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Abstract

A number of signal and image processing methods have been developed 
and evaluated for applications in ultrasonic quantitative non-destructive testing of 
highly scattering materials. The work falls into three main areas: signal and image 
enhancement and signal detection.

Analyses have been made of the differential features of grain and defect 
scattering in the frequency, time and space domains. The insight gained has led to 
the development of novel multi-channel adaptive filtering approaches to enhance 
true defect signals and images. The methods used include: normalised least-mean 
square error adaptive filtering, minimum-variance distortionless response array-
processing and two-dimensional adaptive Wiener filtering. Automatic detection of 
the enhanced signals is achieved using constant false alarm rate detectors adapted 
and developed from well-established radar techniques. Two approaches have been 
used: cell-averaging detection and automatically censored mean level detection.

The performances of all the approaches are evaluated by processing 
extensive sets of A-scan data from test blocks containing artificial targets and a 
real flaw. Comparisons between the new adaptive filtering and detection 
approaches and existing methods such as split spectrum processing and spatial 
averaging have been presented in a number o f tables summarising performance 
over a set o f 64 sequential A-scans. These results show that the new approaches 
can detect all the test targets, with near zero false alarms, representing a 
considerable improvement over the performance of existing methods. The results 
o f array and image processing are presented as false colour B-scan images in which 
the visibility o f defect images corrupted by grain scattering has been considerably 
enhanced. An important feature of the current work is that fixed processing 
parameters have been used throughout.
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1. Introduction

The ultrasonic pulse-echo method was originally developed to detect 

submarines during the first World War. In the early 1940s, ultrasonic pulse echo 

techniques were introduced to detect defects in materials. Since then, they have 

been developed to become some o f the most versatile tools for quantitative non-

destructive evaluation of materials and the location and characterisation o f defects.

As the sound wave interacts with materials mechanically, it can provide 

more information concerning the mechanical properties o f the testing materials 

than can, for instance, electromagnetic techniques. However, the sensitivity and 

resolution of ultrasonic pulse-echo techniques are limited by a number of factors 

such as: transducer size and frequency, pulse length, material absorption and grain 

scattering, etc. In general, to achieve high axial and lateral resolution, a high 

frequency, short pulse length and narrow beam width should be used. Short pulses 

can be obtained with heavily damped transducers but at the expense of overall 

sensitivity. To achieve a pencil-like beam, the transducer radius must be at least a 

few centre-frequency wavelengths. On other hand, it must be borne in mind that 

absorption and scattering tend to increase with frequency, therefore the sensitivity 

would decrease with frequency. So a compromise must be struck between the 

requirements for axial resolution and sensitivity. In the near field, the beam width 

approximates to the transducer diameter, so the lateral resolution is relatively 

constant with range. However the structure of echo responses from near- field 

targets can be greatly complicated by diffraction effects, especially for the case of a 

solid medium of propagation [Weight, J.P., 1982, 1993][Stacey, R.,

1993][Lhemery, A., 1995], In general, this complication becomes less important in 

the far field. However, once again a compromise must be struck, since if the 

transducer aperture is chosen to be small enough to ensure that targets lie in the far 

field, the lateral resolution and sensitivity suffers as a result of the beam spreading, 

by an amount proportional to the ratio of the central frequency wavelength to the 

transducer aperture.
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In the present work the material of interest is coarse-grained Waspaloy. 

Waspaloy is a Nickel based superalloy designed to maintain high strength in 

demanding high-temperature environments [Shen, G.]. A typical example is the 

disk like structures anchoring the turbine blades in a jet engine. Since jet engine 

disks are safety-critical components, the ability to detect small defects with 

reliability guaranteed by a large safety margin is, o f course, o f paramount 

importance. However, as a result of the coarse-grained microstructure of 

Waspaloy, the detection o f small flaws is often limited by the masking effect of 

scattering from grain boundaries. Such scattering arising from within the bulk o f a 

"defect free" material is referred to hereafter as "grain noise".

As is well known, "grain noise" is a coherent interference pattern arising 

from the interaction o f ultrasonic waves backscattered by the, in general, randomly 

distributed grains. Usually, the interference pattern depends on both the frequency 

content of the transmitted signal and the position o f the transducer over the 

material being tested. Since grain noise is coherent, it cannot be reduced by 

conventional time averaging. The objective o f the current application is to develop 

and evaluate digital signal and image processing methods based on established 

radar and sonar techniques, both to enhance the defect signal to grain noise ratio 

(SNR)1 and to improve the detection of small defects in highly scattering materials. 

In the main, conventional ultrasonic pulse echo techniques and transducers are 

used, but some results obtained with a specially developed high-resolution 

transducer are included.

Most existing techniques to "clean up" grain noise are based on either the 

spatial or frequency characteristics o f grain scattering. Examples are: spatial and 

frequency averaging [Kraus, S ], bandpass filtering [Shankar, P.M.], Split- 

spectrum minimisation (SSM) and SSM in conjunction with polarity thresholding 

(SSPTM) [Newhouse, V.L.], [Bilgutay, N.M], [Yue, L.]. Some o f these methods 

can give very promising signal enhancement if optimum parameters are used 

[Karpur, P., 1987], An alternative approach developed for a related problem in

1 A glossary of acronyms is on page 150.
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sonar beamforming systems [Yan, A.], is to enhance the signai-to-noise ratio by 

adaptive filtering that makes use of differential spatial features between the signals 

and noise as received by a sensor array. A major advantage of such an approach is 

its self-optimising nature, which avoids requiring, a priori, detailed knowledge of 

input data to choose optimum parameters.

The present work makes use of these latter concepts, in particular the 

analysis of the differential features of grain and defect scattering. This has led to 

the development of novel multi-channel adaptive filtering approaches for the 

current application. The methods used to enhance the defect signals and images 

include: normalised least-mean-square error adaptive filtering [Zhu, Y., 1994], 

minimum-variance distortionless response array-processing and two-dimensional 

adaptive Wiener filtering. Automatic detection o f the enhanced signals is achieved 

using constant false alarm rate detectors adapted and developed from well- 

established radar techniques [Zhu, Y., 1993], Two approaches have been used: 

cell-averaging detection and automatically censored mean level detection.

In practical quantitative non-destructive evaluation (QNDE), the main task 

can be divided into two main procedures referred to as pre-processing and post-

processing. The objectives of pre-processing are searching to locate all potential 

defects and deciding whether further post-processing is necessary. Thus the pre-

processing should be performed on-line in real-time. The potential defects detected 

can then be further analysed by post-processing to accurately locate, size, 

characterise and classify these defects. This actually is also a double check for 

verifying whether a potential defect detected in the pre-processing is a real defect. 

The post-processing is usually only required for a small portion of the test 

materials, e.g. only for those failing to pass the pre-processing. As the post-

processing is often computationally intensive, it is usually performed off-line. Since 

the pre-processing needs to be performed on-line in real-time, it is highly desirable 

to have some means to detect automatically the existence of any true target 

signals, especially for one-dimensional signal processing. Possible approaches 

include fixed thresholding detectors widely used in practical QNDE and recently
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introduced adaptive detection methods whereby the detection threshold is 

automatically adjusted to suit the nonstationary noise environment.

The developments and experimental evaluation of the methods mentioned 

above and on various combinations of them will be presented here. In particular, 

the use of spatial and frequency decorrelation techniques combined with adaptive 

filtering has been developed to enhance the signal-to-noise ratio. The true defect 

signals are then identified automatically using constant false alarm rate detectors 

adapted from radar detection techniques. Furthermore, minimum-variance 

distortionless-response array-processing and two-dimensional adaptive Wiener 

filtering techniques are introduced and developed to explore differential features 

between the signal and noise in both spatial and time domain to enhance the B-scan 

image. The performance of the approaches investigated are evaluated by 

processing extensive A-scan data from test blocks of highly scattering materials 

containing both artificial targets and real flaws. Comparisons between the various 

methods have been presented in a number of tables summarising performance 

over a data set containing 64 A-scans or in false colour B-scan images.

In Chapter 2, relevant absorption/scattering attenuation theory is examined 

first to identify any possible differential features between the signals from grain 

scattering and those from typical defect echoes. The insights gained from such 

investigations are then used to select and develop signal processing techniques that 

may prove suitable for the current application. The theories o f the relevant signal 

detection, signal and image enhancement techniques are then reviewed and 

developed in the following chapters. Since signal detection processing can be used 

to provide an objective and consistent comparison of the performance among 

various signal enhancement methods, the signal detection methods are presented 

in Chapter 3 before the signal and image enhancement algorithms are introduced 

and developed in Chapters 4 and 5 respectively. The data acquisition system, the 

testing material and targets, and extensive evaluation results of all processing 

methods investigated are given in Chapter 6. Some suggested areas of future work 

are given in Chapter 7, before drawing the final conclusions in Chapter 8.
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2. Theory: scattering and attenuation

The ultrasonic pulse-echo method is a very effective non-destructive testing 

technique for detecting and locating defects in test components. In this, a 

transducer is employed in transmit-receive mode to interrogate the targets. The 

time series waveform received at a stationary testing position is usually called an 

A-scan trace. The decision on the presence of defects is made based on the 

information obtained from the A-scans containing waves scattered from the defect 

boundaries. More detailed defect characterisations can be also obtained from the 

A-scans by the post-processing.

In order to identify useful information within the backscattered waves to be 

able to discriminate the defect signal from grain noise, it is instructive to consider 

the time, frequency and spatial domain characteristics of the ultrasonic scattering 

arising from both the grain structures of the bulk material and from typical defects 

of interest.

Depending on the dimension of the effective reflection surface of the defect 

boundary relative to the dominant wavelength of the ultrasound and the orientation 

o f the defect relative to the sound beam, the information can be interpreted by 

using purely geometric-optical concepts or by taking account o f general diffraction 

effects. For example, a transverse crack with a large smooth boundary facing the 

incident ultrasound beam can be treated as a mirror, whereas for a small defect 

with dimensions similar to the wavelengthes, diffraction effects will become
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important. It should be noted that the amplitude of the echo response from a flaw 

depends not only on the size of its reflection surface but also its orientation relative 

to the incident ultrasound beam. Thus the designation "small" by no means implies 

the real geometrical size of the flaw, therefore its seriousness.

A full theoretical model to predict a single A-scan time series, taking into 

account the plane- and diffracted edge-wave nature of the beam radiated into a 

solid from typical transducers, the scattering from grain boundaries and any defects 

present, and the resulting output from a receiving transducer - is not available, but 

a useful starting point is to consider classical plane-wave scattering characteristics.

Since the current application involves scanning the transducer over the 

whole area of the test piece, any changes in the way in which the grain scattering 

and defect signals vary with transducer position will also be explored.

2.1 Frequency dependence of scattering and absorption

In practical ultrasonic non-destructive testing, attenuation effects are 

present in any real material. In general, the overall reduction in (plane-wave) signal 

amplitude can be attributed to energy loss caused by grain scattering (scattering 

attenuation), or by energy conversion from sound into heat (absorption 

attenuation). Scattering attenuation is mainly due to the incident and the reflected 

sound energy being diffracted at grain boundaries. Whereas absorption attenuation 

involves dissipative processes such as thermal conduction, or relaxation. The 

dissipative processes tend to slow down the oscillations of the particles and
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weaken the transmitted energy of both the wanted echo from flaws and unwanted 

scattering from grains.

On the one hand, the attenuation effects may limit the ultrasonic testing 

range or the minimum detectable defect size. On the other hand, any differential 

feature of the attenuation effects for defects and grains could be made use of in 

discriminating defect signals from grain noise.

Considering plane-wave theory, it is well known [Mason, W.P.] that the 

scattering and absorption effects are dependent on the sound wavelength in relation 

to size of scatterer. The total attenuation of a sound wave which has travelled over 

a distance z can be described by

A ( f )  =

Eq. 2.1

where A0(f) and A(f) are the amplitudes of the transmitted sound waveform and 

the received echo waveform, respectively. The total attenuation coefficient a(f) 

consists of the absorption component a a(f) and the scattering component a S(J). 

That is

a ( / )  = « f l ( / )  + a 5( / )

Eq. 2.2

where, for many materials, the absorption coefficient a a(j) is proportional to 

frequency, i.e.
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u a ( f )  = Caf

Eq. 2.3

As is well known, the form of the scattering coefficient a s(f) varies 

according to the size D o f the scatterers in terms of the wavelength X of the 

impinging ultrasound. If D «  X we have Rayleigh scattering, for D  = X stochastic 

scattering, and diffusion scattering or reflection when D »  X [Papadakis, E.P., 

1981],

For the Rayleigh region, the scattering coefficient varies with D and X 

according to

a s ( / )  = V 4

if D «  A

Eq. 2.4

where Cr  is a constant related to the material properties such as anisotropy.

For a stochastic scattering region, the scattering coefficient is less sensitive 

to D and X, and is given by

a s( f )  = C , D f 2 

if  D = X
5

Eq. 2.5

in which Cs is a constant independent of any anisotropy.
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In the diffusion region, the scattering coefficient is independent of 

frequency but is inversely proportional to D

« s(/) =

if  D »  A

Eq. 2.6

again Ca being a constant related to the material properties such as anisotropy.

In fine-grain materials the backscattering from grain boundaries - the grain 

"noise" - can be mainly attributed to Rayleigh scattering, since in most ultrasonic 

non-destructive testing applications the wavelengths used are considerably larger 

than the average grain size. Furthermore, as a result of the random grain size and 

orientation, each multi-faceted grain boundary can act as a collection of small 

scatterers. For the material of the current interest, it is known that the grain 

structure can vary dramatically for components undergoing different heat treatment 

and may even vary within a single component [Shen, G.]. Typically the mean grain 

size D can be from 0.02mm to 0.2mm and an investigation of the actual structure 

o f a representative sample of the material used here will be presented later but it is 

convenient to report at this point that the mean grain size D is about 0.1mm. 

Whereas, for the centre frequency of the transducers used in the current work, the 

wavelengths X are in the range of 0.6 ~ 1.2mm. Thus, in general the majority of the 

grain scattering may be considered to be in the Rayleigh region for the dominant 

frequencies in typical interrogating pulses. Therefore according to the above 

scattering theory, the grain scattering is strongly frequency dependent. Although 

the planar targets considered in the current work (0.6 - 1mm) are comparable in 

size to the pulse wavelengths, they will tend to preferentially scatter the higher
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frequencies in the direction of the transducer, bearing in mind that each target has 

in effect just one normally-aligned facet. However in returning to the transducer, 

the target scattering will be attenuated by the frequency dependent grain scattering 

and the final outcome can be that the lower frequency components dominate in the 

received target signal. This means that higher frequencies are likely to be more 

predominant in the grain noise than in the target signals and target signals should 

have longer correlation length in the time-space domain than does the grain 

scattering. These differential features could be used to optimise the frequency 

domain based processing and may be used to preferentially enhance the target 

signals in the time-space domain adaptive filtering approaches.

Furthermore, as a result of the relatively simple geometry and large size of 

the normally small number of flaws compared to the much larger number of grains 

with smaller average size, the frequency dependence of the interference pattern 

arising from grain scattering is likely to be stronger and more complicated than that 

o f the defect echoes. This means that in the frequency domain, the defect scattering 

on the whole may fluctuate less than does the grain noise. Such characteristics 

point to the use of frequency-diverse techniques such as split spectrum processing. 

Alternatively, adaptive filtering with bandpass-filtered reference approach and 

optimal rule-based adaptive array processing may be appropriate, especially as any 

differential features in both of the spatial and the frequency domains may be 

exploited.

The frequency domain differential features discussed above will be 

illustrated later in Section 6.4.3 by comparing the frequency spectrum of the signal 

from a real defect with that from a representative sample of grain noise obtained 

from the same test piece under the same experimental conditions.
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2.2 Scattering characteristics in the time and space domains

Theoretical analyses and experimental results have shown that the 

probability distribution function (PDF) of grain noise amplitude within a single A- 

scan trace can be modelled by a Rayleigh distribution function [Saniie, J. 1986, 

1988] [Luis, V.D.]. However in general, a priori knowledge of the distribution 

parameter is usually not available and furthermore is likely to vary with physical 

conditions and even the testing locations. Such characteristics of the grain noise 

environment suggest that a nonparametric detection method should be applied. On 

the other hand, for the current application it is reasonable to anticipate that the 

probability distribution of grain noise amplitude will not vary greatly in closely 

spaced regions. So it may be possible to estimate the noise statistics from 

neighbouring regions and make use of them to extract potential differential features 

from the local region and its neighbouring regions. Therefore it could be used to 

discriminate defect signals from grain noise.

Furthermore, in scanning applications, the transmitted beam profile is likely 

to affect the spatial characteristics of sequential A-scans. The coupling ranges used 

in the current application were such that data was collected from an area lying in 

the far field for all but the highest frequencies in the pulse spectrum and therefore 

the beam width will be wider for the lower frequencies. Also, it has already been 

established that the lower-frequency components are likely to be more predominant 

in the target signals than in the grain noise (see Section 2.1 above). Therefore, it is 

likely that the target signals will vary less as the transducer is scanned than will the 

grain scattering. Consequently, it could be anticipated that the received target 

signals would have better spatial cross-correlation than does the grain noise. Such 

differential features between the target signal and the grain noise could be 

exploited in methods related to spatial correlation and a number of such techniques 

will be introduced and investigated later.

14



To verify the presence of such characteristics for the data o f current 

interest, the normalised spatial cross-correlations for both the signals reflected 

from a known target and scattered from the grains in the same test block under 

same experimental conditions will be analysed. The results will be presented later in 

Section 6.4.2.
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3. Theory: Signal detection

In this chapter, three different signal detection methods will be investigated. 

The relevant detection theories [Hou, X.Y.], [Finn, H.M.], [Himonas, S.D.] will be 

reviewed and developed for the current application in a unified approach.

3.1 Theory of signal detection

In ultrasonic QNDE, it is of course crucial to make a correct decision on 

whether a given signal is from a true defect or not. This task often becomes very 

difficult due to the uncertainties arising from the strong grain scattering that gives 

rise to signals of similar amplitude to those from a true defect. Under this 

circumstance, it is desirable to find an optimum decision rule to detect the defect 

signals automatically and consistently.

