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Abstract—The direction of arrival (DOA) based multiple-
input multiple-output (MIMO) radar technique has been widely
utilized for ubiquitous positioning due to its advantage of simple
implementability. On the other hand, reconfigurable intelligent
surface (RIS) has received considerable attention, which can be
deployed on the walls and objects to strengthen the positioning
performance. However, RIS is usually not equipped with a
perception module, which results in the tremendous challenge for
RIS-assisted positioning. To tackle this challenge, this paper pro-
pose the fundamental problem of DOA-based target positioning
in RIS-assisted MIMO radar system. Unlike conventional DOA
estimation systems, the beneficial role of RIS is investigated in
MIMO radar system, where a nonconvex ℓp promoting function
is exploited to estimate DOA task. By adjusting the reflecting
elements of the RIS, the proximal projection iterative strategy is
developed to obtain the feasible solution. Both theoretical analysis
and simulation results illustrate that the proposed scheme can
achieve remarkable positioning performance and shed light on
the benefits offered by the adoption of the RIS in terms of
positioning performance.
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I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) radar has re-
ceived considerable attention because it can achieve

significantly enhanced target positioning and parameter esti-
mation performance through utilizing the waveforms spatial
diversity [1]. Unlike the conventional phased array radar
(PAR), MIMO radar systems is equipped with multiple an-
tennas to transmit/receive multiple independent (orthogonal)
waveforms using radar cross section (RCS) diversity [2].
Therefore, the MIMO radar can offer better parameter identi-
fiability, resolution and robustness against correlated sources,
which is superior to the PAR approach. It was confirmed
that MIMO radar systems can offer considerable advantages
over conventional phased-array radars in various aspects of
MIMO radar system [2]–[4], especially in the estimation of
target positioning parameters, such as time-of-arrival (TOA)
[3], and direction of arrival (DOA) [4]. Among various kinds
of positioning techniques, DOA-based technique is one of the
most fundamental topics because it can be easily implemented
on the MIMO radar systems with little hardware requirements.
For example, [4] investigated a tensor decomposition-based
DOA estimation for transmit beamspace MIMO radar, where
the Vandermonde structure of the factor matrix was exploited
to estimate the phase rotations. Since Bartlett beamformer has
low computational complexity, Bartlett-absed techniques were
introduced to DOA estimation with arbitrary array structure
[5]. Besides, multiple signal classification (MUSIC) was also
developed for DOA estimation [6]–[8]. Compared with the
Bartlett, MUSIC offering a much better resolution, which is
one of the most popular techniques [8]. In addition, a sparse
representation framework also was exploited to provide the de-
sired DOA resolution in the high-resolution target positioning
scenario [9]. The iterative procedure is performed well only
when the sparsity of signals is known.

More recently, reconfigurable intelligent surface (RIS) has
significant advantages in terms of expanding signal coverage
and reducing deployment and energy costs [10], [11]. RIS can
intelligently control the incident signal to transmit the data
through adjusting its the reflection elements [12]. Compared
with conventional relays, RIS provides low hardware footprints
and noises would not be magnified during signal transmission
[13]. Consequently, RIS has received widespread attention
in the literature. Inspired by the freedom offered by RIS to
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Fig. 1: A RIS-assisted MIMO radar positioning.

manipulate transmitted signals, researchers have been inves-
tigated the RIS-assisted DOA estimation benefits for target
localization of MIMO radar systems [14]. Subsequently, an
architecture of joint positioning and communication scheme
was developed, which employed an hierarchical codebooks-
based RIS design and feedback from the mobile station [15]. In
addition, RIS was also employed to joint communication and
achievable localization, where closed-form RIS phase profile
is designed for various localization scenarios. In practical
scenarios, signals contain unknown noise, e.g., traffic/electric
noise, which leads to serious positioning resolution degrada-
tion because of the incorrect white Gaussian noise assumption
[16]. It is obvious that an ideal estimator should be robust to
the ubiquitous noise in practical engineering applications.

In this paper, robust target positioning for RIS-assisted
MIMO radar system is investigated to enhance the positioning
resolution. The main contributions can be summarized as
follow:

• We consider a robust ℓp model to estimate DOA-based
target positioning, where the low-cost RIS is used to
provide a strong LoS environment, which is beneficial
for improving positioning performance.

