =

1

𝑢1 − 𝑑1

(
(𝑈′

0(𝑥))
−𝜃 1

𝛿
(1)

2

((
𝑝1

𝑞

)𝜃

−

(
1 − 𝑝1

1 − 𝑞

)𝜃
)

+ (𝑈′
0(𝑥))

−2𝜃 1

𝛿
(2)

2

((
𝑝1

𝑞

)2𝜃

−

(
1 − 𝑝1

1 − 𝑞

)2𝜃
))

,

We observe that 𝜋∗
1
(𝑥) then depends on the associated future parameters, 𝛿(1)

2
and 𝛿

(2)
2
, of the

second period.

4 APPLICATION TO AUTOMATED TRADING

Trading is increasingly automated and contains only little human involvement and oversight. For
example, as documented in Bloomberg,1 algorithmic trading accounts for around 60%–73% of all
U.S. equity trading. Much of the literature has focused on the aggregated market impact of auto-
mated trading and the design of such computer based strategies with the aim of minimizing the
overall market impact cost, reducing transaction cost and the exposure to timing risk, and self-
adjusting to current market conditions (see, e.g., Chaboud et al. (2014), Menkveld (2013), and
Fabozzi et al. (2010)). Herein, we cover an aspect of automated trading that is new to the best of
our knowledge: We study a setting where a human expert periodically updates her assessment of
market parameters as inputs for a trading algorithm. In between those updates, trading is auto-
mated. The key question we aim to study is how frequently interaction between human expert
and machine trader should occur when assessing the market is costly for the expert.
We consider a human expert operating an ATS. The expert periodically assesses the market

and updates market parameters as inputs to the ATS. After an initial input of preferences and
model for the market, the ATS trades automatically on behalf of and in the best interests of the
expert until the next interaction time with the expert. At each interaction, the expert updates her
assessment of the market and communicates the updated market parameters to the ATS, which
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LIANG et al. 17

then continues investing on behalf of the expert until the next point of contact. This procedure
goes on indefinitely. Gathering information and assessing the market are costly, and the expert
thus faces a trade-off between the ATS operating on an outdated model for the market and the
costs associated with frequently updating the model.
The setting outlined above can formally be described as follows. At time zero, the expert com-

municates her initial preferences in terms of a utility function 𝑈0, her assessment of market
parameters (𝑝1, 𝑢1, 𝑑1), and the intended interaction schedule 𝑚 ∈ ℕ. The ATS then determines
the𝑚-forward according to the constructionwe provided in Section 3 and trades period-by-period
on behalf of the expert assuming that the model parameters for the entire investment period up
to time𝑚 is given by (𝑝1, 𝑢1, 𝑑1).
The expert reassesses the market whenever she interacts with the ATS. This results in new,

accurate model parameters (𝑝, 𝑢, 𝑑) but also imposes a cost to the expert reflecting the time and
effort to newly calibrate the model and interacting with the ATS. We herein suppose that 𝑢 and 𝑑
do not vary over time, and the expert thus only needs to reassess the probability 𝑝 for an upward
movement of the stock. We further suppose that the cost is proportional to the expert’s current
wealth in the following sense: Whenever the expert interacts with the ATS, her wealth is reduced
from 𝑥 to 𝛼𝑥 for some 0 < 𝛼 ≤ 1.
On the one hand, when the expert interacts with the ATS infrequently, she saves on the interac-

tion cost but faces the risk that the ATS trades based on amodel with outdatedmarket parameters.
On the other hand, when the expert interacts with the ATS very frequently, the ATS will trade
based on an accurate model for the market but the expert incurs a heavy interaction cost. The
expert thus attempts to balance a tradeoff between interaction cost and accuracy of the model
parameters serving as input to the ATS. In order to evaluate the performance of alternative inter-
action schedules, we consider an investment horizon𝑇 and denote byℙ(1) the probabilitymeasure
where market parameters are updated in each period. The operator 𝔼(1) denotes the expectation
under ℙ(1) and by 𝑈(1) the 1-forward process. The performance of an interaction schedule corre-
sponding to an evaluation period length𝑚 < 𝑇 is given by𝔼(1)[𝑈

(1)
𝑇
(𝑋

(𝑚)
𝑇

)], where optimal wealth
𝑋(𝑚) corresponds to the𝑚-forward process after transaction costs.
In the following, we study two approaches of determining the optimal interaction schedule𝑚∗:

a robust approach and a specific examplewhere the updating rule is described by amaximum like-
lihood estimator. We focus on an initial datum belonging to the CRRA family of utility functions.
On the one hand, this leads to more tractable results. We know from our earlier discussion in Sec-
tion 3 that Theorem 3.1 applies unless 𝜃 = − log𝑎 𝑏. In this special case, all we lose is uniqueness
of the solution and we can in particular still apply Theorem 3.1.

4.1 Optimal interaction schedule under robust approach

We first consider a robust approach and seek to derive bounds on 𝔼(1)[𝑈
(1)
𝑇
(𝑋

(𝑚)
𝑇

)] which hold
under any predictable updating rule within a certain class. Specifically, we consider transition
probabilities given in reference to the initial probability 𝑝 by 𝑝𝑖 = 𝐷𝑖𝑝, where 𝐷𝑖 is a 𝑖−1-
measurable randomvariable and can take any value in the interval [𝐷𝑖,𝑑, 𝐷𝑖,𝑢]. The interval bounds
𝐷𝑖,𝑑 and𝐷𝑖,𝑢 are some constants satisfying 0 < 𝐷𝑖,𝑑 ≤ 1 ≤ 𝐷𝑖,𝑢 and depend on the choice of interac-
tion schedule𝑚. Tomaintain absence of arbitrage, wemust have 0 < 𝑝𝑖 < 1, and it is thus without
loss of generality that 𝐷𝑖 takes values in a bounded interval.
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18 LIANG et al.

It seems plausible to assume that 𝐷𝑖,𝑢 increases and 𝐷𝑖,𝑢 decreases over time in any evaluation
period (𝑘𝑚, (𝑘 + 1)𝑚], 𝑘 ∈ ℕ0, and then resets to a smaller level at the beginning of next period
after a new interaction between human expert and theATS. Indeed, this reflects the intuition that,
as time since last calibrating the model passes, the expert becomes more uncertain about model
parameters. We model this behavior by assuming periodicity on 𝐷𝑖,𝑢 and 𝐷𝑖,𝑑 in the interaction
schedule𝑚, that is, denoting bymod themodulo operator,𝐷𝑖,𝑑 = 𝐷̃(𝑖mod𝑚),𝑑 and𝐷𝑖,𝑢 = 𝐷̃(𝑖mod𝑚),𝑢,
for 𝑖 = 1, … , 𝑇, for exogenously given sequences (𝐷̃𝑖,𝑑)

𝑇
𝑖=1

and (𝐷̃𝑖,𝑢)
𝑇
𝑖=1

satisfying that 𝐷̃𝑖,𝑢 − 𝐷̃𝑖,𝑑 is
increasing in 𝑖 = 1, … , 𝑇. We also assume that 𝐷̃1,𝑢 = 𝐷̃1,𝑑 = 1, corresponding to accurate market
parameters at any time there is an interaction.

Proposition 4.1. Suppose that the initial datum is of the form 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, for
some 1 ≠ 𝜃 > 0, and let 𝑇 ∈ ℕ be an evaluation horizon. Let𝑚 be an interaction schedule that is a
divisor of 𝑇, that is,𝑚 ∈ ℕ and 𝑇∕𝑚 ∈ ℕ, and let (𝐷𝑖)𝑖=1,…,𝑇 be a predictable process taking values
in [𝐷𝑖,𝑑, 𝐷𝑖,𝑢], where𝐷𝑖,𝑑 and𝐷𝑖,𝑢 satisfy the assumption of periodicity in the interaction schedule𝑚
and are such that absence of arbitrage is maintained. Then, the optimal expected performance value
𝔼(1)[𝑈

(1)
𝑇
(𝑋

(𝑚)
𝑇

)] lies in

⎡⎢⎢⎢⎣𝛼
(
𝑇

𝑚
−1)(1−

1

𝜃
)

(
𝑚∏
𝑗=1

𝑓𝑗

) 𝑇

𝑚

𝛿
𝑇(1−

1

𝜃
)
𝑈0(𝑥), 𝛼

(
𝑇

𝑚
−1)(1−

1

𝜃
)
𝑈0(𝑥)

⎤⎥⎥⎥⎦,
where 1 − 𝛼 denotes the proportional interaction cost and 𝑓𝑗 are given by 𝑓1 = 𝛿

1

𝜃
−1 and 𝑓𝑗 =

min{𝑓𝐷𝑗,𝑢
, 𝑓𝐷𝑗,𝑑

} if 𝜃 > 1, respectively 𝑓𝑗 = max{𝑓𝐷𝑗,𝑢
, 𝑓𝐷𝑗,𝑑

} if 𝜃 < 1, with

𝑓𝐷𝑗,𝑢
=

𝐶1(
𝐶1 +

(
𝐷𝑗,𝑢(1−𝑝)

1−𝐷𝑗,𝑢𝑝

)−𝜃

𝐶2

) 1

𝜃

+
𝐶2((

𝐷𝑗,𝑢(1−𝑝)

1−𝐷𝑗,𝑢𝑝

)𝜃

𝐶1 + 𝐶2

) 1

𝜃

,

𝑓𝐷𝑗,𝑑
=

𝐶1(
𝐶1 +

(
𝐷𝑗,𝑑(1−𝑝)

1−𝐷𝑗,𝑑𝑝

)−𝜃

𝐶2

) 1

𝜃

+
𝐶2((

𝐷𝑗,𝑑(1−𝑝)

1−𝐷𝑗,𝑑𝑝

)𝜃

𝐶1 + 𝐶2

) 1

𝜃

,

where 𝐶1 = 𝑝𝜃𝑞1−𝜃 , 𝐶2 = (1 − 𝑝)𝜃(1 − 𝑞)1−𝜃 , and 𝑗 = 2,… ,𝑚. Furthermore, 𝑓𝑗 is non-increasing
in 𝐷𝑗,𝑢 and non-decreasing in 𝐷𝑗,𝑑 .

The following proposition shows that the optimal interaction schedule 𝑚∗ is independent
of the evaluation horizon 𝑇 when the trader takes a robust approach of maximizing the mini-
mal expected performance and the sequence of intervals [𝐷𝑖,𝑑, 𝐷𝑖,𝑢], 𝑖 = 1, 2, … , 𝑇 is periodic as
assumed above.