Depending on a priori knowledge of the wanted signals, signal detection 

can be classified as either coherent, or noncoherent. In coherent detection, the 

amplitude, phase, frequency and time delays of the expected signal should be 

known a priori - this requires a truly synchronous reference signal; conversely in 

noncoherent detection, these parameters can be unknown or random. In the current 

application, usually there is no synchronised reference signal, therefore the 

noncoherent detection method has to be used.

In general, sampled data x containing wanted signals masked by noise can 

be expressed as

x = s + 17 x e  O  ,
Eq. 3.1
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where ¿2 is the sample space, and 5 , n are the signal and noise sample respectively. 

Suppose that the noise samples n are independent and stationary with mean po, or 

expectation, E[n] = po. Then if the signal 5 is absent, the mean of the sample is

E[x] = po.
Eq. 3.2

This will be denoted as the null hypothesis Ho. Meanwhile if the signal s is present, 

the mean of the samples becomes

£[x] = E[s + no],

= s + p 0 = p,

This will be denoted by the alternative hypothesis H\_

Eq. 3.3

The decision rule can be made based on hypothesis testing such that 

H i
x > T  <

H 0
Eq. 3.4

where T is a threshold level to be determined by statistical theory. This decision 

rule is a linear mapping from sample space Q  to decision space /)=Z)0uZ)i. Here 

D0 denotes the region (-0 0 , 7] and D\ is the region (T, 00).

The detection performance of a decision rule can be quantified by two 

kinds of error probabilities associated with the test statistic x. An error o f the first 

kind is defined for the case when

x > T,

17



but the null hypothesis H0 is actually true, i.e., the signal is absent. The probability 

o f this kind of error is defined as

p(x >7]H0) =  p(x e D {\H0),

=  j f ( x \H 0)dx,
A

00

=  \ f (AHo)dx,
T

S P f ’

Eq. 3.5

here f[x) is the probability distribution function (PDF) and adopting radar 

terminology, pp is the false alarm rate.

The second kind of error is defined for the case when

x < T ,

but the alternative hypothesis H\ is true, i.e., the signal is present. The 

corresponding probability is defined as the miss alarm probability p m, given by

Pm = P(x £ T\Hl \

= p(x  e D 0\Hi),

= \  f  (x \H\)dx,
Do

T
-  \  f  (x \H\)dx.

0
Eq. 3.6

The probability of detection p d is defined such that the alternative hypothesis is 

decided while the signal is present, i.e.

18



p ( x > T \H x)= p(x  6 DX\HX),

= \ f ( A H x)dx,
A

= J /(x |/ / i)c & ,
T

= • -Pnn
= Pd-

Eq. 3.7

It is seen that the detection performance of a decision rule is dependent on 

the cumulative probabilities of the test statistic x. These can be directly calculated 

from the moment generating function (MGF) of the test statistic by using the 

residue theorem [Hou, X.Y. ]. The MGF ®y(z) is defined as the expectation of e2* 

under PDF fix). This is also equivalent to the Laplace transform of the PDF fix), 

i.e.

<bf (z) = Em [e2xl

00

= \ f ( x ) e zxdx, 
—00

and f ix)  can be expressed as

Eq. 3.8

/ M  = -
J  C

= ^ r e ^ f (z)e-zx,zk l  
k

Eq. 3.9

when x > 0, the contour of integration c includes a line crossing the real x axis at 

x = Ci and joins a semicircle lying in the right half x-plane at infinity. Thus all the 

poles of 0 /(z) that lie in the right half x-plane are enclosed in the contour c.
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If  the MGF ®/(z) satisfies

lim 0 /- (z )  = 0 for x > 0 ,
\z\—>00

Eq. 3.10

then the two most important measures of detection performance - the false alarm 

probability and the detection probability can be calculated directly for a given 

threshold T by

0 0  00

JK A H j ) d x  = J £ res\.^ f, (z)e~zx,zki }dx 
T T ki

= Z r e W j ! ( z ) e— ,Zki]
ki Z

= Pi
Eq. 3.11

where z*,- are the poles of Oy/(z) lying in the right half-plane. Eq. 3.11 gives the 

false alarm probability when / = 0 (with MGF Oy? evaluated under the null 

hypothesis), and the detection probability when /' = 1 (under the alternative 

hypothesis).

In following sections, the use of both fixed and adaptive threshold detectors 

will be investigated following a unified approach based on the above hypothesis 

testing theory.

3.2 Fixed threshold detector

Since fixed threshold detection is still by far the most common method used 

to detect defect signals in industry, extensive tests to compare its performance with 

some more sophisticated adaptive detectors have been carried out here.
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As mentioned before, in the current application there is no synchronised 

reference signal, thus the noncoherent detection method should be used here. Since 

in noncoherent detection only the amplitude information of the input signal is used 

in making a decision, a square law envelope detector is used to detect the envelope 

o f the input signal prior to fixed threshold detection. In square law envelope 

detection, the incoming data is divided into a number of resolution cells of duration 

similar to that o f the peak duration of the transmitted pulse. The point-by-point 

amplitude within each cell is squared and integrated to give an output power of 

each cell.

The power level of each cell can then be compared to the fixed threshold 

level, and any cell having a power greater than this is deemed to contain a defect 

signal. In practice, the threshold level can be set to just detect the signal from a 

suitable calibration target at the greatest depth o f interest.

As mentioned in Section 2.2, the probability density function f (x )  for the 

amplitude of the grain noise can be modelled by a Rayleigh distribution. That is

f i (x) = f ( x \ H l )

Eq. 3.12

where a / is the distribution parameter defined as g /2= a f ( \  +r'j) in which o f  is the 

grain noise variance, 77 is the average input SNR and i = 0, 1 denotes the 

distribution corresponding to a null or an alternative hypothesis, respectively

0 for  / = 0 
r for  /' = !.
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As mentioned above, a square law envelope detector is used to detect the 

envelope of the input signal prior to threshold detection, it is therefore necessary to 

derive the PDF f (y )  for the square law detector output. Since the original input 

data has a Rayleigh distribution, we can derive an expression for f ( y )  using a 

fundamental theorem of probability theory [Papoulis, A.], i.e.

/ / W = X
k

M * k )
!/(**)!

= J _ e - V o ,2„0 ,)

Eq. 3.14

where y  ’ (xk) are the derivatives of y(x) at its real roots x = xk and ?/(*) is the unit 

step function. The MGF of the f (y )  can then be calculated by

00 1 2
$ y ? 0 )  = j  ~ r e ~yla‘ u(y)eZydy

- 0 0  a i 

1

1 - a , - 2r
Eq. 3.15

This MGF will be used throughout the following in order to provide a unified 

approach to evaluate the performance of all the detectors considered.

Clearly, 0/,(z) has only one first order pole at z=  1/a,2. So the false alarm

probability (/ = 0) and detection probability (/' = 1) can be found from Eq. 3.11 and 

Eq. 3.15, i.e.

A - « - ” 0 ' ’ .
Eq. 3.16

Therefore, the detection performance of the fixed thresholding detector is 

described by
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P f
-T/a a

and

Eq. 3.17

Pd = e
-7 7 a 02(l+r)

1
= P f  1+r .

Eq. 3.18

From Eq. 3.17, it is seen that in fixed threshold detection, the false alarm 

probability is very sensitive to any fluctuation in noise variance and in many NDT 

applications this may vary with transducer positions. Therefore the consistency of 

detection performance can not be guaranteed. As will be discussed below, one 

approach to overcome such a limitation is to adjust the threshold level adaptively, 

taking account of fluctuations in noise level.

3.3 Adaptive detection

Adaptive detection techniques are widely used to improve detection of true 

targets in radar applications. One such approach is the Constant False Alarm Rate 

(CFAR) detection. In this the detection threshold is adjusted adaptively to maintain 

the required constant false alarm rate. This approach has been introduced into 

ultrasonic non-destructive evaluation in present work [Zhu, Y.]. Also, a related but 

different method has been used by [Saniie J., 1992],

As schematically illustrated in Figure 3.1, in a constant false alarm rate 

detector, the incoming signal is first fed to a square law envelope detector of the 

type described above. The output signal power of the square law detector is in turn 

compared with a decision threshold which itself is adaptively controlled by the 

desired false alarm rate and the noise level estimated from the surrounding 

reference cells. Depending on the way in which the noise level is estimated, such
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adaptive detectors can be classified as Cell-Averaging [Finn, H.M.], Order Statistic 

[Rohling, H.] or Trimmed Mean [Gandhi P.P.].

The theory of some of these detectors will be reviewed in detail below but 

very briefly, in the Cell-Averaging (CA-CFAR) detector, the noise level is 

estimated from an equal weighted average o f the noise power outputs from 

reference cells adjacent to the cell under test. Whereas in the Order Statistic (OS- 

CFAR) detector, the power of each range cell is ranked in ascending order. A Mi. 

cell is empirically selected to represent the noise level. As a generalisation of the 

OS-CFAR detector, the TM-CFAR detector trims k\ cells from the lower end and 

k2 cells from the upper end of the rank ordered cells. The noise level is estimated 

from the mean of the remaining cells within the range k\< k < k2. Again the 

trimming points need to be selected empirically.

Detailed analysis [Gandhi, P.P.] indicates that in a homogeneous noise 

environment and for a single target situation, the CA-CFAR detector gives better 

detection than an OS-CFAR detector, however the OS-CFAR detector has 

superior performance if multiple targets are present. The TM-CFAR detector 

offers a better performance over the OS-CFAR detector, if the trimming points k\, 

k2 are properly selected based on a priori knowledge of the noise environment. 

However, this will become difficult in dealing with non-stationary noise. In order 

to select the trimming points adaptively, automatic censoring CFAR algorithms 

have recently been proposed [Himonas, S.D.]. It is one form of this latter type of 

detector that has been found to be most suited for the current application - the 

Automatic Censored Mean Level (ACML) detector. Details o f this and the simpler 

Cell-Averaging detector are given below.
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Figure 3.1 Schematic configuration of constant false alarm rate detector.

3.3.1 Cell-averaging CFAR detector

Constant false alarm rate detections are well-established techniques in radar 

applications [Finn, H.M.], [Hansen, V.G.], [Moor, J.D.], For data suffering from 

homogeneous Gaussian noise, such as that anticipated to predominate at the output 

of the square law detector when fed with the data of current interest, a commonly 

used method is the cell-averaging CFAR technique (CA-CFAR). In this, the 

incoming data is demodulated by a square law detector as described in section 3.2. 

The output of the square law detector y, is fed into each resolution cell of the 

adaptive detector. To achieve the desired false alarm rate, the decision threshold is 

set to an equal weighted average of the noise power outputs from cells adjacent to 

“guard” cells G either side of the cell under test. To avoid a potential problem due 

to signal components from a target “spilling over” to the cells adjacent to the test 

cell, the outputs from the guard cells are excluded when estimating the noise level.

Under the same assumption of the noise PDF given by Eq. 3.14 for a test 

cell, the MGF is still the same as Eq. 3.15. As mentioned before in Section 3.2,
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since the false alarm rate is very sensitive to the noise variance, one approach is to 

adjust the threshold level adaptively according to the noise level estimated from 

reference cells surrounding the cell under test. The cell-averaging CFAR procedure 

[Finn, H.M.], [Moor, J.D.], assumes that the reference cells are homogeneous with 

the same variance ct02 and may therefore be weighted equally in estimating the 

noise level y  given by

1 N

y  = i j L y i ’
-/V ;=1
„  2 N

*
2 > A

Eq. 3.19

where the jq2, i=l,2.....N  terms are the outputs of a square law envelope detector

and are assumed to be squared and statistically independent Gaussian random 

variables with zero mean. It should be noted that Eq. 3.19 differs from the 

corresponding expression in Radar applications where two, quadrature, signal 

channels need to be considered, as opposed to the single data channel in the 

current work. This results in the summation of Eq. 3.19 being over i = \ \o N  

rather than 1 to IN. Consequently, for the homogeneous noise with the same 

variance, the distribution for Ny/ao2 will then be a chi-square PDF g(y) with degree 

o f freedom N

N -2

g(y) =
i

N .

2 ^ r f —

N

°o 2

N
-y

Ny 
2a r

«0 )

Eq. 3.20

where T(*) and */(*) are the gamma and step functions, respectively. For an 

adaptive threshold level T proportional to the estimated noise level y, i.e. T = ay,

26



  

  



O g (-cur)=  J
1 N

N-2 ,,
f  Jr N—  -  N?N

N s  s 2 2 y
2T r p o ' U « y

1

2 2 2a. 2e 0 u(y)e dy,

f  0 2 ^ / 2 '2a a n r
1 +

N
Eq. 3.23

From Eq. 3.22 and Eq. 3.23, the expected probability of false alarm Pf is 

found to be

r \  a
2 ’

V °0  '

and

Eq. 3.24

P, = O s
a

V o .  y

2a
- N / 2

1 +  -
^ # ( l  + rV

Eq. 3.25

The threshold scaling factor a  for a desired constant false alarm rate Pf is then 

determined by

N
a  = — 

2

and the CFAR threshold level can be set to

Eq. 3.26
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T = a y.
E q. 3 .27

Since it is assumed that there is no target signal present in the reference 

cells, they are all weighted equally in estimating the noise level. This implies that 

the CA-CFAR detector will only perform optimally if there is no wanted signal 

present in the reference range resolution cells. However, if there are a few wanted 

signals present in the reference cells, detection performance will be close to 

optimum, provided that their effect on estimating the noise level is negligible. 

Where this cannot be guaranteed, better performance can be obtained with an 

automatic censored mean level (ACML ) detector - as discussed below.

3.3.2 ACM L-CFAR detector

The ACML-CFAR detector [Himonas, S.D.] is designed for the situation 

where multiple target signals may exist but there is no sudden jump in noise level 

(so called “clutter edge” in radar terminology). In ACML-CFAR detection, all 

range cells {_>>;}, i=l,...,N, are ranked in ascending order {y(i)}, i=l,...,N, according 

to the magnitude of the power within each cell:

.V(l) -  y ( 2) - • • • - > ’(#)•
Eq. 3.28

A decision needs to be made for the cut-off point above which all cells are deemed 

to contain wanted signals. This is known as the censoring point k which is 

determined adaptively according to the following testing hypothesis
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Hy

y{k + \) < P a-5A:-

H 0
E q. 3 .29

where the hypothesis H0 denotes that ĵ k+i) is purely noise, while the hypothesis Hi 

indicates that j^+i) and consequently y(k+2),..., Tw are samples containing defect 

signal interference. Initially si = y 0> and P* is a scaling factor depending on the false 

censoring probability PfC at the k\h step of the censoring procedure. The false 

censoring probability is defined as the probability that hypothesis Hi is taken to be 

true (y^+i) > Pi- sk ) while the hypothesis H0 is actually true. If the hypothesis H0 is 

accepted at the £th step of the censoring procedure, the test will proceed to the 

k+1 step and the noise level estimation will be updated to sk+/= sk + y k+j. Otherwise 

the censoring procedure will be stopped at the censoring point k and the estimated 

noise level will be

y  = sk,

k
= 2 > / -

1=1
Eq. 3.30

The hypothesis testing equation (Eq. 3.29) can be represented by a 

equivalent test statistic defined as

uk = T a-+i - P a-^ ..
Eq. 3.31

Using Eq. 3.9 and Eq. 3.11, the probability of false censoring Pfc can then be 

written as
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Eq. 3 .32

Pfc = p (uk > 0 \Ho l  

= J ~ 5 c®g(uk\Ho ) ^ ~ '

where <&g(uk\ff0)(z) is the MGF of vk under hypothesis H0 .

Suppose the above censoring process stopped at the £th step and resulted 

in a subset of the order statistics (including the last one tested at the kth step_y(k+i)) 

defined in Eq. 3.28 as

T(l) -^ (2 )  —•••— .P(&+1)-

The joint PDF of the subset is given by [Vaughan, R.J.]

Eq. 3.33

s O w - W  = i i {A r - i - i  ) ! p e r|G |'

Eq. 3.34

where per\G\ is the permanent of a matrix G (similar to the determinant, except 

that all signs are positive)

per\G\=

n w  - n w

h w  ... F(yw)
/ O w  1)) ... f (y(k+d )

+-VPSk1 i Q *r +

i - ^ O v +1)) ... i p(y(k+1)

) k rows

} N  -  k -  1 rows

Eq. 3.35

where/(*) is the PDF of the cell outputs and F(*) is the corresponding cumulative 

distribution function. It should be noted that the same function appears in each row 

of G, since the cell outputs are assumed to be statistically independent, and
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identically distributed. Using the exponential random variables PDF Eq. 3.14, 

derived from the PDF Eq. 3.12 for the signal at the square-law detector input, the 

joint MGF of the subset order statistics can be found from Eq. 3.8 and Eq. 3.34 

[Himonas, S.D.]

TV!

exp
'k+l > 

V/= 1 

1
(TV -  k - 1)! \ v t + TV -  i + \)

Eq. 3.36

where

k +1 

vl
l—i

Eq. 3.37

Here the distribution parameter a  in g(*) has been normalised to unity since it will 

be cancelled in the derivation and therefore will not affect the final result - as has 

been shown in Eq. 3.20-Eq. 3.24.

By comparing the definition of the MGF <bg(uk\H0)(z) to Eq. 3.36, it is seen 

that $>g{uk\H0)(z) can be obtained from Eq. 3.36 by setting

Z\ ~ z 2 - • • • -  zk ~ Pifcz >

z k + \  ~  z -

Eq. 3.38

Substituting into Eq. 3.32 will give the probability o f false censoring Pfc

at the h .h step of the censoring procedure as
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1

[ i  + p * ( t f - * ) ] * '
E q. 3 .39

The censoring scaling factor P* can then be determined for a required false 

censoring probability Pfc.

The noise level estimated from Eq. 3.29 and Eq. 3.30 is used to control 

the threshold level adaptively for each cell under test. The output o f a test cell^o is 

then compared to the threshold to decide if a target signal is present - hypothesis 

H\ - or if the test cell contains noise only - hypothesis H0:

H i

To < ay,

H 0
Eq. 3.40

where a  is scaling factor determined by the desired probability of false alarm ̂ yand 

the automatically selected censoring point k.