• To solve highly intractable nonconvex problem, the for-
mulated problem is transformed equivalently into the
reweighted ℓ2 problem, where the phase shifts design for
the RIS is derived to enhance the positioning performance
by exploiting proximal projection approach.

• Two regularization parameters are exploited to adaptively
control the noise intensity, and, through numerical analy-
sis, the superiority and effectiveness of the proposed ap-
proach is verified to achieve centimeter-level positioning
accuracy.

II. SYSTEM MODEL

Considering a RIS-assisted MIMO radar system, the trans-
mitter and receiver are equipped with M and N closely-spaced
elements, respectively. RIS takes the form of a uniform planar
array (UPA) and consists of L reflecting elements, which is
controlled by the receiver, as shown in Fig. 1. We define
L = Lx × Ly , where Lx is the number of row elements and
Ly is the number of column elements. The phase shifts of RIS

can be tuned to help the radar transmitter/receiver illuminating
the prospective target.

The signals at the receiver are comprised of two paths: from
the target to RIS, from RIS to the radar receiver, as described
in Fig. 1. From [2], we define the transmit-receive steering
matrix as

A(θ) , at(θt)aTr (θr) = ϑrΓrΘrwr︸ ︷︷ ︸
R→RIS→T

wTt ΘtΓ
T
t ϑt︸ ︷︷ ︸

T→RIS→R

,
(1)

where ϑt is the indirect channels from the transmit element
to the RIS’s reflecting element to the target, which represents
the radar element gain, the array coefficients of the bistatic
radar cross-section (RCS), the two-hop path-loss and phase
delay. ϑr is the indirect channels from the target to the RIS’s
reflecting coefficients to the receiver. Γt is the normalized
channel matrices from the radar transmitter to the RIS, whose
entries account for the gain of the radar, the reflecting el-
ement of the bistatic RCS, the multi-path fading and the
phase delay; Γr is the normalized channel matrices from the
RIS to the radar receiver. Θt = diag{ejψt,1 , ..., ejψt,N } and
Θr = diag{ejψr,1 , ..., ejψr,N } are the forward and backward
reflecting response of RIS, respectively. wt and wr denote the
direct steering vectors of the radar transmitter and receiver
towards the directions θt and θr of the target, respectively.
Notice that at(θ) and ar(θ) is defined as the indirect transmit
and receive steering vectors of the radar towards the target,
respectively, where RIS is designed to determine its direction.

The signal received from a single target, in far-field with
constant radial velocity at an angle θ can be written as

z = αe−jςctvec(A(θ)) + ε

= αe−jςct(ϑtΓ
H
t ⊗ Γrϑr)

(
ΘT
t ⊗Θr

)
vec

(
wrwTt

)
+ ε,

(2)
where α denotes the unknown target response and any other
scaling factor not included in the target signature, and ε =
ë + e, where ë denotes a large amplitude of the unwarranted
interference or the impulsive noise, e denotes the dense noise.
⊗ denotes the Kronecker product.

To promote a feasible solution, we discretize the target
state space into a grid of possible values L. Thus, the tar-
get is associated with a state vector belonging to this grid,
which contribute to the matched filter output. To this end,
When a target {αl, ∀l = 1, ..., L} are present, we define
Φl(φ) , αl(ϑtΓ

H
t ⊗Γrϑr)

(
ΘT
t ⊗Θr

)
. Also, if αl is the state

vector of the target, we define ϑl = vec
(
wrwTt

)
, Otherwise,

ϑl = 0. Finally, stacking {Φl(φ)}Ll=1 and {ϑl}Ll=1 into a high-
dimensional column vector and the matrix, respectively, we
have

Φ(φ) = [Φ1(φ), ...,Φl(φ), ...,ΦL(φ)] ,

ϑ =
[
ϑT1 , ...,ϑ

T
l , ...,ϑ

T
L

]T
.

(3)

After compensating the range-Doppler parameters, we can
simplify equation (2) as

z = Φ(φ)ϑ+ ε. (4)

For the system model (4), our aim is to estimate the direc-
tion θ of target and phase shifts φ of RIS. Thus, we consider
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the sparsity-regularization model, which is formulated as

min
ϑ,φ

1

2
∥z−Φ(φ)ϑ∥pp + λ

N∑
i=1

g(ϑi), (5)

where λ is the regularization parameter that to be selection
properly. g(ϑi) , log(|ϑi|2 + δ) with δ > 0 is a sparsity-
encouraging function.