Proposition 4.2. Suppose that the initial datum is of the form 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, for
some 1 ≠ 𝜃 > 0. Let 𝑇 ∈ ℕ be an evaluation horizon, and let (𝐷𝑖,𝑑)

∞
𝑖=1

and (𝐷𝑖,𝑢)
∞
𝑖=1

be periodic in
the interaction schedule and such that absence of arbitrage is maintained. There exists an optimal
updating schedule𝑚∗ maximizing the minimal expected performance for any 𝑇 which is a multiple
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LIANG et al. 19

of𝑚∗. Moreover, the optimal interaction schedule𝑚∗ can be determined by maximizing the function
ℕ → ℝ given by

𝑚 ↦

(
𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚

. (13)

According to Proposition 4.2, the optimal interaction schedule 𝑚∗ depends on the market
parameters 𝑝, 𝑢, and 𝑑, the (constant) Arrow-Pratt measure of relative risk aversion 1∕𝜃 of the
initial datum of a trader, and the uncertainty about the evolution of future market performance
captured in the sequences 𝐷𝑖,𝑑 and 𝐷𝑖,𝑢, but not on the evaluation horizon 𝑇. In practice, at time
zero, the expert chooses 𝑚∗ based on the current understanding of the market. At the subse-
quent interaction time, market parameters are updated, and a new optimal interaction schedule
is being chosen. Therefore,market parameters, updating frequencies, preferences, and investment
strategies move together forward in time.
Suppose for the following discussion that 𝜃 > 1, the case where 𝜃 < 1 can be treated similarly.

Since 𝑓𝑗𝛿
1−

1

𝜃 ∈ (0, 1], the term
𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ) is decreasing in𝑚. On the other hand, the base which

belongs to (0,1] raised to the power 1∕𝑚 is increasing in 𝑚. Hence, there are two extreme cases:

First, when the rate of decline in 𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ) is very slow, that is, when the probability for a

positive return hardly varies over different periods, then (13) is strictly increasing in𝑚. In this case,
the strategy of never interacting is optimal,𝑚∗ tends to +∞. Second, when the rate of decline in

𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ) is very fast, that is, when 𝑝𝑖 changes substantially across periods and the updat-

ing cost is small, then (13) is strictly decreasing in𝑚. In this case, the strategy of period-by-period
updating is optimal, that is,𝑚∗ = 1. As we discussed earlier, the rate of decline is typically slow at
first and then increases asmore time elapsed since the last interaction time as a consequence of the
increasing width 𝐷𝑖,𝑢 − 𝐷𝑖,𝑑. Also, the rate of decline in 1∕𝑚 is strictly decreasing, which implies
that the degree of growth resulted from the decreasing exponent is weakening as 𝑚 increases. If
this is the case, we are typically able to determine a unique optimal interaction time𝑚∗ which is
larger than one.
Intuitively, 𝑚∗ is increasing in the interaction cost and decreasing in the uncertainty about

parameters. These are the two competing forces in our model, and 𝑚∗ attempts to find an ideal
balance between them. In the following, we will confirm this intuition. We retain the assumption
that the sequence of intervals [𝐷𝑖,𝑑, 𝐷𝑖,𝑢] is periodic and consider the case where 𝜃 > 1.
First, from the above analysis one can directly infer that𝑚∗ is increasing in the interaction cost.

Indeed, when 𝛼 decreases, the rate of decline in 𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ) is slower and the optimal 𝑚∗

that maximizes (13) will thus be larger. This implies that the expert should interact less frequently
with the ATS if interaction comes at a high cost.
Second, 𝑚∗ is typically decreasing in the uncertainty about parameters. In other words, one

should update more frequently when there is a larger range of possible values for the transi-
tion probability, while it is better to update less frequently when the parameter is stable and
we can estimate it with more confidence. To substantiate this intuition, we consider a uniform
increase of uncertainty and approximate it by the case where all factors 𝑓𝑗, 𝑗 = 2,… ,𝑚 simulta-
neously decrease to 𝑓′

𝑗
= 𝐶𝑓𝑗 , 𝑗 = 2,… ,𝑚, with the same constant𝐶 < 1, but 𝑓′

1
= 𝑓1. The rate of

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12408 by T
est, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 LIANG et al.

decline in 𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓′
𝑗
𝛿
1−

1

𝜃 ) becomes quicker than 𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ), hence 𝑚∗ that maximizes

(13) will be smaller. Moreover, consider any two alternative interaction schedules𝑚1 < 𝑚2 where
𝑚1 outperforms𝑚2 before the increase in uncertainty, that is,

(
𝛼
1−

1

𝜃

𝑚1∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚1

>

(
𝛼
1−

1

𝜃

𝑚2∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚2

. (14)

Since 1

𝑚1

>
1

𝑚2

and 𝐶
1−

1

𝑚1 > 𝐶
1−

1

𝑚2 , we then also have

(
𝛼
1−

1

𝜃 𝐶𝑚1−1

𝑚1∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚1

= 𝐶
1−

1

𝑚1

(
𝛼
1−

1

𝜃

𝑚1∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚1

>𝐶
1−

1

𝑚2

(
𝛼
1−

1

𝜃

𝑚2∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚2

=

(
𝛼
1−

1

𝜃 𝐶𝑚2−1

𝑚2∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 1

𝑚2

,

which means that an infrequent schedule 𝑚2 cannot perform better than 𝑚1 after uncertainty
increases uniformly.
However, one needs to be more careful when the increase of uncertainty is not uniform. For

example, suppose that only the 𝑘th interval after every updating becomes wider, 𝐷′
𝑘,𝑢

− 𝐷′
𝑘,𝑑

>

𝐷𝑘,𝑢 − 𝐷𝑘,𝑑, and all other parameters remain constant. The original 𝑓𝑘 is reduced to a smaller
𝑓′
𝑘
by the last statement of Proposition 4.1. We investigate whether 𝑚2 can outperform 𝑚1 after

the increase in three distinct cases: First, when 𝑘 > 𝑚2, (14) is not affected. Second, when 𝑚1 <

𝑘 ≤ 𝑚2, the performance of schedule 𝑚1 does not change, while the the performance of sched-
ule 𝑚2 decreases, and thus 𝑚1 still leads to a better performance. However, in the third case:
𝑘 ≤ 𝑚1, we might have the opposite inequality, that is, 𝑚2 outperforms 𝑚1 after an increase in
uncertainty. This happens because with lower interaction frequency, we can have less updating
cost when its effect on the minimal expected performance is significant. More importantly, if𝐷′

𝑘,𝑢
becomes closer to 𝐷𝑘+1,𝑢 such that the benefit one can get from the updating is small, then there
is no need to update immediately. Therefore, we should not only just focus on the increasing loss
incurred from deviation from the actual parameter, but also take the updating frequency and cost
into consideration.
We close this section with two numerical examples. Themarket parameters of the first example

for the table below are given by 𝑝 = 0.6, 𝑢 = 1.2, 𝑑 = 0.8, the constant relative risk aversion of
the initial datum is 𝜃 = 5, the interaction cost is 0.2%, and the bounds for the updating of future
probabilities are given by 𝐷𝑖,𝑑 = 𝐷

mod(𝑖−1,𝑚)

𝑑
, 𝐷𝑖,𝑢 = 𝐷

mod(𝑖−1,𝑚)
𝑢 , 𝑖 ∈ {1, 2, … , 𝑇}, where 𝐷𝑑 = 0.99,

𝐷𝑢 = 1.01.
Conforming with Proposition 4.2, Table 1 shows that the optimal interaction frequencies are

independent of the evaluation horizon 𝑇. While the minimal expected performance, MEP in the
table, is decreasing over 𝑇 because losses in expected performance from both interaction and not
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LIANG et al. 21

TABLE 1 Minimal expected performance at time 𝑇 for different interaction schedules.

𝑻 = 𝟏𝟐 𝒎 1 2 3 4 6 12
MEP 0.98 0.991 0.993 0.991 0.98 0.93

𝑇 = 24 𝑚 1 2 3 4 6 8 12 24
MEP 0.96 0.981 0.984 0.981 0.96 0.94 0.85 0.48

𝑇 = 48 𝑚 1 2 3 4 6 8 12 16 24 48
MEP 0.93 0.96 0.97 0.96 0.93 0.88 0.73 0.55 0.23 0.003

Note: TheMEP (minimal expected performance) presented above is re-scaled by dividing it by𝑈0(𝑥).We only update at frequencies
1∕𝑚 where𝑚 is a divisor of 𝑇.

F IGURE 1 Optimal interaction schedule𝑚∗ computed with different market parameters. [Color figure can
be viewed at wileyonlinelibrary.com]

updating timely are accumulating as time elapses, the optimal interaction schedule𝑚∗ exists and
is universal for any evaluation horizon 𝑇. We can also infer that the minimal expected perfor-
mance is first increasing and then decreasing with respect to 𝑚. This demonstrates the tradeoff
between updating cost and deviation from actual parameter due to not updating on the system
in time.
In the second example, we investigate the impact of increasing risk aversion on the optimal

interaction schedule 𝑚∗. There are two distinct cases. Figure 1 visualizes how the optimal inter-
action schedule 𝑚∗ depends on the client’s risk preference parameter 𝜃 > 1 and the difference
between 𝑝 and 𝑞 when 𝐷𝑑 = 0.99, 𝐷𝑢 = 1.01.
In the first case, when |𝑝 − 𝑞| or 𝜃 is large enough, we observe that a more risk averse expert

is interacting more frequently with the ATS than a less risk averse expert. However, in the
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22 LIANG et al.

second case where 𝑝 is close to 𝑞, or when the expert is already extremely risk-averse, we make
the opposite observation that the expert decreases her interaction frequency as she becomesmore
risk-averse. This is because, in this case, the investment in the risky asset is very low, and the
updating of the probability for a positive outcome does not lead to a significant change in opti-
mal investment strategies. This situation is especially likely to occur when, at the same time, the
updating cost plays a relevantly important role in determining the optimal interaction schedule.
Furthermore, we observe from all the first three heat maps that, as 𝜃 increases, or equivalently
risk aversion decreases, the region where the optimal interaction schedule increases as the expert
becomes more risk averse becomes narrower around the region where 𝑝 = 𝑞. The influence of
the interaction cost on the width of this region depends on two competing forces. First, since
the expert prefers interacting less frequently when faced with higher interaction cost as argued
above, the set of (𝜃, 𝑝)-combinations leading to an optimal interaction schedule𝑚∗ that is smaller
than the evaluation horizon (the areas of a color other than yellow in the heat map) are reduced
to an increasingly narrow band around the value 𝑝 = 𝑞 as interaction cost increases. However,
the widthmight also become larger as the interaction cost grows in situations where the loss from
each interaction outweighs the benefit of accurate knowledge about themodel parameters. There-
fore, the region where the optimal interaction schedule increases as the expert becomesmore risk
averse does not grow monotonically in the interaction cost as shown in Figure 1.