Similarly, by comparing the definition of the MGF of the noise estimator^ 

®g(y)(z) to Eq. 3.36, it can be found that Q>g(y)(z) can be obtained from Eq. 3.36 by 

setting

Zj = z i -  1,..., k + 1.
Eq. 3.41

The probability of a false alarm Pf can then be found by substituting the Og(y)(z) 

into Eq. 3.22 to give
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N - i  + V  

k  -  /' + \>

- l

In practice, the false censoring rate Pfc can be set to be equal to the desired 

false alarm rate Pf

E q. 3 .42

As has been mentioned before, the performance of CA-CFAR and ACML- 

CFAR detectors for the current application will be evaluated by processing a group 

of 64 A-scans data taken from a Waspaloy Jet engine disc. The CA-CFAR and 

ACML-CFAR processing results will be compared with the fixed threshold 

detection results.
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4. Theory: Signal enhancement

As mentioned before, in quantitative ultrasonic non-destructive evaluation 

of highly-scattering materials, the main limitation in detecting small flaws is the 

masking effect of "grain noise". Since such noise is coherent, it cannot be reduced 

by conventional time averaging. Usually, the ensuing interference pattern depends 

on both the frequency content of the transmitted signal and the position of the 

transducer over the material being tested. As discussed in chapter 2, in many 

applications, the grain scattering is often in the Rayleigh region, so that the grain 

noise pattern and the scattering attenuation is strongly frequency dependent. 

Existing techniques based on the frequency characteristics of grain scattering, 

include frequency averaging [Kraus, S. 1978], linear bandpass filtering 

[Shankar,P.M. 1988] [Murthy, R. 1989], and non-linear frequency diverse filtering, 

such as split spectrum processing (SSP) family [Newhouse, V.L. 1982] [Li, Y. 

1987] [Bilgutay N.M. 1990], Amongst these techniques, the SSP methods give 

very promising improvement in signal-to-noise ratios but can be sensitive to the 

optimum choice of parameters. This has motivated a number of researchers 

[Karpur, P., 1987, 1988], [Mohana, P. 1989] to seek systematic approaches to 

optimise the SSP parameters. Meanwhile alternative methods such as adaptive 

filtering have also been developed [Zhu, Y.]. The methods adapted from well- 

established radar and sonar techniques and developed for the current application, 

together with their feasibility in practice will be described and discussed in detail in 

the following sections.
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4.1 Split spectrum processing

As has been described and demonstrated by a number of investigations (see 

above), "grain noise" from highly-scattering materials can be "cleaned up" by using 

split spectrum processing. Here, we further investigate the practical feasibility of 

this approach, running extensive tests with a large number of A-scans. The aim has 

been to evaluate the sensitivity of the method to changes in both the parameters 

used and the data itself Brief outlines of the theory o f the various SSP methods 

will be given, and new extensions to the SSP approaches will be introduced and 

evaluated here.

In split spectrum processing, it is assumed that the grain scattering can be 

described as Rayleigh scattering, thus according to the scattering theory described 

in Chapter 2, the scattering attenuation coefficient is proportional to the fourth 

power of the frequency of the ultrasonic wave. On the other hand, the flaw size is 

assumed to be much larger than the wavelengths used, hence the scattering from 

the flaw is in the diffusion region and the corresponding attenuation coefficient is 

independent of the frequency. So it is possible to make use of these differences to 

decorrelate and suppress the grain noise but keep the flaw echo unaffected. Based 

on such concepts, split spectrum processing methods were suggested to suppress 

grain noise via a frequency diversity approach that emulates the frequency agility 

techniques successfully used in radar systems to decorrelate and suppress clutter 

[Beasley, E.W.],

Suppose the received wideband signal x(t) can be expressed as

x{t) = s(t) + n(t) (under hypothesis H j : defect present)

x(t) = n(t) (under hypothesis H q : defect absent)
Eq. 4.1
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where s(t) and n(t) represent the defect signal and the grain noise, respectively. The 

SSP method involves "splitting" the received wideband signal x(t) by passing it 

through a bank of N  (normally overlapping) Gaussian bandpass filters (BPF) with 

equally spaced centre frequencies/ / , / ) ,  - as shown in Figure 4.1.1. The

filtering is usually performed in the frequency domain by multiplying the Fourier 

transform of the wideband signal x(/), X(f) with the frequency transfer function of 

each narrow bandpass filter, i.e.

x i : / )  =

and

Eq. 4.2

Zi ( f ) = X ( J ) H i { f )

= X ( f ) H ( f - f i )  i = 1,2, . . . ,N

where

Eq. 4.3

H ,( f )  = dX[h(t) exp(j2nf¡t)]
= -  f j )

Eq. 4.4

in which h{t) is the impulse response of the narrow bandpass filter and H(f) is the 

corresponding frequency response, which is usually selected to have a Gaussian 

form, fi  being the central frequency of the /'th narrow bandpass filter.
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Figure 4.1.1 Split spectrum processing system configuration.

Figure 4.1.2 Frequency domain filtering scheme of split spectrum processing.
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Here two different filter configurations will be evaluated. The approach 

used in the current application applies Gaussian filters that overlap at the half 

power point. As illustrated in Figure 4.1.2, the half power bandwidth Bf is 

determined by the number of filters N  and the frequency range /< /< /> ,  where f  

and fh are the lowest and highest frequencies of interest, respectively. The shape of 

the Gaussian bandpass filter is given by

H ( f  - f i ) =  e x p [ - a ( /  - / } ) 2]
Eq. 4.5

where

In 0.5 

(Bf / 2)

and
fh - fi 
N - 1

Eq. 4.6

Eq. 4.7

Alternatively, in the method of [Karpur, P.] the filter bank is implemented 

with arbitrarily chosen half power bandwidth Bf but fixed central frequency 

separation at an interval A /=  1 IT, where T is the time duration of the input A-scan 

data. The performance of these two different implementations will be compared 

later.

The frequency bands generated by the filter bank are transformed back to 

the time domain to yield the corresponding time domain signals, one for each filter 

in the bank according to
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r i ( 0  =  ^ r - 1[Z C /i)] i -  1 ,2 ,..., .
Eq. 4.8

This set o f band limited versions of the original signals can then be further 

processed by non-linear operations to enhance the wanted signals.

4.1.1 Split spectrum minimisation

Based on the assumption that the echo signal from a defect is less sensitive 

to the change of the frequency content of the radiated ultrasonic wave than is the 

grain scattering, the overall signal-to-noise ratio can be enhanced by the split 

spectrum "minimisation" (SSM) method. In this, the minimum amplitude Tmin(0 ° f

the band-limited signal: zi(t), z2(t), ..., r ^ t )  is selected as the final output of

the minimisation processor at each time instant t :

Tmin (0  = min[ - l (0 ,*2 (0, ■ ■ ■,zi (0, ■■■>ZN (03
Eq. 4.9

Since it has been assumed that the defect signals fluctuate less in the 

frequency domain than does the grain scattering, the grain noise level would vary 

more after passing through the narrow bandpass filter bank than does the defect 

signal. Therefore, the grain noise level would be likely to be reduced more by the 

minimisation processor than does the defect signal level. As the result, the overall 

signal-to-noise ratio could be enhanced. The data of interest may partially meet this 

criterion as discussed in chapter 2, but as demonstrated later (Section 6.3) the 

method is particularly sensitive to the optimum choice of processing parameters. In 

fact, if the amplitude of the defect signal at any one of the bandpass filter outputs 

becomes lower than the minimal amplitude of the grain noise for a chosen
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frequency range, the signal-to-noise ratio may even be reduced after the SSM 

processing.

In an attempt to reduce sensitivity to processing parameters, a cyclic 

approach has been introduced. In this new approach, the output of the SSM 

processor is fed back to its input once or twice. Since this iterative adaptation 

requires fewer filters to give similar signal enhancement, there could be less 

dependence on the optimum choice of processing parameters than is the case for 

the conventional, non-cyclic approach. Furthermore as will demonstrated later, 

with similar signal enhancement to that of the conventional method, the number of 

filters can be reduced to such an extent that overall processing times are much 

less, in spite of the iterative procedure.

A further development introduced here has been to retain the original data 

as one of the sets compared in the minimisation process. This provides a 

"reference" signal containing undistorted information that should lead to further 

noise reduction.

4.1.2 Split spectrum polarity thresholding

The minimisation technique described in the previous section uses just 

amplitude information. As could be anticipated, the same principle can be applied 

to process the phase related information - here, the polarity (the sign) of the 

narrow bandpass filtered signals.

The effectiveness of split spectrum polarity thresholding (SSPT) method is 

based on assumption that the polarity of the echo signal from a defect should be 

frequency independent. Whereas the signals scattered by grains should be 

frequency dependent due to the natures of the grain scattering discussed in Chapter
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2. Thus, the polarity of the bandpass filter outputs at the time instant o f the defect 

presence should be identical for all bandpass filters if the bandpass filters used here 

have zero phase shift. Meanwhile, with grain scattering, the polarity of the filter 

bank outputs would be almost random. So it may be possible to detect the 

presence or absence of a defect signal by a polarity thresholding operation. 

However, it should be noted that in reality real defect signals are also scattered by 

grains. This could result in missing detection and sensitivity to parameter selection 

as discussed later.

According to the above assumption, if all the narrow bandpass filter 

outputs: zi(t), z2{t), ..., z,(t), ..., z^ t) have the same polarity then a defect signal is 

registered and the output signal can be set equal to the input. Otherwise, the 

output is set to zero, i.e.

y PT(t) = x(t) if Z j  (t )Zj (/) > 0 for all i , j  = 1,2, . .. ,N

= 0 otherwise
Eq. 4.10

Polarity thresholding can also be applied in conjunction with minimisation 

(SSPTM) to achieve further noise reduction. That is

ypTM  (0  = min^ l  (0 . z2 (0 . ...,Zi(t),...,zN (0] if  Zj (t)zj (it) > 0 for all i j  =

= 0 otherwise

Eq. 4.11

The approach adopted here is to use this combined method but with the 

incorporation of the second development mentioned in Section 4.1.1, namely
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retaining the original data as one of the sets to be compared in the polarity 

thresholding procedure.

4.1.3 SSP parameter selection

It has been shown [Karpur, P., 1987, 1988], [Mohana, P. 1989] [Zhu, Y.] 

that SSP approaches are sensitive to the optimum choice o f processing parameters. 

In particular the processing frequency range and number of filters must be chosen 

so that all useful information in the wanted signal is retained, whilst achieving good 

reduction o f the scattering noise. Inappropriate choice of such parameters can 

result in wanted signals being lost and in some cases it is even possible to enhance 

the noise rather than the wanted signal. For this reason Karpur and Mohana have 

investigated an approach whereby the frequency dependence of grain scattering is 

taken into account in setting the processing frequency range.

As discussed in Chapter 2, and as shown schematically in Figure 4.1.3 for 

the transducer pulse shapes, target sizes and typical grain size in the current 

application, it is anticipated that the spectrum of the grain noise will be stronger 

towards the higher frequencies (Figure 4.1.3(c)) than is the wanted signal spectrum 

(Figure 4.1.3(b)). Therefore the lower cut-off frequency / /  of the processing range 

can be set to match that of the echo spectrum received by the wideband transducer 

as illustrated in Figure 4.1.3(a). Karpur [Karpur, P., 1988], has suggested 

selection of the upper cut-off frequency f h by consideration of the way in which 

average grain size determines the frequency dependence of attenuation due to grain 

scattering. Of course such an approach requires a priori knowledge of the average 

grain size.

43



M
ag

nit
ud

e (
lin

ea
r) 

M
ag

nit
ud

e (
lin

ea
r) 

M
ag

nit
ud

e (
lin

ea
r)

Figure 4.1.3 Schematic graph of power spectra: (a) for a short pulse echo received 

by a wideband transducer; (b) for a short pulse reflected by a flat bottom hole or 

the backwall o f a test block; (c) for grain scattering.
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As is well known (see for instance [Papadakis, E.P., 1968]), the frequency 

dependence of attenuation can be expressed as

i o ' “ ' 20
Eq. 4.12

where A0(f) is the original unattenuated wave amplitude at frequency/  and z is the 

distance inside the material over which the attenuation occurred. The attenuation 

coefficient a  is given by

a  = Z)3/ 41S' for wavelength A, »  D ,
Eq. 4.13 

and

2
a  = D f  I  for wavelength A « D .

Eq. 4.14

Here S  and £ are material constants that have been tabulated in the literature 

[Papadakis, E.P., 1968], In practice, a priori knowledge of the average grain size 

D  is often not easy to obtain and moreover, it could vary with testing location. In 

attempt to overcome this limitation Karpur [Karpur, P. 1988] has suggested that 

fh can be determined empirically by taking a fixed lower frequency and a fixed filter 

central frequency separation and then increasing the number o f SSP filters until the 

backwall echo is lost in the SSP output. It should noted that this approach can only 

be used where the amplitude of the backwall echo is not so large as to saturate the 

receiving amplifier. Furthermore the procedure is not independent of individual 

filter bandwidth.

Suppose that an optimal processing frequency range and hence the 

bandwidth of the SSP filter bank (fi< B <//,) has been determined for a given time 

series of duration T. The sampling frequency is
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Eq. 4.15

Fs = NjL
T ’

where Nd is the number o f data points and the corresponding Nyquist frequency is

Eq. 4.16

The number of independent complex frequency components for Nd real samples is

N f = \ N , ,

Eq. 4.17

and the minimum resolvable frequency interval is

A/imin
F1 max

1
T

Eq. 4.18

Karpur suggested [Karpur, P. 1987] that Afmi„ is also the optimal central 

frequency separation between adjacent SSP filters. The influence of using such a 

fine frequency interval in the current application will be investigated and compared 

with the half-power-point overlapping approach used here.
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If the central frequency separation is taken as Afmin, the total number of 

filters required to cover the chosen processing frequency bandwidth B becomes

N  = B T + \
Eq. 4.19

However, for SSP with polarity thresholding, the theoretical analysis of 

Mohana [Mohana, P. 1989] indicated that the optimum number of filters should be 

taken as the smaller of the values given by Eq. 4.19 or a value calculated 

(numerically) from

SNR-enh -
SNRout
SNRin

1_ erf
SNR, N

in
y jlN

+ 1 + erf
SNR, N

in
V2N

, ( N+ 1)/2

where

dx

and

Eq. 4.20

Eq. 4.21

SNRm E[s(l)}

N l » 2 (0i

m
Gn

E q. 4 .22
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Equations Eq. 4.20 and Eq. 4.21 are obtained under the assumption that the grain 

noise has a Gaussian distribution with a zero mean and variance a n. The 

expectation £[*] is taken over many sampling channels corresponding to the

outputs from each SSP filter at a time instant within the duration o f the wanted 

signal. It should be noted that this approach requires a priori knowledge o f SNRin 

which is usually unknown in practice.
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4.2 Adaptive filtering

An alternative approach that has been used in a related problem in sonar 

beamforming systems [Yan, A ] is to make use of adaptive filtering to enhance the 

signal-to-noise ratio by exploring both the spatial and time domain differential 

features between the signal and noise received by a sensor array.

It is noteworthy that a widely used signal enhancement technique in 

practical NDT, called linear spatial averaging [Kraus, S.], can be viewed as a 

primitive type of beamforming technique, known as delay-and-sum beamforming. 

More specifically, linear spatial averaging is a special case of delay-and-sum 

beamforming with zero delay for all input channels. The usefulness o f the linear 

spatial averaging method depends on the defect echo signals in adjacent A-scans 

being more closely correlated than is the corresponding grain noise. Also as 

discussed in Section 2.1, the target signals tend to have longer correlation length in 

the time domain than that of the grain scattering. Where these differential features 

do exist, it should be possible to develop an adaptive filtering approach to 

preferentially enhance the defect signals by making use of the difference in the way 

in which the wanted target signal and the unwanted grain noise vary with changes 

in the position o f the transducer. The objective of the processing is o f course to 

enhance the correlated signals present in adjacent or nearby A-scans but suppress 

the less correlated noise. Furthermore, the grain noise and the defect signal are 

often non-stationary in both time and space domain, and therefore adaptive 

methods can be particularly advantageous.
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4.2.1 Adaptive systems

In general, the essential principle of an adaptive system is that it adjusts 

itself to fit different conditions and/or a time-varying environment without 

requiring, a priori, detailed, or even statistical knowledge of these.

Over past decades, adaptive systems have been successfully developed in 

diverse scientific and engineering disciplines. They offer attractive solutions in 

many applications such as: adaptive antennae and beamformers, adaptive system 

identification and inverse control, adaptive filtering and interference cancelling, 

biomedical electronics [Widrow, B., 1975, 1985], and ultrasonic non-destructive 

testing [Donohue, K.D., 1993][Challis, R. E., 1995], etc., etc.

Depending on whether the adaptive process is controlled by the knowledge 

acquired from its input or output, it can be classified in terms of open-loop and 

closed-loop adaption, respectively. In the open-loop system, the adjustment of the 

adaptive process is controlled by algorithms using information derived from the 

inputs and/or from environmental characteristics. In a closed-loop system, the 

adaptive process is controlled by algorithms using the information obtained from 

its output - so called performance feedback control.

Generally speaking, the closed-loop approach has the advantage of being 

widely applicable where analytic synthesis is either impossible or difficult to obtain 

due to the systems being non-linear or time-varying. This feature could make it a 

suitable choice for the current application. However as might be anticipated, this
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does not imply that closed-loop adaptive systems are trouble free. In fact there is 

no guarantee that the adaptation process will always converge to a global 

minimum. In fact, the performance function may not have a global minimum, or 

even if it does, the adaptation process may converge to other local minima. Even 

though there are these possibilities, closed-loop adaptation is still very powerful 

under certain conditions. In general, its performance is ultimately dependent on the 

structure of the adaptive system; the shape of the performance surface; the start 

point of the adaptation process and the algorithm used for searching for the global 

minimum, if it exists. Each of these details will be discussed in turn in the following 

sections.

4.2.2 FIR Adaptive filtering and noise cancelling

The adaptive filter described here is developed from the widely used 

technique of adaptive noise cancellation [Widrow, B., 1975], As shown in Figure 

4.2, the basic system is a dual-input, closed-loop system. The coherent noise n in 

the primary input d  = s + n can be suppressed provided that a correlated (but 

perhaps distorted version of the noise ti) reference noise signal x = n' is available. 