According to the theory of compressed sensing [17] that the
ℓp-norm penalty criterion with p = 2 has attracted extensive
attention since they are easy to be implemented in Gaussian
noise. However, this rapidly increasing ℓ2 penalty may not
suitable to characterize noise-specific errors, such as impulsive
noise. Thus, a natural modification was suggested for the p <
2, and the following weighted formulation is employed for the
target positioning:

min
ϑ,φ

{
Q(ϑ,φ) , 1

2

M∑
m=1

ωp
µ ([z −Φ(φ)ϑ]m) + λ

N∑
i=1

g(ϑi)

}
,

(6)
where ωpµ(x) is defined as

ωpµ(x) ,


p

2
µp−2|x|2, |x| ≤ µ

|x|p − 2− p

2
µp, |x| > µ

(7)

From [17], the penalty term ωpµ(x) with generalized ℓp(0 <
p ≤ 2) is a smoothed approximation function of |x|p around
the nonsmoothed term |x| = 0. Obviously, the formulated
optimization problem (6) obtains a more generalized forms
because considering ωpµ(x) as a fitting metric to suppress the
various type of noises is essentially twofold. First, in practical
applications, the parameters µ and p can be adjusted for
various type of noises. Second, it is computationally tractable
due to its continuity and differentiability. Therefore, the ℓp-
norm based data-fidelity fitting criterion is less sensitive to
outliers with abnormal noise.

III. ROBUST DOA ESTIMATION FOR RIS-ASSISTED
RADAR SYSTEM

The optimization problem (6) is known to be an NP-
hard problem. To solve the resulting non-convex problem, a
proximal iteratively approximation ℓp scheme is proposed by
employing the majorization-minimization (MM) framework.
Before deriving the proposed approach, the useful lemma is
introduced to design the ℓp surrogate function.

Lemma 1. [18] Given µ > 0 and 0 < p < 2, the following
inequalities hold:

ωpµ(s) ≤ ω̃pµ(s, s̃) , p

2
|s|2|η|p−2 +

2− p

2
(|η|p − µp) (8)

where

η =

{
µ, |̃s| ≤ µ

|̃s|, |̃s| > µ
, ∀s, s̃ ∈ C (9)

with equality achieved at s = s̃.

According to Lemma 1, the upper bound of g(ϑi) and
ωpµ ([z−Φ(φ)ϑ]m) can be equivalently represented by

g(ϑi) ≤ g̃(ϑi, ϑ
(k)
i ) , |ϑi|2

|ϑ(k)
i |+ ζ

+ C (10)

and

ωpµ ([z−Φ(φ)ϑ]m) ≤ ω̃pµ

(
[z−Φ(φ)ϑ]m, [z−Φ(φ)ϑ(k)]m

)
, ηm |[z−Φ(φ)ϑ]m|2 + C

(11)
where β(k) , [β

(k)
1 , ..., β

(k)
n , ..., β

(k)
N ]T represents kth iteration

result of β and

ηm(φ) =


p

2
µp−2,

∣∣∣[z −Φ(φ)ϑ(k)
]

m

∣∣∣ ≤ µ

p

2

∣∣∣[z −Φ(φ)ϑ(k)
]

m

∣∣∣p−2

,
∣∣∣[z −Φ(φ)ϑ(k)

]
m

∣∣∣ > µ

(12)
It follows that the equations in (10) and (11) will be held at

βi = β
(k)
i i = 1, ..., N , respectively. Furthermore, combining

(10) with (11), the objective function in (6) can be majorized
by the following weighted surrogate function:

Q(ϑ,φ,ϑ(k)) ,βHΥ(k)β + λ−1 [z−Φ(φ)ϑ]
H

× η(k)(φ)
[
z−Φ(φ)ϑ(k)

]
+ C

(13)

where Υ(k) can be given by

Υ(k) , diag
{ 1

|ϑ(k)
1 |2 + ϵ

, ...,
1

|ϑ(k)
n |2 + ϵ

, ...,
1

|ϑ(k)
N |2 + ϵ

}
,

(14)
η(k)(φ) , diag

{
η
(k)
1 (φ1), ..., η

(k)
m (φ1), ..., η

(k)
M (φM )