4.2 Optimal interaction schedule for the maximum likelihood
estimator for positive return probability

In this subsection, we study an explicit updating rule where the expert assesses probabilities for
a positive return of the stock 𝑝𝑡, 𝑡 ∈ ℕ according to the maximum likelihood estimators given
past information. By assuming that 𝑝𝑡+1 = 𝔼[𝐵𝑡+1|𝑡] for all 𝑡, where (𝐵𝑡)𝑡∈ℕ is the sequence of
Bernoulli random variables associated with the stock price process, we are able to define the cor-
responding maximum likelihood estimators. Specifically, suppose that there are 𝑁 observations
about the past performances of risky asset at time zero, and that the stock achieves a positive
return𝑁𝑢 times. The maximum likelihood estimator for an upward move of the stock in the first
period [0,1) is thus given by 𝑝1 =

𝑁𝑢

𝑁
, in the second period [1,2) by

𝑝2 =
𝑁𝑝1 + 1

𝑁 + 1
𝟙{𝑅1=𝑢} +

𝑁𝑝1
𝑁 + 1

𝟙{𝑅1=𝑑} (15)

and so forth. Let 𝑁𝑢
𝑡 represent the process of total number of positive returns of the stock from

time 0 until time 𝑡 starting from 𝑁𝑢
0
= 0. We then have for 𝑡 = 1, 2, 3, … ,𝑚 − 1,

𝑝𝑡+1 =
𝑁𝑝1 + 𝑁𝑢

𝑡

𝑁 + 𝑡
, 1 − 𝑝𝑡+1 =

𝑁(1 − 𝑝1) + 𝑡 − 𝑁𝑢
𝑡

𝑁 + 𝑡
. (16)

As in the previous section, we seek to determine an interaction schedule that represents an opti-
mal trade-off between loss in performance value due to the deviation from the actual assessment
of the market and the updating cost occurring whenever the expert assesses and communi-
cates market parameters. We limit our analysis on a numerical example comparing two settings
where the initial assessments of 𝑝1 are identical, but one is based on a larger number of past
observations than the other. The parameter values for this example are 𝑢 = 1.3, 𝑑 = 0.8, 𝜃 = 3,
𝑚 ∈ {1, 2, 3, 4, 6, 12} which are the factors of 𝑇 = 12. We again consider an initial utility function
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LIANG et al. 23

F IGURE 2 Numerical example of finding optimal updating frequency for terminal expected utility
𝔼1[𝑈

(1)
𝑇 (𝑋

(𝑚)
𝑇 )] at 𝑇 = 12. [Color figure can be viewed at wileyonlinelibrary.com]

of the form 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, a proportional interaction cost set to 𝛼 = 0.4%, and
suppose that the initial wealth is 𝑋0 = 9′960 corresponding to an initial wealth of 10′000 minus
the interaction cost. We perform 108 simulations to compute all involved expected values.
Figure 2 shows the optimal interaction schedule 𝑚∗ at which the expected performance is

maximal. We observe that the expected performance is first increasing and then decreasing as
a function of the interaction schedule 𝑚. This is what we expect: On the one hand, if the expert
interacts with the ATS too frequently, the loss due to the interaction cost dominates. But, on the
other hand, if there are too few interactions and updates in parameters are not communicated to
the ATS in a timely manner, the loss due to inaccurate model parameters dominates.
The blue and red scenarios correspond to settings where we have more (blue), respectively less

(red), prior observations of the stock performance.Whenwe have a large number of prior observa-
tions, our assessment of the probability of an upwardmovement is less susceptible to a single new
observation than when we have fewer observations. This translates to a larger interaction sched-
ule𝑚 being optimal, since it becomes less important to immediately adjust to updated assessment
of the market on the system.

5 ROBO-ADVISING APPLICATIONS

Personalized robo-advisors provide automatized advice on asset allocation and investment strate-
gies. They provide wealth management services for large number of clients and at lower cost
than traditional financial advisors. Robo-advising companies constitute a rapidly growing part
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24 LIANG et al.

TABLE 2 Comparison of main features with key literature.

Performance
criterion

Investment
horizon

Market
model

Capponi
et al.
(2022)

Mean-variance with
exogeneous
updating of risk
aversion

finite, set ex
ante

discrete-time

Cui et al.
(2022)

Mean-variance
induced utility
maximization

finite, set ex
ante

discrete-time

Dai et al.
(2021b)

Mean-variance for
log returns

finite, set ex
ante

continuous-
time

This paper 𝑚-forward process,
endogeneous
updating of
preferences

flexible discrete-time

of the financial industry and are a prime example of FinTech, the application of technology
to improve financial services. In this section, we propose and discuss discrete-time predictable
forward performance processes as a potential framework for guiding asset allocation decisions
of robo-advisors.

5.1 Preference modeling for robo-advising applications

Although robo-advising has rapidly grown in popularity over the last decade and now constitutes
an important segment of modern investment industry, there is surprisingly little existing research
on preference modeling for robo-advising applications and on the quantitative modeling of asset
allocation decisions within those systems. Capponi et al. (2022) and Cui et al. (2022) were the
first papers discussing the portfolio optimization part of robo-advisors quantitatively. While Cap-
poni et al. (2022) proposed an adaptive mean-variance control model with updating of the risk
aversion for deriving optimal allocation policies, Cui et al. (2022) considered the framework of
mean-variance induced utility functions and argued that this approach has several desirable fea-
tures from the perspective of robo-advisors. A further important study is Dai et al. (2021b) who
consider the mean-variance objective for log returns introduced in Dai et al. (2021a), and provide
an explicit formula for eliciting preferences in this setting. A comparison of the key features of
asset allocation models for robo-advising is given in Table 2.
The work of Capponi et al. (2022) is most closely related to our paper and inspired many of the

ideas we will subsequently discuss. In their model, the market dynamics depends on an observ-
able time-homogeneous Markov chain representing economic regimes. Preferences of the agent
aremodeled according to amulti-periodmean-variance objectivewith a finite investment horizon.
A key feature of their model is that the risk preferences of the agent are dynamic and stochastic.
However, the robo-advisor cannot observe the risk preferences of the agent at all times and thus
has to construct a proxy risk aversion process which is then used in the dynamic mean-variance
optimization problem. Only at times when the client and robo-advisor interact will the latter
become aware of the idiosyncratic component of the client’s risk preferences. Since interaction
times occur at a slower pace than trading times, the robo-advisor needs to automatically construct
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LIANG et al. 25

a proxy for the risk preferences of the agent and trades on her behalf between two consecutive
interaction times.
The setting where trading occurs at a higher frequency than performance measurement updat-

ing is reminiscent of the framework of 𝑚-forward processes we study herein and thus prompted
us to explore possible applications of our results to robo-advising. Building on the basic features of
the model studied in Capponi et al. (2022), we study the interaction between a robo-advisor that
is in charge of trading and at all times informed about the market parameters and a human client
with stochastic, time-varying preferences.
Specifically, we consider a binomial tree model for the financial market as outlined in Section 2

and suppose that the robo-advisor has accurate knowledge of𝑖−1-measurablemarket parameters
(𝑢𝑖, 𝑑𝑖, 𝑝𝑖) for each trading period [𝑖 − 1, 𝑖). The preferences of the human client are described by
a random utility process 𝑈𝐶

𝑖
(𝑥, 𝜔), 𝑖 ∈ ℕ0, but the robo-advisor only knows these preferences at

times when there is an interaction with the client.
In an ideal world, the robo-advisor would know the preferences of the agent at each point in

time. In this case, at every time 𝑖, the robo-advisor solves a 1-period forward problem based on
the initial utility 𝑈𝐶

𝑖
and current market (𝑢𝑖, 𝑑𝑖, 𝑝𝑖) resulting in a strategy 𝜋𝐼

𝑖
(𝑥) for given wealth

𝑋𝑖−1 = 𝑥. However, in the real world, the client will not spend too much time and energy inter-
acting with the robo-advisor, and there are thus times where the robo-advisor does not know the
current preferences of the client.
At time zero, after setting up an account, the client communicates her initial preferences and

her interaction schedule to the robo-advisor and agrees on the assessment of market parameters
provided by robo-advisor. We suppose that the robo-advisor, while not knowing the current pref-
erences of the client, acts in the best interest of the client and updates preferences according to
a forward performance process. This assures that investment is consistent with the initial pref-
erences and the last assessment of the financial market approved by the client. The robo-advisor
thus determines the forward process according to the scheme developed in Section 3 and invests
period-by-period until the next interaction with the client.
We assume that client and robo-advisor only interact at times 𝑘𝑚, 𝑘 ∈ ℕ0. At each interaction

time, the robo-advisor takes 𝑈𝐶
𝑘𝑚

and current market parameters (𝑢𝑘𝑚, 𝑑𝑘𝑚, 𝑝𝑘𝑚) as inputs and
determines the𝑚-forward 𝑈𝑚𝐹

(𝑘+1)𝑚
computed with time-homogeneous parameters together with

the strategy profile 𝜋𝑚𝐹
𝑡 for 𝑡 = 𝑘𝑚 + 1,… , (𝑘 + 1)𝑚.

In our setting, there thus results in an ideal strategy profile 𝜋𝐼 and the actual strategy profile
𝜋𝑚𝐹 implemented by the robo-advisor. Our goal is to control the diversion between the two by
choosing an optimal interaction schedule. To this end, we define the first time where the scaled
absolute deviation between 𝜋𝐼 and 𝜋𝑚𝐹 exceeds a certain value

𝑚𝜅 = min

{
𝑚 ∈ ℕ

|||| max
𝓁∈{1,…,𝑚}

sup
𝑥≥0

||||||
𝜋𝐼
𝓁
(𝑥) − 𝜋𝑚𝐹

𝓁
(𝑥)

𝜎(𝑥)

|||||| > 𝜅

}
, (17)

where 𝜅 is a tolerance parameter and 𝜎(𝑥) is a scaling function. Note that𝑚𝜅 is a random variable
that depends on how the actual market parameters (𝑢𝑡, 𝑑𝑡, 𝑝𝑡) and client preferences 𝑈𝐶 evolve.
In this paper, we will focus on the updating of the probability 𝑝 of an upward movement of the

stock and risk Arrow-Pratt measure of risk aversion 1∕𝜃 of a client with preferences belonging
to the family of CRRA utility functions. We assume that the possible values of the return of the
stock, 𝑢 and 𝑑, are constant and identical for both ideal and realistic situations. Working within
the family of CRRA utility functions allows us to directly apply Theorem 3.1 unless 𝜃 = − log𝑎 𝑏.
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26 LIANG et al.

However, even in this special case, only uniqueness is lost andwe can still workwith the canonical
choice for the𝑚-forward belonging to the same family of CRRA utility functions.

