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Optimal strategies for learning multi-
ancestry polygenic scores vary across traits

Brieuc Lehmann 1 , Maxine Mackintosh2,3, Gil McVean 4,6 &
Chris Holmes3,4,5,6

Polygenic scores (PGSs) are individual-level measures that aggregate the
genome-wide genetic predisposition to a given trait. As PGS have pre-
dominantly been developed using European-ancestry samples, trait prediction
using such European ancestry-derived PGS is less accurate in non-European
ancestry individuals. Although there has been recent progress in combining
multiple PGS trained on distinct populations, the problemof how tomaximize
performance given a multiple-ancestry cohort is largely unexplored. Here, we
investigate the effect of sample size and ancestry composition on PGS per-
formance for fifteen traits in UK Biobank. For some traits, PGS estimated using
a relatively small African-ancestry training set outperformed, on an African-
ancestry test set, PGS estimated using a much larger European-ancestry only
training set. We observe similar, but not identical, results when considering
other minority-ancestry groups within UK Biobank. Our results emphasise the
importance of targeted data collection from underrepresented groups in
order to address existing disparities in PGS performance.

Polygenic scores (PGS) are composite, quantitative measures that aim
to predict complex traits from genetic data. As well as providing
insights into the genetic architecture of complex traits, PGS have
considerable clinical potential for screening and prevention
strategies1,2. Largely driven by significant increases in sample sizes, the
predictive utility of PGS has improved substantially in recent years for
a variety of traits3, including cardiovascular disease4, breast cancer5,
and type I diabetes6.

These improvements, however, have largely been limited to
populations of European ancestry7–9, reflecting the lack of diversity in
genomic samples collected to date9. Moreover, predictive perfor-
mance decreases with genetic distance from the training
population10–12. The lack of transferability of PGS across ancestriesmay
be due to a number of factors, including population differences in
allele frequencies and linkage disequilibrium (LD)9,11. While there is
some evidence that commoncausal variants have similar effects across
ancestries9,13, other studies have suggested that the underlying variant
effects may in fact differ across ancestries14–16, which may be due to

gene-by-gene or gene-by-environment (GxE) interactions17,18. In addi-
tion, GxE interactions for people of African ancestry may be different
between those living in the UK and those living in South Africa, say.
This lack of transferability raises one of the most important technical
and ethical challenges in the clinical utility and applications of PGSdue
to their potential to exacerbate health inequalities9.

There are major, ongoing initiatives to collect genomic data from
traditionally under-represented groups, such H3Africa19, that aim to
address the lack of global genetic diversity in research data. However,
it may take many years to collect sufficient data to reduce the dis-
parities in PGS performance. Statistical methods may provide an
alternative, short-term, cost-effective and complementary potential
solution tomitigate against the negative effects of the lack of diversity
in genomic datasets, by using modelling techniques to make use of all
the existing data available, while allowing for some differences
between groups.

There has been a growing interest in statistical methods to
improve the transferability of PGS, which have thus far focused on

Received: 7 April 2022

Accepted: 22 May 2023

Check for updates

1Department of Statistical Science, University College London, London, UK. 2Genomics England, London, UK. 3TheAlan Turing Institute, London, UK. 4BigData
Institute, University of Oxford, Oxford, UK. 5Department of Statistics, University of Oxford, Oxford, UK. 6These authors contributed equally: Gil McVean, Chris
Holmes. e-mail: b.lehmann@ucl.ac.uk

Nature Communications |         (2023) 14:4023 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7302-4391
http://orcid.org/0000-0002-7302-4391
http://orcid.org/0000-0002-7302-4391
http://orcid.org/0000-0002-7302-4391
http://orcid.org/0000-0002-7302-4391
http://orcid.org/0000-0002-5012-4162
http://orcid.org/0000-0002-5012-4162
http://orcid.org/0000-0002-5012-4162
http://orcid.org/0000-0002-5012-4162
http://orcid.org/0000-0002-5012-4162
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38930-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38930-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38930-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-38930-7&domain=pdf
mailto:b.lehmann@ucl.ac.uk


GWAS-derived PGS, i.e. PGS based on summary statistics from a
genome-wide association study (GWAS). These integrate results
fromGWAS trained on distinct populations at different stages of the
PGS estimation. For example, Grinde et al. use European GWAS
results to select variants, and then estimate the variant weights
using the non-European GWAS results20. Márquez-Luna et al. pro-
pose a ‘multi-ethnic’ PGS by combining scores trained separately on
different populations21. Weissbrod et al. expand on this approach by
further leveraging functionally informed fine-mapping to estimate
the PGS weights22. In a related approach, Ruan et al. incorporate LD
information to directly estimate effect sizes using GWAS results
from two or more populations23. To account for admixture, Cavazos
& Witte propose local ancestry weighting to construct individua-
lised PGS24. These efforts have yielded promising improvements in
PGS performance, though there remains a significant gap in pre-
dictive accuracy between European and non European target
populations.

Here, we investigate the use ofmultiple-ancestry datasets, such as
UK Biobank25, to estimate PGS for a range of anthropometric, blood-
sample, and disease traits, with the explicit objective of improving
predictive accuracy for under-represented ancestries. Specifically, we
ask whether there are consistent optimal strategies for borrowing
information across ancestry groups to maximize prediction accuracy
in groups that have small sample sizes in available resources. For each
trait, we construct training sets with varying numbers of individuals
from each ancestry to assess the effect of sample size and composition
on PGS accuracy, using both simulated data and data from UK
Biobank25. Moreover, and to counteract the imbalance of ancestries in
a multiple-ancestry training set, we investigate the use of an impor-
tance reweighting approach that places more weight on under-
represented ancestries during training. Importance reweighting is a
standard statistical technique used in survey sampling that aims to
account for differences between the sampling population and the
population of interest26. Given the availability of individual-level
information in biobanks, we estimate PGS using regularised regres-
sion applied to full genotype and covariate data (as opposed to
genome-wide association summary statistics) to avoid introducing
additional artefacts into our analysis via the reliance on assumptions
about genotype and covariate correlation structure (including LD) and
GWAS methodology.

Our results show that the impact of sample size and composition
on predictive performance is highly variable across traits. For some
traits, polygenic scores estimated using a relatively small number of
minority-ancestry individuals outperformed on a minority-ancestry
test set scores estimated using a much larger number of European-
ancestry individuals. Moreover, adding European-ancestry individuals
to the training set did not always improve performance and in some
cases even led topoorer performance. Although importanceweighting
yields moderate improvement in performance for some traits, we find
that sample size is a much more prominent factor, highlighting the
limitations of statistical corrections and the importance of collecting
more data from a more diverse range of participants.

Results
Overview of methods
To investigate the effect of sample size and ancestry composition on
polygenic score performance, we used both simulated data and real
data from UK Biobank25. We initially focus on PGS strategy for African-
ancestry groups, given that predictive accuracy using European-
ancestry PGS is consistently worst out of all the major ancestry
groups9,12. Simulated data was generated using the simulation engine
msprime27 in the standard library of population genetic simulation
models stdpopsim v0.1.228 to generate African-ancestry and
European-ancestry genotypes. We also considered a range of quanti-
tative and binary traits from UK Biobank, using imputed genotypes

along with inferred genetic ancestry labels made available by the Pan-
UKBB initiative29.

