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Investigation of chemical noise in multisite phosphorylation chain using linear noise approximation
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Quantitative and qualitative nature of chemical noise propagation in biochemical reaction networks depend
crucially on the topology of the networks. Multisite reversible phosphorylation-dephosphorylation of target
proteins is one such recurrently found topology that regulates host of key functions in living cells. Here we
analytically calculated the stochasticity in multistep reversible chemical reactions by determining variance of
phosphorylated species at the steady state using linear noise approximation to investigate the effect of mass action
and Michaelis-Menten kinetics on the noise of phosphorylated species. We probed the dependence of noise on
the number of phosphorylation sites and the equilibrium constants of the reaction equilibria to investigate the
chemical noise propagation in the multisite phosphorylation chain.

DOI: 10.1103/PhysRevE.100.052402

I. INTRODUCTION

An isogenic population of cells in identical environmen-
tal conditions show remarkable population heterogeneity in
protein abundance, cell cycle properties, cell size and shape,
and timescales of key signaling events [1–7]. The observed
population heterogeneity was found to be due to the intrinsic
and extrinsic sources of noise that ultimately are responsible
for stochastic trajectories of chemical reactions inside living
cells [8]. These sources of fluctuations are called chemical
noise. While intrinsic noise originates from the fluctuations
of molecular species with finite abundance and leads to
stochastic trajectories of chemical species over time; extrinsic
noise originates from the variation of the global factors such
as cell volume or size, cell cycle phases, abundances of
regulatory molecules (e.g., transcription factors). Although
intrinsic noise influences the outcome of a particular reaction
but extrinsic noise affects all the chemical reactions equally in
a given cell [9]. In many situations chemical noise may act as
nuisance for a number of physiological processes; however, it
also plays beneficial roles in a number of cellular functions
[10–12].

Using probabilistic description of chemical reactions, the-
oretical and computational models of gene expression noise
were able to quantitatively explain many experimental ob-
servations on protein noise [13–15]. However, cellular func-
tions are regulated by chemical reaction networks involving
many genes. Often these networks consist of small regula-
tory network motifs with distinct steady-state and dynamical
properties [16]. Therefore, further investigations were carried
out to understand the effects of network topologies such as
signaling cascades, feedback loops and feed-forward loops
on the propagation of chemical noise [17–23]. Multisite re-
versible phosphorylation-dephosphorylation of proteins is one
such network motif that regulate catalytic activity, binding,
transport, and degradation of target proteins [24,25]. For
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example, many crucial events in eukaryotic cell cycle are
regulated by multisite phosphorylations of several key pro-
teins by cyclin-dependent kinase [26]. Phosphorylation or de-
phosphorylation can occur either in processive or distributive
manner. In processive mechanism, a single encounter between
the enzyme and the substrate results attachment of multiple
phosphate groups to the substrate. Whereas, in the distributive
mechanism a single encounter results in a single enzymatic
event. When the same enzyme catalyzes multiple phosphory-
lation in a distributive manner, it leads to ultrasensitive signal
response—a requirement for generating nonlinear responses
in biochemical reaction networks [24,27–29]. Therefore, mul-
tisite phosphorylation mechanism has been widely used in
mathematical and computational modeling of bistability and
oscillations [30–35]. Although various facets of multisite
phosphorylation have been studied in the context of its deter-
ministic dynamics [24,27,29,33,34], however systematic in-
vestigation of stochasticity in multiphosphorylation is lacking.
Therefore, it is crucial to study the characteristics of chem-
ical noise in multisite phosphorylation chain. In particular,
it is worth investigating the dependence of intrinsic noise in
multiphosphorylation chain on the rate laws of chemical reac-
tions, kinetic parameters and total number of phosphorylation
sites.

Keeping in view of the important role of multisite phospho-
rylation, we investigated propagation of intrinsic noise in mul-
tisite phosphorylation chain with different “chain lengths,”
i.e., with different total number of phosphorylation sites on the
target protein. Further we explored both mass action (MA) and
Michaelis-Menten (MM) rate laws for phosphorylation and
dephosphorylation reactions to determine the effect of non-
linearity on noise propagation. To investigate the quantitative
and qualitative nature of variability in phosphorylated species,
we used van Kampens system size expansion method which
is also known as linear noise approximation (LNA) to the
chemical master equation [36]. Further, we supplemented our
analytical calculations with stochastic simulations of chemical
reactions in the chain using Gillespie’s stochastic simulation
algorithm (SSA) [37].
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FIG. 1. Schematic diagram of three-component
phosphorylation-dephosphorylation chain. νi and ν−i represent
the macroscopic rates of phosphorylation and dephosphorylation
reactions, respectively.

