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PREFACE

This book contains some papers related to the talks presented at
the 2nd Conference on Nonlinearity, held online on October 18–22,
2021. The conference is organized by the Serbian Academy of Non-
linear Sciences (SANS) in cooperation with the Mathematical Insti-
tute (Serbian Academy of Sciences and Arts), Faculty of Mathematics
(University of Belgrade), Institute of Chemistry, Technology and Met-
allurgy (University of Belgrade), and Faculty of Sciences and Mathe-
matics (University of Nǐs).

It is well known that nonlinear phenomena and processes are present
everywhere in nature – from fundamental interactions between elemen-
tary particles, via various terrestrial processes in fluids and optics,
to the dynamics of celestial objects and the evolution the universe
as a whole. Nonlinear methods, in particular nonlinear differential
equations, are used in research of all sciences – from fundamental to
applied. Contemporary comfortable human life largely depends on
technological achievements based on nonlinear processes.

Serbian Academy of Nonlinear Sciences is a scientific society whose
members are scientists that significantly contributed to developments
of nonlinear sciences in Serbia. The main goal of SANS is a strong
fruitful support to versatile developments of nonlinear sciences, partic-
ularly in Serbia. Organization of scientific meetings – colloquiums and
conferences on nonlinearity – are among principal activities of SANS.
SANS strives to connect as much as possible with scientists and re-
lated scientific activities throughout the world. More information on
the Serbian Academy on Nonlinear Sciences is available at its website
http://www.sann.kg.ac.rs/en/sans/.

About 70 scientists from 19 countries participated in this con-
ference (Australia, Austria, France, Germany, Hungary, India, Is-
rael, Japan, Poland, Qatar, Romania, Russia, Serbia, Slovenia, Spain,

V



UAE, UK, Ukraine, USA). Lectures were given by 4 keynote speak-
ers (45 min.), 9 invited speakers (35 min.) and 35 other partici-
pants (25 min.). Some details can be seen on the conference website
http://www.nonlinearity2021.matf.bg.ac.rs/.

On behalf of the Serbian Academy of Nonlinear Sciences, we would
like to express our gratitude to the Ministry of Education, Science and
Technological Development of the Republic of Serbia for a financial
support to publish these Proceedings. We are also thank the Coorga-
nizers and the management of the journal Symmetry for a support of
this conference. In particular, we are thankful to all speakers and the
authors of contributions to the Proceedings. We hope very much that
this collection of papers will be useful not only to participants of this
conference but also to all others who are interested in nonlinearity.

The Serbian Academy of Nonlinear Sciences plans to continue with
the organization of Conferences on Nonlinearity regularly with a pe-
riod of two years. It is our great wish that next year there will be no
problem with the Corona virus epidemic and that the third conference
will be held in person. We will be happy to see all participants of the
first two conferences again, as well as many new ones.

Belgrade, Summer 2022
E d i t o r s

Branko Dragovich
(President of SANS)

Zeljko Cupic
(General secretary of SANS)
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Bray-Liebhafsky reaction: 
From monotonous to chaotic evolution 

 
Željko D. Čupić* and Ana Z. Ivanović-Šašić† 

 
Institute of Chemistry, Technology and Metallurgy, University of 

Belgrade, Department of Catalysis and Chemical Engineering, Njegoševa 
12, 11000 Belgrade, Serbia 

 
 

ABSTRACT 
 
 Many physicochemical processes can exhibit various forms of non-linear 
dynamics, which have been widely investigated in the oscillatory 
reaction Bray-Liebhafsky, too. The stoichiometry of this reaction 
corresponds to the hydrogen peroxide decomposition to water and 
oxygen in an acidic environment, in the presence of iodate ions as a 
catalyst. During this reaction an oscillatory change of the intermediate 
species concentration, along with a cascade change in the hydrogen 
peroxide concentration and oxygen removal can be obtained. By 
selecting the experimental conditions, the simple periodic or complex 
chaotic concentration changes can be generated. Concentration 
oscillations are a consequence of alternating dominance of different 
reaction pathways present in the reaction mechanism. Large extent of the 
phenomena experimentally observed in the oscillatory reaction Bray-
Liebhafsky is well explained by the mechanistic model, investigated by 
the Belgrade group over a many years.   

                                                

Acknowledgement. The present investigations were partially supported by The 
Ministry of Education, Science and Technological Development of the Republic 
of Serbia, under Project 172015 and 45001 and contract number 451-03-
68/2022-14/200026. This research was also supported by Science Fund of 
Republic of Serbia #Grant Number. 7743504, Physicochemical aspects of 
rhythmicity in neuroendocrine systems: Dynamic and kinetic investigations of 
underlying reaction networks and their main compounds, NES. 
*e-mail: zcupic@nanosys.ihtm.bg.ac.rs  
† e-mail: ana.ivanovic@nanosys.ihtm.bg.ac.rs 



 
 
 
 

 
 BRAY-LIEBHAFSKY REACTION  171 

 

 