For both the simulated and real data, we constructed a range of
training sets controlling the number of European-ancestry and
minority-ancestry individuals. We considered three types of training
sets: a single-ancestry set consisting only of European-ancestry indi-
viduals, a single-ancestry set consisting of minority-ancestry indivi-
duals, and a dual-ancestry set consisting of both European-ancestry
and minority-ancestry individuals. We denote a PGS trained on a XYZ-
ancestry training set as PGSXYZ—for example PGSEUR. Similarly, we refer
to a PGS trained on a dual-ancestry (respectively minority-ancestry)
training set as PGSdual (respectively PGSmin).

For each training set, we estimated PGS using L1-regularised
regression, also known as the LASSO30, whichhaspreviously been used
in the context of genetic risk prediction (see for example31–34). To
account for the imbalance in sample size numbers in the dual-ancestry
training sets, we also estimated PGS using an importance reweighted
LASSO, upweighting the non-European-ancestry individuals. Following
Martin et al.9, we assessed the predictive performance of a PGS using
partial r2 relative to a covariate-only model. See Fig. 1 for a schematic
diagram of the methods used and “Methods” for full details.

Single-ancestry PGS can outperform dual-ancestry PGS despite
being trained on fewer individuals
We first set out to evaluate the relative performance of single-ancestry
PGS versus dual-ancestry PGS through simulation. An important factor
in the lack of transferability of PGS across ancestries is the difference in
causal effect sizes11, with the correlation of causal effect sizes between
ancestry groups, ρ, has been estimated to be significantly less than one
across a range of common traits15,16. We simulated traits by randomly
selecting p0 = 100 SNPs to be causal and then generating effect sizes
for these SNPs such that that overall heritability across the entire
population was h2 = 0.3. To assess the impact of differences in causal
effect sizes on the relative predictive performance of PGS
strategies, we varied the trans-ancestry causal effect correlation,
ρ = 0.5, 0.6,…, 1.0, generating 10 quantitative traits for each value. We
assume that all causal variants are genotyped, thus avoiding any dif-
ferences in PGS accuracy that may arise from imperfect tagging11. We
note that in practice imputation does not fully address the issue of
imperfect tagging, due to differences in imputation quality across
ancestry groups7,9.

For each trait we created five African-ancestry training sets with
nAFR = 2000, 4500, 7714, 12,000, 18,000 African-ancestry individuals.
We also created five dual-ancestry training sets made up of the
corresponding African-ancestry training set supplemented with
nEUR = 18,000 European-ancestry individuals. To obtain PGS from the
African-ancestry training sets, we used unweighted LASSO regression,
while for the dual-ancestry training sets, we used the importance
reweighted LASSOwith γ = 0, 0.1,…, 1.5. The case γ =0 corresponds to
no reweighting, that is, the standardLASSO. The case γ = 1 corresponds
to inverse proportion reweighting, so that in total, African-ancestry
individuals and European-ancestry individuals have equal weight. Note
that the African-ancestry training set is equivalent to the limiting case
γ→∞whereby zero weight is placed on European-ancestry individuals.
We quantified predictive performance of a PGS for a given ancestry
group in terms of the predictive gap: the difference between variance
explained by the PGS, r2, and SNP heritability h2 (the maximal variance
explained by any PGS). See “Simulation study” for full details.

For both PGSAFR and PGSdual, the predictive gap for African-
ancestry individuals decreased substantially as the number of African-
ancestry individuals in the training sets increased (Fig. 2). For example,
when nAFR = 2000 and the correlation between genetic effects ρ was
0.7, themean predictive gap of the unweighted PGSdual (γ =0) was just
over 0.21 for the African-ancestry test sets, compared to 0.03 for the
European-ancestry test sets. While the performance on Europeans did
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not change markedly as the number of African-ancestry training set
individuals increased, the African-ancestry predictive gap fell to ~0.11
and 0.06 when nAFR = 7 714 and nAFR = 18,000 respectively. As expec-
ted, the discrepancy between the two ancestry groups decreased as
the correlation ρ between the ancestry-specific genetic effects
increased.

In the absence of reweighting (γ =0), PGSAFR generally out-
performed PGSdual, despite the latter being trained on more indivi-
duals—the dual-ancestry training sets consist of the African-ancestry
training sets along with 18,000 European-ancestry individuals. This
was particularly evident when the correlation between ancestry-
specific genetic effects was lower (ρ = 0.5).

Importance reweighting generally had a positive impact on pre-
dictive performance, reducing the difference between PGSAFR and
PGSdual. When the number of African-ancestry training individuals was
low (nAFR = 2000), the importance-reweighted PGSdual outperformed
PGSAFR when the correlation between ancestry-specific genetic effects
was relatively high (ρ ≥0.7). When ρ =0.7, the relative amount of
improvement with reweighting was stable as nAFR increased: for
nAFR = 2000, the predictive gapwas reduced by 27% (from0.21 at γ =0,

to 0.15 at γ = 1.4), while for nAFR = 18,000, the predictive gap was
reduced by 29% (from 0.060 at γ =0, to 0.042 at γ = 1.4). In contrast,
when ρ = 1, the relative amount of improvement with reweighting was
decreased as nAFR increased: for nAFR = 2000, the predictive gap was
reduced by 16% (from 0.14 at γ =0, to 0.11 at γ = 0.5), while for
nAFR = 18,000, the predictive gap was only reduced by 7% (from 0.040
at γ = 0, to 0.038 at γ = 0.4). We highlight that importance reweighting
reduced the predictive gap even when the effect sizes were the same
across ancestries (ρ = 1), indicating that the procedure can partially
correct for ancestry-specific differences in allele frequencies and LD
structure.

The effect on predictive performance depended on the degree of
reweighting, quantifiedby γ. As γ increased from0 to 1.5, thepredictive
gap typically decreased. When the correlation between ancestry-
specific genetic effects was high (ρ ≥0.9) and the number of African-
ancestry samples low (nAFR = 2000), the predictive gap increased again
for larger values of γ. This reflects a crucial trade-off of importance
reweighting in this context: while the bias of African-ancestry genetic
effect estimates may be lower with more reweighting, the increased
variance of the weights results in a lower effective sample size.

Fig. 1 | Overview of methods. A To evaluate the different PGSs, we performed
various splits of the availabledata. Firstly, we heldout test sets of 20%of individuals
in each ancestry group. From the remaining 80%, we constructed three types of
training sets: a single-ancestry set consisting only of European-ancestry individuals
(purple block), a single-ancestry set consisting of non-European-ancestry indivi-
duals (yellow block), and a dual-ancestry set consisting of both European-ancestry

and non-European-ancestry individuals (blue block). For each training set, we used
another 20% of the data to select the regularisation parameter in the LASSO. B For
the dual-ancestry training set, we used an importance weighted LASSO, assigning
higher weights to individuals in the minority-ancestry group. See Methods for full
details.
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The effect of reweightingwas relatively small compared to the effectof
increased sample size. For nAFR = 2000 and ρ =0.7, reweighting
reduced the predictive gap from 0.21 to 0.15. The same improvement
for the unweighted PGSdual was seen when increasing the number of
African-ancestry individuals to nAFR = 4500, though we note that the
PGSAFR with nAFR = 4500 had an even lower predictive gap of 0.10.