II. MODEL AND METHOD

We studied noise propagation in ordered distributive multi-
site phosphorylation where each enzyme-substrate encounter
leads to single phosphorylation or dephosphorylation of target
protein with a specific order [29]. In Fig. 1, we present a reac-
tion scheme of a three-component multisite phosphorylation-
dephosphorylation chain. In our scheme an enzyme (kinase)
catalyzes all the phosphorylation events and similarly another
enzyme (phosphatase) catalyzes all the dephosphorylation
events. The chemical master equation of the three component
reaction scheme can be represented as [38]:

∂ p(n0, n1, n2; t )

∂t
= a1(n0 + 1, n1 − 1, n2)p(n0 + 1, n1 − 1, n2; t )

+ a2(n0, n1 + 1, n2 − 1)p(n0, n1 + 1, n2 − 1; t )

+ a−2(n0, n1 − 1, n2 + 1)p(n0, n1 − 1, n2 + 1; t )

+ a−1(n0 − 1, n1 + 1, n2)p(n0 − 1, n1 + 1, n2; t )

− [a1(n0, n1, n2) + a2(n0, n1, n2) + a−2(n0, n1, n2)

+ a−1(n0, n1, n2)]p(n0, n1, n2; t ), (1)

where p(n0, n1, n2; t ) is the joint probability distribution that
at time t , there are n0, n1, and n2 number of molecules of
unphosphorylated (MP0), singly phosphorylated (MP1), and
doubly phosphorylated (MP2) species, respectively. The ai’s
are the reaction propensities for phosphorylation (a1, a2) or
dephosphorylation (a−1, a−2) reaction steps in the chain. As
mass conservation law holds in the chain, the total number
of molecules, nT (= n0 + n1 + n2), is fixed at all time. The
chemical master equation can also be written as a function
of any two variables of the phosphorylation chain due to the
mass conservation [39].

For the three component chain, the equations for the aver-
age dynamics of the phosphorylated species are given by

∂ n̄1

∂t
= ν1 + ν−2 − ν2 − ν−1, (2a)

∂ n̄2

∂t
= ν2 − ν−2, (2b)

where n̄1 and n̄2 are the macroscopic average of MP1 and
MP2, respectively. νi and ν−i represent the macroscopic rates
of phosphorylation and dephosphorylation reactions. This
set of equations essentially represent the macroscopic rate
equations resulted from the deterministic chemical kinetics of

the well-mixed reacting system. Using mass conservation one
can obtain the average population of the unphosphorylated
species. MM rate laws have been used widely to model the
dynamics of multisite phosphorylation reactions. Particularly
the relevance of the MM rate laws in multisite phosphoryla-
tion has become quite significant since the work of Markevich
et al. [28] in the context of mitogen-activated protein kinase
pathway. Their work has established that, in certain condi-
tions, a three-component phosphorylation-dephosphorylation
cycle alone can generate bistability without any imposed
positive feedback loop in the reaction network. However,
a two-component phosphorylation-dephosphorylation cycle
with MM kinetics leads to ultrasensitive switch [40]. Further
various aspects of ultrasensitive switch by multisite phos-
phorylation with MM kinetics have been investigated [27].
In addition to the MM kinetics, MA based multisite phos-
phorylation was also shown to generate robust and tunable
ultrasensitivity [29]. With the consideration that both MA and
MM kinetics are equally important in producing nonlinear
responses, we investigated chemical noise propagation in
multisite phosphorylation with both types of rate laws.

A. Mass action kinetics

We assumed that the chemical reactions in the multisite
phosphorylation chain follow the MA rate laws of chemical
kinetics. Assumption of MA rate law in the enzymatic step
demands that the initial encounter between the enzyme and the
substrate is the rate limiting step of the reaction. The reaction
propensities, νi, are given by

ν1 = k1(nT − n̄1 − n̄2), (3a)

ν2 = k2n̄1, (3b)

ν−1 = k−1n̄1, (3c)

ν−2 = k−2n̄2, (3d)

where n̄i is the average number of molecules for the ith
chemical species. In the above set of equations, the ki and
k−i are the catalytic conversion rate constants for phospho-
rylation (k1, k2) and dephosphorylation (k−1, k−2) reactions,
respectively. We kept the abundances of enzymes constant
in the entire calculations. Therefore, they are not mentioned
explicitly as they were absorbed in the rate constants ki and
k−i. Although we have presented the dynamical equations for
a three-component system, however, the general form of the
dynamical equations and macroscopic rates can be written for
any component chain (See Eqs. (A1)–(A3) in the Appendix).