1. Introduction 
In everyday practice of the whole of human activity, including physical 
chemistry, the nonlinear dynamics is represented at least equally as well as 
linear; actually, linear dynamics is only a limit case of the nonlinear one. [1] 
Probably, the human tendency toward simplification and limited capacity of the 
human brain to perceive and predict the nonlinear dynamics, are the only ones 
responsible for the long-standing dominance of linear models of natural 
processes. This statement is supported by the fact that the processes of nonlinear 
dynamics are observed in all areas that are the subject of scientific 
considerations, among which are the typical examples in elementary particle 
physics, [2] in chemical kinetics, [3]-[7] in electrochemistry [8]-[10] in cell 
biochemical processes [11] and at the level of multicellular organisms, [12],[13] 
in population processes at the level of ecosystems, [14] in the economy [15] and 
astrophysics. [16] 
The study of homogeneous oscillatory reactions (such as: the Bray-Liebhafsky 
one [17]-[30] – first reported homogeneous oscillatory chemical reaction, the 
Belousov-Zhabotinsky [31]-[38] – the most popular one, and the Briggs-
Rauscher [39]-[43] oscillatory reaction) is one of the most important 
contributions from physical chemistry to development of the nonlinear 
dynamics. In this area, oscillatory reaction Bray-Liebhafsky (BL) has a 
particular importance because it was first discovered homogeneous oscillatory 
chemical reaction, furthermore, because it is probably the simplest studied 
chemical oscillator, but also, because the study of this system allow the 
experimental and numerical analysis of a wide range of dynamic phenomena.  
Multiple-time-scale behavior of the BL reaction is explored here to explain 
mechanistic sources of dynamic transitions. Different levels of understanding 
oscillatory process are described here by models with varying complexity. 
Hence, present paper presents results about modeling BL reaction at different 
levels. 
 
2. Multi-level modeling of the BL reaction  
The Bray-Liebhafsky reaction is the hydrogen peroxide decomposition in the 
presence of iodate and hydrogen ions, as catalysts. This, apparently simple 
oscillatory reaction, known as the Bray-Liebhafsky one, consists of a complex 
homogeneous catalytic oscillatory processes involving periodic changes in 
concentrations of numerous iodine intermediates such as I2, I-, HIO, HIO2 and 
I2O, that all oscillates in the same time-scale, but in different phases and relative 
intensities. [25] Periodic changes of the solution color, oxygen removal and 
indicator electrode potential were detected in this system, at temperatures 
between 20°C and 65°C. Periodicity in this system is a consequence of complex 
reaction mechanism which consists of a series of reaction steps with multiple 
feedbacks. Just like any complex process, the BL reaction may be modeled at 
several levels of understanding. Here, it will be described starting from the most 
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rudimentary, system level, where system components are defined, and then, 
with gradually increasing complexity, details of the process will be added to the 
model, making it, finally, convenient to describe even the strangest dynamic 
states of chaos. 
 

2.1. System-level – components  
Investigation of the BL reaction is often performed in either open or closed 
reactor, usually in the form of thermostated bath with some mixing device (Fig 
1.). Although the system has finite phase boundary, reaction goes on within the 
liquid phase. The advantage of open systems over the closed ones is in the 
presence of inlets/outlets for continuous inflow/outflow of reactants/reaction 
mixture, which is the external force used to maintain this dissipative system in 
vicinity of the unstable steady state, far from equilibrium.  

 
Figure 1. Continuous Stirred Tank Reactor (CSTR). If pumps are removed, the 
batch reactor is obtained. 
 
Flow rate in open oscillating BL systems is always small against the fast 
reaction rates in oscillations, and mixing makes the liquid system 
macroscopically homogeneous. Thermostated coat ensures that rate constants 
have really constant values independent on extent of the reaction and its heat 
effects. Hence, usual approach in modeling BL reaction assumes deterministic, 
mean field approximation, where state of the system is represented by mean 
concentrations of all species. Thus, the BL reaction is described by the system 
of Ordinary Differential Equations (ODE) which depicts the changes in 
concentration of reaction species in time (see below). 
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Moreover, the first approximation of the BL reaction system would have to be 
nothing else, but liquid water (H2O), since it is by far the most abundant 
component in the system. The water concentration is about 55 M and 
concentrations of other macro-components (H2O2, H+, IO3

−, K+, SO4
2−) are for 

about three orders of magnitude lower. Besides, ionic species K+ and SO4
2− are 

not involved in any significant reaction, and will not be considered further. 
Thus, typical concentration of hydrogen peroxide (as well as H+ and IO3

−) 
during the oscillatory state of the system is between 10−2 and 10−1 M, the 
concentration of iodine, I2, is between 10−5 and 10−4 M, whereas the 
concentrations of other intermediary species are even much lower, between 10−9 
and 10−6 M. Nonetheless, the role of water in the BL system is often neglected 
and underestimated, since it is not directly involved in reduction - oxidation 
processes. There is no doubt that water plays important role in solvation, 
changing all reaction rates and dynamics of the oscillating process. There is also 
increasing number of evidences that water is even more important, taking part 
in redirecting energy transfer during the delicate oxidation phase of the BL 
reaction. [44]-[48] However, we are still far away from clear understanding of 
water structure and its dynamics, and therefore, this level of modeling will here, 
again, be neglected. All effects of water will here be considered as included in 
rate constants of particular reactions. 
 
2.2. Process-level – reaction 
The most intensive effect of the BL reaction is the decomposition of the 
hydrogen peroxide with production of oxygen.  
 

 3IO , H
2 2 2 22H O 2H O O

 
  . (D) 

 
Process is followed by the stoichiometricaly equivalent production of water, 
which has no noticeable effect on overall composition, since it is already 
present in large excess. Concentrations of two other macrocomponents (iodate 
and hydrogen ions) are changed during reaction, but in so small extent that we 
can consider them as constant, and equal to initial values during the whole 
process. Thus, their role is mainly catalytic. Hence, corresponding reaction (D) 
represents the next level model of the BL reaction. The process (D) is 
irreversible, since oxygen leaves liquid phase and goes to the gas phase. 
Consequently, the equilibrium is never reached and reaction goes until complete 
exhaust of the hydrogen peroxide as the only reactant. Since hydrogen peroxide 
decays in time, and oxygen, as the only product besides water, leaves the 
mixture through the phase boundary, concentrations of all species in liquid 
mixture are much less than the water content in all times, and hence, new model 
is consistent with previous one.  
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The BL reaction rate depends on several control parameters, such as the 
temperature in both reactors (closed and open) and flow rate in open reactor, or 
also the initial concentrations of the above mentioned reaction species (H+ and 
IO3

−) which are aproximately constant during reaction. Finally, reaction rate in 
BL reaction depends also on hydrogen peroxide concentration. Usually, 
decomposition reactions correspond to the first order reaction kinetics. In fact, 
within a very wide region of concentration values of the BL system 
constituents, hydrogen peroxide concentration really monotonously decays in 
time with first order kinetics. Even, during the periodic changes of iodine 
species concentrations, while hydrogen peroxide decays in cascades, small steps 
in its concentration curve could be neglected, and overall change fits well the 
first order kinetics (Fig. 2). 