To investigate the impact of different genetic architectures on
these results, we performed supplementary studies varying the herit-
ability h2 = 0.1, 0.3, 0.5, and the polygenicity (i.e. number of causal
SNPs) p0 = 10, 100, 1000 (Supplementary Figs. 1 and 2 respectively).
We observed a similar pattern of results, with importance reweighting
having a positive impact on predictive performance when the number
of African-ancestry training individuals was low. For a fixed genetic
correlation ρ =0.8, the impact of reweighting was generally larger
when heritability was high, and when the number of causal SNPs was
lower. In particular, we note that the impact of reweighting was mini-
mal when h2 = 0.1. This is likely a reflection of the LASSO’s reduced
ability to estimate small effect sizes as opposed to large effect sizes.

This simulation study illustrates the relative performance of
PGSAFR and PGSdual as a function of (i) the number ofminority-ancestry
individuals in the respective training sets and (ii) the correlation of
genetic effects between ancestries. For both PGSAFR and PGSdual, the
between-ancestry disparity in predictive performance decreased as
the number of minority-ancestry individuals in the training set
increased. Despite being trained on fewer individuals, the PGSAFR
tended to outperform PGSdual, particularly when the correlation
between ancestry-specific genetic effects was low. Importance
reweighting generally reduced the predictive gap of PGSdual, especially
when the sample size imbalance between ancestries was high. As this

imbalance decreased, however, the reweighted PGSdual did not out-
perform PGSAFR.

Adding individuals from one ancestry does not always improve
PGS performance for a different ancestry
Next, we sought to examine whether, even without reweighting, pre-
diction performance in an underrepresented ancestry group can be
boosted by including individuals from a different ancestry among the
training samples. To do so, we used data from UK Biobank, estimating
a range of PGS based on varying numbers of training individuals for a
variety of traits (Table 1; seeMethods for a description of how the traits
were selected). In this analysis we focused on African-ancestry and
European-ancestry individuals, where genetic ancestry labels were
taken from Pan-UKBB. Note that the number of individuals from each
ancestry with non-missing trait values varied across traits (see Table 1).
For example, there are 6178 African-ancestry individuals and 361,699
European-ancestry individuals with non-missing data for height,
compared to 5748 African-ancestry individuals and 345,862 European-
ancestry individuals with non-missing data for high light scatter reti-
culocyte count.

First, we held the number of European-ancestry individuals fixed,
and constructed six training sets by varying the number of African-
ancestry individuals from 0% to 80% of the total number of African-
ancestry individualswith non-missingdata for the trait inquestion. The
number of European-ancestry individuals was chosen such that the
largest training set had a 90-10 split between European- and African-
ancestry individuals. Considering height again as an example, this
corresponded to keeping the number of European-ancestry indivi-
duals fixed at 44,487 and varying the number of African-ancestry

Fig. 2 | Simulation study: predictive gap against number of African-ancestry
individuals in training set. Each panel corresponds to a different number of
African-ancestry training set individuals from nAFR = 2000 to nAFR = 18,000. The
training sets for PGSdual (blue lines) consisted of the corresponding African-
ancestry training set for PGSAFR (yellow lines), along with nEUR = 18,000 European-
ancestry individuals. Each line represents the mean predictive gap across 50

repetitions. The horizontal dashed lines correspond to the predictive gap for
European-ancestry (EUR) test sets based on an unweighted LASSO, while the solid
lines correspond to the predictive gap for African-ancestry (AFR) test sets. The
parameter γ corresponds to the degree of reweighting used in the reweighted
LASSO for PGSdual. The correlation of genetic effects between ancestries ρ was
varied from 0.5 (lighter lines) to 1 (darker lines).
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individuals from 0 to 4 942. For each training set, we used the
unweighted LASSO to generate PGSs, and evaluated predictive per-
formance in terms of variance explained on held-out test sets for each
ancestry.

The predictive performance on African-ancestry individuals
increased for five traits: height, mean corpuscular volume (MCV),
female genital prolapse (FGP), high light scatter reticulocyte count
(reticulocyte), and platelet crit (platelet) (Fig. 3a). For the remainder of
the traits, predictive performance stayed largely stable.

Next, weperformedcomplementary analyses inwhichweheld the
number of African-ancestry individuals fixed at 80% of the total num-
ber of African-ancestry individuals with non-missing data for the trait
in question. We again constructed six training sets, now varying the
number of European-ancestry individuals so that the proportion of
European-ancestry individuals in the training set ranged from 0%
to 90%.

Predictive performance on African-ancestry individuals only
increased markedly for height and mean platelet volume (MPV), with
the improvement forMPV appearing to tail off between the two largest
training sets. For three traits (mean corpuscular volume, reticulocyte
count, erythrocyte distribution width), predictive performance wor-
sened as European-ancestry individuals were added to the training set.
For the remainder of the traits, predictive performance stayed mostly
constant.

These results demonstrate that, for some traits, the potential for
increasing prediction performance by including samples from a dif-
ferent population can be limited. They also highlight substantial
between-trait heterogeneity in response, suggestive of major differ-
ences in genetic architecture.

Optimal ancestry composition of training sets varies among
traits in UK Biobank
Next, we set out to assess the relative performance of single- versus
dual-ancestry PGS in empirical data by considering the UK Biobank
traits analysed in the previous section. We first considered three
training sets: (i) a European-ancestry training set of ~300,000
European-ancestry individuals, (ii) a African-ancestry training set of
~5000African-ancestry individuals, and (iii) a dual-ancestry training set
made up of the African-ancestry training set combined with European-
ancestry individuals so that the proportion of African-ancestry indivi-
duals was 10%. For the latter, we opted for this 90-10 split—thus not
using all the available European-ancestry individuals—following the
previous analysis that indicated the limited benefit to African-ancestry
predictive performance of adding European-ancestry individuals to
the training set. A secondary motivation was to limit the imbalance
between the two ancestries in order to evaluate the effect of impor-
tance weighting. We used the importance weighted LASSO with
γ =0, 0.2,…, 1 to construct PGSdual, while for the single-ancestry
training sets we just considered the standard, unweighted LASSO. In
a supplementary analysis on a subset of the traits, we also estimated
dual-ancestry PGS trained on the combination of the European-
ancestry training set and the African-ancestry training set, using both
the unweighted and reweighted LASSO (Supplementary Fig. 3). We
found that for this subset there was limited benefit over either the
European-ancestry only training set, or the smaller dual-ancestry
training set with only 50k European-ancestry individuals. Moreover,
although the LASSO is a relatively efficient algorithm for constructing
PGS using individual-level data, it nevertheless took over 210 CPU
hours to fit the PGS for height on the full dual-ancestry training set,
compared to 40 CPU hours on the smaller dual-ancestry training set.

Figure 4 illustrates the predictive performance of the three above
PGS for the 15 UK Biobank traits. In terms of African-ancestry pre-
dictive utility, PGSAFR outperformed PGSEUR on two traits—MCV, and
erythrocyte distribution width (erythrocyte)—despite the former
sample size being orders of magnitude smaller (n ≈ 5000 versus
n ≈ 300,000). For both of these traits, the unweighted PGSdual per-
formed the same as or slightly worse than PGSAFR. While importance
reweighting yielded amoderate improvement, the reweighted PGSdual
did not outperform PGSAFR.