To calculate the steady-state fluctuations in phosphospecies
we used LNA on the chemical master equation. The method
relies on the system size (�) expansion of the master equation
[36]. Identifying � as the volume of the reaction chamber of
the homogeneous reaction mixture, the main ansatz in the
system size expansion is that the sizes of the fluctuations
from the macroscopic average varies inversely with

√
�.

Systematic expansion of the chemical master equation to
the first order in 1/

√
� leads to equations for the averages.

Whereas the expansion to the second order in 1/
√

� results
in a linear Fokker-Planck equation of the relevant random
variables. Since in the process of generating Fokker-Planck
equation, higher order terms above 1/�0 are excluded, it is
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called linear noise approximation. In the past, this method has
been used extensively to calculate gene expression noise and
noise in biochemical reaction networks [14,41–43]. Further
LNA has been applied in case of autocatalytic system [44],
in two-component signal transduction pathway [45], reactions
with nonlinear rate laws [46–48] and spatial systems [49]. The
applicability of LNA has been tested extensively in the various
contexts of biochemical systems [50,51] and the method
has been extended to systems with nonunique stationary states
with multistability [52], with extrinsic noise [53] and systems
with disparate timescales [54].

Owing to the linearity of the Fokker-Planck equation
obtained from the LNA, the drift and diffusion matrices are
connected by a fluctuation-dissipation-like relation at the
steady state:

Aσ + σAT + B = 0. (4)

In the fluctuation-dissipation relation above, A, B, and σ

are the drift (or Jacobian matrix), diffusion, and covariance
matrix, respectively. The covariance matrix holds information
about the steady-state variance and covariance of all the
molecular species in the network. The elements in the drift
matrix A are given by

Ai j = ∂

∂ n̄ j

∂ n̄i

∂t
. (5)

Note that, for simplicity we are using the same notation for
steady-state averages (n̄i) as we used for the non-steady-state
quantities represented in Eq. (2). The elements in the diffusion
matrix B are given by

Bi j =
∑

k

v jkvikνk, (6)

where vik is the stoichiometric coefficient of the ith species in
the kth reaction, and νk is the rate of the kth reaction.

Here we assumed mass conservation (nT = ∑
ni) to re-

duce the number of variables. Consequently the drift and
diffusion matrices depend only on the average population of
phosphorylated species (n̄1 and n̄2). Now for the MA kinetics
Eq. (3) the drift and diffusion matrices are given by

A =
[−(k1 + k2 + k−1) (k−2 − k1)

k2 −k−2

]
, (7)

B =
[

2(k2 + k−1)n̄1 −2k2n̄1

−2k2n̄1 2k−2n̄2

]
. (8)

Using the above expressions of A and B in the fluctuation-
dissipation relation Eq. (4) and applying the symmetry of the
elements of the covariance matrix (σi j = σ ji) we obtained a
matrix equation for the steady-state second moments of the
random variables:⎡

⎢⎢⎢⎢⎣

2∑
i=1

ki + k−1 k1 − k−2 0

k2 −
2∑

i=1
(ki + k−i ) k−2 − k1

0 k2 −k−2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

σ11

σ12

σ22

⎤
⎥⎥⎦

=
⎡
⎣−(k2 + k−1)n̄1

2k2n̄1

−k−1n̄2

⎤
⎦. (9)

Solution of the above system of linear equations leads to
the steady-state variances of singly and doubly phosphory-
lated species MP1 and MP2, respectively, and are given as

σ11 = (k1k2 + k−1k−2)n̄1

k1k2 + k1k−2 + k−1k−2
, (10a)

σ22 = (k1k−2 + k−1k−2)n̄2

k1k2 + k1k−2 + k−1k−2
. (10b)

The above set of equations can be used to compute the
dependence of variances of phosphorylated species on the the
various rate parameters in the reaction scheme. In the special
case, where all the forward and backward rate constants are
equal, i.e., k1 = k2 = k f and k−1 = k−2 = kb, the steady-state
variances can be represented as a function of ratio of catalytic
conversion rates, K (= k f /kb), and they take simple forms as

σ11 = (1 + K2)n̄1

(1 + K )2 − K
, (11a)

σ22 = (1 + K )n̄2

(1 + K )2 − K
. (11b)

The macroscopic steady-state averages (n̄i) can be obtained
from the deterministic dynamical Eqs. (2). In the above men-
tioned special case, the general expression of the average of
the ith phosphospecies is given as

n̄i = Ki∑N
i=0 Ki

nT . (12)

N is the total number of phosphorylation sites in the chemi-
cal species. For the two-component phosphorylation chain the
steady-state variance for MP1 can be obtained following the
method described as above and is given as