}
. (15)

By exploiting the computational advantage of quadratic
optimization, the surrogate function Q(ϑ,φ,ϑ(k)) is devel-
oped, which is more tractable to minimize than the intractable
objective function Q(ϑ,φ). Since

min
ϑ,φ

Q(ϑ,φ,ϑ(k)) = min
φ

{
min
ϑ

Q(ϑ,φ,ϑ(k))

}
, (16)

By taking the alternative iteration scheme, the optimal
solution of the problem Q(ϑ,φ,ϑ(k)) with respect to (w.r.t.)
ϑ is given by

ϑ(k+1) =
(
λΥ(k) +ΦH(φ)η(k)(φ)Φ(φ)

)−1

ΦH(φ)η(k)(φ)z
(17)

By replacing ϑ with ϑ(k+1) in (16), φ can be updated by
minimizing the following problem

min
φ

{
−zHη(k) (φ)ΦH(φ)

(
λΥ(k) +ΦH(φ)

×η(k)(φ)Φ(φ)
)−1

ΦH(φ)η(k)(φ)z
}
.

(18)

It follows that a feasible solution to the problem (18)
is highly nonlinear with respect to φ. To tackle this issue,
the proximal projection scheme is exploited to find the next
iteration φ(k+1), which can be given by

φ(k+1) = PA

(
proxgλ

(φ(k) − ν∇G(k)(φ(k)))
)
, (19)

where PA denotes the projection onto set A , {z(k)|∥z −
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Φ(φ)ϑ∥2 ≤ ϵ}, and the gradient ∇G(k)(φk) can be readily
determined by the chain rule. proxGλ

(·) is the proximal
operator of the function G, which can be used to solve non-
convex and non-smooth functions, such as 0 < ℓp ≤ 1. From
[19], the proximal operator can be given by

proxgλ
(x) =


sign(x)(|x| − λ), |x| ≤ 2λ

sign(x)σλ− (1− σ)x

2(σ − 1)
, λ ≤ |x| < σλ

x, |x| > σλ

(20)

where σ is constant generally taken as σ > 2.
By taking the terms (13), (17), and (19), the proposed

ℓp minimization problem (6) can be solved iteratively to
minimize the surrogate function Q(ϑ,φ,ϑ(k)). However, its
performance depends on a chosen value of p. To tackle this
issue, the global convergence (GC) scheme [20] is developed
to determine the feasible value p(k+1), which is derived from

φ
(
p(k)

)
=

f
(
2p(k)

)
f
(
p(k)

)2 − (
p(k) + 1

)
, (21)

where f
(
p(k)

)
is defined as

f
(
p(k)

)
= E

{∣∣∣ε(k+1)
∣∣∣p(k)}

, (22)

which is the p(k) th order absolute moment of ε(k+1) and
the distribution of E{·} obeys the generalized Gaussian dis-
tribution. To obtain the value p(k), the above function can
be implemented with the Global Convergence (GC) scheme
without look-up table, interpolation, or additional subroutine.
Thus, we consider the Newton-Raphson root-finding algorithm
on the φ

(
p(k)

)
to update the p(k+1), that is

p(k+1) = p(k) −
φ
(
p(k)

)
φ′

(
p(k)

) , (23)

where φ′ (p(k)
)

is the derivative of φ
(
p(k)

)
w.r.t. p(k).

On the other hand, the regularization parameter λ is also an
important tradeoff between data fidelity and sparsity. In gener-
al, a relatively large value λ make a sparse solution, whereas
a small value may lead to an underestimation of the frequency
components. For this purpose, the heuristic Bayesian approach
proposed in [21] is used, where the regularization parameter
can be adaptively updated based on the previous iteration. By
taking a scaling factor d > 0, λ is updated as

λ(k+1) =
∥
√

η(k)(φ(k))
(
z−Φ(φ(k))ϑ(k)

)
∥22

dK
(24)

This update rule is based on the value
√
η(k)(φ(k)),

which can contribute to downweight large elements of z −
Φ(φ(k))ϑ(k). Therefore, the iterative update of λ can be seam-
lessly inserted into the proposed ℓp algorithm for arbitrarily
signal-to-noise ratios.