5.2 Optimal interaction schedule under robust approach

In the following, we study a robust approach of determining the optimal interaction schedule
𝑚∗. Similarly as in the robust approach to determine an optimal interaction schedule between
an ATS and human expert studied in Section 4.1, we allow for any predictable processes (𝑝𝑖)𝑖∈ℕ
and (𝜃𝑖)𝑖∈ℕ that remain within reasonable intervals specified at the beginning of each evalua-
tion period, and then compute the difference with the ideal strategy corresponding to the worst
possible specification this distribution could take.
The transition probability and the risk preference parameter for each trading period are given

according to the initial values 𝑝 and 𝜃, by 𝑝𝑖 = 𝐷𝑖𝑝 and 𝜃𝑖 = 𝐸𝑖𝜃, for 𝑖−1-measurable random
variables 𝐷𝑖 and 𝐸𝑖 which can take value in the intervals [𝐷𝑖,𝑑, 𝐷𝑖,𝑢] and [𝐸𝑖,𝑑, 𝐸𝑖,𝑢] respectively.
The upper and lower bounds 𝐷𝑖,𝑑, 𝐷𝑖,𝑢, 𝐸𝑖,𝑑 and 𝐸𝑖,𝑢 are assumed to be periodic in the evalua-
tion period and reflect that uncertainty about model and preference parameters increase as the
time since the last point of contact increases. Formally, we suppose that 𝐷𝑖,𝑑 = 𝐷̃(𝑖mod𝑚),𝑑, 𝐷𝑖,𝑢 =

𝐷̃(𝑖mod𝑚),𝑢, 𝐸𝑖,𝑑 = 𝐸̃(𝑖mod𝑚),𝑑, and 𝐸𝑖,𝑢 = 𝐸̃(𝑖mod𝑚),𝑢 for 𝑖 ∈ ℕ, for exogenously given sequences
(𝐷̃𝑖,𝑑)𝑖∈ℕ, (𝐷̃𝑖,𝑢)𝑖∈ℕ, (𝐸̃𝑖,𝑑)𝑖∈ℕ and (𝐸̃𝑖,𝑢)𝑖∈ℕ satisfying that 𝐷̃𝑖,𝑢𝑝 < 1, 𝐸̃𝑖,𝑢𝜃 ≠ 1, 𝐸̃𝑖,𝑑𝜃 ≠ 1, and
𝐷̃𝑖,𝑢 and 𝐸̃𝑖,𝑢 are increasing while 𝐷̃𝑖,𝑑 and 𝐸̃𝑖,𝑑 are decreasing in 𝑖 ∈ ℕ. We also assume that
𝐷̃1,𝑢 = 𝐷̃1,𝑑 = 𝐸̃1,𝑢 = 𝐸̃1,𝑑 = 1, that is, the robo-advisor operates based on accurate information
about the market and the preferences of the client whenever there is an interaction.
Considering that for each trading period [𝑖 − 1, 𝑖) the absolute deviation between actual and

ideal investment policy, |𝜋𝐼
𝑖
(𝑥) − 𝜋𝑚𝐹

𝑖
(𝑥)|, is an 𝑖−1-measurable random variable, we next

characterize how the optimal interaction schedule is defined according to a robust criterion.

Definition 5.1. The optimal interaction schedule under the robust approach is defined by

𝑚∗
𝜅 = ess inf

𝜔∈Ω
𝑚𝜅 = min

{
𝑚 ∈ ℕ

|||| max
𝓁∈{1,…,𝑚}

ess sup
𝜔∈Ω

sup
𝑥≥0

||||||
𝜋𝐼
𝓁
(𝑥) − 𝜋𝑚𝐹

𝓁
(𝑥)

𝜎(𝑥)

|||||| > 𝜅

}
, (18)

where𝑚𝜅 is defined by (17).

Determining an optimal interaction schedule according to the robust approach ensures that
the largest possible value of absolute deviation between the ideal and implemented strategy after
scaling remains within some acceptable level that is pre-specified by the client.
In our analysis, price levels 𝑢 and 𝑑 of the return 𝑅𝑖, 𝑖 ∈ ℕ0 remain unchanged and are esti-

mated at the beginning of the investment process. Let 𝑎𝑖 =
1−𝑝𝑖

𝑝𝑖

𝑞

1−𝑞
, 𝑏 =

1−𝑞

𝑞
, 𝑐𝑖 =

1−𝑝𝑖

1−𝑞
, and 𝛿 =

1+𝑏

𝑐𝜃
1
(𝑎−𝜃

1
+𝑏)

. The following proposition formulates the maximum possible deviation between ideal

and implemented strategy.

Proposition 5.2. Suppose that the initial datum is of the form 𝑈0(𝑥) = (1 −
1

𝜃
)−1𝑥

1−
1

𝜃 , 𝑥 > 0, for
some 1 ≠ 𝜃 > 0, and let (𝐷𝑖)𝑖∈ℕ and (𝐸𝑖)𝑖∈ℕ be predictable processes taking values in [𝐷𝑖,𝑑, 𝐷𝑖,𝑢]

and [𝐸𝑖,𝑑, 𝐸𝑖,𝑢], where 𝐷𝑖,𝑑, 𝐷𝑖,𝑢, 𝐸𝑖,𝑑 and 𝐸𝑖,𝑢 satisfy the assumption of periodicity in the interaction
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LIANG et al. 27

schedule𝑚 and are such that absence of arbitrage is maintained. We then have that

ess sup
𝜔∈Ω

|||𝜋𝐼
𝑖
(𝑥) − 𝜋𝑚𝐹

𝑖
(𝑥)

||| = 𝑥

𝑢 − 𝑑
max

{
𝑮(𝐷𝑖,𝑢𝑝, 𝐸𝑖,𝑢𝜃𝟙{𝐷𝑖,𝑢𝑝>𝑞}

+ 𝐸𝑖,𝑑𝜃𝟙{𝐷𝑖,𝑢𝑝<𝑞}
) − 𝑮0,

𝑮0 − 𝑮(𝐷𝑖,𝑑𝑝, 𝐸𝑖,𝑑𝜃𝟙{𝐷𝑖,𝑑𝑝>𝑞}
+ 𝐸𝑖,𝑢𝜃𝟙{𝐷𝑖,𝑑𝑝<𝑞}

)
}
,

(19)

where 𝑮(𝑝̃, 𝜃̃) ∶=
𝑞−𝜃̃𝑝̃𝜃̃−(1−𝑞)−𝜃̃(1−𝑝̃)𝜃̃

𝑞1−𝜃̃𝑝̃𝜃̃+(1−𝑞)1−𝜃̃(1−𝑝̃)𝜃̃
and 𝑮0 =

𝑞−𝜃𝑝𝜃−(1−𝑞)−𝜃(1−𝑝)𝜃

𝑞1−𝜃𝑝𝜃+(1−𝑞)1−𝜃(1−𝑝)𝜃
. Furthermore, 𝑮(𝑝̃, 𝜃̃)

increases in 𝑝̃ and increases in 𝜃̃ when 𝑝̃ > 𝑞 respectively decreases in 𝜃̃ when 𝑝̃ < 𝑞, and
ess sup𝜔∈Ω |𝜋𝐼

𝑖
(𝑥) − 𝜋𝑚𝐹

𝑖
(𝑥)| is increasing in 𝑖 ∈ ℕ.

Noticing that both strategies 𝜋𝐼 and 𝜋𝑚𝐹 are proportional in wealth motivates to consider the
scaling function 𝜎(𝑥) = 𝑥. This then removes the dependence on wealth and thus leads to more
tractable results. We also know from Proposition 5.2 that the maximum absolute deviation is
increasing in time, and, when 𝜎(𝑥) = 𝑥,𝑚∗

𝜅 defined in (18) can thus be reduced to

𝑚∗
𝜅 = min

{
𝑚 ∈ ℕ||either condition (𝐶1

𝑚,𝜅) or (𝐶2
𝑚,𝜅) is satisfied

}
, (20)

where condition (𝐶1
𝑚,𝜅) refers to

𝑮(𝐷𝑚,𝑢𝑝, 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑢𝑝>𝑞}
+ 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑢𝑝<𝑞}

) > 𝑮0 + 𝜅(𝑢 − 𝑑),

while condition (𝐶2
𝑚,𝜅) refers to

𝑮(𝐷𝑚,𝑑𝑝, 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑑𝑝>𝑞}
+ 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑑𝑝<𝑞}

) < 𝑮0 − 𝜅(𝑢 − 𝑑).

Condition (𝐶1
𝑚,𝜅) corresponds to the casewhere the upper range of uncertainty about probabilities

of upward moves in the stock triggers interaction, whereas interaction is triggered by the lower
range of the uncertainty range if (𝐶2

𝑚,𝜅) holds first.
The measure 𝑚∗

𝜅 depends on the market parameters 𝑝, 𝑢, and 𝑑, the Arrow-Pratt measure of
relative risk aversion 1∕𝜃 of the initial datumof an agent, the tolerance level 𝜅, and the uncertainty
about the evolution of future beliefs captured in the sequences (𝐷𝑖,𝑑, 𝐷𝑖,𝑢) and (𝐸𝑖,𝑑, 𝐸𝑖,𝑢). In prac-
tice, at time zero, we choose an optimal interaction schedule based on our current understanding
of the market. At the subsequent interaction time, we update the market parameters, and then
choose a new optimal interaction schedule. Therefore, market parameters, updating frequencies,
preferences and investment strategies move together forward in time.
By the monotonicity of the function 𝑮, 𝑮(𝐷𝑚,𝑢𝑝, 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑢𝑝>𝑞}

+ 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑢𝑝<𝑞}
) is increas-

ing while 𝑮(𝐷𝑚,𝑑𝑝, 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑑𝑝>𝑞}
+ 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑑𝑝<𝑞}

) is decreasing as the length of the evalua-
tion period𝑚 increases. This is due to the increase in the uncertainty about parameters since the
last interaction time captured in the increasing upper bounds𝐷𝑚,𝑢, 𝐸𝑚,𝑢 and the decreasing lower
bounds 𝐷𝑚,𝑢 and 𝐸𝑚,𝑢. Therefore, the optimal interaction schedule under the robust approach is
finite if and only if

𝜅 < lim
𝑇→+∞

1

𝑢 − 𝑑
max

{
𝑮(𝐷̃𝑇,𝑢𝑝, 𝐸̃𝑇,𝑢𝜃𝟙{𝐷̃𝑇,𝑢𝑝>𝑞}

+ 𝐸̃𝑇,𝑑𝜃𝟙{𝐷̃𝑇,𝑢𝑝<𝑞}
) − 𝑮0,

𝑮0 − 𝑮(𝐷̃𝑇,𝑑𝑝, 𝐸̃𝑇,𝑑𝜃𝟙{𝐷̃𝑇,𝑑𝑝>𝑞}
+ 𝐸̃𝑇,𝑢𝜃𝟙{𝐷̃𝑇,𝑑𝑝<𝑞}

)
}
.
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F IGURE 3 Impact of increasing uncertainty about 𝑝 or 𝜃. [Color figure can be viewed at
wileyonlinelibrary.com]