The objective o f the adaptive processor is to produce an output y  that resembles n 

as closely as possible, so that it will cancel the corresponding noise component n in 

the signal d. The overall output e will then closely resemble the desired signal s. In 

this case, the performance criterion is the mean square value of e.
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Primary
input d =  s  +n

Figure 4.2.1 Schematic configuration of a closed-loop adaptive noise canceller.

Since ultrasonic grain noise varies with transducer position, it is not 

possible to obtain a reference signal consisting of noise alone, where the noise is 

correlated with that present in the signal containing a target echo. This has 

precluded straightforward application of adaptive noise cancelling techniques for 

the current application. However, if the echo signals present in two A-scans 

obtained by laterally moving the transducer by less than its beam width, are more 

closely correlated than is the corresponding grain noise, it is possible to adapt the 

principle of adaptive noise cancelling to enhance signal-to-noise ratio.

Consider the filter configuration shown in Figure 4.2.2, where d(k) is the 

primary input, and x(k) is the reference input. As is usual, we assume that the 

primary input, d{k), can be written as

d(k) = s(k) + n(k)
E q. 4.23
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where s(k) and n(k) are the target echo and the grain noise, respectively. Assume 

that s(k), n(k) and y{k) are all statistically stationary, and n{k) is white noise with 

mean power a n . The mean square error is given by

Output

Figure 4.2.2 Outline o f the adaptive filter configured with a bandpass filtered 

reference input. The two input channels are from adjacent A-scans.

E[e2m  = £[(</(*) - y ( k ) ) 2 ]

-  £ [ « « * )  - m )  + "(*-))2 l )

*  £ [ « * )  - J '(* ))2 + "2(k)+
Eq. 4.24

Suppose n(k) is uncorrelated with s(k) and y(k). Then,

E[e2(k)\ = E

-  E

(s(k) - y(k)) 

(s(k) - y ( k ))

2

2

+ n \ k )  

+ a „ 2

E q. 4.25
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When the filter is optimised, the mean-square error will be a minimum, i.e.

min{E[e2 = min{.E[5(A:) - y{k))2 ]} + a „ 2
Eq. 4.26

Since the possible minimum of £[(s(&)-_y(k))2] is zero, the smallest possible mean- 

square error is

E[e2(k)\ min = o n2
Eq. 4.27

If this is achieved, the filter output will be completely noise free, i.e. y(k)=s(k). 

However, in reality the mean-square error will more likely be minimised close to 

a n2 rather than exactly equal to a,,2. Therefore, the filter output will not be 

completely noise free but the overall signal-to-noise ratio at the output will be 

enhanced.

The above analysis shows that the performance criterion of the adaptation 

process is the output mean-square error MSE. The way in which the MSE varies 

with filter coefficients can be represented by the performance surface. The 

objective of an adaptive algorithm is then to search for a global minimum on the 

performance surface. Obviously two questions arise:

(i) Does a global minimum exist?

(ii) Axe there any local minima?

To answer these fundamental questions, detailed analysis of the characteristics of 

the performance surface is required [see for instance Widrow, B., 1985], Here only 

the main features of performance surface of FIR adaptive filter applied in the 

current application will be briefly reviewed.
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For convenience, the reference input signal and the filter weight coefficients 

can be written in vector notation defined as:

X T(k) = [x(k),x(k-\),. . . ,x(k-L)],

and

W*T = [wk(0),wk (\),...,wk (L)]. 

The FIR filter output can be written as:

Eq. 4.28

Eq. 4.29

y(k) = wy’xii)

-  X r (*)Wj. .
Eq. 4.30

The performance function of the FIR adaptive filter can be expressed by taking the 

expectation operation over the discrete time index k i.e.

MSE = £,

= E[e2(k)}

= E{{d(k)- Xr (i)W t ]2}

= E[d2[k)} - 2Pt TWt + Wj. 'R j W,.

where

R t. = E[ X(k ) \T(k)]

and

Eq. 4.31

E q. 4 .32

55



r*  = E [d { k )x T(ky\
Eq. 4.33

It is seen from the Eq. 4.3 1 that it contains only the first and second order power 

o f Wk. Thus, it is a quadratic function of the weight vector Wk. It can be viewed as 

a hyper-parabolic surface in a L+2 dimensional space spanned by L+ 1 components 

of Wk plus one dimension in mean-square error £,. In general, the performance 

surface so defined must be a concave upward surface, since the power of a real, 

physical error signal must be always positive. Also there is only one minimum on a 

quadratic performance surface, and this guarantees an optimum solution.

It should be noted that the quadratic performance surface is an important 

feature attributable to the non-recursive structure of the FIR filter defined in Eq. 

4.30. In contrast, the performance surface of a recursive system is generally 

nonquadratic and may even have local minima [Widrow, B., 1985], However, 

according to the definition Eq. 4.31, the performance surface and therefore its 

minima may change or move with time in the performance space, if the input 

signals x(£) and/or d(k) are nonstationary and have time-varying statistical 

characteristics. Since it is anticipated that the current data may exhibit such 

behaviour, the adaptive approach to be adopted here should offer improved 

performance compared to a conventional fixed filter.

4.2.3 NLMS adaptive algorithm

After defining the performance surface, the goal of an adaptive algorithm is 

of course to search for the minimum of the performance surface. In searching the 

minimum on a quadratic performance surface, a sensible consideration is to search 

along the steepest descent direction. That is in the direction of negative gradient of 

the performance surface. Although this may be not exactly in the direction toward
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the minimum, unless the gradient is taken on one of the principal axes of the 

surface, it does guarantee the convergence process is approaching toward the 

minimum. Therefore it can be still an optimal choice for the current application, as 

the convergence process will be guaranteed without requiring any supervision 

during the processing.

The gradient of mean square error performance surface can be conveniently 

defined as a column vector [Widrow, B., 1985]

a w  k

a u  %.k a u
dWk(0)’ dWk( \ y - '  9Wk (L)

-  2 R A - W A. - 2Pk
Eq. 4.34

For a quadratic performance surface, the minimum can be obtained by setting the 

gradient to be zero:

= 2(R*w* - r k )

= 0
Eq. 4.35

If  the Rk is non-singular, the optimal weight vector W'k will be

W'k = RA PA
Eq. 4.36

This is the vector form of the well known Wiener-Hopf equation.
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Although the Wiener-Hopf equation gives an explicit, analytical expression 

for the optimal weight vector IF, its direct application is limited due to the required 

expectation of the autocorrelation matrix Rk and the cross-correlation vector Pu, 

which usually are unknown a priori. This means that it is not straightforward to 

calculate W  and therefore alternative approaches have been developed. One of the 

most successful methods is the least mean square (LMS) algorithm proposed by 

Widrow and his co-workers.

Instead of estimating the gradient of the performance surface from the 

statistic expectation of the squared error 't>]c=E[e^{k)'\, the LMS algorithm takes the

instantaneous squared error e^(k) itself as an estimate of ̂

5 '* -  e \ k )

= [</(*)-X r (4)Wt ]2
Eq. 4.37

Thus the gradient of the performance surface can be approximated by

V£' k
de2 

d\Vk
= -2 e(k)X(k).

Eq. 4.38

In fact it is easy to show that this is an unbiased estimate, since if we estimate the 

gradient with any given W^, the expectation of Eq. 4.38 will become

E [ ^ k ] = -2E[e(k)X(k)],

= -2E[d(k)X(k)  - X(*)Xr(*)W*],
= 2 ( R ,W ,- P , ) ,

Eq. 4.39
= v ^ .
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This suggests that - V ^  can be used as a suitable instantaneous estimate of the 

steepest descent direction to optimise the weight vector iteratively, i.e.

W *+1= W * -  nVS*.

= W* + 2 ve(k)X(k\
Eq. 4.40

where p is a step size o f the iteration that regulates the speed and stability o f the 

adaptive process. In general, it has been shown [Widrow, B., 1985] that the 

convergence of the adaptive process can be guaranteed only if p is bounded within 

the range

0 < p <
1

U\R]

For a transversal filter this becomes

Eq. 4.41

0 < p <
1

( i + W
Eq. 4.42

where o.v2 is the average input signal power and L is the filter length. This suggests 

that the step size should be taken inversely proportional to the input signal power. 

Thus if we define a normalised step size p/? as

P n = + 1)°*2 (£),
Eq. 4.43

where the input signal power can be estimated on-line for a nonstationary process 

by

a x2 (k) = a x 2 (k ) + (1 -  a ) a x2 {k -  1),
Eq. 4.44
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where cx2(k) is a time varying estimation of the average input signal power and a  

is a "fading factor" introduced to reduce the influence of the past inputs. Inspection 

of Eq. 4.44 shows that the fading factor a  must lie in the range 0 < a  < 1. 

Replacing the convergence step size p in Eq. 4.40 with the normalised \xn will lead 

to the so-called normalised LMS algorithm (NLMS). The convergence of this will 

be guaranteed if 0< pw< l. It has been shown that the speed o f convergence of the

NLMS algorithm can be considerably improved over that of the LMS method 

[Tarrab, M. 1988],

The adaptive iteration can be initialised with the filter weight vector set 

to zero and g x (0) set to the average input signal power. The number o f filter 

coefficients L is often required to be set empirically to suit the data.

It should be noted that since the steepest descent method may not converge 

exactly in the direction toward the minimum, it may not necessarily give the fastest 

convergence, but its convergence on a quadratic performance surface is 

guaranteed. Alternative methods such as the recursive least squares (RLS) and 

Kalman filter algorithms can give faster convergence. However they may inherently 

have numerical instability problems, due to their recursive structures and 

nonquadratic performance surfaces. Their convergence therefore may not be 

guaranteed [Widrow, B., 1985], For these reasons, if the convergence speed of the 

NLMS is sufficient for the application in hand, the NLMS algorithm should be still 

the algorithm of first choice in terms of computational efficiency.

Although the convergence of the NLMS algorithm can be guaranteed, the 

speed of convergence is also a very important factor in the present application. 

Since our objective is to enhance the correlated signals masked by somewhat less 

correlated noise, the adaptive filter must converge quickly enough to follow the
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space and time variation of the cross correlation of the input signals. In order to 

monitor the time response of the adaptive filter in such a nonstationary 

environment, a time domain "gain" of the filter is defined as

g(k)  = w / * w t

Eq. 4.45

As will be demonstrated later, the convergence speed can be checked by plotting 

g(k) for data containing a known target. Such a plot can also be useful to indicate 

whether parameters are optimised for signal enhancement.

4.2.4 Adaptive filter with bandpass filtered reference input

As discussed in the above analysis, if the adaptive filtering method is to be 

useful, the reference input x(k), should contain a signal component correlated with 

s(k), but the noise component in the reference input should be less correlated with 

either s(k) or n{k). This can be achieved to a certain extent by laterally moving the 

transducer by less than its beam width. The effectiveness of this approach is based 

on the disparity in the spatial dependence of the received echo waveform from 

grains and flaws. In fact as is well known the differential impedance at a defect 

boundary is usually much greater than that at a grain boundary and this is certainly 

the case here where the defects are air-filled flat-bottomed holes. Thus the cross-

correlation between the defect echoes in the two input channels would be higher 

than that of the corresponding grain scattering even for a grain with similar 

dimension and geometry to that of the defect. Furthermore, it may be possible to 

decorrelate the grain noise by making use of the frequency characteristics of the 

scattering as argued in Chapter 2. Based on this consideration, an attempt has been 

made to further decorrelate the grain noise with respect to the primary input by
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applying a bandpass filter to the reference input channel, as shown in Figure 4.2.2. 

A linear phase filter with a filter length Lb of about 20 was used - with a Hamming 

window, but it is likely that any smoothing function would be acceptable for the 

current application. As shown in Figure 4.2.2, a time delay 8t = L^At/2 is

introduced into the primary input to compensate for the delay in the bandpass 

filter, thereby retaining the correlation between the wanted signals in the two input 

channels. Here At is the sampling time interval. The effectiveness of this extension 

will be evaluated later using A-scans containing a real defect signal.
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5. Optimal Time-space array processing and image 

enhancement techniques

In the previous chapter, some one-dimensional signal processing techniques 

were explored. These were based on the time-, spatial- or frequency-domain 

characteristics o f the grain noise and the defect signals. In particular, differences in 

the spatial variation of the cross correlation of defect signals and noise were 

exploited by an adaptive filtering method. Alternative, two-dimensional, 

approaches to exploit such differences further are: time-space array filtering having 

either a minimum-noise distortionless response (MNDR) or a minimum-variance 

distortionless response (MVDR), and adaptive Wiener filtering methods. These are 

treated in turn in the following two sections.

5.1 Optimal Time-space array processing

5.1.1 Time-space vector representation of a line A-scan array

Suppose a given linear A-scan array contains M  A-scan time series with 

time duration T and bandwidth W. In accordance with the sampling theorem, the 

whole ultrasound field covered by the linear A-scan array can be reconstructed 

from 2TWM samples. This time-space sampling series can be expressed as a 2TWM 

dimensional vector:

xT =[x,(0),x,(l), x ,(W - l) ;x 2 (0),x2(l), M t f - i ) ]

which contains A/A-scans with N  = 2 TW samples o f each.

Eq. 5.1

63



The discrete Fourier transform of the x will be a complex vector:

X T = [X t ( / 1),X t ( / 2 X T( / ; X t ( / w/2)]

where

E q. 5.2

and

N - 1
W , )  = ! * , ( * ) * ’'

J2nfik
k=0

i = 1,2,..., AT;

Eq. 5.3

Eq. 5.4

It should be noted that since Xi{k) is a real process, its Fourier components 

must be complex conjugate symmetrical. Thus there are only N/2 independent 

Fourier components for the N  samples of each A-scan trace.

Consider the input signal vector x is comprised of a defect signal s and 

grain scattering noise n with zero mean, i.e.

x = s + n
Eq. 5.5

where
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sT = [5, (0), 5, (1),..., 5, (N  -  1); s2 (0), s2 (1),...,sM (N  -1 )]
Eq. 5.6

and

n T = [», (0),», (1),...,», (N  -1 ) ;»2 (0),n2 -  1)]

Accordingly, their discrete Fourier transforms (DFT) are

Eq. 5.7

ST = [S t ( / 1),S t ( / 2),...,S t ( / ; ) ,...,S t ( / w/2)]
Eq. 5.8 

and

N t = [N t ( / ,) ,N t ( / 2),...,N t ( / ; ) ,...,N t ( / w/2)]

Eq. 5.9

If  the experiment is conducted under the condition that the plane wave 

approximation can be applied, the target signal vector can be decomposed as:

Eq. 5.10

where S(fi) is the frequency spectrum of the signal s and u(fi) is the incident signal 

directional vector or steering vector given by

Eq. 5.11

where Tj is the arrival time of the received signal at the /th A-scan transducer 

position relative to the first A-scan trace.

65



The corresponding covariance spectrum matrix for the received signal, P, 

and scattering noise, Q are (.MN/2)x (MN/2) dimensional, i.e.

P = £[X X +]

and

Eq. 5.12

Q = £ [N N +]
Eq. 5.13

where the superscript ‘+’ denotes Hermitian conjugation, i.e. transposition 

combined with the complex conjugate operation.

It can be shown that for a stationary process, its DFT forms a Karhunen- 

Loeve expansion [Van Trees, H.L.]. Thus the Fourier coefficients for different 

frequencies are uncorrelated. Consequently the corresponding covariance matrix 

defined byEq. 5.12 and Eq. 5.13 are blocking diagonal, i.e.

> ( / , )  0 .......................  0 '
0 P ( / 2) 0 ........................

P =  -  0 P ( / ;) 0
...............................................  0

, 0  ........................ o PCf N/2\

Eq. 5.14

in which P (fi) is a M xM  dimensional sub-matrix:

P ( / ;) = £ [X ( / ,)X  + ( / ;)]
E q. 5.15
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and the same for Q:

0

0 Q ( /2) 0

Q =
o Q (//)  o

o

0 Q ( fNny
Eq. 5.16

where

Q ( / / ) = £ [ N ( / /)N +( / / )]
Eq. 5.17

It should be noted that if the signal is nonstationary over the time duration 

of the processing cell, then a nonvanishing off-diagonal sub-covariance matrix can 

be expected. This fact suggests that in order to simplify the computations, we 

should properly select the processing cell length so that the signal over the time 

duration can be assumed as stationary.

5.1.2 Minimum-noise distortionless response matrix filtering

Minimum-noise distortionless response filtering is an optimal rule based 

processing method that can be viewed as an open-loop adaptive filter. As shown in 

Figure 5.1, a matrix filter is applied to process M  inputs of a linear array to extract 

the wanted signals by exploiting both time and space characteristics of the input 

data. More specifically, the method is based on the rule o f minimising the noise 

output under the constraint of a distortionless response [Lim, J.S.]. For
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convenience the method is reviewed here, before developing an analysis to aid in 

its evaluation.

Suppose the processing cell has been appropriately selected so that the 

covariance matrix of the received signal and the scattering noise are blocking 

diagonal (see Eqs. 5.14 -17). Thus the output noise intensity at frequency f  and 

output channel / can be written as

H ,+ ( / ,  )N ( / ,  )N + ( / ,  )H ; ( / ,  ) = H ,+( / , )Q (/ ; )H, ( / , )
Eq. 5.18

where H ,{/}) is the /'th column vector of the sub-matrix filter transfer function at 

frequency //. Under plane wave conditions, the distortionless constraint can be 

expressed as:

H ,+( / /)S ( / /) = 5 ( / / )
Eq. 5.19

Linear
A-scan

Adaptive
system

Figure 5.1 Adaptive MNDR and MVDR filter system configuration.
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or

H, + ( / ; )u ( / /) = l

This constraint explicitly states that if just the signal is present in the input and no 

noise exists, then the output signal should be an exact replica of the input signal, 

with no distortion. This condition can be also rewritten in an equivalent form:

E q. 5.20

H ,+ ( / ;)u ( / ;) + u + ( / /)H ,.(/; ) = 2.
Eq. 5.21

Using the Lagrangian multiplier method, we can express the above optimal rule as 

a constrained minimisation problem:

2 [ H C ft)] = H f  if ,  )Q (// )H, i f , ) + X[H, + ( / ,  M / , ) + u + i f ,  )H, i f , )]
Eq. 5.22

Taking the variation of Eq. 5.22 with respect to H ,(/}) and setting the result to be 

zero, we have

52IH , i f , )] = SH ,+ if ,  )QCf, )H, i f , ) +  H ,+ i f ,  ) Q ( f  )5H, i f , ) 

+X[6H,+ ( / /)u ( / /) + u+( / ; )5H, (/ ,) ]

= 0

Eq. 5.23

thus

6H ;  i f ,  )[Qif, )H, i f ) + X u ( f )] + [H+, ( f  ) Q ( f ) + ^u+<y,)]5H, ( / , )  = 0
Eq. 5.24

A sufficient solution that can always satisfy Eq. 5.24 is
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Q (/; )H ,( / , )  + M / / )  = 0,
E q. 5.25

therefore

h , ( / , )  = - M r 1 ( / > ( / , ) .
Eq. 5.26

The multiplier A can be determined from the constrain condition Eq. 5.20 and Eq. 