For clarification, the detailed flow chart of the proposed
DOA positioning scheme is summarized in Algorithm 1, which
is referred to as the robust DOA positioning approximation
ℓp algorithm. Note that the value of the objective function
is gradually decreasing as the number of iterations increases,
and then the final solution is solved as ϑ and φ. Therefore

Algorithm 1 Robust iteratively approximation ℓp algorithm

1: Initialization: z ∈ CM ; d > 0, ζ > 0
2: Repeat:
3: While: the stopping criterion is not met do
4: Update Υ(k) by solving (14);
5: Update η(φ(k)) by solving (15);
6: Update ϑ(k) by solving (17);
7: Update θ(k) by solving (19);
8: Update p(k), λ(k) by solving (22) and (24);
9: end while

10: k← k + 1
11: End
12: Output ϑ and φ
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Fig. 2: RMSE performance comparison versus SNR.

it can be easily shown that Algorithm 1 that is monotonically
convergent. In the next section, we discuss specific techniques
for target localization and their performance.

IV. SIMULATION RESULTS

In the following, the numerical simulations are provided
to evaluate the resolution of the proposed DOA estimation
method for the target estimation, and the simulations are
carried out in a personal PC with a Intel Core i5-2500K 3.3
GHz processor with 16 GB RAM DDR3. Under these settings,
only 2 phases (i.e., 0 and 180◦) can be processed at the RIS,
where the half wavelength is considered as the distance of the
adjacent RIS elements. The carrier frequency is fc = 28 GHz.
The root-mean-square error (RMSE) is calculated to validate
the estimation result. Multiple measurements instead of receiv-
ing channels are adopted to estimate the phase shifts of RIS
and DOA. To show the robustness of the proposed estimator,
the weighted ℓ2-norm is adopted instead for comparison . The
corresponding Cramér-Rao bound (CRB) for DOA estimation
is also derived based on Eq.(5) of [22].

In Fig 2, we first illustrate the DOA estimation resolution
with different schemes, where the MUSIC [6], atomic norm
minimization (ANM) [12], Sparse Bayesian learning (SBL)
[23] and fast Fourier transformation (FFT)-based scheme are
included for comparison against the proposed scheme. It is
seen that the proposed ℓp scheme provides more lower root
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mean squared error (RMSE) value than existing schemes,
which confirms the reliability of the proposed ℓp estimator,
especially with the SNR being lower than 0. The reason is
that the estimation accuracy of the proposed ℓp estimator can
be improved by optimizing the phase shift of RIS, which can
obtain the more practical LOS path.

To gain insights into the relationship between spatial spec-
trum and DOA, Fig. 3 illustrates the spatial spectrum of the
proposed ℓp method observed with various DOA degree. It
can be observed that the estimation error of the proposed
estimator is lower than existing estimators, which means that
the proposed method has more robust estimation performance
to obtain the desired DOA estimation.

Fig. 4 depicts the RMSE performance of different estimators
versus the number of snapshots. As seen in Fig. 4, the CRB
can be significantly decreased as increasing the number of
snapshots. As can be observed that RIS is applied to provide
more reflection links, which means that more measurement
information can be supplied. On the other hand, the perfor-
mances of all estimators can be improved with the number
of snapshots increasing. In particular, the performance of the
proposed ℓp scheme is close to the MUSIC algorithm when
the number of snapshots is larger than 80, but outperforms
those of compared schemes. In addition, the results also show
that the proposed estimator has a comparable accuracy with
the increasing number of snapshots as expected.

V. CONCLUSION

The DA-based target positioning has been studied in the
RIS-assisted MIMO radar system. Different from the existing
methods, the non-convex ℓp method was exploited to control of
the radar receiver and optimize the the phase shifts of the RIS.
Then, the formulated problem was transformed into weighted
ℓ2 approximation, where the reflection coefficients and target
DOA were optimized jointly and iteratively until convergence.
The efficiency of the proposed estimator is validated in the
RIS-assisted positioning simulations using the weighted ℓ2
approximation. Future work will focus on the multi-RIS target

101 102

10-2

10-1

100

Fig. 4: RMSE performance comparison vs the number of
snapshots.

positioning with lower computational complexity and the
performance of the DOA estimation.
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