σ11 = n̄1

(K + 1)
. (13)

B. Michealis-Menten kinetics

Next, we investigate the case where phosphorylation and
dephosphorylation reactions are governed by the Michaelis-
Menten rate laws. For the three-component phosphorylation
chain (Fig. 1) the mathematical expressions of macroscopic
rates, νi, are given as

ν1 = k1E1(nT − n̄1 − n̄2)/KM1

1 + (nT − n̄1 − n̄2)/KM1 + n̄1/KM2
, (14a)

ν2 = k2E1n̄1/KM2

1 + (nT − n̄1 − n̄2)/KM1 + n̄1/KM2
, (14b)

ν−1 = k−1E ′n̄1/K−M1

1 + n̄1/K−M1 + n̄2/K−M2
, (14c)

ν−2 = k−2E ′n̄2/K−M2

1 + n̄1/K−M1 + n̄2/K−M2
. (14d)

These rate expressions are similar to expressions as given
by Markovich et al. [28] in the context of phosphorylation
of mitogen-activated protein kinase cascade. E1 and E ′ are
the kinase and phosphatase abundances, respectively, and we
kept their abundances constant throughout the calculations.
The KMi’s are the Michaelis constants for phosphorylation
(KM1, KM2) and dephosphorylation (K−M1, K−M2) reactions.
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FIG. 2. Dependence of steady-state statistical properties (average (n̄i), variance (σii), and Fano factor (σii/n̄i) on the equilibrium constant
(K) for phosphorylation-dephosphorylation reactions in three component multiphosphorylation chain. Solid lines and markers represent
analytical and SSA simulation results, respectively. nT = 500 was chosen in all the calculations. Top row: mass action kinetics; bottom row:
Michaelis-Menten kinetics.

We followed the same general method, as described in
the case of MA kinetics to obtain the matrix equation for
the covariances of phosphorylated species. The final matrix
equation for the covariances is given as⎡

⎣A11 A12 0
A12 (A11 + A22) A12

0 A12 A22

⎤
⎦

⎡
⎣σ11

σ12

σ22

⎤
⎦

=
⎡
⎣− 1

2 (ν1 + ν2 + ν−2 + ν−1)
(ν2 + ν−2)

− 1
2 (ν2 + ν−2)

⎤
⎦. (15)

The matrix elements for the A can be represented as

A11 = −
E1

KM1KM2
[(k1KM2 + k2KM1) + (k1 + k2)(nT − n̄2)]

X1

−
E ′

K−M1K−M2
[k−1K−M2 + (k−1 + k−2)n̄2]

X2
, (16a)

A12 =
E ′

K−M1K−M2
[k−2K−M1 + (k−1 + k−2)n̄1]

X2
, (16b)

A21 =
E1

KM1KM2
[k2KM1 +k2(nT − n̄2)]

X1
+

E ′
K−M1K−M2

.k−2n̄2

X2
, (16c)

A22 =
E ′

K−M1K−M2
[k−2K−M1 + k−2n̄1]

X2
, (16d)

with X1 = [1 + (nT − n̄1 − n̄2)/KM1 + n̄1/KM2]2 and X2 =
[1 + n̄1/K−M1 + n̄2/K−M2]2. Due to the nonlinear nature of
the rate functions, the elements in the matrix A are cum-
bersome in their appearance. Consequently the analytical
solution of σii cannot be expressed in simple forms. There-
fore, to obtain the variances of phosphorylated species,
we used MATLAB to solve the matrix Eq. (15). However,
for the two-component phosphorylation-dephosphorylation

cycle, the steady-state variance for MP1 can be expressed as

σ11 =
k1E (nT −n̄1 )

KM1+(nT −n̄1 ) + k−1E ′n̄1

K−M1+n̄1

2k1EKM1

[KM1+(nT −n̄1 )]2 + 2k−1E ′K−M1

[K−M1+n̄1]2

. (17)