 

  
Figure 2. Changes of the hydrogen peroxide concentration with time, during 
oscillatory reaction BL. Solid circles designate experimentally measured values 
and line approximates the first order decay. The R and O branches are indicated. 
Results from ref. [49]. 

 

2.3. Alternate-pathways-level of modelling 
Periodic changes of the solution color (connected with hydrogen peroxide 
concentration changes, Fig. 2) observed in the BL system are not explained 
either by the stoichiometry of the reaction (D) or by the simple first order 
reaction kinetics. The first attempt to explain these phenomena was already in 
the first report about the BL oscillatory reaction, [17] where Bray analyzed dual 
role of hydrogen peroxide as an oxidizing and reducing agent. There, he noticed 
that the hydrogen peroxide decomposition to water and oxygen in the presence 
of iodate and hydrogen ions is the result of the reduction (R) of iodate to iodine 
and the oxidation (O) of iodine to iodate by the following reaction scheme: 
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 3 2 2 2 2 22IO 2H 5H O I 5O 6H O       (R) 

 2 2 2 3 2I 5H O 2IO 2H 4H O     . (O) 
 
Rates of the two processes are in such ratio that only small extent of the iodate 
is converted to iodine and vice versa in any moment of time. Their rates tend to 
become equal, and, when the two processes achieve balance, the overall process 
is represented by the sum of these two reactions (R) and (O), which is identical 
to the smooth decomposition reaction (D). Then, we usually observe only a 
smooth decomposition described by reaction (D) where iodine, as intermediate 
species, does not appear in corresponding net stoichiometric relation. Hence, the 
model is at present level in consistency with the previous one. However, 
concentration of iodine, produced in reaction pathway (R), and removed in 
reaction pathway (O), gives coloration to the BL system solution. Periodic 
changes of the color are induced by periodic changes in the domination of the 
processes (R) and (O). Namely, in a narrow range of initial concentrations 
values, the alternating domination of processes (R) and (O) occurs, resulting in 
alterations between periods of slower increase (R branch) and faster decrease (O 
branch) of the iodine concentration during stepwise decrease of the hydrogen 
peroxide and increase of the oxygen concentrations. 

 
Figure 3. Changes of the iodine concentration with time, during oscillatory 
reaction BL. The R and O branches are indicated. The concentrations of iodate 
and hydrogen ions were: [IO3

-] = 0.0474 M, [H+] = 0.0958 M. Rate constants 
are taken from the ref. [50].  

 
Nevertheless, it is obvious that the two reactions cannot be elementary 
processes. Their kinetics was investigated in many years and complex kinetic 
rates were established indicating several reaction steps with many intermediary 
species involved in each of the two. At the end, no rate law identified in two of 
the processes could successfully simulate periodic changes. Thus, stoichiometry 
of periodic processes was well described at the present level of model, but not 
the reaction kinetics. More precisely, the necessary feedback needs to be 
included in the model of the reaction mechanism. 
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2.4. Kinetic level – model capable to simulate oscillatory dynamics  
In attempts to construct appropriate model able to simulate oscillating reaction, 
several reaction networks were synthesized with all possible reaction steps and 
intermediary species. However, reaction rates mainly remained unknown. 
Therefore, modeling based on such detailed description was still unsuccessful. 
Further development leaded to several approximations and model reductions, 
based on excluding very slow or less probable reaction pathways and 
condensing details of complex branches from detailed reaction network into 
simplified representations by single steps with empirically evaluated rate 
constants. This phase in the frame of modeling process is not uniquely defined 
and, consequently, several models occurred attempting to explain the BL 
system. [17]-[19],[21],[22],[50]-[60] Among the most successful results, there 
is a model M(1-8) represented by eight reactions or reaction steps (R1-R8 in 
Table 1), where three of them are reversible. It will be used in the following 
analysis of the process.  
Summation of all reactions in model M(1-8) gives again reaction (D), making 
system inherently consistent with its lower level representation. Reaction (D) 
represents smooth decomposition steady state of the model M(1-8), in which, all 
reactions run with equal rate. Reactions (R) and (O) are also incorporated in the 
reaction network of the model M(1-8), but in less obvious way. They are 
manifested only as partial sums of certain reaction pathways alternately 
dominating during the reduction and oxidation phase in oscillations (Table 2).  
 
 
 
 



 
 
 
 

 
 BRAY-LIEBHAFSKY REACTION  177 

 

 

Table 1. Model M(1-8) of the BL reaction used in numerical simulations under 
batch conditions. [57] 

Reaction or Reaction step Reaction ratea No. 