Next, we investigate how the optimal interaction schedule𝑚∗ depends on the tolerance param-
eter 𝜅 and the uncertainty about the transition probability 𝑝 and risk aversion 𝜃. First, it follows
immediately from the definition that 𝑚∗

𝜅 is increasing in 𝜅. This is consistent with our intuition
that when the client can tolerate with the inaccuracy of investment strategy to a larger extent,
robo-advisors would reduce the frequency of interaction accordingly.
When there is higher uncertainty about the future model or preference parameters 𝑝, respec-

tively 𝜃, that is, when 𝐷𝑖,𝑢 or 𝐸𝑖,𝑢 increase and/or 𝐷𝑖,𝑑 or 𝐸𝑖,𝑑 decrease, 𝑮(𝐷𝑖,𝑢𝑝, 𝐸𝑖,𝑢𝜃𝟙{𝐷𝑖,𝑢𝑝>𝑞}
+

𝐸𝑖,𝑑𝜃𝟙{𝐷𝑖,𝑢𝑝<𝑞}
) increases and 𝑮(𝐷𝑖,𝑑𝑝, 𝐸𝑖,𝑑𝜃𝟙{𝐷𝑖,𝑑𝑝>𝑞}

+ 𝐸𝑖,𝑢𝜃𝟙{𝐷𝑖,𝑑𝑝<𝑞}
) decreases by the mono-

tonicity of the function 𝑮 derived in Proposition 5.2. Hence, the optimal interaction schedule
𝑚∗

𝜅 decreases implying that if there is greater uncertainty about model or preference parameters,
one should interact more frequently. In contrast to the previous application on automated trad-
ing where a uniform increase was required, an increase in uncertainty generally leads to more
frequent optimal interaction in this application.
We next investigate whether the optimal interaction schedule 𝑚∗ is more sensitive with an

increase in uncertainty about an upward move for the stock or an increase in uncertainty about
the risk preferences of the client. Suppose that the market parameters are 𝑝 = 0.6, 𝑢 = 1.15,
𝑑 = 0.9, the risk aversion parameter of the initial datum is 𝜃 = 5, the client tolerance is 𝜅 = 0.3,
and the bounds for the updating of future probabilities and risk aversion are given by 𝐷𝑖,𝑑 =

𝐷̃
mod(𝑖−1,𝑚)

𝑑
, 𝐷𝑖,𝑢 = 𝐷̃

mod(𝑖−1,𝑚)
𝑢 , 𝐸𝑖,𝑑 = 𝐸

mod(𝑖−1,𝑚)

𝑑
, 𝐸𝑖,𝑢 = 𝐸

mod(𝑖−1,𝑚)
𝑢 , where 𝐷̃𝑑 = 𝐸𝑑 = 1. On the

left-hand side of Figure 3, we increase only 𝐷̃𝑢 and fix 𝐸𝑢 = 1.01 for studying the effect of increas-
ing uncertainty about 𝑝𝑖 (the blue line), while we increase only 𝐸𝑢 and fix 𝐷̃𝑢 = 1.01 for studying
the sensitivity with respect to the uncertainty about risk aversion 𝜃𝑖 (the red line). Analogously,
on the right-hand side of Figure 3, we set 𝐷̃𝑢 = 𝐸𝑢 = 1, and vary only 𝐷̃𝑑 with 𝐸𝑑 = 0.99 fixed
or only 𝐸𝑑 with 𝐷̃𝑑 = 0.99 fixed. From the numerical analysis shown in Figure 3, we infer that,
while an increase in the uncertainty about 𝑝 or 𝜃 leads to more frequent optimal interaction, the
optimal interaction schedule is more sensitive to uncertainty in the market parameter than about
the risk preferences of the agent.
We further find that it is optimal to interact less frequently in a more volatile environment with

all else being equal.We increase𝑢 and adjust𝑑 =
1−𝑞𝑢

1−𝑞
accordingly such that the risk-neutral prob-

ability 𝑞 remains constant but the stock becomes more volatile. This does not alter the values of
𝑮(𝐷𝑚,𝑢𝑝, 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑢𝑝>𝑞}

+ 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑢𝑝<𝑞}
), 𝑮(𝐷𝑚,𝑑𝑝, 𝐸𝑚,𝑑𝜃𝟙{𝐷𝑚,𝑑𝑝>𝑞}

+ 𝐸𝑚,𝑢𝜃𝟙{𝐷𝑚,𝑑𝑝<𝑞}
), and
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LIANG et al. 29

𝑮0, but 𝑢 − 𝑑 increases. One can thus easily conclude from (20) that 𝑚∗
𝜅 increases as conditions

(𝐶1
𝑚,𝜅) and (𝐶2

𝑚,𝜅) can only be satisfied at later times. The intuition for this is that the scale of risky
investment decreases in a more volatile market, and the difference between the actual and ideal
strategy thus also decreases.

6 CONCLUSIONS

We studied discrete-time predictable forward processes when trading dates do not coincide with
performance evaluation dates in a binomial treemodel for the financial market. Ourmain techni-
cal contributions are conditions for existence and uniqueness as well as explicit solutions for the
functional equations associated with the construction of predictable forward processes. We then
applied the results to study the asset allocation problem faced by automated trading platforms
and robo-advisors, the applications where performance evaluation naturally occurs at a lower
frequency than trading. Our findings and discussions show that predictable forward performance
processes constitute a viable framework to model preferences of agents of automated trading
and robo-advisors and can provide valuable insights when determining an optimal interaction
schedule between the machine and its human clients.
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APPENDIX A: PROOFS

A Proof of theorem 3.1
As discussed in Section 2, if two utility functions 𝑈0 and 𝑈𝑚 solve problem (2), then their asso-
ciated inverse marginals satisfy (4). Conversely, when a pair of inverse marginal functions 𝐼0 and
𝐼𝑚 satisfy (4), then the corresponding utility functions satisfy (2) up to a constant. Theorem 2.4 in
Strub and Zhou (2021) together with the subsequent discussion therein shows that𝑈𝑚 defined as
in Theorem 3.1 does indeed solve (2) when 𝐼𝑚 solves (4). Moreover, the expression for the optimal
wealth 𝑋∗

𝑚 follows from the existing theory on classical expected utility maximization once we
obtained 𝑈𝑚 and regard (2) as a classical, backward problem. Therefore, it remains to show that,
under the assumption that {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚 exists, 𝐼𝑚 given in (7) is the unique solution to (4)
in the class of inverse marginal functions.

Making the substitution 𝑦̂ =
𝑚∏
𝑖=1

(1−𝑝𝑖)

(1−𝑞𝑖)
𝑦 allows us to transform (4) to

𝐼0

(
𝑚∏
𝑖=1

(1 − 𝑝𝑖)

(1 − 𝑞𝑖)
𝑦

)
=
∑2𝑚−1

𝑗=0

𝑚∏
𝑖=1

𝑞
𝛾𝑗,𝑖
𝑖

(1 − 𝑞𝑖)
1−𝛾𝑗,𝑖 𝐼𝑚

(
𝑚∏
𝑖=1

𝑞
𝛾𝑗,𝑖
𝑖

(1 − 𝑝𝑖)
𝛾𝑗,𝑖

𝑝
𝛾𝑗,𝑖
𝑖

(1 − 𝑞𝑖)
𝛾𝑗,𝑖

𝑦

)
.

Next, we multiply both sides by (
𝑚∏
𝑖=1

𝑞𝑖)
−1 and recall the expression in terms of 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑖 =

1, 2, … ,𝑚 to obtain

𝑚∏
𝑖=1

(1 + 𝑏𝑖)𝐼0

(
𝑚∏
𝑛=1

𝑐𝑛𝑦

)
=
∑2𝑚−1

𝑗=0

𝑚∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑚

(
𝑚∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦

)
. (A.1)

We notice that when market parameters are time-heterogeneous, the arguments of 𝐼𝑚 are
not in the form of iterate functions. We therefore cannot use standard techniques for integral
equations. Instead, we aim to show by mathematical induction that if, for a given 𝐼0, there exist
functions (𝐼𝑖)𝑚𝑖=1 such that they satisfy a system of equations 𝐼𝑖(𝑎𝑖𝑦) + 𝑏𝑖𝐼𝑖(𝑦) = (1 + 𝑏𝑖)𝐼𝑖−1(𝑐𝑖𝑦),
𝑖 = 1, 2, … ,𝑚, then 𝐼0 and 𝐼𝑚 = 𝐼𝑚 satisfy (A.1).
First, when𝑚 = 1, the statement naturally holds. Let us then assume that the statement is true

for𝑚 = 𝑀. When𝑚 = 𝑀 + 1, the left hand side of equation (A.1) becomes

𝑀+1∏
𝑖=1

(1 + 𝑏𝑖)𝐼0

(
𝑀+1∏
𝑛=1

𝑐𝑛𝑦

)

=(1 + 𝑏𝑀+1)

𝑀∏
𝑖=1

(1 + 𝑏𝑖)𝐼0

(
𝑀∏
𝑛=1

𝑐𝑛𝑐𝑀+1𝑦

)

=(1 + 𝑏𝑀+1)
∑2𝑀−1

𝑗=0

𝑀∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑀

(
𝑀∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑐𝑀+1𝑦

)

=
∑2𝑀−1

𝑗=0

𝑀∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

(
𝐼𝑀+1

(
𝑎𝑀+1

𝑀∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦

)
+ 𝑏𝑀+1𝐼𝑀+1

(
𝑀∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦

))
.