Table 1 | Number of individuals with non-missing trait value in
UK Biobank by genetic ancestry group

Ancestry Trait Total Cases h2

AFR Height 6178 0.4603

AMR Height 981

CSA Height 8082 0.5709

EAS Height 2689 0.4415

EUR Height 361699

MID Height 1543

AFR Mean corpuscular volume (MCV) 5912 0.4465

AMR Mean corpuscular volume (MCV) 958 0.8142

CSA Mean corpuscular volume (MCV) 7956 0.3716

EAS Mean corpuscular volume (MCV) 2622 0.2414

EUR Mean corpuscular volume (MCV) 351672 0.1215

MID Mean corpuscular volume (MCV) 1513 0.7393

AFR Asthma 6257 741 0.0255

AMR Asthma 989 106 0.0610

CSA Asthma 8285 1017 0.0340

EAS Asthma 2700 236 0.0170

EUR Asthma 362511 42248 0.0748

MID Asthma 1567 174 0.0301

AFR Female genital prolapse (FGP) 3665 93 0.1222

AMR Female genital prolapse (FGP) 641 27

CSA Female genital prolapse (FGP) 3793 170

EAS Female genital prolapse (FGP) 1786 31

EUR Female genital prolapse (FGP) 194734 11043 0.0675

MID Female genital prolapse (FGP) 662 33

AFR Body mass index (BMI) 6168 0.3838

EUR Body mass index (BMI) 361306 0.1090

AFR Eosinophill percentage 5893 0.0739

EUR Eosinophill percentage 351038 0.0958

AFR Erythrocyte distribution width 5912 0.1331

EUR Erythrocyte distribution width 351672 0.0936

AFR Lymphocyte count 5893 0.1896

EUR Lymphocyte count 351033 0.0962

AFR Monocyte count 5893 0.2451

EUR Monocyte count 351033 0.1105

AFR Mean platelet volume (MPV) 5912 0.3315

EUR Mean platelet volume (MPV) 351669 0.2062

AFR Platelet crit 5912 0.2090

EUR Platelet crit 351670 0.1298

AFR High light scatter reticulocyte count 5748 0.3758

EUR High light scatter reticulocyte count 345862 0.0967

AFR Atrial fibrillation (AFib) 6257 125 0.0797

EUR Atrial fibrillation (AFib) 362511 16476 0.0880

AFR Diverticular disease of the intes-
tine (DDI)

6257 285 0.0247

EUR Diverticular disease of the intes-
tine (DDI)

362511 30413 0.0615

AFR Hypothyroidism 6257 124 0.0308

EUR Hypothyroidism 362511 17496 0.1243

SAIGE ancestry-specific heritability estimates72 were obtained from the Pan-UKBB initiative
website29.
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For four other traits—high light scatter reticulocyte count (reti-
culocyte), hypothyroidism, atrial fibrillation (AFib), and and diverti-
culardisease of intestine (DDI)—thepredictive performanceof all three
PGS was largely similar. For the remaining traits—height, MPV, body
mass index (BMI), eosinophill percentage, monocyte count, asthma
and lymphocyte count—PGSEUR performed best. We note that pre-
dictive accuracy of PGSEUR for European-ancestry individuals was the
same or higher than any of the PGS for African-ancestry individuals,
consistent with previous investigations into the between-ancestry
disparities of polygenic scores7,9.

To explore whether the variability in optimal PGS strategy
extended to other subpopulations, we focused in on four of the above
traits (height, MPV, asthma, and erythrocyte distribution width)
and ran the above analyses using different minority-ancestry
groups: Admixed American ancestry (AMR), Central/South Asian
ancestry (CSA), East Asian ancestry (EAS), and Middle Eastern
ancestry (MID).

Figure 5 shows the predictive performance on the four traits
across the five minority ancestry groups. For both height and asthma,
PGSEUR had the best predictive performance for each of ancestry
groups, with partial r2 for height varying from r2 = 0.08 for the African-
ancestry group to r2 = 0.25 for the Admixed American ancestry group.
For both erythrocyte distributionwidth andmean corpuscular volume
in African-ancestry individuals, the PGSmin and the reweighted PGSdual
outperformed PGSEUR, which offered almost no predictive utility. With
the exception of mean corpuscular volume in East Asian ancestry
individuals, where performancewas similar between the different PGS,
PGSEUR was consistently the best strategy for the remaining minority-
ancestry groups. Results were qualitatively identical when using only
genotyped SNPs instead of the full imputed sequence (Supplemen-
tary Fig. 4).

Differences in trait architecture explain variable performance
by ancestry
Finally, to investigate the reasons why optimal training approaches
vary across traits, we investigated the contribution of variants at
different allele frequencies to variance explained. Specifically, we
measured the partial r2 for different subsets of variants grouped by

minor allele frequency (MAF) in a given ancestry group. For each
ancestry group, we grouped variants into four sets: ‘rare’ (MAF ≤
1%), ‘uncommon’ (1% <MAF ≤ 5%), ‘intermediate’ (5% <MAF ≤ 20%),
and ‘common’ (MAF > 20%). Given a set of variants K and the
genotypematrix of the test set X, let XK denote the submatrix given
by the columns of X that are in K. For a set of variants K, we define
ĝK =XKβ̂K to be the score associated with the variant setK, where β̂
is the vector of variant effects obtained from the LASSO. We then
defined the partial r2 attributable to variant set K to be the differ-
ence in r2 between models

y=Mθ1 + ĝKη+ ϵ1 ð1Þ

y=Mθ2 + ϵ2, ð2Þ

where y is the vector of trait values, and M is the matrix of covariates
(age, sex, the first ten genetic principal components (PCs), and inter-
actions between sex and the ten genetic PCs) for the test set. We note
that because we are considering the same set of variants for each trait,
observed differences among traits in composition likely reflect dif-
ferences in trait architecture, rather thandifferences in how the studies
were performed.

Figure 6 illustrates the contribution to variance explained by dif-
ferent segments of the ancestry-specific allele frequency spectra for
the PGS for mean corpuscular volume and height. We observe striking
differences between these traits in the contribution of different allele
frequency segments. For MCV in African-ancestry individuals, the
majority of the variance explained in each of the polygenic scores was
due to variants that were intermediate or common in African-ancestry
individuals (see top row, left). Notably, over half the contribution to
variance explained of the African-ancestry and PGSdual could be
attributed to variants that have MAF < 5% in the European-ancestry
subgroup (second row, left). Conversely, variance explained in the
European-ancestry subgroup was driven by variants that are inter-
mediate or common in European-ancestry individuals (fourth row,
left). And approximately one quarter of the variance explained could
be attributed to variants withMAF < 5% in African-ancestry individuals.
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Fig. 3 | Predictive performance for African-ancestry individuals against sample
size for 15 traits in UK Biobank. a We fixed the number of European-ancestry
(EUR) individuals in the training set at ~50,000 (26,388 for female genital prolapse
(FGP)) and varied the number of African-ancestry (AFR) individuals from0 to ~4700
(2900). The predictive performance, evaluated in terms of partial r2, on African-
ancestry individuals increased markedly for mean corpuscular volume (MCV) and
platelet crit; and stayed largely stable (or increased slightly) for the remainder.
b Here, we instead fixed the number of African-ancestry individuals in the training
set at ~4700 (2900 for FGP) for each trait and varied the number of European-

ancestry individuals so that the proportion of European-ancestry individuals in the
training set ranged from0% to 90%. The effect on performance on African-ancestry
individuals again varied by trait, showing a clear improvement forMPV and height,
and a moderate decrease for MCV. Error bars correspond to the range across five
cross-validation roundsof training set construction and PGS estimation. Phenotype
acronyms: mean platelet volume (MPV), mean corpuscular volume (MCV), body
mass index (BMI), atrialfibrillation (AFib), diverticular disease of the intestine (DDI),
female genital prolapse (FGP).
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In contrast, for height we find that variance explained in
European-ancestry individuals has an allele frequency decomposition
with a slightly greater contribution of variants that are common in
European-ancestry individuals (bottom row, right). But, variance
explained in African-ancestry individuals is dominated by variants that
are common (MAF > 5%) in both populations (top two rows, right). The
effect of reweighting follows a similar pattern; for MCV shifting var-
iance explained towards variants that are higher-frequency in the
African-ancestry individuals (and considerably rarer in European-
ancestry individuals) and, for height, tending to favour variants that
are common in both groups.