3IO I 2H       2HIO HIO  
r1 = k1 [I–] 
r–1 = k–1 [HIO] 
[HIO2] 

(R1) 
(R–
1) 

2HIO I H      2 2I O H O  r2 = k2 [HIO2] [I–] (R2) 

2 2I O H O    2HIO  
r3 = k3 [I2O]  

r–3 = k–3 
2[HIO]  

(R3) 
(R–
3) 

HIO I H      2 2I H O  
r4 = k4 [HIO] [I–] 
r–4 = k–4 [I2] 

(R4) 
(R–
4) 

2 2HIO H O    2 2I H O H O     r5 = k5 [HIO] (R5) 

2 2 2I O H O    2HIO HIO  
r6 = k6 [I2O] 
 

(R6) 

2 2 2HIO H O    3 2IO H H O    r7 = k7 [HIO2] (R7) 

3 2 2IO H H O      2 2 2HIO O H O   r8 = k8 (R8) 
a Reaction rate constants at 60°C: k1 = 1.383  102 min–1; k–1 = 7.91  107 mol–1 
 dm3  min–1; k2 = 4.79  1010 mol–1  dm3  min–1; k3 = 5.00  103 min–1; k–3 = 
3.15  108 mol–1  dm3  min–1 ; k4 = 3.00  1011 mol–1  dm3  min–1; k–4 = 
46.97 min–1; k5 = 2.974  102 mol–1  dm3  min–1; k6 = 1.00  104 mol–1  dm3 
 min–1; k7 = 4.00  101 mol–1  dm3  min–1; k8 = 4.4606  10–6 min–1. The 
concentrations of iodate and hydrogen ions, taken as constant in simulations 
( 3[IO ]  = 0.0474 mol × dm-3 and [H+] = 0.0958 mol × dm-3) are included in 
corresponding rate constants. Unlike the models presented in the literature, here, 
the concentration of hydrogen peroxide is taken as constant in simulations, too 
([H2O2] = 0.0200 mol × dm-3) and also included in corresponding rate constants. 
 
Hence, reactions (R) and (O) and corresponding reaction pathways represent 
some new kind of steady states, other than smooth decomposition one. 
Corresponding steady states must be connected with balanced production and 
consumption of selected intermediary species, only. The hydrogen peroxide is 
always only consumed and therefore it cannot be balanced in present model. 
Besides, the iodine is also produced from iodate in process (R) and it is spent in 
process (O) to regenerate iodate. Hence, production and consumption are not 
balanced for these two species in corresponding (R) and (O) steady states. Other 
iodine species do not appear in the observed stoichiometry, and thus, seem to be 
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balanced. Similar differentiation between reaction species is usually connected 
with slow-fast dynamics. 
 

Table 2. The reaction pathways derived from the model M(1-8) 
1.Reaction pathways: 

(R2) + (R5) + (R6) 
(R1) + (R5) + (R7) 

(R-1) + (R2) + (R6) + (R8) 
(R7) + (R8) 

Net reaction (D) 

2 2 2 22H O 2H O O   

2.Reaction pathways: 
2x(R1) + 2x(R2) + 2x(R3) + (R4) + 5x(R5) 
3x(R-1) + 2x(R2) + 2x(R3) + (R4) + 5x(R8) 
2x(R2) + 2x(R3) + (R4) + 3x(R5) + 2x(R8) 

Net reaction (R) 

3 2 2 2 2 22IO 2H 5H O I 5O 6H O       

3.Reaction pathways: 
2x(R-1) + 3x(R2) + 2x(R-3) + (R-4) +5x(R6) 

(R1) + 2x(R-3) + (R-4) + 2x(R6) + 3x(R7) 
(R2) + 2x(R-3) + (R-4) + 3x(R6) + 2x(R7). 

Net reaction (O) 

2 2 2 3 2I 5H O 2IO 2H 4H O      

 
 

Slow and fast subsystem 
Obvious difference between reaction species included in the model, is in the 
concentration levels. The concentrations of reaction species in the considered 
process differ for several orders of magnitudes among themselves. Thus, in 
oscillatory dynamic state of the BL system, typical concentration of hydrogen 
peroxide is between 10−2 and 10−1 M, concentration of iodine is between 10−5 
and 10−4 M, whereas the concentrations of other species are much lower, 
between 10−9 and 10−6 M.  
In systems, where concentrations of crucial species differ significantly, the 
relaxation oscillations are common. Such oscillations are generated by 
alternating relatively long periods of slow changes, eventually interrupted by 
short and sudden jumps to another state of relatively slow changes. These 
oscillations are connected with slow-fast dynamical systems where dynamical 
variables are divided in slow and fast ones, according to time scale at which 
they are changed. There, fast variables always quickly adjust to any change in 
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slow variables, which act as the parameters for the fast subsystem. Dynamics of 
such systems is reduced to lower dimensional subspace of the phase space. 
Hydrogen peroxide, hydrogen ion and iodate concentrations are much higher 
than those of other species and one can approximate that they are constant. 
Thus, in a case where these concentrations are considered as a fixed parameters, 
iodine concentration is the only slow variable and concentrations of other four 
iodine species (I−, HIO, HIO2, I2O) from the Model(1-8) are fast variables. The 
stationary values of fast variables are positioned on the one-dimensional curve 
in five-dimensional space. This curve, known as slow nullcline, represents 
steady states of the fast subsystem, which are functionally dependent on 
instantenous values of the slow variable, iodine concentration. There are other 
nullclines too, and they correspond to various combinations of four variables, 
among complete set of five ones. However, only the one that correspond to the 
set of fast variables only, attracts the trajectories from the whole phase space 
and it represents one form of the so-called slow manifold of the dynamical 
system. Starting from an arbitrary point in the phase space, the system follows 
its fast component dynamics and jumps to the nearest point on the slow 
nullcline. Once after the system reaches it, fast variables are balanced and only 
slow component of the dynamics governs further propagation over the nullcline, 
ending usually in the special point on the nullcline representing stable steady 
state. Therefore, this specific nullcline is named the slow nullcline, while all 
others are fast ones. The direction of propagation over the slow nullcline is 
governed by relative position of the dynamic system with respect to the fast 
nullclines. The steady state is positioned in the crosspoint of slow and fast 
nullclines. 
In the domain where relaxation oscillations are present slow nullcline is folded 
having at least two stable and one unstable branch in one interval of slow 
variable values. Slow nullcline calculated for the studied model is folded, as can 
be seen in Fig. 4. The steady state is in that case positioned on the unstable 
middle branch of the slow nullcline, and this steady state is also unstable. In that 
case, the fast variables often alternate between two stable branches resulting in 
relaxation oscillatory evolution of considered dynamical system.  
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Figure 4. Slow (thick) and fast (thin) nullclines of the Model(1-8). R and O 
branches of the folded slow nullcline are designated. Arrows indicate directions 
of fast (solid line) and slow (dashed line) components of the dynamics in areas 
divided by nullclines.  