(A.2)
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LIANG et al. 33

Note that the right hand side of (A.1) is given by
∑2𝑀+1−1

𝑗=0

𝑀+1∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑀+1(
𝑀+1∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦)when setting

𝑚 = 𝑀 + 1. Observe that for 𝑗 ∈ {0, 1, … , 2𝑀 − 1}, we have 𝛾𝑗,𝑀+1 = 0, where 𝛾𝑗,𝑀+1 is the first
digit of 𝑗 in binary form if expressed in𝑀 + 1 digits in total. Thus, the term inside the summation

becomes 𝑏𝑀+1

𝑀∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑀+1(
𝑀∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦). However, for 𝑗 ∈ {2𝑀, 2𝑀 + 1,… , 2𝑀+1 − 1}, 𝛾𝑗,𝑀+1 = 0,

and the term inside the summation is given by
𝑀∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑀+1(𝑎𝑀+1

𝑀∏
𝑘=1

𝑎
𝛾𝑗,𝑘

𝑘
𝑦). Hence, the right

hand side of (A.1) is equal to the last line of (A.2) by letting 𝐼𝑚 = 𝐼𝑚. This proves the claim for
𝑚 = 𝑀 + 1, and thus for arbitrary𝑚 by induction.
For the other direction, note that with the substitution 𝐼𝑘−1(𝑦) =

1

1+𝑏𝑘
(𝐼𝑘(

𝑎𝑘𝑦

𝑐𝑘
) + 𝑏𝑘𝐼𝑘(

𝑦

𝑐𝑘
)), 𝑘 =

𝑚,… , 1, equation

𝑘∏
𝑖=1

(1 + 𝑏𝑖)𝐼0

(
𝑘∏

𝑛=1

𝑐𝑛𝑦

)
=
∑2𝑘−1

𝑗=0

𝑘∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑘

(
𝑘∏

𝑛=1

𝑎
𝛾𝑗,𝑛
𝑛 𝑦

)

becomes

𝑘−1∏
𝑖=1

(1 + 𝑏𝑖)𝐼0

(
𝑘−1∏
𝑛=1

𝑐𝑛𝑦

)
=
∑2𝑘−1−1

𝑗=0

𝑘−1∏
𝑖=1

𝑏
1−𝛾𝑗,𝑖
𝑖

𝐼𝑘−1

(
𝑘−1∏
𝑛=1

𝑎
𝛾𝑗,𝑛
𝑛 𝑦

)
.

Hence, we can show that if 𝐼0 and 𝐼𝑚 are related by (A.1), then there exist functions (𝐼𝑖)𝑚−1
𝑖=1

such
that they satisfy a system of equations 𝐼𝑖(𝑎𝑖𝑦) + 𝑏𝑖𝐼𝑖(𝑦) = (1 + 𝑏𝑖)𝐼𝑖−1(𝑐𝑖𝑦), 𝑖 = 1, 2, … ,𝑚with 𝐼0 =
𝐼0 and 𝐼𝑚 = 𝐼𝑚.
Solving 𝐼𝑖(𝑎𝑖𝑦) + 𝑏𝑖𝐼𝑖(𝑦) = (1 + 𝑏𝑖)𝐼𝑖−1(𝑐𝑖𝑦), 𝑖 = 1, 2, … ,𝑚 by sequentially and repeatedly apply-

ing Theorem 6.3 in Angoshtari et al. (2020) adapted to the notation herein, we can finally derive
the expression of 𝐼𝑚 and obtain the claimed conditions for uniqueness.
We can show by induction that 𝐼𝑖 , 𝑖 = 1, 2, … ,𝑚 solving 𝐼𝑖(𝑎𝑖𝑦) + 𝑏𝑖𝐼𝑖(𝑦) = (1 + 𝑏𝑖)𝐼𝑖−1(𝑐𝑖𝑦), 𝑖 =

1, 2, … ,𝑚, must be given by

𝐼𝑖(𝑦) =

𝑖∏
𝑣=1

(1 + 𝑏𝑣)

𝑖∏
𝑗=1

𝑏
𝛼𝑗
𝑗

∞∑
𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )
𝑖∏

𝑘=1

𝑏
𝑛𝑘(1−2𝛼𝑘)

𝑘
𝐼0

(
𝑖∏

𝑠=1

𝑎
𝑛𝑠(2𝛼𝑠−1)+(𝛼𝑠−1)
𝑠

𝑖∏
𝑢=1

𝑐𝑢𝑦

)
. (A.3)

We outline these arguments below. First, the statement obviously holds for 𝑖 = 1 by Theorem 6.3
in Angoshtari et al. (2020). In the general inductive step, we show that if 𝐼𝑘 is given by (A.3) with
its corresponding (𝛼1, … , 𝛼𝑘), then the statement is also true for 𝐼𝑘+1. Noticing that Φ

(𝛼1,…,𝛼𝑘)

𝑘
and

Ψ
(𝛼1,…,𝛼𝑘)

𝑘
defined for solving the single-period inverse problem with 𝐼𝑘 given by (A.3) must be

expressed by (6), we apply (Angoshtari et al., 2020, Theorem 6.3) to obtain that 𝐼𝑘+1 is unique and
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34 LIANG et al.

given by

𝐼𝑘+1(𝑦) =

𝑘+1∏
𝑣=1

(1 + 𝑏𝑣)

𝑏𝑘+1

𝑘∏
𝑗=1

𝑏
𝛼𝑗
𝑗

∞∑
𝑛1=0,…,𝑛𝑘+1=0

(
(−1)

𝑝(𝑛1,…,𝑛𝑘+1)𝑏
−𝑛𝑘+1
𝑘+1

𝑘∏
𝑡=1

𝑏
𝑛𝑡(1−2𝛼𝑡)
𝑡

×𝐼0

(
𝑎
𝑛𝑘+1
𝑘+1

𝑘∏
𝑠=1

𝑎
𝑛𝑠(2𝛼𝑠−1)+(𝛼𝑠−1)
𝑠

𝑘+1∏
𝑢=1

𝑐𝑢𝑦

))
,

if (Φ(𝛼1,…,𝛼𝑘)

𝑘
, Ψ

(𝛼1,…,𝛼𝑘)

𝑘
) satisfies (𝐶1), and given by

𝐼𝑘+1(𝑦) =

𝑘+1∏
𝑣=1

(1 + 𝑏𝑣)

𝑘∏
𝑗=1

𝑏
𝛼𝑗
𝑗

∞∑
𝑛1=0,…,𝑛𝑘+1=0

(
(−1)

𝑝(𝑛1,…,𝑛𝑘+1)𝑏
𝑛𝑘+1
𝑘+1

𝑘∏
𝑡=1

𝑏
𝑛𝑡(1−2𝛼𝑡)
𝑡

×𝐼0(𝑎
−(𝑛𝑘+1+1)

𝑘+1

𝑘∏
𝑠=1

𝑎
𝑛𝑠(2𝛼𝑠−1)+(𝛼𝑠−1)
𝑠

𝑘+1∏
𝑢=1

𝑐𝑢𝑦)

)
,

if (Φ(𝛼1,…,𝛼𝑘)

𝑘
, Ψ

(𝛼1,…,𝛼𝑘)

𝑘
) satisfies (𝐶2). Therefore, 𝐼𝑘+1(𝑦) can be expressed by (A.3) with the

sequence given by (𝛼1, … , 𝛼𝑘, 1) when (𝐶1) is satisfied or (𝛼1, … , 𝛼𝑘, 0) when (𝐶2) is satisfied.
This proves the claim and thus shows that 𝐼𝑚 is uniquely given by (7). □

B Proof of corollary 3.2
Let 𝑥 > 0. We first note that vectors (𝑎𝑖)𝑚𝑖=1, (𝑏𝑖)

𝑚
𝑖=1
, and (𝑐𝑖)𝑚𝑖=1 are all Borel-measurable functions

of the market parameters (𝑝, 𝑢, 𝑑) ∈ . We will drop the classifier Borel- for the remainder of
this proof. First, we prove the measurability of every 𝛼𝑖, 𝑖 = 1, … ,𝑚 by simple induction.
The base case, 𝑖 = 1, is trivial since 𝛼1 is constant. We then assume that (𝛼𝑘)𝑖𝑘=1 is measur-

able, and provemeasurability of 𝛼𝑖+1. By its definition and the assumption that {(𝛼1, … , 𝛼𝑖)}𝑖=1,…,𝑚
exists, 𝛼𝑖+1 can be expressed as 𝛼𝑖+1 = 𝟙

{(Φ
(𝛼1,…,𝛼𝑖 )

𝑖
,Ψ

(𝛼1,…,𝛼𝑖 )

𝑖
)satisf ies(𝐶1)}

By Theorem 6.3 in Angoshtari

et al. (2020) and since 𝐼0 is continuously differentiable, the infinite series of (Φ
(𝛼1,…,𝛼𝑖)

𝑖
)′

and Ψ
(𝛼1,…,𝛼𝑖)

𝑖
converge for (𝑝, 𝑢, 𝑑) ∈ . Therefore, (Φ(𝛼1,…,𝛼𝑖)

𝑖
)′ and Ψ

(𝛼1,…,𝛼𝑖)

𝑖
defined in (6)

are measurable as pointwise limits of measurable functions, which in turn shows that 𝛼𝑖+1
is measurable.
Note that the series of 𝐼𝑚 is derived by sequential application of Theorem 6.3 inAngoshtari et al.

(2020). Since all intermediate functions are shown to be convergent, so does 𝐼𝑚. The measurable
dependence of 𝐼𝑚 on the market parameters then follows from the explicit expression in (7) as a
pointwise limit of measurable function in a converging series.
In a multi-period binomial market, the expectation in the expression of 𝑈𝑚 is essentially a

finite sum of integral terms. Given that the inverse function of a strictly monotone function is also
strictlymonotone and thus integrable over finite intervals, its corresponding integral with variable
lower limit of integration 𝑓(𝑢) = ∫ 𝑥

𝑢
𝐼−1𝑚 (𝑡)𝑑𝑡 for any given 𝑥 exists and is continuous. Therefore,

the integral terms 𝑓(𝐼𝑚(
𝑑ℚ

𝑑ℙ
𝑈′

0
(1))), are compositions of two measurable functions, which then

shows that 𝑈𝑚(𝑥) is a measurable function of the market parameters as claimed. □
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LIANG et al. 35

C Proof of corollary 3.5
We first prove the equivalence between Φ

(𝛼1,…,𝛼𝑖)

𝑖
and Φ

𝐴𝑖

𝑖
if in the homogeneous market. Since

(𝑎𝑗, 𝑏𝑗, 𝑐𝑗) = (𝑎1, 𝑏1, 𝑐1) for all 𝑗 = 1,… , 𝑖,

Φ
(𝛼1,…,𝛼𝑖)

𝑖
(𝑦) =

(1 + 𝑏)𝑖

𝑏
∑𝑖

𝑗=1 𝛼𝑗

(
∞∑

𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑄(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)
𝐼0
(
𝑅(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)

𝑎𝑦
)

−𝑏

∞∑
𝑛1=0,…,𝑛𝑖=0

(−1)𝑝(𝑛1,…,𝑛𝑖 )𝑄(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)
𝐼0
(
𝑅(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)

𝑦
))

, (A.4)

where𝑄(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)
= 𝑏

∑𝑖

𝑘=1 𝑛𝑘(1−2𝛼𝑘), 𝑅(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)
= 𝑎

∑𝑖

𝑠=1 𝑛𝑠(2𝛼𝑠−1)+(𝛼𝑠−1)𝑐𝑖+1, it is enough
to simply use 𝐴𝑖 =

∑𝑖

𝑘=1
𝛼𝑘 to track the process of identifying cases between (𝐶1) and (𝐶2),

and we have the simplified form 𝑄(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)
= 𝑏