These results suggest differences in genetic architecture
between the two traits. For mean corpuscular volume, the variance
explained by PGSdual and PGSAFR could largely be attributed to
variants that were relatively common in African-ancestry individuals
but rare in European-ancestry individuals. Since the number of
African-ancestry individuals in these training sets was relatively
small, this suggests that the corresponding effect sizes are com-
paratively large. On the other hand, the variance explained by each
of the height PGS could be attributed to variants that were common
in both European-ancestry and African-ancestry individuals. We
found similar patterns for the other minority ancestries (Supple-
mentary Figs. 5–8). Specifically, for traits and ancestries where

PGSmin outperformed the PGSEUR, more variance could be attrib-
uted to variants that are more common in the minority ancestry
group. We also found substantial differences across traits in the
implied liability variance between PGSEUR and PGSmin (Supplemen-
tary Table 1). Such differences in trait architecture are indicative of
variation in the evolutionary and selective forces that have shaped
trait variation35–37.

Discussion
The lack of diversity in human genetic studies has been brought into
focus by a number of articles (e.g.9,38–40), revealing that around 86% of
all GWAS participants are of European descent. In the context of
polygenic scores, this bias has been reflected in the lack of transfer-
ability of scores across ancestries: PGS developed using European-
ancestry samples tend to perform poorly in non-European ancestry
test sets7–9. Correspondingly, our results found that, for a range of
traits, PGS estimated using European-ancestry individuals performed
relatively poorly on other non-European ancestry groups. Although
recent improvements in predictive performance across a number of
traits indicate the potential clinical utility of PGS2,3,5,6, the disparity in
PGS accuracy across ancestry groups, raises serious technical, clinical
and ethical issues, with likely substantial impacts on health inequalities
if left unaddressed9.
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Fig. 4 | Partial r2 for PGSEUR, PGSdual, and PGSAFR on 15 traits in UK Biobank.
Predictive performance on an African-ancestry (AFR) test set is shown by the solid
lines. The dashed lines correspond to predictive performance on a European-
ancestry (EUR) test set using PGSEUR. The single-ancestry scores were estimated
using a standard, unweighted LASSO. The dual-ancestry scores were constructed
using an importance weighted LASSOwith various degrees of reweighting γ. Traits

are ordered according to partial r2 of PGSEUR on the European-ancestry test set
(note the varying y-axes). Error bars correspond to the range across five cross-
validation rounds of training set construction and PGS estimation. Phenotype
acronyms: mean platelet volume (MPV), mean corpuscular volume (MCV), body
mass index (BMI), atrialfibrillation (AFib), diverticular disease of the intestine (DDI),
female genital prolapse (FGP).
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Recent investigations into statistical methods have sought to
construct improved PGS using the available data with the aim of
reducing this disparity in predictive accuracy. Previous studies on the
lack of transferability of PGS have generally estimated scores using
summary statistics from genome-wide association studies of single-
ancestry populations7–9. These summary statistic approaches are
often highly efficient computationally and typically achieve highly
competitive predictive performance relative to full genotype
approaches34,41–43. A number of methods to construct PGS by com-
bining GWAS results from distinct ancestry groups have recently been
developed, demonstrating improved prediction accuracy on the
minority-ancestry group22–24.

However, the question of how to optimally construct PGS directly
frommultiple-ancestry training data has largelybeenunexplored. That
is, to maximise predictive accuracy for a minority-ancestry group, is it
better to employ a PGS trained on just the minority-ancestry indivi-
duals or a combination of the minority-ancestry individuals and the
majority-ancestry individuals? To investigate this, we compared
the prediction accuracy of PGS trained on different subsets of the
available data. This was possible due to the availability of individual-
level genetic data in UK Biobank, accompanied by a wide range of
phenotypicmeasurements. This in turn allowed us to vary the number
of individuals of each ancestry in each training set and thus to assess
the effect of sample size and composition on PGS predictive

performance for a range of quantitative and binary traits. Moreover,
the use of individual-level data to estimate PGS, as opposed to the
more standard approach of using external GWAS summary statistics,
avoids making any assumptions such as common LD structure or
phenotype definition from the GWAS population and target popula-
tion (though see ref. 44 for a method that combines both approaches
to improve polygenic prediction). A potential drawback of using an
individual-level approach was the considerable computational cost
associated with constructing the PGS, which may be impractical in the
context of large-scale biobanks of increasing diversity.

It is worth noting that UK Biobank consists of an older subset of
the UK population recruited on a voluntary basis in response to postal
invitations. As a result, UK Biobank is not a representative sample of
thewider UKpopulation, displaying a bias towards individuals who are
healthier, wealthier, and who self-report their ethnicity as white45. We
further note that the absolute number of non-European-ancestry
individuals in UK Biobank is considerably smaller than those of
European-ancestry. Our findings are thus limited by the ancestral
diversity of UK Biobank and more work is required to investigate
optimal PGS strategies in more balanced multi-ancestry genomic
datasets.

Our primary finding is that, in terms of minority-ancestry pre-
diction performance, traits vary substantially in their optimal strategy
for combining data across ancestries. Through simulation, we have
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Fig. 5 | Partial r2 for PGSEUR, PGSdual, and PGSmin on four traits in UK Biobank
for five minority-ancestry groups. The single-ancestry scores were estimated
using a standard, unweighted LASSO. The dual-ancestry scores were constructed
using an importance weighted LASSO with various degrees of reweighting γ. Error
bars correspond to the range across five cross-validation rounds of training set

construction and PGS estimation. The four traits considered are height, MCV,
asthma, and erythrocyte distribution width. We used inferred genetic ancestry
labels fromPan-UKBB,withparticipants divided into sixgroups: Europeanancestry
(EUR), African ancestry (AFR), Admixed American ancestry (AMR), Central/South
Asian ancestry (CSA), East Asian ancestry (EAS), andMiddle Eastern ancestry (MID).
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shown that a PGS trained on a small minority-ancestry training setmay
outperform a much larger European-ancestry training set. Moreover,
there are plausible regions of parameter space, notably where effect
sizes are correlated across ancestry groups but not identical, where
reweighting strategies can boost prediction performance using a
multiple-ancestry training set. However, when applied to empirical
data from the UK Biobank, relatively weak benefit from reweighting
was observed. Rather, traits fell into two broad categories for which
theminority-ancestry PGS outperformed themajority-ancestry PGS, or
vice versa. For those in the first category, the most valuable training

data was the small dataset from the minority group alone (and where
performance decreases by the inclusion of any individuals of the
majority—here European-ancestry). For those in the second category
(such as height), the best performance in the underrepresented group
was achieved by training in the much larger majority group, though
note this still represented a substantial decrease in absolute perfor-
mance relative to the majority European-ancestry group. When the
minority group was African-ancestry individuals, the first category,
though smaller, included important biomarkers such as MCV. More-
over, for a given trait, the optimal strategy varied by ancestry. ForMCV