 
Described two stable branches of the slow nullcline correspond to reaction 
pathways (R) and (O). System represented by the point on the upper branch 
(high iodide concentration) evolves according to (R) stoichiometry. It means 
that iodine concentration is increased and point is moved to right until it 
eventually reaches fold point delimiting stable and unstable branch. At this 
special point, system tends to continue increasing iodine concentration but for 
new higher values only lower branch values of the fast variables could satisfy 
fast subsystem steady state conditions. Hence, the system jumps to lower branch 
of the nullcline. There, it moves toward lower values of the iodine concentration 
according to the stoichiometry of (O) process until it comes to the other fold 
point. From this point, the only way is the new jump to the upper branch where 
cycle is closed. According to calculated nullclines Model(1-8) should be able to 
simulate oscillations. However, it must be confirmed by direct numerical 
experiment. 
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Numerical simulations 
For final tests of oscillatory properties, the Model(1-8) must be used to generate 
periodic changes of concentrations. Hence, the system of ODE-s must be 
formed in accordance with the model. Each concentration is changed with rate 
which is sum of individual reaction rates multiplied by corresponding 
stoichiometric coefficients. Rates of individual reaction steps are given in Table 
2, according to reaction stoichiometry and mass action law. Relative 
significance of these steps is given by rate constants multiplying concentrations 
of reacting species in particular step. The same rules could be used to form rate 
equations for each one reaction species, no matter if it is reactant, product, or 
intermediary species. However, some of reaction species are dynamically 
unimportant. Since the concentrations of iodate and hydrogen ions are 
significantly larger than the concentrations of other reaction species, they can be 
considered as constant without affecting qualitatively the results. Extending the 
model with two differential equations to account for the temporal evolution of 
these two species does not alter the dynamic structure of the system, including 
the highly sensitive mixed mode oscillation range, but only shifts a little the 
bifurcation points with respect to any control parameter values. [61] Hence the 
calculations presented here use 3[IO ] = 0.0474 and [H+] = 0.0958 mol/dm3. 
[62],[63] Furthermore, in model M(1-8) hydrogen peroxide is the only reactant. 
The reaction kinetics depends on its concentration only parametrically. Its 
changes in oscillations are much slower than others, and we consider that it is 
not essential for occurrence of oscillations and it will be taken as constant in the 
first approximation. Hence, in the model under consideration, there are five 
independent intermediary species: I2, I–, HIO, HIO2 and I2O and only they are 
dynamically important.  
 
 d[I2]/dt = r+4 – r–4  
 d[I–]/dt = – r+1 + r–1 – r2 – r+4 + r–4 + r5 
     d[HIO]/dt = r+1 – r–1 + 2 r+3 – 2 r–3 – r+4 + r–4 – r5 + r6 (1) 
 d[HIO2]/dt = r+1 – r–1 – r2 + r6 – r7 + r8 
     d[I2O]/dt = r2 – r+3 + r–3 – r6. 
 
 
The ri, r+i and r–i denote respectively the rates of whole reactions i, its forward 
part and its reverse part. The values given in Table 1 are taken from ref. 
[64],[65] and include fixed concentrations of iodate, hydrogen ions and 
hydrogen peroxide.  
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Figure 5. Numerical simulations of the Model(1-8). [H2O2] = 0.02 M.  

 
Results in Fig. 5 confirm ability of the Model(1-8) to simulate sustained 
oscillations of iodine, maintaining the same type of relaxation oscillations as 
they are observed in experiments. 

 
2.5. Dynamic level – model capable to simulate chaotic dynamics  
In numerical simulations of batch reactor experiments, changes of hydrogen 
peroxide concentrations are also important, just because its parametrical 
influence on changes in the form of oscillograms. Hence, additional differential 
equation has to be added for new variable: 
 
d[H2O2]/dt = – r5 – r6  – r7– r8 . (2) 
 
Moreover, some rate equations need to be adapted since hydrogen peroxide 
concentration is not included in rate constants any more: k5 = 1.487  104 mol–1 
 dm3  min–1; k6 = 5.00  105 mol–1  dm3  min–1; k7 = 2.00  103 mol–1  dm3 
 min–1; k8 = 2.2303  10–4 min–1. Apropriate rate expressions are now: 
 
r5 = k5 [HIO] [H2O2] 
r6 = k6 [I2O] [H2O2] 
r7 = k7 [HIO2] [H2O2] (3) 
r8 = k8 [H2O2]. 
  
The shape of the slow nullcline is dependent on parametrically changing 
hydrogen peroxide concentration. By merging slow nullclines for the range of 
hydrogen peroxide concentrations, one obtains folded surface that attracts all 
trajectories from the phase space. Since hydrogen peroxide concentration is 
slowly decaying in closed reactor, oscillations are evolving with time as system 
slowly glides over the surface (Fig. 6). After some time, system approaches the 
point where folded surface unfolds and oscillations disappear through the 
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sequence of damped, nearly harmonic oscillations. This transition corresponds 
to supercritical Andronov-Hopf bifurcation that occurs at critical value of 
hydrogen peroxide concentration. 
 