−
∑𝐴𝑖

𝑘=1
𝑛𝑘+

∑𝑖

𝑘=𝐴𝑖+1
𝑛𝑘 , 𝑅(𝛼1,…,𝛼𝑖);(𝑛1,…,𝑛𝑖)

=

𝑎
∑𝐴𝑖

𝑘=1
𝑛𝑘−

∑𝑖

𝑘=𝐴𝑖+1
(𝑛𝑘+1)𝑐𝑖+1. Hence, the form of Φ(𝛼1,…,𝛼𝑖)

𝑖
is equivalent to Φ𝐴𝑖

𝑖
in the case of homo-

geneous parameters. Similar arguments hold for Ψ(𝛼1,…,𝛼𝑖)

𝑖
(𝑦) and Ψ𝐴𝑖

𝑖
. Furthermore, the forward

inverse marginal 𝐼𝑚 given in (7) can reduce to (12) with the newly defined 𝑞𝐴𝑚;(𝑛1,…,𝑛𝑚) and
𝑟𝐴𝑚;(𝑛1,…,𝑛𝑚). □

D Proof of Proposition 3.4
By virtue of Theorem 3.1, 𝑈𝑚 exists and is unique. The single-period forward process 𝑈̃𝑖 exists
for 𝑖 = 0, … ,𝑚 because from the proof of Theorem 3.1 we know that the associated equa-
tions of inverse marginal functions (𝐼0, 𝐼𝑚), 𝐼𝑖(𝑎𝑖𝑦) + 𝑏𝑖𝐼𝑖(𝑦) = (1 + 𝑏𝑖)𝐼𝑖−1(𝑐𝑖𝑦), 𝑖 = 1, 2, … ,𝑚 can
be solved sequentially for the single-period inverse problems, and 𝐼𝑚 = 𝐼𝑚. On the other hand, if
𝑈̃𝑖 , 𝑖 = 0, … ,𝑚, is a single-period forward process with 𝑈̃0 = 𝑈0, with associated optimal wealth
process 𝑋̃∗, then

𝑈0(𝑥) = 𝔼
[
𝑈̃1(𝑋̃

∗
1
)
]
= 𝔼

[
𝔼
[
𝑈̃2(𝑋̃

∗
2
)|1

]]
= ⋯ = 𝔼[𝑈̃𝑚(𝑋̃

∗
𝑚)]

and, with a similar argument, 𝑈0(𝑥) ≥ 𝔼[𝑈̃𝑚(𝑋̃𝑚)] for any 𝑋̃ ∈ (𝑥). Therefore, (𝑈0, 𝑈̃𝑚) is an
𝑚-forward pair and, by the uniqueness established in Theorem 3.1, 𝑈𝑚 = 𝑈̃𝑚. Furthermore,
Theorem 2.0 in Kramkov and Schachermayer (1999) yields that

𝑋̃∗
𝑚(𝑥) = 𝐼𝑚

(
𝜌𝑚𝑈̃

′
𝑚−1

(
𝑋̃∗
𝑚−1

(𝑥)
))

= 𝐼𝑚
(
𝜌𝑚𝑈̃

′
𝑚−1

(
𝐼𝑚−1

(
𝜌𝑚−1𝑈̃

′
𝑚−2

(
𝑋̃∗
𝑚−2

(𝑥)
))))

= 𝐼𝑚
(
𝜌𝑚𝜌𝑚−1𝑈̃

′
𝑚−2

(
𝑋̃∗
𝑚−2

(𝑥)
))

= 𝐼𝑚
(
𝜌𝑚𝜌𝑚−1 ×⋯ × 𝜌1𝑈

′
0
(𝑥)

)
= 𝐼𝑚

(
𝑑ℚ

𝑑ℙ
𝑈′

0
(𝑥)

)
,

where for 𝑖 = 1, 2, … ,𝑚, 𝜌𝑖 =
𝑞𝑖

𝑝𝑖
𝟙{𝑅𝑖=𝑢} +

1−𝑞𝑖

1−𝑝𝑖
𝟙{𝑅𝑖=𝑑}. □
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36 LIANG et al.

E Proof of Proposition 4.1
We only discuss the case 𝜃 > 1. Similar arguments apply when 0 < 𝜃 < 1.
Let (𝐷𝑖)𝑖=0,…,𝑇 and𝑚 ∈ ℕ be fixed. We first compute the expected performance at times before

the first interaction with the robo-advisor. By Theorem 3.1 and Corollary 3.5, we have

𝔼1

[
𝑈

(1)
𝑖
(𝑋

(𝑚)
𝑖

)||𝑖−1

]
= 𝐷𝑖𝑝𝑈

(1)
𝑖

(
𝐼
(𝑚)
𝑖

(
𝑞

𝑝
𝑈

(𝑚)′

𝑖−1
(𝑋

(𝑚)
𝑖−1

)

))
+ (1 − 𝐷𝑖𝑝)𝑈

(1)
𝑖

(
𝐼
(𝑚)
𝑖

(
1 − 𝑞

1 − 𝑝
𝑈

(𝑚)′

𝑖−1
(𝑋

(𝑚)
𝑖−1

)

))

= 𝐷𝑖𝑝

𝑖∏
𝑗=1

𝛿

1

𝜃

𝐷𝑗
𝑈0

(
𝐼
(𝑚)
𝑖

(
𝑞

𝑝
𝑈

(𝑚)′

𝑖−1
(𝑋

(𝑚)
𝑖−1

)

))

+ (1 − 𝐷𝑖𝑝)

𝑖∏
𝑗=1

𝛿

1

𝜃

𝐷𝑗
𝑈0

(
𝐼
(𝑚)
𝑖

(
1 − 𝑞

1 − 𝑝
𝑈

(𝑚)′

𝑖−1
(𝑋

(𝑚)
𝑖−1

)

))

= 𝐷𝑖𝑝

𝑖∏
𝑗=1

𝛿

1

𝜃

𝐷𝑗

(
1 −

1

𝜃

)−1

𝛿
1−

1

𝜃 𝑞1−𝜃𝑝𝜃−1
(
𝑋
(𝑚)
𝑖−1

)1− 1

𝜃

+ (1 − 𝐷𝑖𝑝)

𝑖∏
𝑗=1

𝛿

1

𝜃

𝐷𝑗

(
1 −

1

𝜃

)−1

𝛿
1−

1

𝜃 (1 − 𝑞)1−𝜃(1 − 𝑝)𝜃−1
(
𝑋
(𝑚)
𝑖−1

)1− 1

𝜃

= 𝛿

1

𝜃

𝐷𝑖
𝛿
1−

1

𝜃 𝑈
(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

)

(
𝐷𝑖𝑝

𝜃𝑞1−𝜃 +

(
1 − 𝐷𝑖𝑝

1 − 𝑝

)
(1 − 𝑝)𝜃(1 − 𝑞)1−𝜃

)
,

for 𝑖 = 1, … ,𝑚, where 𝛿𝐷𝑗
=

1+𝑏

𝑐𝜃
𝑗
(𝑎−𝜃

𝑗
+𝑏)

=
1

(𝐷𝑗𝑝)𝜃𝑞1−𝜃+(1−𝐷𝑗𝑝)𝜃(1−𝑞)1−𝜃
, 𝑗 = 1, 2, … , 𝑖, and 𝛿 = 𝛿𝐷1

.

Indeed, 𝑈(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

) =
𝑖−1∏
𝑗=1

𝛿
1−

1

𝜃

𝐷𝑗
𝑈0(𝑋

(𝑚)
𝑖−1

) = (1 −
1

𝜃
)−1

𝑖−1∏
𝑗=1

𝛿
1−

1

𝜃

𝐷𝑗
(𝑋

(𝑚)
𝑖−1

)
1−

1

𝜃 .

Let 𝐶1 = 𝑝𝜃𝑞1−𝜃, 𝐶2 = (1 − 𝑝)𝜃(1 − 𝑞)1−𝜃, and consider a new variable 𝑡𝑖 = (
𝐷𝑖(1−𝑝)

1−𝐷𝑖𝑝
)𝜃. Clearly,

𝑡𝑖 is strictly positive and increasing in 𝐷𝑖 . Then 𝔼1[𝑈
(1)
𝑖
(𝑋

(𝑚)
𝑖

)|𝑖−1] can be represented by

𝔼1[𝑈
(1)
𝑖
(𝑋

(𝑚)
𝑖

)||𝑖−1] =

⎛⎜⎜⎝
𝐶1

(𝐶1 + 𝑡−1
𝑖
𝐶2)

1

𝜃

+
𝐶2

(𝑡𝑖𝐶1 + 𝐶2)
1

𝜃

⎞⎟⎟⎠𝑈(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

)𝛿
1−

1

𝜃 .

Let 𝑓(𝑡𝑖) =
𝐶1

(𝐶1+𝑡
−1
𝑖

𝐶2)
1
𝜃

+
𝐶2

(𝑡𝑖𝐶1+𝐶2)
1
𝜃

. After taking derivative we have

𝑓′(𝑡𝑖) =
1

𝜃
𝐶1𝐶2𝑡

−2
𝑖
(𝐶1 + 𝑡−1

𝑖
𝐶2)

−
1

𝜃
−1

−
1

𝜃
𝐶1𝐶2(𝑡𝑖𝐶1 + 𝐶2)

−
1

𝜃
−1

=
1

𝜃
𝐶1𝐶2(𝑡𝑖𝐶1 + 𝐶2)

−
1

𝜃
−1
(𝑡

1

𝜃
−1

𝑖
− 1).
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LIANG et al. 37

When 𝜃 > 1, 𝑈0(𝑥) > 0, 1

𝜃
− 1 < 0, 𝑓(𝑡𝑖) is increasing first and attains its maximum at 𝑡𝑖 =

1, which corresponds to 𝐷𝑖 = 1, and then begins to decrease. Since 𝑓(1) =
𝐶1+𝐶2

(𝐶1+𝐶2)
1
𝜃

= 𝛿
1

𝜃
−1,

we have 𝔼1[𝑈
(1)
𝑖
(𝑋

(𝑚)
𝑖

)|𝑖−1] = 𝑈
(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

) when 𝐷𝑖 = 1. Therefore, let 𝑡𝑖,max = (
𝐷𝑖,𝑢(1−𝑝)

1−𝐷𝑖,𝑢𝑝
)𝜃,

𝑡𝑖,min = (
𝐷𝑖,𝑑(1−𝑝)

1−𝐷𝑖,𝑑𝑝
)𝜃, 𝑓𝐷𝑖,𝑢

=
𝐶1

(𝐶1+𝑡
−1
𝑖,max

𝐶2)
1
𝜃

+
𝐶2

(𝑡𝑖,max𝐶1+𝐶2)
1
𝜃

and 𝑓𝐷𝑖,𝑑
=

𝐶1

(𝐶1+𝑡
−1
𝑖,min

𝐶2)
1
𝜃

+
𝐶2

(𝑡𝑖,min𝐶1+𝐶2)
1
𝜃

.