Fig. 6 | Allele frequency composition of variance explained by single- and dual-
ancestry PGS. Results shown formean corpuscular volume (left) and height (right)
in a African-ancestry test set (AFR; top) and a European-ancestry test set (EUR;
bottom). The black dots represent partial r2 for all the variants, i.e. the entire
polygenic score. Variants were grouped according to their minor allele frequency
(MAF) in African-ancestry individuals (blue palette) or in European-ancestry

individuals (green palette). Each bar represents the sum of the partial r2 values for
each subset of variants in a given polygenic score. Note that the bars are stacked,
and the height of the bar is generally higher than corresponding dot due to LD
between variants. The parameter γ corresponds to the degree of reweighting used
in the reweighted LASSO for PGSdual.
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for example, PGSEUR outperformed the PGSmin for AdmixedAmerican-,
Central/South Asian- and Middle Eastern-ancestry groups, while the
reverse was true for the African-ancestry group. For the East Asian-
ancestry group, the PGS displayed similar performance.

These findings raise the question of why the optimal strategy
varies across traits and ancestry groups. Recent studies have ascribed
the overall lack of PGS transferability to a number of factors, including
population-level differences in allele frequencies, LDpatterns, location
of causal variants, and effect sizes9–12,14,15. We found that the variability
across traits could be at least partially explained by differences in the
allele frequency pattern of causal variants or, more precisely, variants
in LD with a causal variant. Specifically, we found that for some traits,
such as height, most predictive utility could be attributed to variants
that were relatively common (MAF > 5%) in both European- and
African-ancestry individuals. For other traits, such as MCV, the pre-
dictive utility could be attributed to variants that were common in
African-ancestry individuals but rare in European-ancestry individuals.
This points to why PGSEUR for MCV performed much worse than the
corresponding PGSAFR, despite being trained on amuch larger number
of individuals. We also note that the minority-ancestry PGS and
reweighted dual-ancestry PGS performed particularly well for blood
cell traits. This may be due to the influence of relatively few loci that
have large phenotypic effects and strong differences in allele fre-
quency between populations indicative of strong evolutionary selec-
tive pressure (such as has been shown for the DARC (Duffy) locus46).
For such traits, a strategy that emphasises the minority-ancestry data
may be favoured. Further work is needed, however, to determine the
precise nature of differences in optimal strategy and the relation with
trans-ancestry differences in genetic architecture.

Our findings highlight the limitations of statistical corrections
alone in reducing the disparities of PGS performance between ances-
tries. There are numerous sources of potential bias that adversely
affect the application of an analytical pipeline to individuals of min-
ority and/or underrepresented groups, including problem selection,
data collection, outcome definition, model development and lack of
real-world impact assessments and considerations47. Therefore, sta-
tistical solutions must be considered in combination with efforts to
address the global health research funding gap48, diversity of the
bioinformaticsworkforce49 and assessing the impact and translation of
analyses to real-world data50 in addition to efforts to increase the
number of non-European-ancestry participants in genetic research.
Each of these partial solutions, in combination, provide essential
contributions to reduce and remove opportunities for negative effects
on health inequalities, particular amongst those from different
ancestry groups51.

It is becoming increasingly clear that the vast disparities in PGS
performance can only be bridged by improving the diversity of human
genetic datasets9. An important consideration surrounds future sam-
pling strategy: whose genomes should we aim to sequence to reduce
existing disparities in polygenic prediction accuracy? Our findings
indicate that increasing the number of samples fromminority-ancestry
groups can lead to significant improvements in prediction perfor-
mance. Moreover, even within the same ancestry group, PGSs do not
always generalise across other characteristics such as age, sex and
socio-economic status52, pointing to the need of more diversity across
multiple axes both alongside and within genetic ancestry.

Perhaps counter-intuitively, with more diverse data, statistical
tools such as importance reweighting may eventually play a more
important role as we seek to boost predictive utility by using all the
available data. Reweighting strategies have the benefit of overcoming
the lack of universal definitions of race, ethnicity and ancestry, which
causes considerable confusion and imprecision53,54. The categorisation
of individuals into discrete ancestry groups to explain differences
between behaviours and exposures may be unhelpful55, whereas con-
tinuous representations of genetic ancestry56,57 enable identification of

areas of genetic ancestry where performance is stronger or weaker as
well as how the trait itself varies across ancestry. Ultimately, approa-
ches to genetic prediction must acknowledge both the many simila-
rities of human biology, but also the differences in history, cultural
heritage, exposure, and behaviour that can lead to certain factors
being of greater relevance for particular groups of individuals.

Methods
PGS Estimation using the LASSO
To construct PGSs from full genotype data, we use L1-penalised
regression, also known as the LASSO30. The LASSOhas previously been
used in the context of genetic prediction (see for example
refs. 12,31–34 and references therein) and is suitable for high-
dimensional problems where one expects the number of non-zero
predictors to be small relative to the number of total predictors.
Although there exist other full genotype PGS methods such as linear
mixed models (see e.g. ref. 58), we focus on the LASSO largely for its
computational efficiency. We provide an analysis of predictive per-
formance versus sample size, focusing on differences in predictive
performance between European-ancestry individuals and non-
European-ancestry individuals.

We first briefly recap the LASSO algorithm for constructing
polygenic scores. Let n be the number of individuals in the training set.
Denote M 2 Rn×q to be the matrix of q covariates, X to be the n × p
genotype matrix, and y to be the n-vector of observed phenotype
values. We assume a linear relationship between the phenotype and
predictors,

y=Mθ+Xβ+ ϵ, ð3Þ

where θ is a q-vector of covariate effects, β is a p-vector of variant
effects, and ϵ is an environmental noise term with mean 0.

The LASSO aims to minimise the objective function,

Lðθ,βÞ= ∣∣ y�Mθ� Xβ∣∣22 + λ∣∣β∣∣1, ð4Þ

with respect to (θ, β), where λ is a regularisation parameter. The pur-
pose of the ∣∣β∣∣1 term is to penalise large values of ∣β∣ and thus
encourage sparse solutions, that is, solutions with a relatively low
number of non-zero coefficients. Note that the parameters θ are not
penalised. The choice of λ controls the degree of penalisation with
higher values of λ encouraging smaller values of β. To select λ, we
applied an80-20 training-validation split to the training set, generating
a path of solutions for a range of values of λusing the training split, and
then selecting the value of λ that maximises r2 (for quantitative traits)
or the Area Under the Curve (AUC; for binary traits) on the
validation split.

We optimise (4) using the R packages glmnet59 and snpnet34 on
simulated and real data respectively. The snpnet package is an
extension of glmnet designed to interface directly with the PLINK
software60,61 to handle large-scale single nucleotide polymorphism
datasets such as the genotype data in UK Biobank. Using the default
package settings and following the guidance in34, we did not standar-
dise the genotypes before fitting.