 
 
Figure 6. Surface of slow nullclines for a sequence of [H2O2] values and 
trajectory of the BL reaction obtained for the Model(1-8) in the batch reactor.  
 
Thus, at this level of modelling, damped oscillations of relaxation type, as well 
as nearly harmonic ones, are successfully described by model M(1-8). Even 
many other properties of the experimental oscillograms are simulated with 
given model, including pre-oscillatory period, and dependence on initial 
concentrations or temperature. However, complex oscillations are still not 
explained at this level of approximation. 
Complex dynamic states like chaos, are better examined in open reactor where 
the selected dynamics can be sustained infinitely. Although, the first eight 
reactions in Table 1, are enough to describe well the mechanism of the process 
under batch conditions, additional ones must be taken into account in an open 
continuous stirred tank reactor (CSTR), where complex oscillations could be 
maintained for a very long time. Additional reactions represent only inflow and 
outflow of chemical species into the reaction mixture and out of it (Table 3). In 
this extended model only hydrogen peroxide is considered as the inflow species. 
(The reaction system can be open with respect to other species, too. However, in 
that case, the number of intermediate species and related reactions increases 
importantly resulting in large mathematical problems without essentially 
important results.) In the model under consideration, where hydrogen peroxide 
is taken as the only inflow species, there are now six independent species: H2O2, 
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I2, I-, HIO, HIO2 and I2O and again, they are all dynamically important. 
Concentrations of iodate and hydrogen ions are again considered as constant. 
Hence the calculations presented here use 3[IO ] = 0.0474 and [H+] = 0.0958 
mol/dm3 as before. [62],[63] The time evolutions of other species are described 
by the six following differential equations: 
 
 d[H2O2]/dt = – r5 – r6  – r7– r8 + j0 ([H2O2]in – [H2O2]) 
 d[I2]/dt = r+4 – r–4 – j0 [I2] 
 d[I–]/dt = – r+1 + r–1 – r2 – r+4 + r–4 + r5 – j0 [I–] 
     d[HIO]/dt = r+1 – r–1 + 2 r+3 – 2 r–3 – r+4 + r–4 – r5 + r6 – j0 [HIO]  (4) 
 d[HIO2]/dt = r+1 – r–1 – r2 + r6 – r7 + r8 – j0 [HIO2] 
     d[I2O]/dt = r2 – r+3 + r–3 – r6 – j0 [I2O]. 
 
The values given in Table 3 are taken from the already published model 
[64],[65] and include fixed concentrations of iodate and hydrogen ions.  
Thus, mathematically speaking, we are dealing with six-dimensional problem. 
This model is able to describe almost all features of BL reaction, including 
regular simple oscillatory evolution, periodic mixed-modes with large-
amplitude oscillations (LAO-s) and small-amplitude oscillations (SAO-s), as 
well as the chaotic occurrence of LAO-s and SAO-s and their combinations. 
[66] 
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Table 3. Model M(1-15) of the BL reaction used in numerical simulations 
under CSTR conditions.[50] 
Reaction   Reaction ratea No. 

3IO I 2H       2HIO HIO  
r1 = k1 [I–] 
r–1 = k–1 [HIO] 
[HIO2] 

(R1) 
(R–1) 

2HIO I H      2 2I O H O  r2 = k2 [HIO2] [I–] (R2) 

2 2I O H O    2HIO  
r3 = k3 [I2O]  

r–3 = k–3 
2[HIO]  

(R3) 
(R–3) 

HIO I H      2 2I H O  
r4 = k4 [HIO] [I–] 
r–4 = k–4 [I2] 

(R4) 
(R–4) 

2 2HIO H O    2 2I H O H O     r5 = k5 [HIO] [H2O2] (R5) 

2 2 2I O H O    2HIO HIO  r6 = k6 [I2O] [H2O2] (R6) 

2 2 2HIO H O    3 2IO H H O    r7 = k7 [HIO2] [H2O2] (R7) 

3 2 2IO H H O      2 2 2HIO O H O   r8 = k8 [H2O2] (R8) 

( 2 2H O )in   2 2H O  r9 = j0 [H2O2]in (R9) 

2 2H O    ( 2 2H O )out r10 = j0 [H2O2] (R10) 

I    (I–)out r11 = j0 [I–] (R11) 
HIO   (HIO) out r12 = j0 [HIO] (R12) 
HIO2   (HIO2) out r13 = j0 [HIO2] (R13) 
I2O   (I2O) out r14 = j0 [I2O] (R14) 
I2   (I2) out r15 = j0 [I2] (R15) 
a Reaction rate constants at 60°C: k1 = 1.383  102 min–1; k–1 = 7.91  107 mol–1 
dm3  min–1; k2 = 4.79  1010 mol–1  dm3  min–1; k3 = 5.00  103 min–1; k–3 = 
3.15  108 mol–1  dm3  min–1 ; k4 = 3.00  1011 mol–1  dm3  min–1; k–4 = 
46.97 min–1; k5 = 1.487  104 mol–1  dm3  min–1; k6 = 5.00  105 mol–1  dm3 
 min–1; k7 = 2.00  103 mol–1  dm3  min–1; k8 = 2.2303  10–4 min–1. In CSTR 
we distinguish inflow species (Xi)in and outflow species (Xi)out. The 
concentrations of iodate and hydrogen ions, taken as constant in simulations 
( 3[IO ]  = 0.0474 mol × dm–3 and [H+] = 0.0958 mol × dm–3) are included in 
corresponding rate constants. The inflow concentration of hydrogen peroxide 
was [H2O2]in = 0.155 mol × dm–3. Flow rate as control parameter is designated 
as j0.  
 