5.26

A
________-1________

u+C/))Q_1 ( / , ) « ( / , )
Eq. 5.27

Thus the /th column vector of the optimal matrix filter transfer function can be 

expressed as:

H , ( / , )  = Q~’(/<)“( / / )  
U+( / , ) Q “' ( / / )» ( / ; )

Eq. 5.28

The filtered /th channel output waveform spectrum can be found from

^ ( / / )  = H, + ( / /)X(/ / )

»+(//)Q~1(//)x(//) 
u+( / / ) Q _1( / / ) u( / / ) »

l -  \,2,...,N 12

E q. 5.29
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and the corresponding time domain waveform can be obtained by the inverse DFT 

of the estimated waveform spectrum:

1 N/2

^  l=-NI2

k = 0 ,1 ,2 ,. . . ,# -  1. 

i = 1,2,..., M.
Eq. 5.30

It is readily shown that above result is equivalent to the maximum 

likelihood estimation under the condition where signals present in zero mean 

Gaussian background noise with joint probability distribution function (PDF) ofX

N/2
P(X)  = Ae~[X(f,yS{f,)]+Q'V/)[X(/,)-s(/;)]

/=i
Eq. 5.31

The maximum likelihood estimation of the deterministic signal S(fi) can be obtained 

by maximising the PDF P(X). This is equivalent to maximising the logarithm of the 

PDF P(X)

5 In P(X ) = 8 { [ X ( / , ) - S ( / , ) ] + Q - ' ( / ,  )[X (/,)  -  S ( / ,) ] )

= -5S(/,)+Q~‘(/, )[X(/,) - S(/,)] - [X(/,) - S(/, )]+Q-‘ (/, )5S (/,)
= S S ( f ,)* u+( / ,  )Q -‘ ( / ,  ) [X ( / ,) -  )u ( / ,) ]  -  8 S ( f,  ) [X ( / ,)

-S ( f , ) .!(/, )]+ Q - '( / , ) u ( / , )
= 0

Eq. 5.32

A sufficient solution to satisfy Eq. 5.32 is
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U+ if,  )Q “‘ if,  )X ( /; ) = Sif,)n + if,)  Q 1 ( / ,  )u ( /; )
Eq. 5.33

Thus once again we have

s MLi f )  = h (+c / ì )x c /;)
u+(//)QJl(//)X(/;) 
u+(/,)<r‘ (/>(/,) 

l = \ ,2 ,.. . ,N /2 .
Eq. 5.34

which is the same as Eq. 5.29. According to this analysis, a maximum likelihood 

estimation based ultrasonic signal processing method proposed recently by 

[Donohue, K.D., 1992] can be viewed as an one-dimensional form of Eq. 5.34. 

Obviously, the one-dimensional processing can not make use of the spatial 

differential features between the target signal and grain noise but the two- 

dimensional array processing proposed here does make use of such information.

5.1.3 Minimum-noise distortionless response matrix filter: Performance

To gain some insight of the potential performance of the minimum-noise 

distortionless response array processing method, it is convenient to make some 

simplifying assumptions concerning the nature of the data so that a theoretical 

analysis can be developed.
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Let the input signal spectrum be denoted by Sin(fì). Then the power 

spectrum of the signal input to the matrix filter is

S,n+ ( / /  )S/rt ( / ; )  = Sin2 ( / /  )u + ( / ,  )u ( f / )

= M S ,2
Eq. 5.35

Suppose the scattering noise is uncorrelated between different traces o f the M  A- 

scan inputs but is homogeneous with spectrum Nin(fl). Thus the scattering noise 

covariance matrix is diagonal

Q(//) = Nm(//)N+/«(/,)

= N in2( f l ) I
Eq. 5.36

where I is a M xM  dimensional unit matrix. The input noise power spectral density 

will be

|n , , ( / ;)|2 = n +,„ ( /;)n , , ( / ; )

= Tr Q ( / ;)

= ^in ( / ;  ) I r  I

= m n2(/ ,)
Eq. 5.37

From Eq. 5.35 and Eq. 5.37 we can obtain the input signal-to-noise ratio 

SNRin(f,) as

SNRin( f l) =
M N j i f , )

s,n2U ))

E q. 5.38
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According to the distortionless constraint represented by Eq. 5.19, the 

output signal power spectral density (PSD) should be identical to that of the input 

signal PSD, i.e.

| s « ( / , ) f  =
Eq. 5.39

Meanwhile the output noise PSD can be found from Eq. 5.18, Eq. 5.28 and Eq. 

5.36 as

|Noul i f ,  )|2 = H, + ( / ,  )N (/; )N + (./; )H, ( / ,  )

= H, + ( / /  )Q (// )H,. ( / 7 )

_ u+(/;)Q '(//) Q( f )  Q- \ f i)< L )

__________ l________

“ u + C /iX T '( / > ( / , )
____________ 1__________

u + (/,)[iV m2( / ; ) l ] ' , u ( / /)

_ Ai,„2( / ;)

Therefore the output signal-to-noise ratio SNRout(fi) is

SNRout{ f ,)  =
M /,) |
|Nouf( /z)|
MSm2( f , )

-  m 2
N in\ f , )

E q. 5.41
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and th e  m atrix  filter system  SN R  gain  is

G(f,) = SNR0M )
SNRin{fi)

= M 2
Eq. 5.42

where the M is  the number of the matrix filter input channels. This result is M  times 

better than that of a conventional averaging filter, under the same assumptions as 

above.

It should be noted that in practice the matrix filter gain will not always 

increase with the number of input channels. This is because the above analysis is 

obtained under the following ideal assumptions:

(i) All M  input channels are receiving the same wanted (plane wave) 

signal.

(ii) The noise in the M  channels is uncorrelated.

Obviously, as the number of input A-scans (channels) M  increases, it would 

be more likely that assumption (i) above will no longer be valid. Alternatively, if 

we increase the number of the input channels within the transducer beam width to 

guarantee that all channels receive the same wanted signal, then the noise in the M  

channels will become increasingly correlated and so assumption (ii) is in jeopardy. 

Furthermore, even if M  has been properly selected, the scattering noise in different 

channels may still be partially correlated. And finally, there is no guarantee that the 

defect signal in the adjacent channels will be unchanged. All these facts can 

degrade the performance of the matrix filter.
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5.1.4 Minimum-variance distortionless response filtering

In practice, we usually can not obtain the noise covariance matrix Q(f) 

alone, since target signals may be present. However, we can always measure the 

total signal covariance matrix P(//) directly. If we replace the noise covariance 

matrix Q(fi) with the total signal covariance matrix P (/}) in Eq. 5.18 and follow the 

same procedures described in section 5.1.2, we can obtain a column vector of the 

transfer function for the minimum variance distortionless response (MVDR):

H  , ( / , )  =
P " ( / , ) u ( / f) 

u +( / ;) P - '( / > ( / , )
Eq. 5.43

The philosophy behind this rule is that we can anticipate on the whole, that 

the main contribution to the total signal power is from the noise in a highly 

scattering environment. Thus if the total output signal power can be minimised 

under the constraint that the wanted signal is not distorted, the output signal-to- 

noise ratio will be enhanced. However, it might be anticipated that the achievable 

SNR enhancement of the present method could be less than that can be obtained by 

the MNDR method, since the MVDR method uses less a priori information 

concerning the noise environment.
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As mentioned before, in order to simplify the computations, the processing 

cell length should be properly selected so that the signal over the time duration of 

the cell can be assumed as stationary with uncorrelated Fourier coefficients for 

different frequencies. Therefore, the corresponding covariance matrix defined by 

Eq. 5.11 and Eq. 5.12 is blocking diagonal. To meet this requirement, a novel 

implementation is specially designed for the current application environment. In 

this, the input A-scan traces were divided into a number of processing cells or 

windows with equal time duration close to the pulse length. The processing 

window is then slid over the time and space range of the A-scans. The adjacent 

processing windows can be with or without overlapping.

5.1.5 Minimum-noise distortionless matrix filter: Implementation

As is well known, for a stationary process, its ensemble expectation can be 

approximated by the best unbiased estimate over a finite number of observations of 

the signals. That is for stationary noise, the covariance matrix Q (fi) can be 

estimated by

Q(/i) = £[!**(/, )N*+C/i)]
1

k +1 Z N;(//)N /(//)-
j=o

Eq. 5.44
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Under a nonstationary situation, Eq. 5.44 would not be a good estimate of Q(f{), 

since as a result of its infinite memory nature, changes in the statistical 

characteristics of the data cannot be tracked.

In a nonstationary situation, the ideal noise covariance Q(/i) can be 

approached by the sequential regression (SER) algorithm [Ahmed, N.]. In this, 

Q(fi) is estimated from past k observations of the signal with “fading” memory a

j=o

= a ]T  a 1- 1" 'N , ( / ,  ) N /  ( / ,  ) + N* ( / ,  )Nt f ( / ,  )
7=0

-  a Q k-\ ( / /  ) + N* ( / /  )N jt + ( f l )

0 < a  < 1
Eq. 5.45

where a  is the scaling factor. It should approach 1 if Nj(/J) is stationary. The 

summation of this scaling factor over k iterations is

1 -  q fc+1 
1 - a

Eq. 5.46

If we define the sequential regression estimation of the noise covariance matrix 

Q (fi) by normalising Eq. 5.45 with this value, then we have
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1 -  a
Qt/z) 1 -  a fc+i Q t( f i )

1 “ ¿ a ‘- 'N ,(/,)N /( /,) .
1 -  a fc+i

7=0

Eq. 5.47

It is seen that in the limiting case, where Nj(fi) is stationary for all j ,  a  approaches 

1 and we get exactly the same expression for the stationary noise covariance matrix 

Q(fi) given by Eq. 5.44.

The new implementation of the MVDR time-space array processing with 

sequential regression estimation of the noise covariance matrix developed for the 

current application can now be summarised as:

(i) Select the input channel number M  of the matrix filter to cover an area 

about same as the beam width of the transducer and the processing 

window length N  about same as the signal pulse duration.

(ii) Use the M xN  input samples to form the time-space sampling vector x 

defined by Eq. 5.1 and transfer it to the frequency domain X according 

to the definition of Eq. 5.2-Eq. 5.4.

(iii) Initially assume the first cell contains noise only, i.e. use N<>(/}) = X0(//) 

to estimate the noise covariance matrix Q0(fi). In processing the 

(£+l)th window, assume the £th window contains noise only, i.e. N*(/}) 

= X*(fi), and use it with Qk-i(fi) to estimate the noise covariance matrix 

Q (fi) according to Eq. 5.45 and Eq. 5.47.

(iv) Slide the processing window (or processing cell) throughout the A- 

scan traces with or without overlapping and estimate the signal
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frequency spectrum and time waveform using Eq. 5.29 and Eq. 5.30 

respectively.

(v) Shifting the matrix filter across every A-scan trace to obtain the

optimal waveform estimation for all the scanned region to produce a 

B-scan image.

It should be noted in the above processing procedures it has been assumed 

that there is no target signal present in the previous nearby cells but in practice this 

might not always be the case. However as has been pointed out in Section 5.1.4, 

suppose the target signals are present in the past nearby cells, under such 

circumstances the MNDR filter will be degraded to the MVDR filter but the signal- 

to-noise ratio can still be enhanced by the MVDR filter. On the other hand, it can 

also be anticipated that potential interference of target signals in the past cells can 

be reduced by using sequential regression estimation of the noise covariance matrix 

due to its “fading” memory feature.

5.2 Adaptive Wiener filter

From a consideration of the non-stationary nature of the grain scattering it 

can be anticipated that two dimensional adaptive optimal filtering approaches 

should be advantageous in exploiting differential features between a local region in 

an image and its neighbouring regions. One such optimal filter considered here is 

an adaptive Wiener filter [Lee, J.S.], The configuration of the Wiener filter is 

schematically presented in Figure 5.2. Its implementation and performance will be 

discussed in detail below.
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Degraded local __________ /  Processed
image x(nt,n2)

..........
Time-space 
matrix niter

image X ” i,"2)

h(n,fi2)

Variance of
neighbouring Differential features
images o n2

► of the local and
---------- ►neighbouring images

Figure 5.2 Adaptive Wiener filtering system.

5.2.1 Adaptive Wiener filtering for image enhancement

Suppose the degraded input image x{nI,n2) can be expressed as an 

undistorted image s(tJt,n2) plus additive noise n{iii,n2) with zero mean and variance 

a n2. That is

x(nh n2) = s{riY,n2) + 11(”b ri2) ■
Eq. 5.48

Here «/, n2 denote the A-scan trace number and time series sample number, 

respectively. The objective of the Wiener filter is to minimise the mean square 

errors (MMSE) between the undistorted image s{nItn2) and the estimated image at 

the matrix filter output y{iii,ii2), i.e.,

y{nx,n2) = h{nx,n2)®x(fix,n2),
Eq. 5.49

where the symbol ® denotes the two-dimensional convolution. In the frequency 

domain, this will become
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7(©1,©2) = t f ( ©i , Q2)^ (®b®2)>

where h(ni,n2) and //(© i,©2) are the filter impulse response and its frequency 

response function, respectively. The optimal filter impulse response or frequency 

response function can be determined by minimising the mean square errors of the 

filter output:

E q. 5.50

e2(h) = E{\s{tix,n2) - y { n , , n 2)\2}
= E { |s(» ,, w2) -  /?(», , / / , )© x(w,, n2 )|2 }

Eq. 5.51

or equivalently minimising the mean square error o f the corresponding spectrum

e2(H) = £{[S(co!, © 2) -  //(CO !, © 2 )X (p  ! ,a> 2 )]2 }

= £ [ 1S’2 (©1,© 2) ] -2 £ [5 (© 1,© 2)X (© 1,© 2)]i/(© 1,© 2)

+ E [ X 2(q  1,©2)]//2(©1,©2)

= Pss ~  2 PSx H (® b ®  2 ) +  PxxH l  (® b ®  2 )
Eq. 5.52

where Puv denotes the cross power spectrum of random variables u and v

p uv = ^ [ ^ ( ® b ® 2 F ( ® b ® 2 ) ]
Eq. 5.53

The minimum mean square error can be achieved by taking the variation of Eq. 

5.52 with respect to the filter frequency response function //(©!,©2) and setting the 

result to zero, i.e.
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5e2(H) = -2Psx8H(co h a> 2) + 2PxxH(o l , o 2 )6H(o  i,a> 2 )

= 25H(a> i ,co 2 )[/>xx//(o  i ,© 2) “ Psx ]

= 0
Eq. 5.54

Thus we have

m  i , ®2) = ^ !L
"xx

p  + p1 ss  ^  1 sn
p  +2P + T1 ss  ~  1 sn ^ 1

Eq. 5.55

If  the original image and the additive noise are uncorrelated and the mean of the 

image is subtracted from the power spectrum, then the filter frequency response 

function becomes

H( © i ,cd2)

Eq. 5.56

i 2 2where a s and a„ are the variances of the original image and noise, respectively. 

The corresponding time-space domain impulse response function is

h(n\,n2) = 5(//i ,//2 ).

Eq. 5.57

Although the Wiener filter is in closed form, the variances of the original 

target image and the noise usually can not be measured directly. However it is 

possible to estimate the variances adaptively from differential features between the
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local and neighbouring images as represented in Figure 5.2. In the implementation 

for the current work, the processing window is divided into nine regions as 

illustrated in Figure 5.3. Each of the regions contains M  A-scans of N  points. For 

example, a typical complete data set contains 64 A-scans of 1000 points, whereas 

M  and N  for each processing region are typically 6 and 64 (i.e. 26), respectively. 

The processing window is then slid in turn along the time and space axes to cover 

all the A-scan regions.

CDo
O

3 5 8

2 Local
region 7

1 4 Ó

Time

Figure 5.3 A processing window for adaptive Wiener filter.

In detecting small defects, it can be anticipated that the main contribution 

to the variance of the image in a relatively large area would be from the grain 

noise. Thus the noise variance a n2 can be estimated from a larger neighbouring area 

such as the eight neighbouring regions of the local region illustrated in Figure 5.3, 

i.e.
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1 8 M  N

O,, ■m 2
8 M N Z  Z  Z [ x/("1’" 2 ) - W«(0]

i=ln, =l/i-> =1
E q. 5.58

in which /»„(/) is the mean of the /'th neighbouring region, i.e.

j M  N

Z x/ ("1>"2)
«1 = l / 7 2 =1

/ = 1,2,... ,8
Eq. 5.59

The variance of the target image is estimated from the local region

a 5
2

2 2 - c  2 2a x - a „  i f o x > a ;7 
0 otherwise

Eq. 5.60

where a 2
x is the variance of the local image, i.e.

a 2
x

I N M
----  V  Y [ x ( n h n 2 ) - m x Ÿ
M N  ^nl —in2=1

Eq. 5.61

and mx is the mean of the local image, i.e.

M  N

niy =
M N Z  Z x("i>"2)-

/7j =ln2 =1
Eq. 5.62

Finally the processed image yQiijh) within the local region can be expressed as
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2
y(rh ,n2) = mx + 2 2 8 ( » i .  » 2  ) © [ * ( » !  »«2 ) - » * , ]

G,
=  m * +  2 2 

°s  +Vn
[x{nx ,n2) - m x].