Multiple-ancestry datasets. The above description assumes that the
genetic effects β are the same for all individuals.While this assumption
may be reasonable within a single ancestry group, it is unlikely to hold
more generally. We consider a hypothetical model that allows genetic
effects to vary among individuals. To this end, we introduce a low-
dimensional latent variable z representing the ancestry of a given
individual. For an individual i,

yi =m
T
i θðziÞ+ xT

i βðziÞ+ ϵi, ð5Þ
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where (θ( ⋅ ),β( ⋅ )) are nowvector-valued functions parameterised by z.
The only assumption we make about these functions is one of
continuity, so that individuals with similar ancestry have similar
covariate and genetic effects. Otherwise, we do not make any explicit
statements regarding the form of the functions.

In this paper, we consider the special case with J = 2 ancestry
groups, such that zi 2 1,2f g. We denote (θ(zi), β(zi)) = (θ(j), β(j)) for an
individual i in ancestry group j. Using superscripts to denote the
ancestry group (for example, y(j) is the vector of observed phenotypes
for group j),

yðjÞ =MðjÞθðjÞ +X ðjÞβðjÞ + ϵðjÞ, j = 1, 2: ð6Þ

Denoting nj to be the number of individuals of ancestry j in the
training set, we assume n1 > n2 to reflect a European-ancestry domi-
nated training set. Applying the standard LASSO to such a training set,
we would expect the estimate ðθ̂, β̂Þ to be closer to (θ(1),β(1)) than to
(θ(2), β(2)). All else being equal, this would result in better predictive
performance for test individuals in group 1.

Importance reweighting.We return for amoment to themoregeneral
model in Equation (5). Suppose we wish to construct a polygenic score
for a test set with ancestry distribution πTE(z) given a training set of
observations ðyi,mi, xiÞni = 1 from individuals with ancestry z1,…, zn, how
should one obtain a single estimate for (θ, β)? Our proposed approach
is to use importance reweighting, a statistical technique commonly
used in survey sampling26. Importance reweighting aims to account for
distributional differences between the sampling population and the
population of interest by assigning weights to each of the samples in
the training data. Here, we assign each of the training individuals a
weightwi that quantifies the similarity of the ancestry variable zi to the
test set ancestries, with individuals who have a similar ancestry to the
test set assigned a higher weight. More concretely, assuming an
ancestry distribution πTR( ⋅ ) on the training set, we set

wi =
πTE ðziÞ
πTRðziÞ

: ð7Þ

Note that we do not have access to the distributions πTR,πTE so in
practice wemust approximate (7). Given weightswi, to estimate (θ, β),
we minimise the following weighted LASSO objective function:

Lλðθ,βÞ=
Xn

i= 1

wi yi �mT
i θ+ xT

i β
� �2

+ λ∣∣β∣∣1: ð8Þ

In this work, we consider only the special case with two ancestry
groups (Eqn. (6)), specifying importance weights w1,w2 such that
w2 ≥w1 with the aim of improving estimates for group 2, i.e. the
underrepresented group. Specifically, we use weights of the form:

wi =
n1 +n2

ni

� �γ

, ð9Þ

where γ is a hyperparameter that controls the degree of reweighting.
We normalised the weights so that n1w1 + n2w2 = n1 + n2. With these
weights, we thus minimise the objective function,

Lγðθ,βÞ=w1∣∣y
ð1Þ �Mð1Þθ� X ð1Þβ∣∣22 +w2∣∣y

ð2Þ �Mð2Þθ� X ð2Þβ∣∣22 + λ∣∣β∣∣1,

ð10Þ

with respect to (θ,β).

Simulation study
To evaluate the effect of importance reweighting on PGS performance
under various settings, we undertook a simulation study. We used the

simulation engine msprime27 in the standard library of population
genetic simulation models stdpopsim v0.1.228 to generate African-
ancestry and European-ancestry genotypes, following a similar simu-
lation framework to that used by Martin et al.7. For each ancestry
group, we generated a total of 200,000 genotypes for chromosome
20, based on a three-population ‘out-of-Africa’ demographic model62,
using a mean mutation rate of 1.29 × 10−8 and a recombination map of
GRCh37. This recombinationmap is from the Phase II Hapmap project
and is basedon3.1million genotyped SNPs from270 individuals across
four populations (Nigeria, Beijing, Japan, northern and western
Europe)63. Note that this particular simulation model also generates
genotypes for East Asian individuals but we do not use these in our
analysis. To reduce the computational burden, we used only the first
10% of the chromosome, applying a minor allele frequency (MAF)
threshold to filter out any SNPs that had aMAF of <1% in each ancestry
group, resulting in a total of 189, 765 variants.

We simulated phenotypes from these genotypes assuming a
normal linear model,

yðjÞ =X ðjÞβðjÞ + ϵðjÞ, j = 1, 2, ð11Þ

where ϵðjÞi ∼N ð0, σ2Þ. The noise variance parameter σ2 controls the SNP
heritability h2

j for each ancestry group and was chosen to yield an
average SNPheritability of0.3 across the groups.To reflect the sparsity
of genetic effects, we randomly selected p0 = 100 of the p = 189, 765
variants to be causal. Motivated by Trochet et al.64, we drew the causal
effect sizes fromabivariate normal distribution tomodel the similarity
of genetic effects between ancestries. Denoting C = fk1, . . . , k100g to be
the indices of the causal SNPs, and βðjÞ

C = ðβðjÞ
k1
, . . . ,βðjÞ

k100
Þ we have the

equation

βð1Þ
C

βð2Þ
C

 !
∼N 0 ,

1 ρ

ρ 1

� �� �
, ð12Þ

where ρ is the correlation between the ancestry-specific genetic
effects. We set βð1Þ

i =βð2Þ
i =0 for i∉C. For each value of

ρ = 0.5, 0.6,…, 1.0, we repeated the above procedure 5 times to
generate 5 quantitative traits.

To investigate the effect of sample size, for each trait we created
five training sets with nEUR = 18,000 randomly selected individuals of
European ancestry and nAFR = 2000, 4500, 7714, 12,000, 18,000 ran-
domly selected individuals of African ancestry. For each of these
training sets, we computed weights wðγÞ

EUR = ð10=9Þγ, wðγÞ
AFR = 10

γ and
where γ is a hyperparameter controlling the degree of reweighting. To
investigate the impact of reweighting, we varied γ =0, 0.1,…, 1.5. Note
that γ = 1 corresponds to inverse proportion reweighting when
nAFR = 2000 and nEUR= 18,000. We normalised the weights to ensure
that their sum equalled n, in line with the unweighted case.

To assess predictive performance for each ancestry, we con-
structed an African-ancestry test set and a European-ancestry test set
by randomly selecting 2000 individuals from each ancestry out of
those not included in the training set. We used the proportion of
variance explained, denoted r2, as the measure of predictive perfor-
mance,

r2 =
dVarðX β̂Þ
dVarðyÞ

, ð13Þ

wheredVar denotes the sample variance. Note that this is equivalent to
the partial r2 relative to an intercept-only covariate model. For
ρ = 0.5, 0.6,…, 1.0, we repeated the above process 5 times with
different randomly selected individuals in the training and test sets
to calculate a mean r2 for each trait.