C. Results

In the quest of determining the steady-state statistical
properties of phosphorylated species, in Fig. 2 we present
the dependence of average, variance, and Fano factor of
the phosphorylated species on the equilibrium constant (K)
of phosphorylation-dephosphorylation reactions in the three-
component phosphochain. To understand the effect of the rate
laws on the statistical properties, we report results both from
the MA and the MM kinetics of reactions. Further, to test
the accuracy of our analytical calculations, we compared the
analytical results with the results from numerical simulations
performed using Gillespie’s SSA. In the case of MA kinetics,
we used Eqs. (11) and (12) for variance and average, respec-
tively. Whereas, in the case of MM kinetics, we solved the
matrix Eq. (15) in MATLAB to obtain the variances. Although
we report results for the cases with k1 = k2 and k−1 = k−2,
however, one can also get the dependence of statistical prop-
erties on the individual rate constants (k1, k2, k−1, and k−2). In
MA kinetics, with the increase of K (= k1/k−1 = k2/k−2) the
variances of the phosphorylated states increase sharply and
decreases steadily passing through maxima. Whereas in the
case of MM kinetics the increase and decrease of variances are
much sharper. Particularly for the terminally phosphorylated
species (MP2) the variance exhibits a sharp peak at K = 1.
The sharp rise of variance of MP2 is due to rapid increase of
its average near K = 1. However, the rapid fall of variance
beyond K > 1 is due to decrease in sizes of fluctuations as
the species are entirely converted to MP2 at large value of K .
As in the MA kinetics, the averages do not show such sharp
transition with K the corresponding variances also do not
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FIG. 3. Variation of steady-state average and variance with the equilibrium constant (K) in four (4-C) and five (5-C) component
multiphosphorylation chains. Solid lines and markers represent analytical and numerical results, respectively. Top row: mass action kinetics;
bottom row: Michaelis-Menten kinetics. To vary K , we kept kb(= k−1 = k−2) fixed at 0.2 and varied k f (= k1 = k2). The values of all Michaelis
constants were fixed at 0.05. The parameters were nT = 500, E = 50, and E ′ = 50.

exhibit sharp features. Therefore, well-known ultrasensitive
switching of MP2 dictates the behavior of its variance. The
variation of Fano factor (=variance/mean), that measures
the strength of the noise, also supports the dependence of
variance on K . Further the deviation of Fano factor from 1 in-
dicates the non-Poissonian nature of statistics across different
values of K .

Many regulatory proteins that control key cellular func-
tions are often phosphorylated multiple times and often it
results in ultrasensitive signal response curves. Particularly
the sharpness in the signal response strongly depends on the
number of phosphorylation of the target protein [29]. Keeping
in view with this, we next investigated phosphochains with
four- and five-components. To get the steady-state variances,
we followed the method described earlier. The dynamical
equations and rate functions for MA and MM kinetics are
given in the Appendix [Eqs. (A1)–(A3)]. Further, the corre-
sponding matrix equations for the steady-state covariances
are also given in the Appendix [Eqs. (A4) and (A5) for
MA kinetics and Eqs. (A6) and (A7) for MM kinetics]. As
the dimension of these matrix equations are large, obtaining
analytical expressions of the variances (σii) are quite difficult.
Thus we again resort to MATLAB to get the solution of these
matrix equations. In Fig. 3 we present the variation of the
steady-state averages and variances of the phosphorylated
species with the equilibrium constant K . Similar to the three-
component chain, in the case of MA kinetics the variances
increase and decrease less dramatically as compared to the
MM kinetics. Again the terminally phosphorylated species ex-
hibit sharp rise and fall in its variance in MM kinetics - owing
to its deterministic behavior. We also support our analytical
results with the numerical calculations using Gillespie’s SSA.
Both the results agree very well in all chains. Further, it is
interesting to note that all the variance curves cross through a
common value of K = 1 in MA kinetics.

Now that we have established our method, next we in-
vestigated the effect of chain lengths or the total number of
phosphorylation sites (N) on the variability of phosphorylated

species. We calculated the coefficient of variation (CV = stan-
dard deviation/mean) to estimate the noise in the chemical
species. We calculated CV of all the phosphorylated species
in chains having 3, 4, and 5 components and in all chains
we kept the total number of species fixed at nT = 500. We
then compared the CV of a given phosphorylated state from
different chain lengths (Fig. 4) to asses the effect of number of
phosphorylation sites on the noise. Our calculations indicate
that, in the case of MA kinetics the noise in a particular
phosphorylated state increases with the chain length. This is
due to the fact that the total population is distributed over
all the states, thus the average abundance of a particular
state decreases with the chain length resulting in higher noise
in the individual phosphorylated states. While the CV of
the terminally phosphorylated species in any chain exhibit
monotonously decreasing trend with the K , however, the CV
of other phosphorylated species pass through a minimum.
The reason for monotonous decrease of CV with K for the
terminally phosphorylated species is the increase of average
abundance with the K . However, with K , average abundances
of other phosphorylated species pass through maxima and
consequently the CV of these species follow a reverse trend.
Although these findings are also generally true for the MM
kinetics, however, near the critical value of K = 1 the CV
exhibits a sudden dip for the nonterminal phosphorylated
species. For the terminal species, the CV decreases sharply
at K = 1 as compared to the MA kinetics—again due to the
average dynamics. Further the noise in the MM kinetics is
more for the nonterminal species as compared to the MA
kinetics. To get a better estimate of comparative noise in
MA and MM kinetics, we calculated the total variance of
all the phosphorylated species and compared them for chains
of different number of components (Fig. 5). While in the
case of MA kinetics, the total variance increases with the num-
ber of components in the chain, however, the total variance of
all the chains are nearly same in the case of MM kinetics.
More importantly the total variance in the MM kinetics is
much higher than that of in the MA kinetics. This indicates
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that nonlinear rates in the chemical kinetics contributes to
amplify the intrinsic noise in the phosphorylation chains.
Therefore, although nonlinear rate laws results in sharp ul-
trasensitive response, however, it also increases the variability
in the phosphostates in the reaction equilibria.