Eq. 5.63

In order to reduce processing time, the means and variances used in Eq. 5.63 are 

updated at each processing window, rather than point-by-point.

5.2.2 Performance of Adaptive Wiener filter

It can be seen from Figure 5.2 and Eq. 5.63, that the adaptive Wiener 

filtering algorithm is based on a two-channel process. In this, the input image is 

divided into a local image region and its neighbouring image regions. The statistical 

characteristics of the images in the local and neighbouring regions are given by 

their means and variances. The visibility of a local image can be described by its 

intensity and contrast, which are quantitatively determined by the local mean mx 

and x(ni,n2)-mx. To enhance the visibility of a local image, the adaptive Wiener 

filter modifies the local contrast according to the differential features of the local 

image and its neighbouring images.

It would be easier to gain some insight of the performance of the adaptive 

Wiener filter, if we consider two extreme cases. That is, if in a local region where 

the variance of the local image is much greater than the noise covariance estimated
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2 2from its neighbouring regions, i.e. c s »  a n , the local contrast is assumed mainly 

to be contributed by the signal s(tii,n2). In this case, the Wiener filter gain will 

approach one, and the filter output will remain approximately the same as the 

original input x(nt,n2). Whilst if the variance o f the local image is much smaller 

than the noise covariance: a s «  a n , the local contrast is assumed to be mainly 

due to the noise n(ni,n2). In this case the gain of the Wiener filter will approach 

zero and the output of the filter will be close to the local mean mx. As a result, the 

local contrast will be significantly reduced. Thus the overall effects of the Wiener 

filter are to enhance the signal components and suppress the noise components.

5.2.3 Attenuation compensation

From the above analysis it can be noted that even if the signal component is 

determined to be dominant in a local region, its contrast will remain approximately 

unchanged. The visibility of a signal after filtering will still be dependent on its 

original contrast compared to other regions. Thus in a non-stationary noisy 

environment, such as in the presence of grain scattering and attenuation, some 

noise in the region near the transducer may still be visible after filtering, especially 

if its original local contrast is very high, such as for those massive grain clusters. 

On the other hand, signals from true targets lying at greater depth may be lost if 

their local contrasts are too low due to scattering and attenuation. Hence, it should 

be possible to further enhance filter performance by compensating for attenuation 

effects.

As we mentioned in Chapter 2, the attenuation effects can be modelled by a 

exponential function. That is, if the original unattenuated signal is denoted by x(t), 

then the attenuated signal z (1) can be expressed as
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E q. 5 .64

z(t) = e ° ^ x ( / ) .

where T is the total waveform duration and a  as a first order approximation is 

taken to be an attenuation coefficient averaged over the bandwidth of the signals of 

interest. In fact, as illustrated in Section 6.4.3, the bandwidth of a defect echo is 

considerably narrow than that of grain scattering. Therefore this correction is 

actually a reasonable approximation for the wanted defect signals. Based on this 

consideration the original signal x(t), can be approximately recovered from z(t) by

. . a 
x{t) = e

Eq. 5.65

The attenuation coefficient a  can then be expressed as

a  = In x(T)
Z(T)

Eq. 5.66

where x(7) and z{T) are the backwall echoes before and after the attenuation 

respectively.

According to plane wave theory, the magnitude of the unattenuated 

backwall echo x(7) can be evaluated from the frontwall echo z(0) by taking into 

account the reflection and transmission losses. Consider a plane wave impinging at 

normal incidence on a smooth plane boundary (relative to the wavelength), the 

reflection coefficient R and transmission coefficient D between medium 1 and 2 can 

be calculated from their acoustic impedances Z, = piCj (/ = 1, 2), in which p; and ct 

are the corresponding medium density and sound speed, respectively. From this
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theory, it is easy to show that the unattenuated backwall echo x(7) can be 

evaluated from the frontwall echo r(0) by

x(T) = - 4^1^2 
(Z1 + Z2)2

-*(0)

Eq. 5.67

where Z/ and Z2 are the acoustic impedances of the coupling medium (for both 

plane boundary surfaces) and the test material.

The attenuation coefficient a  can then be evaluated from the amplitude of 

the frontwall and (attenuated) backwall echoes by

a  = In
4Z1Z2z(0) 

(Z1+Z2)2z(T) '

Eq. 5.68

Of course, this formula can only be applicable under the assumption that both the 

frontwall and backwall echoes are not saturated.

The processing results from both optimal time-space array processing and 

adaptive Wiener filtering are presented as false colour B-scan images in the next 

chapter. Comparisons are made with results from the spatial averaging method.
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6. Results

In this chapter, the various signal and image processing techniques 

developed for the current application will be evaluated using real experimental data 

captured from the material o f current interest. The description o f the experimental 

system set-up together with the testing material and targets will be presented in 

Section 6.1. In order to evaluate signal processing techniques in a quantitative way, 

automatic detectors will be used to test the performances of signal enhancement. It 

is convenient therefore to discuss and evaluate these detectors in Section 6.2 prior 

to testing the one-dimensional signal enhancement techniques in Sections 6.3 and 

6.4. The two-dimensional array processing and image enhancement techniques will 

be evaluated finally in Section 6.5.

Also, it is helpful to define signal-to-noise ratio in a fashion that takes 

account of the pulsed nature of the wanted signal. To this end, the defect signal- 

to-grain-noise ratio is defined here as

SNR = 10 log 10

i r  zs i= M -N ,n
■> N , - \  , M - \ + N , l 2

Y ^ y2 (i)~ T  ¿ • >;2(/') y\ M t i=o Jy s i=M-Nsn  J

Eq. 6.1

where M is  the sample index corresponding to the centre of the target signal and Ns 

and N, are the length of the signal from the target and the total data length, 

respectively.
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6.1 Experimental systems

6.1.1 Data acquisition

Two systems have been used to capture A-scan data. The first made use of 

a wide-band system developed at City University by Dr. J.P. Weight. The second 

was a state-of-the-art data acquisition system installed at the NDT Department at 

Rolls-Royce, Filton. The basis of both systems is similar and is as shown 

schematically in Fig 6.1.1.

The experimental set-up used in the ultrasonics laboratory at City includes 

a wide-band system to generate and receive ultrasonic pulses (within an overall 

bandwidth 0.5 - 20 MHz) and a digital oscilloscope for data capture. The A-scan 

signals were obtained using an unfocused 5MHz, 20mm diameter transducer 

(Aerotech Alpha F08179). The signals were digitised by a LeCroy 4910 digital 

oscilloscope at a sampling rate of 100MHz with 16 bit resolution and then 

transferred to a PC via an 1EEE488 interface using software developed by the 

author. Signal processing was carried out on both a SUN SPARC Station 2, and 

on a 486DX2 66MHz PC.

Figure 6.1.1 Schematic diagram showing the basis of the ultrasonic data acquisition 

systems used.
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The data acquisition system used at Rolls-Royce can automatically capture 

sequential A-scan data with 8 bit resolution at a sampling rate o f 100MHz and scan 

repetition rate of 1000 A-scan/sec. It has the capability of performing spatial 

averaging as the scan proceeds. When averaged data is required, the mean is 

normally taken over 6 adjacent A-scans. A typical data set usually contains 64 A- 

scans including test targets consisting of four flat-bottomed holes (FBH) which 

were drilled at the backwall of the test block (as illustrated in Figure 6.1.1). A 

more detailed description of the test targets and materials will be given in the next 

section. Two transducers were used: an unfocused, 5MHz, 12.7mm diameter 

probe and a weakly focused 10MHz, 12.7mm diameter transducer (RR type No. 

D12149, focal length 152mm).

In all cases, a water-coupled transducer was used and the test pieces were 

fabricated from various samples of Waspaloy. To avoid the greatly complicated 

structure of echo responses resulting from near-field diffraction effects [Weight, 

J.P., 1993], the water coupling path was chosen so that the samples were within 

the far field of the interrogating transducers.

6.1.2 Testing material and targets

In the present work, the material of interest in the evaluation o f the various 

signal and image processing techniques presented here is Waspaloy. Waspaloy is a 

Nickel based superalloy designed to maintain high strength, with good creep, crack 

and fatigue resistance, in demanding high-temperature environments [Shen, G.]. 

One o f the most common applications of the materials is for the disk like structures 

anchoring the turbine blades in a jet engine. To ensure the required mechanical 

properties, the disks are usually forged and then heat-treated. Consequent 

machining and work hardening often leads to relatively coarse-grained, 

inhomogenous microstructures. Since jet engine disks are safety-critical 

components, the ability to detect small defects with reliability guaranteed by a large
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safety margin is, of course, of paramount importance. However, as a result of the 

coarse-grained, inhomogenous structure of the Waspaloy, the detection o f small 

flaws is often limited by the masking effect of scattering from grain boundaries.

In order to gain some insight of the grain structure o f Waspaloy, 

microscopic examination of a sample from a typical test piece has been carried out 

by the author. The metallographic specimen was prepared by grinding, polishing 

and etching operations. The sample block was first lapped manually using silicon 

carbide paper abrasives of 800 grit, followed by 1200 grit, using water as a 

lubricant. All the scratches from grinding were then removed by polishing on nylon 

cloth wheels charged with 6-micron and then 1-micron diamond paste, lubricated 

with a few drops of lapping oil to obtain a mirror-like polished surface. The grain 

boundaries of the Waspaloy were finally revealed by chemical etching with a 

solution of ferric chloride.

Figure 6.1.2 Photomicrograph of a Waspaloy specimen taken at a location to 

illustrate the typical mean grain size. This is estimated to be about 0.1mm.
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Figure 6.1.3 Photomicrograph of a Waspaloy specimen taken at an area containing 

a massive grain at its centre. The size of the large grain is well over 0.5mm and as 

such is similar to the desired minimum (albeit more strongly scattering) detectable 

defect.

The microstructure features of the prepared Waspaloy specimen were 

examined under a microscope at 100 times magnification. Photomicrographs were 

taken at two representative locations to demonstrate the mean grain structure as 

well as the existence of “massive grain clusters” . Figure 6.1.2 shows that the mean 

size o f the grains is about 0.1mm, whereas the size of the massive grain shown in 

the centre of Figure 6.1.3 is well over 0.5mm. The mean grain size is such that the 

material will in general be highly scattering at the ultrasonic frequencies used, even 

though these were chosen bearing in mind the conflicting requirements of 

resolution and sensitivity. The existence of massive grain clusters at not infrequent 

positions gives rise to extra, localised scattering. Eventhough the effective 

scattering cross section of a grain cluster will be less than that of a test target of 

similar dimension, the grain clusters could be falsely classified as defect signals, 

especially when they lie at short range. It is likely that these “rogue” grains could 

be the major source of excessive false alarms when conventional processing such 

as fixed threshold detection is used.
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The majority of the data to be considered here was obtained from known 

artificial defects. In reality, the shape of a natural flaw is usually very irregular and 

can not be simulated by any universal model. However, it is sensible to use some 

simple targets for preliminary evaluation of various processing algorithms. This 

could also offer potentially simplified mathematical modelling. One such 

commonly used target is a flat-bottom hole (FBH) with its axis aligned with the 

incident beam. Typically, the target size (area of the bottom surface) was chosen so 

that the defect signal had similar amplitude to the unwanted grain scattering.

The experimental data was taken from three main types o f test samples. 

The first was two coarse-grained samples of Waspaloy (a 50mm cube and a 

50x50x25mm block) containing a test target - a 1mm diameter FBH. The second 

was a section ofjet engine disc (JED) containing 0.64mm and 0.89mm FBH’s. The 

third was also taken from a jet engine disc but from a region not including any test 

targets. However this last group did include two A-scans containing a real flaw 

identified by the NDT group at Rolls-Royce.

The data provided by Rolls-Royce was taken from a test piece cut from a 

Waspaloy jet engine disc (JED). The JED test piece contained test targets 

consisting o f four groups of flat-bottomed holes. Due to some special treatments 

required to make the jet engine disc, its grain size varies along the radius (increases 

towards outer edge) of the disc. Two sets of six holes of diameter 0.64mm and 

0.89mm were drilled in a "noisy" section (larger grain size area) of the JED test 

piece and two identical sets were positioned in a section having a finer grain 

structure (less “noisy”), making 24 test targets in all. Some data was provided from 

each o f these sets but only the data from the noisy section was processed, since the 

signal to noise ratio of the data from cleaner section was good enough for all of the 

targets to be detected by conventional means. Usually the data comprised 64 A- 

scans obtained whilst scanning a transducer in a single line passing over typically 

four test targets.
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Most o f the data captured included echo signals from the front and back 

walls o f the test piece. In general, the wanted signal and the grain noise were at a 

level much smaller than the front and back wall echoes. If the receiver gain was set 

to give good signal to (random electronic) noise ratio, the front and back wall 

echoes would be well above the saturation point of the receiver. Since the 

saturated wall echoes are not useful for any signal processing but can in fact 

introduce some distorted frequency components into the signal spectrum to spoil 

signal processing, the wall echoes are excluded before further processing.

6.2 Results: Detection

Here the performance of adaptive threshold detection is compared with 

simple fixed threshold detection, where the threshold level is set empirically. The 

current application is restricted to the use of non-coherent detection since a 

synchronised reference signal is not available. Therefore only the envelope 

information is needed for detection purposes. This is extracted using a square-law 

envelope detector that gives a similar output to that from the rectified and 

smoothed signal output from a typical receiver. The data was integrated over a 

time duration similar to that of the transmitted pulse length.

Typical inputs and outputs to the envelope detector are illustrated in Figure 

6.2.1(a) and (b), respectively. A similar rectified and smoothed signal is also 

included (Figure 6.2.1(c)) for comparison. In this example, the input data contains 

600 samples which corresponds to 6ps of original data. The smoothing effect of 

integrating the data means that a longer sampling interval is adequate. Typically the 

number o f data points can be reduced by a factor of 20. This will considerably 

enhance the efficiency of detection processing.
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Much of the literature in this area gives relatively few results to 

demonstrate the usefulness of particular methods but here an attempt was made to 

give statistically reliable results by using data set containing 64 A-scans. An 

example of results for just one A-scan (taken from the JED test piece using a 

5MHz, 13mm diameter unfocused transducer) and known to include a true target 

signal is given in Figure 6.2.2. The input A-scan is shown on the top left (a), and 

the corresponding output from the square-law envelope detector (b) is shown 

alongside. The outputs from the fixed thresholding, CA-CFAR and ACML-CFAR 

detectors are shown below as (c), (d) and (e), respectively. In this particular 

example, all three detectors have correctly identified the true target signal from a 

0.89mm flat bottomed hole. There are however two false indications from the fixed 

thresholding detector, but none from the adaptive detectors. Figure 6.2.3 shows 

some corresponding results but for the case when there is no known target signal 

in the input data. Now the fixed threshold detector gives two false target 

indications but both adaptive detectors are free of false alarms.

To allow a direct comparison of the various methods used in Figure 6.2.2- 

3, the detection parameters for each detector were chosen to give a similar 

detection rate over a set of 64 A-scans. The results are summarised in Table 6.2.1 

and show that the two adaptive detectors have similar performance for the case of 

a single target in a homogeneous noise environment. As discussed in Section 3.2.2, 

the only advantage of the ACML-CFAR detector is that it should give better 

performance with multiple target situations.
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Time - flicrosecs. Range C ells

Figure 6.2.1 Unrectified input data is shown in (a). Figures (b) and (c) are the 

output of the square-law envelope detector and the rectified data respectively.

Range Cells Time - Microsecs. Time - Microsecs.

Figure 6.2.2 The input A-scan waveform and corresponding square-law envelope 

detector output are shown in (a) and (b). The outputs of the fixed thresholding, 

CA-CFAR and ACML-CFAR detectors are given as (c), (d) and (e), respectively.
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Figure 6.2.3 The input data did not include any known target signal but the fixed 

threshold detector gave two false target indications. However, both adaptive 

detectors were free of false alarms.

A group of 64 A-scans data 
taken by a 5MHz, 12.7mm 
diameter unfocused 
transducer from a Waspaloy 
Jet engine disc.

Fixed Thresholding 
Detection Processing 
Parameters:
7*= 3100 
Tc= 0.2 (.is

CA-CFAR Detector
Processing
Parameters:
P/ = 4 x 1 0 3 
Tc= 0.2ps

ACML-CFAR 
Detection Processing 
Parameters:
Pf = 4x10 3 
Tc= 0.2ps

Known Targets: No spatial Spatial No spatial Spatial No spatial Spatial
0.86mm FBH averaging averaged averaging averaged averaging averaged
Target 1 indications 2 4 0 4 0 4
Target 2 indications -5 0 0 2 0 2
Target 3 indications 4 3 2 2 2 2
Target 4 indications 3 1 0 0 0 0
Unknown target indications 170 14 4 4 5 3
Unknown target positions 66 7 4 2 5 3

Table 6.2.1 Summary of the detection results from a set of 64 A-scans
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Before going on to discuss the tabulated results for the set o f 64 A-scans, it 

is helpful to discuss what would be expected if the test block was constructed from 

a completely noise-free material and the transducer were to be scanned directly 

over the centre line of the targets. For the target size, scan increment and beam 

width employed, it can be expected that about 10 adjacent scans may include a 

signal from a given test target. However with the much poorer signal-to-noise 

ratios obtained from the Waspaloy test piece used here, the number o f adjacent 

scans showing a positive target indication is likely to be less than this. This partly 

arises as a consequence of the poorer signal-to-noise ratio itself, but also because 

o f the Gaussian-like beam profile. Furthermore, the number o f positive indications 

would be further reduced if the line of scan was not directly through the centre of 

each target. On discussing this point with the Rolls-Royce personnel who captured 

the data, it transpired that each target fell within the beam, but it was not 

guaranteed that the scan line was through every target centre.

In the rows showing true target indications in Table 6.2.1 we see that the 

maximum number of true indications for a given target is in fact just 4 and that not 

all targets are always detected. The first method - fixed thresholding without 

spatial averaging - gives the most positive target indications but suffers from a 

large number of false alarms.