Hydrogen peroxide is now considered as dynamical variable, but since it has 
largest concentration and is changed at smallest extent, it is now included in the 
list of slow species. Thus, now there are two slow and four fast variables. The 
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stationary values of fast variables are now positioned on the two-dimensional 
surface in six-dimensional phase space. It is known as manifold. It is nearly the 
same as the folded surface formed by merging nullclines of the smaller model 
M(1-8) for batch reactor. However, manifold surface is constructed from the 
larger extended model and this surface now consists of points representing 
steady states of the fast subsystem, which is functionally dependent on 
instantenous values of both slow variables. In the domain where relaxation 
oscillations are present, this surface is folded, having at least two stable and one 
unstable branch. Such a manifold calculated with the studied model can be seen 
in Fig. 7. Fast variables in that case often alternate between two stable branches 
resulting in relaxation oscillatory evolution of considered dynamical system. 
 

 
 
Figure 7. Surface of slow manifold and trajectory of the BL reaction obtained 
for the Model(1-15)  in the CSTR. 
 
In singular perturbation theory all variables are usually classified just as slow or 
fast ones, such that we are dealing, there, with the models having usually just 
two fast and one slow, or just one fast and two slow ones. These models exhibit 
different dynamical characteristics. Moreover, dynamical system with two slow 
and one fast variable can often be rescaled to system with one slow and two fast 
variables. [67],[68] Considered model is selforganized in such manner that its 
dynamical states can alternate during the course of reaction, between the ones 
characteristic for two slow and one fast variable to the others characteristic for 
one slow and two fast variables. [67]  
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In chemical, physicochemical and biochemical nonlinear dynamical systems the 
multiple-time-scale models consist commonly of three time-scale types of 
variables. There are, usually, several slow ones (external species, generally, 
reactants and products), several fast ones (internal species, intermediates) and 
often a middle one (the slow-fast one) having either internal or external 
characteristics in different regions of phase space. Necessary condition for such 
alternations is that some species belong to middle scale in both, concentration 
and time scale.  
Hence, the situation in BL system is analogous to dynamical systems with two 
slow and several fast species. However, fast species in the BL system are all 
synchronized so that they oscillate either in the same phase (HIO, HIO2 and 
I2O), or in the anti-phase (I-) with each other. Thus, they can be considered as 
mutually coupled variables, so that only one of them is really independent. In 
many ways, such a system could be considered as the system with two slow and 
only one fast species. 
In multiple-time-scale systems with more than one slow variable, mixed-mode 
oscillations (MMOs) may appear within the region with simple sustained 
oscillations. They generally consist of two types of oscillations with distinct 
amplitudes: LAOs and SAOs. The LAOs are global phenomena, generated by 
the geometry of the critical manifold having an unstable branch between two 
stable ones. They are well known as relaxation type dynamics governed by slow 
sliding of the system over the stable branches of critical manifold, periodically 
interrupted by much faster jumps from one to another stable branch of this 
hyper-surface in phase space (as already described at previous level). These fast 
jumps usually occur at special points (fold points forming the fold line) of the 
critical manifold where the stable branch is connected with unstable one.  
However, in mixed-mode, LAOs are mixed with SAOs of different nature. They 
occur at the fold points as a local phenomena generated by some folded 
singularities. In the mixed-mode region we can also expect the occurrence of 
complex dynamic phenomena known as canards and tourbillion. [67],[69]-[72] 
For complex phenomena in dynamical systems on multiple time scales, the fold 
is an object of special importance, just as steady state is for linear systems and 
limit cycle for simple oscillations. Fold points are determined according to ref. 
[67], from the condition:  
 

iDet(J(X )) 0 , (5) 
 
where Xi denotes the fast species HIO, HIO2, I2O and I– and J is the Jacobian of 
corresponding fast subsystem. This request must be fulfilled on the border 
between stable and unstable branch of the critical manifold, Fig. 8. 
Concentrations of slow species are treated here (in evaluation of the Jacobian 
for fast subsystem) as they are constant. This assumption seems to be 
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appropriate since they are changing on much slower time scale then the fast 
ones. 
The singularity point on the fold line was calculated according to ref. [67], from 
the condition: 

 

1 2

1 2

d d
0

d d

 
   
 

f fg g

t x t x , (6) 

 
where x1 and x2 are concentrations of slow species, f1 and f2 are their 
corresponding rates and g is a rate of the fast variable. In our case this gives for 
e.g. [HIO]: 
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 
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. (7) 

 
Furthermore, two nullclines were evaluated from corresponding rate equations 
for sets of all four fast species combined with each of two slow ones, Fig. 8. 
Hence, we have one nullcline that describe the steady state condition of species 
I2, HIO, HIO2, I2O and I– (the iodine nullcline) and the other one for the 
combination H2O2, HIO, HIO2, I2O and I– (the hydrogen peroxide nullcline). 
Each one of two subsystems gives as a solution a line, located in the critical 
manifold of the fast species. Steady state of the full system is placed in the point 
where two nullclines intersect, and it will be shortly referred below as the 
equilibrium, keeping in mind that our system is of non-equilibrium type. More 
precisely, in our papers this is known as disproportionation steady-state.[50]  
Finally, Andronov-Hopf point was identified numerically on the iodine nullcline 
using simple test ensuring that the real part of two complex eigenvalues 
(corresponding to corresponding five dimensional Jacobian) is passing through 
zero. 
The SAO occurs when trajectory comes close to the fold line and starts spiral 
damped circling around nullcline which contains steady states of slow-fast 
subsystem including iodine with other fast species. The system becomes closest 
to the nullcline and amplitude of SAOs are the smallest when this spiral circling 
gets him nearest to the Andronov-Hopf point. From this point on, spiralling 
makes system go away from the Andronov-Hopf point and SAO amplitudes are 
raising leading finally to new global jump representing LAO excursion. 
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(a ) 