Propagation of chemical noise in a network of chemical
reactions has been of a great interest since the inception of
gene expression noise. A particular interest has been signaling
cascade network where the propagation of intrinsic noise has
been investigated as a function of cascade “length” [17,55–
58]. Therefore, in the case of multisite phosphorylation chain,
it is a reasonable to determine how the noise is distributed
or propagated among the various chemical species in the
chain. In addition, it is worth determining the effect of chain
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length i.e. the number of components in the phosphorylation
chain on the noise of phosphorylated species. To address
these aspects of noise propagation, we performed additional
simulations for longer phosphorylation chains all the way up
to 10 components. In Fig. 6 we report the noise propagation
along the different chains at K = 1. Particularly, for a given
chain, we plot the noise of all the phosphorylated species both
for MA and MM kinetics. We found a striking difference in
the noise propagation between chains with MA and MM rate
laws. In the MA kinetics, the noise of all the phosphorylated
species of a chain are same. However, the quantitative value

1 5 9

No. of phosphorylation

0.04

0.08

0.12

0.16

C
V

i

1 5 9
0

0.18

0.36

2-C 3-C 4-C 5-C

6-C 7-C 8-C 9-C 10-C

Michaelis
-Menten  Mass action

FIG. 6. Plot of coefficient of variation (CVi) for all the phos-
phorylated species in a given chain as a function of number of
phosphorylation for MA (left) and MM (right) kinetics for K = 1.
The different colors or point styles represent different chain lengths.
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FIG. 7. Variation of CV (left panel) and average (right panel) for
terminally phosphorylated species (MPN ) with the chain length for
indicated values of K . Dashed and solid lines correspond to MA and
MM kinetics, respectively.

of noise depends on the chain length where longer chains
are more noisy than shorter chains. Therefore, the extent
of noise propagation is independent of the phosphorylation
state of the species. Whereas in the case of MM kinetics,
the noise exhibits a completely different qualitative behavior.
Here the noise is somewhat parabolic in nature with the
phosphorylation state of the species. The noise decreases with
the phosphorylation and passing through a minimum it further
increases along the chain. Therefore, the “middle” of the
chains are least noisy than the “terminals” of the chain.

To determine how the noise of a given species depends
on the chain length, in Fig. 7 we report the CV of the
terminal phosphorylated species (MPN ) as a function of chain
“length” for three different values of K . When dephospho-
rylation reactions are favored over the phosphorylation re-
actions (K = 0.5), the noise in the terminal phosphorylated

species increases with the chain length due to the decreased
average abundance of species with chain length. At K =
1 both phosphorylation and dephosphorylation are equally
favored and the noise increases steadily with the chain length.
Finally, when phosphorylation is favored over dephosphoryla-
tion (K = 1.5), the noise remains same for most of the chains
due to the full saturation of terminally phosphorylated species
that has a bound in terms of maximum abundance (fixed NT ).
Further, one important aspect to note that, the noise in the
terminally phosphorylated species is more in MM kinetics as
compared to MA kinetics for K = 0.5 and K = 1. Whereas
the situation is the opposite in the case of K = 1.

One of the important aspects of intrinsic noise is that
the dependence of CV on the average number of molecular
species. For simple birth-death processes, the CV follows
its characteristic CV ∝ 1/

√
n̄ scaling behavior. In Fig. 8 we

present the dependence of CV on the average abundance of
phosphorylated species for chains with different total number
of phosphorylation sites. In the case of MA kinetics, the
CV shows usual scaling with the average number of species
(CV ∝ 1/

√
n̄) and the CVs for all the phosphorylated species

behave identically with the average. However, the scaling of
CV in the MM kinetics is complex in nature. Particularly the
intermediate phosphorylated species show a looplike feature
which is characteristic to MM kinetics of enzymatic reaction.
This characteristic feature of noise versus abundance may be
useful for the experimentalists to determine the mechanism
of enzymatic activity particularly whether the underlying rate
law was MM or MA kinetics.