It is convenient to classify the false alarms as follows: the total number of 

false indications is given as “unknown target indications”, but if an unknown target 

indication continually appears in adjacent A-scans at the same time position we 

denote it as from a single target position (i.e. “unknown target positions’'’).
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The number of false alarms using fixed thresholding can be reduced 

considerably by using original data that had been spatially averaged, but 

unfortunately the number of true indications also drops somewhat. Both of the 

adaptive detectors give even fewer false alarms - especially when used with spatial 

averaging - whilst maintaining a similar number o f true target indications.

Tests showed that the performance of the CA-CFAR and ACML-CFAR 

detector was not particularly sensitive to the values chosen for the desired false 

alarm rate and the number of reference cells, given by Nc = T/Tc. Here T and Tc are 

the total waveform time duration and cell duration, respectively. For instance, with 

the current data, good results were obtained if 0.001<P/ <0.0001. The better the 

signal-to-noise ratio r, the smaller could be the value of Pf to achieve a similar 

detection rate.

The advantage of using a fixed thresholding level detector is of course its 

simplicity, ease of implementation and freedom from the need to make assumptions 

on the probability distribution of the grain noise. However, the theoretical analysis 

and experimental results have shown that with a fixed threshold detector, the false 

alarm rate is extremely sensitive to fluctuations in the noise power. Consequently, 

its detection performance is very sensitive to the setting of the threshold level, 

therefore its consistency can not be controlled in the current application 

environment, where noise power often changes with inspection position. In 

contrast, detection performances of the adaptive threshold detectors are self 

optimised and consistent performance is maintained as noise levels fluctuate. This 

is demonstrated by the results of Table 6.2.1, where the data noise levels do 

fluctuate as a result of a varying grain structure.
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6.3 Results: Split-spectrum processing

To evaluate the various split spectrum processing methods described in 

Section 4.1, a set of 64 A-scans provided by Rolls-Royce was processed. Again, 

the data were taken from a test piece cut from a Waspaloy jet engine disc using the 

same experimental conditions as for Table 6.2.1. A number o f results from 

individual A-scans are presented first, before summarising results from the whole 

set in Table 6.3.1. Where known targets are present in the individual results, their 

positions are labelled FBH.

6.3.1 Processing parameter selection

Split spectrum processing parameters can be determined by following the 

procedures described in Section 4.1 but with some modifications to suit current 

experimental conditions. For instance, instead o f using the backwall echo to 

determine the upper frequency cut-off point as described by [Karpur, P. 1988] the 

echo from a known target was used. This was more appropriate for the current 

work, since the defects are of wavelength order and their echo responses are likely 

to have different frequency content compared to that of the echo from a large plane 

reflector such as the backwall. The following procedure was adopted: 1

(1) The central frequency separation between adjacent filter is set to A / = 1/7, 

where 7  is the duration of a single A-scan.

(2) Set the half power bandwidth of the filter to B f -  3 A/ and fix the central 

frequency of the first Gaussian bandpass filter at 1MHz above the lowest 

frequency of the received signal spectrum.

102



(3) The number of filters N  is then increased until the SNR for a known target 

signal reaches a maximum. The optimum processing frequency bandwidth 

is then determined by B = (N-\)Af.

(4) The half power bandwidth of the filter can then be optimised by adjusting 

the Bf to obtain the maximum SNR.

6.3.2 Processing results

Using the above procedure for the data shown in Figure 6.3.1, A f  = 

0.0833MHz and the optimum SSP parameters are Bf=  0.3MHz and the frequency 

range is 3MHz < /  < 6.5MHz. The number of filters required to cover this 

frequency range is N  = 43. Corresponding SSM, SSPT and SSPTM results are 

shown in Figure 6.3.1 (c), (e), and (f) respectively. Figure 6.3.1(d) gives the output 

from the ACML detector when fed with data after SSM processing, using the same 

detector parameters as used in Table 6.2.1, i.e. a false alarm rate Pf of 10'4 and a 

cell time duration Tc of 0.2pis. The adaptive detector described in Chapter 3 will 

be used here, as it is later useful as a means to objectively measure the variation in 

signal enhancement when changing the values o f parameters used in SSM 

processing. Since the polarity thresholding method used with split spectrum 

processing is itself a form of detector, the results from polarity threshold 

processing in (e) and (f) can be directly compared with the adaptive detector 

output (d). It is clear that all of the SSP algorithms enhance the defect SNR 

remarkably, but the output after polarity thresholding shows a number of false 

alarms. Furthermore as will be illustrated by Figure 6.3.4, if constant parameters 

are used for all 64 A-scans in a set, there will be some instances where the wanted 

signal is lost rather than enhanced.
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Figure 6.3.1 Split spectaun processing results using the present adaptation of 

Karpur's method to set parameters. A typical example of the original data is shown 

in the time and frequency domains in (a) and (b), respectively. The position of the 

true target signal is denoted by FBH. Results after processing are shown in (c - f): 

(c) after minimisation; (d) after minimisation and adaptive detection; (e) after 

polarity thresholding and (f) after polarity thresholding and minimisation.

Figure 6.3.2 Split spectrum results as in Figure 6.3.1, but showing the original data 

after adaptive detection in (b).
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Figure 6.3.3 Split spectrum results as in Figure 6.3.2, but at a position where no 

known target exists.
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Figure 6.3.4 Split spectrum results as in Figure 6.3.2, but with a poorer input signal 

to noise ratio. None of the methods used were able to detect the true signal.
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Figure 6.3.2-Figure 6.3.4 illustrate SSP results using the same parameters 

as for Figure 6.3.1 but for a number of A-scans at different transducer position 

including one where there was no known target (Figure 6.3.3). The SSM, SSPT 

and SSPTM methods give similar results for the data of Figure 6.3.1 and Figure

6.3.2 - the true target signal is always detected but there are a number of false 

alarms using a polarity thresholding detector or polarity thresholding after 

minimisation. Flowever, in Figure 6.3.3(a) there is no known target but all SSP 

methods give false alarms. On the other hand, if the input SNR in a given A-scan is 

lower than that used to determine the processing parameters, then a known target 

signal may not be found as in Figure 6.3.4.

The results shown so far have been made with a fixed central frequency 

separation Af  = l/T  defined in Section 4.1. This requires the number o f filters N  to 

be 43 to cover the processing frequency range of 3.5MHz as selected above. Tests 

carried on a large number of A-scans from the same test piece give similar 

problems to those identified in Figure 6.3.1- Figure 6.3.4 and it would seem that 

the method suggested by Karpur et al to select SSP parameters is not optimum for 

the current data.

An alternative implementation of SSP - using a fixed overlap point at the 

half power point of the Gaussian bandpass filter proposed here has also been 

investigated. Figure 6.3.5- Figure 6.3.7 illustrate some results processed using this 

approach, particularly in order to optimise the SSM processing. The optimal 

parameters used here were: frequency range 3MHz < / <  6MHz, number of the 

filters N  = 3. In Figure 6.3.5 - Figure 6.3.6, the grain scattering is visibly reduced 

compared to the known wanted signal (FBH), but the output SNR has not been 

enhanced sufficiently for the known signal to be found by the ACML detector. 

Here the same detector parameters as before, i.e. a false alarm rate Pf  =  10'4 and 

cell duration 71 =0.2ps are used. A higher false alarm rate could detect the known 

signal but only at the expense of increasing the total number of false alarms.
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Figure 6.3.5 Split spectrum processing results as in Figure 6.3.2, but using a fixed 

overlap point at the half power point of the Gaussian bandpass filter and with the 

parameters selected empirically to give optimum overall performance for SSM 

processing. Note that the data used in Figure 6.3.5 to Figure 6.3.7 was identical to 

that of Figure 6.3.1 - Figure 6.3.2 and Figure 6.3.4, respectively.
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Figure 6.3.6 Split spectrum results as in Figure 6.3.2 but using the same method as 

in Figure 6.3.5.
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Figure 6.3.7 Split spectrum results using the same method as in Figure 6.3.5, but 

with a poorer input signal to noise ratio. None of the methods was able to reliably 

detect the true signal.

The approach used to obtain the results of Figure 6.3.5-Figure 6.3.7 gives 

less sensitivity to parameter selection and can use up to a factor of ten less filters 

than does the method of Karpur et al for the current application. Once chosen the 

parameters may be kept constant for a given test piece. However, in spite of this 

the signal to noise ratio in these scans is so poor that it was not possible to reliably 

detect all known signals.

One method investigated here to improve the detection of wanted signals 

is to use the iterative approach outlined in Section 4.1. In the results shown in 

Figure 6.3.8 - Figure 6.3.10 two iterations were used. The data used for Figure 

6.3.8 - Figure 6.3.10 were the same as that of Figure 6.3.5 - Figure 6.3.7, 

respectively. In Figure 6.3.8 and Figure 6.3.9, the SNR's are significantly enhanced 

after SSM, better than was achieved in Figure 6.3.5 and Figure 6.3.6, and now in
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(d) it is possible to detect the known signal, using SSM followed by adaptive 

detection, without any false alarms. However, this could not be consistently 

achieved, especially with SNR's poorer than that of the data used to set the 

parameters, as shown in Figure 6.3.10.

The sensitivity of SSP to the number of filters used is demonstrated in 

Figure 6.3.11 - Figure 6.3.13. By changing from 3 to 15 filters whilst retaining all 

other parameters, a dramatic SNR enhancement can be achieved with SSPT, 

however, unfortunately there is still a large number of false alarms. Furthermore, 

as also demonstrated in Figure 6.3.11- Figure 6.3.13, a similar test with the SSM 

method found that with 15 filters there was no improvement at all over the 

unprocessed SNR’s and hence even with adaptive detection, the known signal 

cannot be detected.
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Figure 6.3.8 Split spectrum processing results using the method adapted here to 

select optimum minimisation parameters as in Figure 6.3.5 - Figure 6.3.7, but with 

two iterations as described in Section 4.1. The data was as for Figure 6.3.1 and 

Figure 6.3.5 but here the extra processing gives much better signal enhancement.
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Figure 6.3.9 Split spectrum processing results using the method adapted here as in 

Figure 6.3.8. The data was as for Figure 6.3.2 and Figure 6.3.6, but note the much 

better signal enhancement.
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Figure 6.3.10 Split spectrum processing results using the modified method as in 

Figure 6.3.9 but for the data of Figure 6.3.4 and Figure 6.3.7 that had a poorer 

input signal to noise ratio. None of the methods were able to reliably detect the 

true signal.
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Figure 6.3.11 Split spectrum processing results using the modified method to select 

optimum parameters for polarity thresholding. The data was as for Figure 6.3.5 

and Figure 6.3.8 but note almost complete lack of false alarms in the polarity 

thresholding results (e and f).
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Figure 6.3.12 Split spectaun processing results using the modified method to select 

optimum parameters as used in Figure 6.3.11. The data was as for Figure 6.3.6 and 

Figure 6.3.9. Again note completely free of false alarms after polarity thresholding 

(e and f).
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Figure 6.3.13 The data was as for Figure 6.3.7 and Figure 6.3.10 and using the 

modified method to select optimum parameters as used in Figure 6.3.11. Again 

with such poor signal to noise ratio none of the methods could detect the true 

signal.

j 5 In p u t  w aveform

1 .0 .
O.5I1

4 6 8 10 12 14 16
Time - M i c r o s e c s . Time - Microsecs. Time - Microsecs.

, c ACfILD o u tp u t
. ■ J j -----,-----,-----,-----j-----1-----1-----1----- ,-----,-----r

1 . 0 .

j-è 0.5
: j  0.0
;£-0.5L 

!<-1-0 
-1 .5

4 6 8 10 12 14 16
T ime - M i c r o s e c s .

, =, ssn & ACHLO O u tp u t
• - J j -----1-----1-----,-----1-----,-----j-----1-----1-----1-----,-----1-----

1 . 0 .

4 6 8 10 12 14 16
Time - Microsecs.

1 .5 

1 .0 
.5<b rj"O U

3 0.0
-0.5.

-1 .0 
-1 .5

SSPTfl O u tp u t

If ili) ■) ili 1 ii 1 il il, 1 li L
rrm f fr i  T ' U ' fjlfi

4 6 8 10 12 14 16
Time - Microsecs.

Figure 6.3.14 A typical result of a false alarm from the modified SSM method 

using the modified method to select optimum parameters as used in Figure 6.3.11.
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Figure 6.3.15 A typical example of false alarms from results obtained by using the 

modified SSPT method to select optimum parameters as used in Figure 6.3.11.

ACM L-C FA R  
False Alarm Rate
Pf= 164
Time duration of 
the cells
Tc = 0.2p.s

SSM
with A/= 1 IT 
using ACMLD 
Frequency Range 
3 </<6.5(MHz) 
Filler bandwidth 
Bf = 0.3MHz

SSM
with overlaps at 
half power points 
using ACMLD 
Frequency Range 
3 < /<  6 (MHz) 
Number of Filters 
N  = 3
Iteration Number
Nj  = 2

SSPT
with overlaps at 
half power points 
Frequency Range 
3 < /<  6(MHz) 
Number of Filters 
N =  15

SSPTM
with overlaps at 
half power points 
Frequency Range 
3 < /<  6(MHz) 
Number of Filters 
N=  15

Target 1 Indications 5 5 5 5
Target 2 Indications 6 4 1 1
Target 3 Indications 6 4 5 5
Target 4 Indications 5 3 5 5

False Alarms 28 23 14 13

Table 6.3.1 Summary of the processing results from a set of 64 A-scans using

various split spectrum processing methods. Some of these (columns 2 and 3) are in 

conjunction with adaptive detection. The processing parameters are given at the 

top of each column and were kept constant for each method.
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All o f the above results in this section can be summarised by means of 

Table 6.3.1 which gives results for each of the implementations tested using a set 

of 64 A-scans. The outcome of using Karpur's method is shown in column two and 

the parameters used for the other three methods have been chosen to give similar 

true target detection rate. All of the methods eventually find all of the known 

targets but each also gives a number of false alarms, as shown at the bottom of the 

table. As an example, false alarms from the modified SSM and SSPT using their 

optimum parameters listed in the Table 6.3.1 are illustrated Figure 6.3.14 and 

6.3.15 respectively. With the current data it would seem that polarity thresholding 

(SSPT) with the filter overlap points set at the half power level together with 

minimisation in conjunction with polarity thresholding (SSPTM), gives the least 

number of false alarms.

6.3.3 Discussion

Extensive tests made to check the sensitivity of SSP methods to parameter 

values showed that good signal enhancement was only achieved with optimum 

parameters that are in general different from A-scan to A-scan. From the results 

shown in Table 6.3.1, it seems that SSPTM offers better overall performance 

among the three methods but its optimum parameters are more difficult to 

determine. This is because the optimum number of filters is dependent on the 

SNR’s of the input data which are often unknown a priori and/or vary from scan 

to scan. Furthermore the central frequency separation can not be fixed at A/  = 1 IT, 

otherwise the filter bank with an optimum number of filters determined from Eq. 

4.20 may not be able to cover an optimum processing frequency range. In 

addition, if  the overlap point is not fixed at the half power point, the filter 

bandwidth can be yet another independent parameter needing to be determined.
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Various other approaches have been investigated to systematically set as 

many of the processing parameters as possible, but it would seem that consistently 

good performance can only be obtained by choosing the parameters empirically and 

individually for every A-scan.

It may be concluded that a useful practical compromise is to select the two 

SSP parameters according to:

(1) Select an A-scan containing a true signal but with poorest expected input 

SNR.

(2) Use the method proposed in Section 6.3.1 to determine the processing 

frequency range.

(3) Apply SSPTM with a fixed overlap point and increase the number of 

filters until the output SNR reaches the maximum.

The parameters so determined can be used to detect the defect signals in 

other data obtained under the same experimental conditions, provided that the 

SNR is not lower than used to determine the parameters in (1) above.
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6.4 Results: Adaptive filtering

Before presenting results using adaptive filtering it is convenient to discuss 

the selection o f processing parameters.

6.4.1 Processing parameter selection

A major consideration in using adaptive filtering is o f course the 

appropriate selection o f the parameters p„, a  and L (defined in Section 4.2.3). 

Experiment showed that in the current application the method is not particularly 

sensitive to the value of any one o f these. Furthermore, once the parameters have 

been chosen for a given set of experimental conditions, it is not necessary to 

change them as the transducer is scanned over the component being tested. Taking 

the three parameters in turn, in theory, as is discussed in [Tarrab, M.], the 

convergence of the NLMS algorithm is guaranteed if 0 < pn < 1. Tests with the 

current data showed that good performance o f the filter was achieved if pn ~ 0.01 

and that changing this by a factor o f 5 only made a small difference. The sensitivity 

o f the filter to the values o f a  and L was also tested. Typically, good results were 

obtained if 0.0001 < a  < 0.1 and 10 <L < 20.

6.4.2 Processing results

Since the performance of the adaptive filter to be used here relies on the 

noise signal becoming less correlated than a wanted signal as the distance between 

the A-scan positions o f two input channels is increased, the normalised cross 

correlations between data from a datum position with that at 4 points at increasing 

distance to one side, have been calculated. Results for both a gated signal and noise 

alone are shown in Figure 6.4.0 As can be seen in Figure 6.4.0 the wanted signal 

does indeed have wider cross-correlation width with respect to its "datum" signal 

than does the noise. For a same transducer position, the cross-correlation between 

the signals is typically twice higher than is the grain noise. Note that with the 

current data, the scan increment is close to 1mm.
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Spatial Increment (mm)

Figure 6.4.0. Cross correlation o f signals from a datum position with those at 

increasing distance to one side. A least-squares fit to a second order polynomial 

was used to plot the curve.

Figure 6.4.1 shows the two input data channels (a), (b) and the output after 

(c) adaptive filtering and (d) adaptive detection. The reference signal, x(k) in (b), 

was captured with the transducer moved by 2mm from the position at which the 

primary input signal, d(k) in (a) was captured. In addition, the corresponding time 

domain gain of the NLMS adaptive filter is plotted to the same time scale in (e). 