The value range of 𝑓(𝑡𝑖) is [min{𝑓𝐷𝑖,𝑢
, 𝑓𝐷𝑖,𝑑

}, 𝛿
1

𝜃
−1
], and 𝔼1[𝑈

(1)
𝑖
(𝑋

(𝑚)
𝑖

)|𝑖−1] is thus bounded

between [𝛿
1−

1

𝜃 min{𝑓𝐷𝑖,𝑢
, 𝑓𝐷𝑖,𝑑

}𝑈
(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

), 𝑈
(1)
𝑖−1

(𝑋
(𝑚)
𝑖−1

)] for any possible value of 𝐷𝑖 in the interval
[𝐷𝑖,𝑑, 𝐷𝑖,𝑢].
Let 𝑓𝑗 = min{𝑓𝐷𝑗,𝑢

, 𝑓𝐷𝑗,𝑑
} for 𝑗 = 2, 3, … ,𝑚. According to the above we have

𝔼
[
𝑈

(1)
𝑚 (𝑋

(𝑚)
𝑚 )

] ≤ 𝔼
[
𝑈

(1)
𝑚−1

(𝑋
(𝑚)
𝑚−1

)
] ≤ ⋯ ≤ 𝑈0(𝑥)

and

𝔼
[
𝑈

(1)
𝑚 (𝑋

(𝑚)
𝑚 )

] ≥ 𝔼

[
𝛿
1−

1

𝜃 𝑓𝑚𝑈
(1)
𝑚−1

(𝑋
(𝑚)
𝑚−1

)

]
≥ ⋯ ≥

𝑚∏
𝑗=1

𝑓𝑗𝛿
𝑚(1−

1

𝜃
)
𝑈0(𝑥).

When 𝑇 > 𝑚 then, according to our assumptions, the agent interacts at time𝑚 with the robo-
advisor to update 𝑝𝑚 back to the original 𝑝 and her wealth is reduced from 𝑋𝑚

𝑚 to 𝛼𝑋𝑚
𝑚 . Since

𝑈
(1)
𝑖
(𝛼𝑥) = 𝛼

1−
1

𝜃 𝑈
(1)
𝑖
(𝑥), which one can show easily by Theorem 3.1, we can repeat the above

steps and obtain that

𝔼
[
𝑈

(1)
2𝑚

(𝑋
(𝑚)
2𝑚

)
]
∈

[
𝛼
1−

1

𝜃

2𝑚∏
𝑗=1

𝑓𝑗𝛿
2𝑚(1−

1

𝜃
)
𝑈0(𝑥), 𝛼

1−
1

𝜃 𝑈0(𝑥)

]

=

[
𝛼
1−

1

𝜃 (

𝑚∏
𝑗=1

𝑓𝑗)
2𝛿

2𝑚(1−
1

𝜃
)
𝑈0(𝑥), 𝛼

1−
1

𝜃 𝑈0(𝑥)

]
.

The last equality holds because the choice of intervals are periodic. Repeating the above argument
then immediately proves the claim.
To show that 𝑓𝑖 is non-increasing in𝐷𝑖,𝑢 and non-decreasing in𝐷𝑖,𝑑, we notice that𝐷𝑖,𝑢 ≥ 1 and

thus 𝑡𝑖,max ≥ 1 and that 𝑡𝑖,max is increasing in𝐷𝑖,𝑢. Therefore, due to the fact that 𝑓(𝑡) is decreasing
when 𝑡 ≥ 1, 𝑓𝐷𝑖,𝑢

= 𝑓(𝑡𝑖,max) is decreasing in𝐷𝑖,𝑢. One can show analogously that 𝑓𝐷𝑖,𝑑
= 𝑓(𝑡𝑖,min)

is increasing in 𝐷𝑖,𝑑. Because 𝑓𝐷𝑖,𝑢
does not depend on 𝐷𝑖,𝑑 and 𝑓𝐷𝑖,𝑑

does not depend on 𝐷𝑖,𝑢, we
conclude that 𝑓𝑖 = min{𝑓𝐷𝑖,𝑢

, 𝑓𝐷𝑖,𝑑
} is non-decreasing in 𝐷𝑖,𝑢 and non-increasing in 𝐷𝑖,𝑑. □

F Proof of Proposition 4.2
We only show the proof for 𝜃 > 1, similar arguments hold for 0 < 𝜃 < 1, but note that then𝑈0(𝑥)

is negative.
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38 LIANG et al.

Let terminal time 𝑇 ∈ ℕ be given, its minimal expected performance for any interaction
schedule𝑚 is given by

𝛼
(
𝑇

𝑚
−1)(1−

1

𝜃
)
(

𝑚∏
𝑗=1

𝑓𝑗)
𝑇

𝑚 𝛿
𝑇(1−

1

𝜃
)
𝑈0(𝑥) =

(
𝛼
1−

1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 )

) 𝑇

𝑚

𝛼
1−

1

𝜃

𝑈0(𝑥)

Apparently, maximising the minimal expected performance or (𝛼1−
1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ))
𝑇

𝑚 over the

divisor 𝑚 of 𝑇 is equivalent to maximising (𝛼1−
1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ))
1

𝑚 which is positive for any inter-

action schedule𝑚, and we denote this optimal schedule by𝑚∗, by considering a large enough 𝑇,

it can be ensured that (𝛼1−
1

𝜃

𝑚∏
𝑗=1

(𝑓𝑗𝛿
1−

1

𝜃 ))
1

𝑚 will not continue increasing after 𝑇 if 𝑚∗ = 𝑇. The

assertion for the independence of 𝑇 is thus shown, that is, any setup with horizon 𝑇 which is a
multiple of𝑚∗ must share the same optimal interaction schedule.

□

G Proof of Proposition 5.2
Let (𝐷𝑖)𝑖∈ℕ, (𝐸𝑖)𝑖∈ℕ and 𝑖 ∈ ℕ be fixed. We first compute the 1-forward optimal strategy for period
[𝑖 − 1, 𝑖) in the ideal world scenario,

𝜋𝐼
𝑖
(𝑥) =

𝑋
∗,𝑢
𝑖

(𝑥) − 𝑋
∗,𝑑
𝑖

(𝑥)

𝑢 − 𝑑
=

𝑥

𝑢 − 𝑑

𝑝
𝜃𝑖
𝑖
𝑞−𝜃𝑖 − (1 − 𝑝𝑖)

𝜃𝑖 (1 − 𝑞)−𝜃𝑖

𝑝
𝜃𝑖
𝑖
𝑞1−𝜃𝑖 + (1 − 𝑝𝑖)

𝜃𝑖 (1 − 𝑞)1−𝜃𝑖
, 𝑖 = 1, … ,𝑚.

Next, we give the optimal strategy 𝜋𝑚𝐹 derived in the 𝑚-forward framework with homogeneous
parameters fixed at the beginning of each evaluation period. Since Proposition 3.4 states that the
1-forward utility is the same as the 𝑚-forward utility at the same time 𝑚 when parameters are
deterministic and homogeneous, we immediately obtain

𝜋𝑚𝐹
𝑖

(𝑥) =
𝑥

𝑢 − 𝑑

𝑞−𝜃𝑝𝜃 − (1 − 𝑞)−𝜃(1 − 𝑝)𝜃

𝑞1−𝜃𝑝𝜃 + (1 − 𝑞)1−𝜃(1 − 𝑝)𝜃
𝑖 = 1, … ,𝑚.

Thus the difference is

|||𝜋𝐼
𝑖
(𝑥) − 𝜋𝑚𝐹

𝑖
(𝑥)

||| = 𝑥

𝑢 − 𝑑

||||||
𝑝
𝜃𝑖
𝑖
𝑞−𝜃𝑖 − (1 − 𝑝𝑖)

𝜃𝑖 (1 − 𝑞)−𝜃𝑖

𝑝
𝜃𝑖
𝑖
𝑞1−𝜃𝑖 + (1 − 𝑝𝑖)

𝜃𝑖 (1 − 𝑞)1−𝜃𝑖

−
𝑞−𝜃𝑝𝜃 − (1 − 𝑞)−𝜃(1 − 𝑝)𝜃

𝑞1−𝜃𝑝𝜃 + (1 − 𝑞)1−𝜃(1 − 𝑝)𝜃

||||| .
We claim that 𝑮(𝑝̃, 𝜃̃) is monotone in 𝑝̃ and 𝜃̃. Indeed, its first order partial derivative with

respect to 𝑝̃ is 𝑮′
𝑝̃(𝑝̃, 𝜃̃) =

𝜃̃𝑝̃𝜃̃−1(1−𝑝̃)𝜃̃−1𝑞−𝜃̃(1−𝑞)−𝜃̃

(𝑞1−𝜃̃𝑝̃𝜃̃+(1−𝑞)1−𝜃̃(1−𝑝̃)𝜃̃)2
> 0. Furthermore, its partial derivative w.r.t. 𝜃̃ is

𝑮′
𝜃̃
(𝑝̃, 𝜃̃) =

(
𝑝̃

𝑞
)𝜃̃(

1−𝑝̃

1−𝑞
)𝜃̃(ln

𝑝̃

𝑞
−ln

1−𝑝̃

1−𝑞
)

(𝑞(
𝑝̃

𝑞
)𝜃̃+(1−𝑞)(

1−𝑝̃

1−𝑞
)𝜃̃)2

, which is strictly positive when 𝑝̃ > 𝑞 and strictly negative when

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12408 by T
est, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



LIANG et al. 39

𝑝̃ < 𝑞. Overall, the largest possible absolute deviation is attained by one of the following four cases:
(1)𝐷𝑖 = 𝐷𝑖,𝑢, 𝐸𝑖 = 𝐸𝑖,𝑢 if 𝐷𝑖,𝑑𝑝 < 𝑞, (2)𝐷𝑖 = 𝐷𝑖,𝑢, 𝐸𝑖 = 𝐸𝑖,𝑑 if 𝐷𝑖,𝑢𝑝 > 𝑞, (3)𝐷𝑖 = 𝐷𝑖,𝑑, 𝐸𝑖 = 𝐸𝑖,𝑑 if
𝐷𝑖,𝑑𝑝 < 𝑞 or (4)𝐷𝑖 = 𝐷𝑖,𝑑, 𝐸𝑖 = 𝐸𝑖,𝑢 if 𝐷𝑖,𝑑𝑝 < 𝑞. The essential supremum and the monotonicity
in 𝑖 can be naturally derived then.
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