III. CONCLUSION

Chemical reactions in living cells experience unavoid-
able intrinsic noise that originates from fluctuations of the
finite abundance of molecular species. Due to the chemi-
cal noise expression of gene becomes noisy [1,2]. The ul-
timate end result of noisy gene expression is population

FIG. 8. CV vs average plots for phosphostates in each chain (3, 4, and 5 component). Different colors or line styles represent each
phosphorylated species. The dotted lines across the plot represent CV ∝ 1/

√
N scaling.
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heterogeneity of cellular functions or characteristics. The
topology of reaction network is a key regulator of chemical
noise propagation in biochemical reaction networks that con-
trol diverse cellular functions. Multisite phosphorylation of
protein is one such network motif that is often responsible
for activation, inactivation, recognition, binding, degradation
of many target proteins. Further it is also found to be re-
sponsible for ultrasensitive response in signaling networks.
Therefore, understanding of chemical noise propagation in
a chain of multisite phosphorylation reactions is important
due to its variety of roles in cellular signaling. In this paper,
we analytically investigated chemical noise propagation in
multisite phosphorylation chains using van Kampens system
size expansion method. We have supplemented the analytical
results with numerical simulations of chemical reactions using
Gillespie’s SSA. To understand the role of rate laws in noise
propagation, we carried out calculations with both linear
(mass action) and nonlinear (Michaelis-Menten) kinetics for
the enzymatic activity. We calculated steady-state statistical
properties (variance, coefficient of variation, Fano factor)
of phosphorylated species while we varied the equilibrium
constant of phosphorylation-dephosphorylation reaction and
the total number of phosphorylated states in the chain (chain
length) to study noise propagation.

In the case of MA kinetics, the variance of phosphorylated
states increase and decrease steadily with the equilibrium con-
stant of the reactions. However, in the case of MM kinetics,
the rise and fall of variances are much profound. Particularly
the variance of the terminally phosphorylated species exhibits
a sharp peak at K = 1 where the reaction equilibrium is
unbiased. Further the variance of any phosphorylated state
with the MM kinetics is significantly larger than that of with
the MA kinetics. Consequently the total variance in all the
phosphostates with the MM kinetics is much higher than
the total variance in the MA kinetics. This is also reflected
in the CV that estimates the “noisiness” of the chemical
species. It is established that MM kinetics in multiphos-
phorylation chain can lead to ultrasensitive signal response.
Goldbeter-Koshland’s zero-order ultrasensitive switch in a
two-component phosphorylation-dephosphorylation chain is
an example of such ultrasensitivity [40]. Our calculations
indicate that although MM kinetics leads to increased sharp-
ness in the signal response, however, it contributes to the
amplification of variability of the phosphorylated states as
compared to the MA kinetics. Therefore, it is a trade off for
the system that achieves sharp nonlinear response, however,
at the cost of increased variability. Our investigations on the
propagation of intrinsic noise along the chain unravel a stark
contrast by which chemical noise propagates along the chains
with MA or MM kinetics. Where in MA kinetics the noise
is independent of the state of the phosphorylation, the noise

crucially depends on the state of phosphorylation in the MM
kinetics. In particular the noise varies in a parabolic manner
along the chain. Further in both the kinetics, the noise of
terminal phosphospecies increases steadily with the length of
the chain at K = 1. Finally, the CV versus average plots indi-
cate that in the MA kinetics the system follows CV ∝ 1/

√
N

irrespective of the state of the phosphorylation. In the MM
kinetics, on the contrary, it does not exhibit similar the scaling
relation. Further the distinctive loop structure in the CV versus
average plot of intermediate phosphorylated states can be
useful to determine the underlying rate law of enzymatic
events in phosphorylation-dephosphorylation reaction chain.
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APPENDIX: MATRIX EQUATIONS FOR THE
STEADY-STATE COVARIANCES

General deterministic dynamical equations for the mul-
tiphosphorylation chain with N number of phosphorylation
sites. The number of components will be N + 1:

∂ n̄i

∂t
= (νi + ν−(i+1)) − (ν(i+1) + ν−i ), (A1a)

∂ n̄N

∂t
= (νN − ν−N ). (A1b)

For the MA kinetics the general form of macroscopic rates
are given as

νi = kin̄i−1, (A2a)

ν−i = k−in̄i. (A2b)

For the MM kinetics the general form of the macroscopic
rates are given as

νi = kiE (n̄i−1/KMi )

1 +
N∑

i=1
(n̄i−1/KMi )