 
(b) 

 

Figure 8. Slow manifold and trajectory of the MMOs for the Model(1-15). (a) 
The fold line (presented by solid line) and two nullclines (iodine nullcline 
presented by dashed line and peroxide nullcline by dotted line) are given. (b) 
Enlarged part showing structure of SAOs around the fold line.  
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Hence, observed complex mixed mode oscillations are decomposed in three 
segments by the properties of the analyzed model. First, in the LAOs itself, 
clear fast dynamic in jumps from one to another manifold branch are alternating 
with clear slow dynamics over the manifold surface. Then, in SAOs, the third 
component with mixed slow-fast dynamics leads to spiralling near the fold line. 
Therefore, the decisive role for the MMO appearance must be ascribed to the 
iodine species, due to their dynamical role changing from the slow one in LAOs 
to the fast one in SAOs. 
Complex oscillations in the BL system, including LAO and SAO type MMO, 
could be periodic or aperiodic - chaotic. It depends only on specific ratio 
between control parameters. Continuous increase of the flow rate, with fixed all 
other parameters, leads to discontinuous increase (Figure 9) of so called firing 
number F, indicating fraction of SAOs in MMOs: 
 

S
F

S L



 (8) 

 
where S and L are numbers of SAOs and LAOs in one period, or more 
generally, total numbers of SAOs and LAOs in long enough sequence of any 
kind of oscillations, either periodic or aperiodic ones. 
 

 
Figure 9. Devil's staircase. Firring number as a function of flow rate for the 
Model(1-15). 
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Chaotic windows occur between each pair of periodic dynamic states, Fig. 10. 
In chaotic dynamic states, irregular alterations of LAO and SAO cycles occur 
with properties typical for neighboring periodic windows. Hence, the fraction of 
SAOs and LAOs in MMOs is the only important factor determining if the 
system will be periodic or chaotic. Furthermore, we explained that this fraction 
is determined by the fraction of the slow-fast character of the iodine species 
depending on the flow rate value. Hence, our model successfully explained 
deterministic dynamic state shifts with controlled changes of the flow rate, 
Figure 11. 
 
 

 

 
Figure 10. Numerical simulations of the oscillatory dynamics of the BL 
reaction realized in open reactor (segment from 0 to 300 min) presented by 
means of the iodide concentration (in mol × dm–3). (a) Regular oscillations, kf = 
4.70×10–3 min–1; (b) and (c) mixed-mode oscillations, kf = 4.842200×10–3 min–1 
and kf = 5.05×10–3 min–1, respectively. 
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Figure11. Numerical simulations oscillatory dynamics of the BL reaction 
realized in open reactor (segment from 0 to 1000 min) presented by means of 
the iodide concentration (in mol × dm–3). Deterministic chaos with chaotically 
distributed number of the small-amplitude oscillations between the large-
amplitude ones, kf = 5.0815×10–3 min-1. 
 
Generally, chaotic dynamics occurs when limit cycle loose stability with 
changes of the control parameter values. This kind of behavior is easier to 
understand through the changes in iteration maps. Two neighbouring periodic 
states of the BL reaction model are given in Figure 12, one of them 
corresponding to the dynamic of 4131 type, and the other of (31)2 type. 
 

     
Figure 12. Poincare iteration maps: (a) for 4131 dynamics, and (b) for (31)2 
dynamics of the Model(1-15). 
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Between these two states, chaotic one was obtained and its iteration map is 
given in Figure 13. The position of the fixed point is identified in the crosspoint 
of the main diagonal (blue line) and imaginary line connecting the points on the 
iteration map. The fixed point corresponds to the point where the closed orbit 
(limit cycle) intersects the corresponding Poincare section. The slope of the 
tangent line (red line) in the fixed point is the criterion determining the stability 
of the limit cycle for the particular value of the control parameter. If the 
absolute value of the slope is higher than one the limit cycle is unstable and 
chaotic attractor is born. 
 

 
 

Figure 13. Poincare iteration map for chaotic dynamics of the Model(1-15) 
obtained with control parameter values between the ones used in Figure 11 (a) 
and (b). 
 
 
Corresponding attractor of the iteration map given in Fig. 13 is given below, 
with enlarged part where Poincare section was made, Fig. 14. 
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Figure 14. The chaotic attractor (a) of the Model(1-15) corresponding to the 
iteration map given in Fig. 13. (b) Enlarged part of the attractor with indicated 
position of the Poincare section. 
 
Stability of the periodic orbit is global property of the dynamic system and its 
phase space. It may not be directly connected with steady state properties but 
rather with its manifold and trajectories over it. Hence, the transition to chaos is 
not generally the consequence of single dominating set of reaction steps, but 
rather of sequences of states laying on periodic orbit, where several sets of 
reactions subsequently dominate over others. 
 

3. Summary 
The stoichiometry of the Bray-Liebhafsky reaction corresponds to the 
hydrogen peroxide decomposition to water and oxygen in an acidic 
environment, in the presence of iodate ions as a catalyst. During this 
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reaction an oscillatory change of the intermediate species concentration, 
along with a cascade change in the hydrogen peroxide concentration and 
oxygen removal can be obtained. By selecting the experimental 
conditions, the simple periodic or complex chaotic concentration changes 
can be generated. Concentration oscillations are a consequence of 
alternating dominance of different reaction pathways present in the 
reaction mechanism. The spontaneous selforganized alteration of 
dominating reaction pathways was used in this paper to explain 
occurrence of simple and complex oscillations in this system. 
Fundamental importance of processes on multiple time scales was 
identified and demonstrated. 
 
Keywords: Linear and nonlinear reaction system, feedback, autocatalysis, 
autocatalator, Bray-Liebhafsky oscillatory reaction 
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