In supplementary studies to investigate the role of heritability and
polygenicity, i.e. the number of causal SNPs, we repeated the above
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analyses with the correlation between the ancestry-specific genetic
effects fixed at ρ = 0.8, and varying the overall heritability
h2 = 0.1, 0.3, 0.5 and the number of causal SNPs p0 = 10, 100, 1000
respectively.

UK Biobank
The UK Biobank is a large-scale cohort study with genomic and
phenotypic data collected on ~500,000 individuals aged 40-69 at the
time of recruitment25. We used inferred genetic ancestry labels made
available by the Pan-UKBB initiative29. These labels were derived
based on reference data from the 1000 Genomes Project65 and the
Human Genome Diversity Project (HGDP)66. Briefly, principal com-
ponent analysis (PCA) was performed on unrelated individuals in the
combined reference dataset, and a random forest classifier was
trained on the first 6 principal components (PCs) using continental
ancestry metadata. UK Biobank individuals were then projected onto
this reference PC space and given initial ancestry assignments based
on the random forest classifier. These assignments were then adjus-
ted by removing outliers. Full details can be found on the Pan-UKBB
website29.

Phenotypes. We investigated a range of quantitative and binary traits
available in our UK Biobank project (UKB Application Number 12788).
To select these, we applied the following procedure. We first filtered
out traits with estimated SNP heritability of <5% or a ‘low’ confidence
rating for the SNP heritability estimate, as reported on the Neale Lab
UKB SNP-Heritability Browser67,68. To ensure that the traits under
investigation were not highly correlated with each other, we used
genetic correlation estimates available on the Neale LabUKBB Genetic
Correlation Browser69,70. Specifically, working from the most heritable
traits to the least heritable, we iteratively removed a trait if it had an
estimated genetic correlation of >0.5with any remaining trait of higher
heritability. Of the remaining traits, we selected the top 10 most heri-
table quantitative traits: height, mean corpuscular volume (MCV),
body mass index (BMI), eosinophill percentage, erythrocyte distribu-
tion width (erythrocyte), lymphocyte count, monocyte count, mean
platelet volume (MPV), platelet crit, and high light scatter reticulocyte
count (reticulocyte). We also selected the top 5 most heritable binary
traits: asthma, female genital prolapse (FGP), atrial fibrillation (AFib),
diverticular disease of the intestine (DDI), andhypothyroidism. For our
African-ancestry analyses, we investigated all 15 of these traits, while
for the other minority-ancestry analyses, we focused in on 4 traits:
height, mean corpuscular volume, erythrocyte distribution width, and
asthma.

Genotypes and covariates. We used imputed genotypes from UK
Biobank, filtering out individuals and variants according to quality-
control metrics used by the Pan-UKBB initiative29. Firstly, we
removed individuals who were identified as displaying sex chromo-
some aneuploidy. We also removed individuals who were flagged as
related by Pan-UKBB.Within each ancestry group, related individuals
were identified using PC-Relate71 with k = 10 and a minimum indivi-
dual MAF of 5%. We filtered out variants that were not deemed to be
of ‘high quality’ according to Pan-UKBB, retaining those with an INFO
score of at least 0.8 and with an allele count of at least 20 per
population. We also removed variants that had a MAF of <1% in both
the European-ancestry group and theminority-ancestry group under
analysis. To control for population structure, we included the fol-
lowing covariates in our model: age, sex, the first ten genetic prin-
cipal components (PCs), and interactions between sex and the ten
genetic PCs.

Construction of training sets. To assess the effect of sample size and
composition on PGS performance, we used subsets of the above data

as training sets, controlling the number of European-ancestry and
minority-ancestry individuals. The remaining individuals were then
used as a held-out test set. For each trait, we constructed three types
of training sets using individuals with non-missing data for that
particular trait. The first two types of training sets were single-
ancestry datasets, one consisting solely of European-ancestry indi-
viduals and the other consisting solely of minority-ancestry
individuals.
1. European-ancestry A random sample comprising 80% of the

quality-controlled European-ancestry individuals.
2. Minority-ancestry A random sample comprising 80% of the

respective quality-controlled minority-ancestry individuals.
3. Dual-ancestry This set consisted of both minority-ancestry

individuals and European-ancestry individuals. The basic form
of this training set was made up of the minority-ancestry training
set described above, combined with European-ancestry indivi-
duals so that the proportion of minority-ancestry individuals was
10%. The European-ancestry individuals were matched to the
minority-ancestry individuals on age and sex. We also considered
variations of this training set by removing a proportion of either
the European-ancestry individuals or the minority-ancestry
individuals (see Results for more details).

For eachdataset, we further removed variantswith aMAFof <0.1%
or amissing genotype call rate of <5%. Note that, as a result, the sets of
variants generally differed by training set. For the single-ancestry
datasets, we used the standard, unweighted LASSO to construct the
PGS. For the dual-ancestry datasets, we used the weighted LASSO
with γ =0, 0.2, 0.4, 0.6, 0.8, 1. Note that γ =0 corresponds to the
unweighted LASSO.

Predictive accuracy.We evaluatedpredictive accuracy of eachPGSby
ancestry group using individuals that were not included in the corre-
sponding training sets. To assess the genetic predictive accuracy of a
PGS, we calculated the partial r2 attributable to the PGS, relative to a
covariate-only model, following Martin et al.9. Specifically, we fit the
following nested linear models (or the equivalent logistic models for
binary traits),

y=Mθ1 + ĝη+ ϵ1 ð14Þ

y=Mθ2 + ϵ2, ð15Þ

where M is the covariate matrix and ĝ is the vector consisting of
polygenic scores for each individual in the test set. We took the partial
r2 (or theCox andSnell pseudo-r2 forbinary traits) betweenmodels (14)
and (15) as ourmeasure of predictive accuracy. To obtainmore reliable
estimates, we performed 5-fold cross-validation. That is, we repeated
five times the process of training set construction and PGS estimation
to obtain five estimates of partial r2, and report themean and the range
of these estimates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using data from UK Biobank, a
major biomedical database, under application 1278825. TheUKBiobank
data are available under restricted access; access can be obtained by
researchers upon application—see https://www.ukbiobank.ac.uk/
enable-your-research. The genetic correlation estimates from the
Neale Lab UKBB Genetic Correlation Browser69,70 are available at
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https://ukbb-rg.hail.is/. The heritability estimates from the Neale Lab
UKB SNP-Heritability Browser67,68 are available at https://nealelab.
github.io/UKBB_ldsc/downloads.html. The ancestry-specific herit-
ability estimates and inferred genetic ancestry labels for UK Biobank
individuals from the Pan-UKBB initiative29 are available at are available
at https://pan.ukbb.broadinstitute.org/downloads. The recombination
map of GRCh37 is available as part of the stdpopsim python library—
see https://popsim-consortium.github.io/stdpopsim-docs.

Code availability
The code used to generate these results is available at https://github.
com/brieuclehmann/pgs_transferability/releases/tag/v0.1. To con-
struct the PGS, we used the glmnet R package v4.1 (for simulated data),
and a slight adaptation of the snpnet R package34 v0.3.0 available at
https://github.com/brieuclehmann/snpnet (for UK Biobank data). To
generate simulated data, we used the msprime simulation engine via
the stdpopsim v0.1.2 python library—see https://popsim-consortium.
github.io/stdpopsim-docs/. To preprocess the UK Biobank genetic
data, we made use of both PLINK v1.9 and PLINK v2.0, available at
https://www.cog-genomics.org/plink/.
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