, (A3a)

ν−i = k−iE ′(n̄i/K−Mi )

1 +
N−1∑
i=0

(n̄i+1/K−Mi )

. (A3b)

The matrix equation for covariances of the phosphorylated
species in the four-component phosphorylation chain with
MA rate law is represented as

⎡
⎢⎢⎢⎢⎢⎣

−p4 q4 −k1 0 0 0
k2 −(p4 + r4) k−3 q4 −k1 0
0 k3 −(p4 + k−3) 0 q4 −k1

0 k2 0 −r4 k−3 0
0 0 k2 k3 −(r4 + k−3) k−3

0 0 0 0 k3 −k−3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

σ11

σ12

σ13

σ21

σ22

σ33

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−(k2 + k−1)n̄1

(k2n̄1 + k−2n̄2)
0

−(k3 + k−2)n̄2

2k3n̄2

−k−3n̄3

⎤
⎥⎥⎥⎥⎥⎦

, (A4)

where p4 = k1 + k2 + k−1, q4 = k−2 − k1, and r4 = k3 + k−2.
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The matrix equation for covariances of the phosphorylated species in the five-component phosphorylation chain with MA
rate law is represented as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p5 q5 −k1 −k1 0 0 0 0 0 0
k2 −(p5 + r5) k−3 0 q5 −k1 −k1 0 0 0
0 k3 −(p5 + s5) k−4 0 q5 0 −k1 −k1 0
0 0 k4 −(p5 + k−4) 0 0 q5 0 −k1 −k1

0 k2 0 0 −r5 k−3 0 0 0 0
0 0 k2 0 k3 −(r5 + s5) k−4 k−3 0 0
0 0 0 k2 0 k4 −(r5 + k−4) 0 k−3 0
0 0 0 0 0 k3 0 −s5 k−4 0
0 0 0 0 0 0 k3 k4 −(s5 + k−4) k−4

0 0 0 0 0 0 0 0 k4 −k−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ12

σ13

σ14

σ22

σ23

σ24

σ33

σ34

σ44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k2 + k−1)n̄1

k2n̄1 + k−2n̄2
0
0

−(k3 + k−2)n̄2

k3n̄2 + k−3n̄3
0

−(k4 + k−3)n̄3

2k4n̄3

−k−4n̄4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

where p5 = k1 + k2 + k−1, q5 = k−2 − k1, r5 = k3 + k−2, and s5 = k4 + k−3. These matrix equations can be solved in MATLAB

to get the variances of the phosphorylated species.
The matrix equation for covariances of the phosphorylated species in the four-component phosphorylation chain with MM

rate law is represented as

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 0 0 0
A21 (A11 + A22) A23 A12 A13 0
A31 A32 (A11 + A33) 0 A12 A13

0 A21 0 A22 A23 0
0 A31 A21 A32 (A22 + A33) A23

0 0 A31 0 A32 A33

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

σ11

σ12

σ13

σ22

σ23

σ33

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2 (ν1 + ν2 + ν−1 + ν−2)

(ν2 + ν−2)
0

− 1
2 (ν2 + ν3 + ν−2 + ν−3)

(ν3 + ν−3)
− 1

2 (ν3 + ν−3)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A6)

The matrix equation for the five-component chain with MM rate law is given as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 0 0 0 0 0 0
A21 (A11 + A22) A23 A24 A12 A13 A14 0 0 0
A31 A32 (A11 + A33) A34 0 A12 0 A13 A14 0
A41 A42 A43 (A11 + A44) 0 0 A12 0 A13 A14

0 A21 0 0 A22 A23 A24 0 0 0
0 A31 A21 0 A32 (A22 + A33) A34 A23 A24 0
0 A41 0 A21 A42 A43 (A22 + A44) 0 A23 A24

0 0 A31 0 0 A32 0 A33 A34 0
0 0 A41 A31 0 A42 A32 A43 (A33 + A44) A34

0 0 0 A41 0 0 A42 0 A43 A44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ12

σ13

σ14

σ22

σ23

σ24

σ33

σ34

σ44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 (ν1 + ν2 + ν−1 + ν−2])

(ν2 + ν−2)
0
0

− 1
2 (ν2 + ν3 + ν−2 + ν−3])

(ν3 + ν−3)
0

− 1
2 (ν3 + ν4 + ν−3 + ν−4)

(ν4 + ν−4)
− 1

2 (ν4 + ν−4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A7)
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Considering the forms of these matrix equations for four- and five-component chains, it is possible to generalize the matrix
equation for a chain of any number of components. However, it is difficult to represent the generalized matrix equation in a
simple format.
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