This illustrates the typical tracking ability of the NLMS adaptive filter in response 

to the nonstationary input data. It can be seen that the peak o f the time domain 

power gain o f the adaptive filter is coincident with the position o f the known target 

signal labelled FBH. Furthermore, the sharpness o f the gain response demonstrates 

that the convergence speed o f the NLMS algorithm is fast enough to track the 

time-varying characteristic of the input data. Here the relevant characteristic is the 

cross correlation of the target signal between the primary input and the reference 

input.
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Figure 6.4.1 Ultrasonic A-scan data before (a and b) and after adaptive filtering (c) 

and detection (d). The test target was a flat-bottomed hole (FBH) of diameter

1.0mm in a Waspaloy test block. An unfocused 5MHz transducer o f diameter 

20.0mm, was used in transmit receive mode to interrogate the targets. The 

reference signal, x(k) in (b), was captured with the transducer moved by 2mm from 

the position at which the primary input signal, d(k) in (a) was captured. The 

adaptive filter and detector parameters used here were: ¿=15, ju=0.01, a=0.001, 

P/=0.0005, Tc= 0.2ps.
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Figure 6.4.2 Results with two adjacent transducer positions as in Figure 6.4.1, but 

with a displacement of a further 2mm. That is, the reference signal in Figure 6.4.1 

became the primary input here. The improvement in signal-to-noise ratio was 

similar to that of Figure 6.4.1, demonstrating good consistency since it was 

arranged that the wanted signal would be present in all o f the scans considered.

As can be seen in Figure 6.4.1 (c), there was a marked reduction in the 

grain noise after processing, the input and output signal-to-noise ratios (as defined 

in Eq. 6.1) being 6dB and lOdB, respectively. The parameters o f the filter and 

detector used here wereZ,=15, pn=0.01, a=0.001, P/=0.0005 and Tc= 0.2(t s .

In tests carried out to assess the consistency of the method, and the 

significance of the time position of a wanted target, fixed parameter values were 

used to process data taken from different transducer positions and progressively 

truncated data whilst always retaining the known test signal. The results 

given in Figure 6.4.2 were taken with the transducer at adjacent positions to those 

used for Figure 6.4.1. That is with the reference signal in Figure 6.4.1 now used as 

the primary signal and the next adjacent scan as the reference signal. The 

improvement in signal-to-noise ratio was similar to that that o f Figure 6.4.1.
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The following four figures (Figures 6.4.3-6 4.6) show the effect of 

progressively cutting off 4ps from the beginning of the data acquired with the 

transducer positioned as for Figures 6.4.1 and 6.4.2. This was done to check the 

ability of the method to cope with a short data stream and with the wanted signal 

appearing at different positions within the data stream. In all cases, the known 

signal is correctly identified and the filter gain curve shows a distinct peak at the 

position o f the wanted signal.

Further tests were carried out to quantify the performance of the NLMS 

adaptive filter by processing the full set of 64 A-scans as used in testing split 

spectrum processing. To demonstrate that the NLMS filter is not particularly 

sensitive to parameter values, the same processing parameters were used as those 

o f Figures 6.4.1 - 6.4.6, even though that data was obtained from a completely 

different test block with a different target size. The results summarised in Table

6.4.1 assume that the only defects present in the Waspaloy test piece examined 

were those introduced artificially, i.e. the four flat-bottomed holes. Any target 

indications from areas which did not include a FBH were regarded to be "false 

alarms". As discussed in Section 6.2, it might be anticipated that there would be up 

to ten indications for each known target, but with the experimental conditions used 

here the actual number of true indication per target will be less than this. Again this 

is partly due to the poor signal to noise ratio but also to the requirement that for 

the adaptive filter to perform well, the target signals in two adjacent inputs must be 

better correlated than are the corresponding noise signals. This is more likely to 

happen around the centre o f the beam than it is to either side. In addition, the 

number of positive indications would be further reduced if the line o f scan is not 

directly through the centre o f each target. For all of these reasons, it would be 

expected that the number of adjacent scans showing detectable indications o f the 

target will be reduced as the material becomes noisier.

As shown in Table 6.4.1, after NLMS filtering and ACML-CFAR 

processing, all four targets were correctly detected and there were no false alarms.
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It should be pointed out that the same processing parameters were used for 

processing all 64 A-scan data as summarised in Table 6.4.1.
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Figure 6.4.3 Results with the transducer in the same positions and processing 

parameters as for that o f Figure 6.4.1, but the data truncated by 4ps at the 

beginning.
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Figure 6.4.4 Results as for Figure 6.4.2, but the data truncated by 4(.is at the 

beginning.
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Figure 6.4.5 Results as for Figure 6.4.3, but with a further truncation o f 4(.is.

Figure 6.4.6 Results as for Figure 6.4.4, but with a further truncation of 4(is. 

Taken in conjunction with the results of Figures 6.4.1-5 this demonstrates that the 

ability to detect targets at different depths.
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Input data: A group of 64 
A-scans taken by a 5 MHz, 
12.7mm diameter unfocused 
transducer from a Waspaloy 
Jet engine disc.

NLMS & ACMLD 
Processing Parameters: 
Z=15 Pn = 0.01 
a  = 0.001
7y= 0.0005 Tc= 0.2ps

SSPTM
Processing Parameters: 
3MHz</ <  6MHz 
N /=15

Four Known Targets: 
0.86mm FBH

No spatial 
averaging

Spatial
averaged

No spatial 
averaging

Spatial
averaged

Target 1 indications 1 3 2 5
Target 2 indications 4 2 0 1
Target 3 indications 3 2 3 5
Target 4 indications 1 1 4 4

Unknown target indications 4 0 17 13
Unknown target positions 3 0 15 6

Table 6.4.1 Adaptive filtering (NLMS algorithm) and detection (ACML-CFAR 

detector) results for 64 A-scans using constant processing parameters. For

comparison some split spectrum processing results are included. The adaptive 

techniques give greatly improved performance, as the entries for the number of 

false indications in the bottom two rows shows.

In order to compare the performance o f the NLMS adaptive filter with that 

o f split spectrum processing, in particular the SSPTM method, the same 64 sets of 

A-scan data were also processed by SSPTM, using the same Split Spectrum 

parameters as in Table 6.3.1. Namely, a frequency range of 3MHz < / <  6MHz and 

with N j-=15. Although, the two methods give a similar number o f true target 

indications, split spectrum processing gives many more false alarms. Furthermore, 

as has already been discussed, the adaptive filter is much less sensitive to parameter 

selection than is split spectrum processing.

Another important practical advantage o f the adaptive filtering approach 

over SSP is that the processing time is much shorter than with SSP. In order to 

make quantitative comparisons of the processing times for the various methods 

used, approximate formulae for the number of floating point operations (FLOP’s) 

have been derived by inspection of the algorithms used. The formulae and the
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corresponding number of Flop’s for SSP, NLMS adaptive filtering and the various 
detection methods evaluated here have been listed in Table 6.4.2. It shows, for 
instance, that for the typical parameters used here, adaptive filtering is about 10 
times faster than SSP.

Algorithms SSP NLMS Fixed Threshold CA-CFAR ACML-CFAR

Formula 5NjNlog2N 5 LN 5N+3NC 5 N+  10Nc 5N + 4NC2

FLOP’S -  106 -  105 -5300 -5700 -  1.5 x 104

Table 6.4.2 The estimated order of number of FLOP’S for various signal 
enhancement and detection methods. The number of FLOP’S are estimated using 
the same number of input data points (7V=1024) and typical parameters throughout: 
the adaptive filter length L and number of SSP filter Nf are the same as used in the 
Table 6.4.1 (L, 7̂ =15); total number of range resolution cells Nc=50.

6.4.3 Results: adaptive filtering with bandpass filtered reference input

To evaluate the effectiveness of adaptive filtering using a bandpass filtered 
reference input (see Section 4.2.3), two A-scans taken from a Waspaloy test block 
containing a real flaw were processed. A 10MHz, 12.7mm diameter, weakly 
focused transducer (/} = 15 cm) was used in obtaining the data.

Figure 6.4.7 shows (a), the gated real flaw signal and (b) its spectrum. 
Corresponding results after bandpass filtering are shown in (c) and (d) respectively. 
The bandpass filter was chosen according to the arguments given in Section 2.1, 
with filter length Ly= 30 and frequency range 8MHẑ /i<9MHz. For comparison, 
results for a representative sample of gated grain noise obtained from the same test 
piece under the same experimental conditions are presented in Figure 6.4.8. As can 
be seen from Figure 6.4.7 and Figure 6.4.8:
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(1) The higher frequency band is more predominant in the grain noise than in 

the target signals.

(2) In the frequency domain, the defect scattering on the whole fluctuates less 

than does the grain noise.

(3) The defect signal is essentially unchanged after bandpass filtering. In 

contrast, a gated section of typical grain noise is dramatically changed in 

both the time and frequency domain after the filtering.

(4) As might be anticipated, the bandpass filter appears to make the wanted 

signal and the noise look similar, however the crucial effect is that it 

reduces the corellation between the noise in each input channel.

Based on these disparities, an attempt has been made to improve signal 

enhancement by further decorelating the noise (see section 6.4.2) using a bandpass 

filter in the reference channel of the adaptive filter. Some representative results are 

shown in Figure 6.4.9. The primary and unfiltered reference inputs containing a 

real flaw signal are shown in (a) and (b), respectively. The output o f the adaptive 

filter with unfiltered reference input (b) is illustrated in (c). The adaptive filter 

output with bandpass filtered reference input (d) is shown in (e). The parameters 

used were: bandpass filter length £¿=20, frequency range 8MHz</j,<9MHz, time 

delay 5t=0.2(a.s, filter length £=10, convergence step size p= 0.03 and a=0.01, 

false alarm rate Pf -  10'4, cell duration £c=0.1ps. It can be seen that although the 

SNR in both the unfiltered and filtered reference input channels ( (b) and ( d ) ) are 

similar, the SNR in the output of the adaptive filter (c) with bandpass filtered 

reference input (d) is evidently enhanced more than that in the output of the 

adaptive filter (c) with unfiltered reference input (b). The flaw signal is correctly 

detected in the consequent output o f the adaptive detector as shown in (f). Tests 

made using the same detector settings showed that the flaw could not be detected 

without bandpass filtering. It should be pointed out however, that a drawback of 

using a bandpass filtered reference input is that it will certainly increase the 

processing time and introduce additional parameters requiring to be optimised.
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Time - Mic msecs. Frequency - MHz. Time - MLcrosecs. Frequency - MHz.

Figure 6.4.7 A typical (gated) real flaw signal before and after bandpass filtering. 

The flaw signal and its spectrum are shown in (a) and (b ) , respectively and (c) and 

(d) give the corresponding signals after filtering.

Time - Microsecs. Frequency - MHz. Time - Microsecs. Frequency - MHz.

Figure 6.4.8 Gated grain noise before and after bandpass filtering displayed in 

same order as in Figure 6.4.7 and using the same filter.

Figure 6.4.9 A-scan data containing a real flaw signal before and after adaptive 

filtering. The primary and unfiltered reference inputs are shown in (a) and (b), 

respectively. The results of adaptive filtering with and without bandpass filtering 

are shown in (e) and (c), respectively and (f) shows the flaw signal as identified by 

the adaptive detector (using bandpass filtering).
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6.4.4 Processing results using a non-uniformly excited high-resolution 

transducer

So far all of the data has been obtained using conventional transducers. 

Here some results for data obtained by using a specially developed transducer are 

presented. The transducer was designed to give lateral resolution an order of 

magnitude better than that o f a conventional transducer of the same aperture and 

bandwidth. The new transducer is an example o f an edge-wave-only-transducer, in 

which the excitation is controlled in an axisymmetric pattern, strong at the rim and 

rapidly falling off towards the centre. Such transducers were first developed at City 

University by Dr J.P. Weight [Weight, J.P., 1982],

Full details of the theory, construction and evaluation of our transducers 

have appeared elsewhere [Weight, J.P., 1986], but very briefly, a conventional 

circular transducer radiates a locally plane wave in the geometric region straight 

ahead of its aperture, together with a spreading "edge" wave which propagates in 

all directions from its rim. All aspects of the beam structure result from the 

existence o f these plane and edge waves and from the interference between them 

whenever they overlap. For instance, the fact that the near field lateral resolution of 

a conventional transducer approximates to its diameter is due to the extent of the 

plane wave radiated. Edge-wave-only-transducers seek to give improved resolution 

by shading out the plane wave, so that just the edge wave is radiated. The good 

resolution stems from the fact that as a result of circular symmetry, only a target 

lying right on the transducer axis will simultaneously receive energy from each 

element of the transducer rim. Furthermore the directivity of the edge waves is 

such that the good resolution is maintained over a depth range o f a few transducer 

diameters. On reception, the scattering from a target will only be received 

simultaneously when the target lies on axis. For small targets, the sensitivity of an 

ideal edge-wave-only transducer approaches that o f a conventional transducer of
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the same size. For larger, flat and perpendicularly-aligned targets, the sensitivity is 

less than with a normal transducer, since in effect only a small region o f the target 

surface is being interrogated

An approximately edge-wave-only transducer suitable for the current 

application has been constructed by the author. The transducer was modified from 

a Panametrics V307 probe with a centre frequency of 5MHz and diameter 25mm. 

It consists o f a small modified front-face electrode in a ring configuration and the 

existing complete back-face electrode. The first step was to remove the existing 

matching layer and electrode and attach an insulating disc with a diameter just less 

than that o f the piezoelectric element. A very thin layer o f epoxy resin was used to 

fix a standard diameter microscope cover slip to form the insulating layer. A 

conductive layer o f silver was then applied over the whole front face using a 

sputtering system. This film provided both the ring like electrode where it 

contacted the transducer element and a screening layer over the insulating disc. 

The screening layer greatly reduces the pick-up of unwanted RF noise, especially 

that from the stepper motors used in the transducer scanning system. The ring 

electrode configuration gives rise to field fringing which results in an 

approximation to the nonuniform excitation required to generate edge waves only. 

A brief experimental evaluation o f the approximate EWO transducer was made to 

confirm its good lateral resolution over the depth range of current interest. More 

detailed theoretical and experimental evaluation of a similar transducer can be 

found in [Weight, J.P., 1982] and [Weight, J.P., 1984],
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Figure 6.4.10 Adaptive filtering and detection methods applied to data captured by 

a non-uniformly excited transducer - an edge-wave-only transducer. Here (a) and 

(b) are the primary and reference input respectively. The output from the filter and 

detector are shown in (c) and (d). Comparison of (b) and (c) shows that the grain 

scattering is reduced.

Figure 6.4.10 and Figure 6.4.11 show A-scans obtained using the new 

transducer to interrogate two test pieces similar to those used in obtaining the 

results of Figures 6.4.1 - 6.4.6. Both blocks contained a single flat-bottomed hole 

o f diameter 1mm, the metal paths to each target being 15mm and 38mm, 

respectively. Since the typical beam width of the EWO transducer is about one 

tenth that o f a conventional transducer o f the same aperture, the scan increment 

has been also reduced accordingly in obtaining these A-scans. This is necessary to 

maintain the cross-correlation of the target signals between the adjacent A-scans 

required by the adaptive filtering.
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Figure 6.4.11 Similar to the results shown in Figure 6.4.10 but for a deeper target 

at 38mm. Again, there is significant reduction o f the unwanted grain scattering.

The results obtained from the target lying at 15mm (Figure 6.4.10) show 

quite good signal-to-noise ratio even before processing, but some reduction in the 

noise is still evident and the wanted signal has been correctly identified by the 

ACML detector. However a dramatic improvement in signal-to-noise ratio is 

shown in Figure 6.4.11 which gives the results for the deeper target. For this 

target, it was not possible from the original data to reliably detect the signal, with 

any detection methods used. But as illustrated in Figure 6.4.11 after adaptive 

filtering the wanted signal was correctly detected by the ACML detector.

130



6.5 Results: Optimal time-space array processing and image 

enhancement techniques

A set of 64 A-scans including four test targets were used to evaluate the 
array and image processing. The data were taken from the JED test piece by the 
NDT department at Rolls-Royce using an unfocused, 5MHz, 12.7mm diameter 
probe, digitised at a sampling rate of 100MHz and 8 bit resolution.

The four test targets included three FBH’s - two at 0.64mm diameter and 
another at 0.89mm and a two-feature target (hereafter, "double" FBH) composed 
of one smaller FBH of 0.64mm diameter drilled into the bottom of a FBH of 
0.89mm diameter. Schematic diagrams showing the target configurations and the 
corresponding idealised B-scan image are shown in Figure 6.5.1 and Figure 6.5.2, 
respectively. The validity of the schematic diagram Figure 6.5.2 was confirmed 
experimentally using a larger "double" FBH (a FBH of 0.89mm diameter drilled 
into the bottom of a FBH of 1.14mm diameter) and positioned at the less “noisy” 
section of the JED test-piece. The three A-scans illustrated in Figure 6.5.3 were 
obtained with the transducer carefully aligned so that beam axis was perpendicular 
to the test piece surface. In the central result, the target lies on the beam axis, the 
two adjacent scans being taken with the transducer ±2mm off axis. These results 
show that when scanning the transducer across the "double" FBH, the echo signals 
from the shoulder of the "double" FBH have similar variation as the echo signals 
from the bottom of the "double" FBH but the amplitude of the signal from the 
shoulder is much smaller. The set of 64 A-scans to be processed here was taken 
from a more noisy part of the disc resulting in signal to noise ratios at least 12dB 
worse than those of the data shown in Figure 6.5.3. So, the signal corresponding to
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the shoulder o f the "double" FBH will be smaller than the grain scattering and will 

be much more difficult to detect than the signal from even the smaller FBH’s. For 

convenience o f comparison between the target configuration and the processed 

images, the time range and A-scan numbers indicated are the same as those to be 

used later when presenting false colour B-scan images o f the test piece.

T in e  -  M ic r o S e c s .

Figure 6.5.1 A schematic diagram of the test target configuration. The dimensions 

stated are for hole and shoulder diameters - note that the diameters o f the holes are 

not shown to scale but the position of each hole bottom is.
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Figure 6.5.2 Anticipated B-scan image corresponding to the test target 

configuration shown in Figure 6.5.1.
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Figure 6.5.3 The three A-scans were obtained with the transducer carefully aligned 

so that beam axis was perpendicular to the test piece surface. In the central result, 

the target lies on the beam axis, the two adjacent scans being taken with the 

transducer ±2mm off axis.
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Two types of B-scan false-colour images are used to present the 

experimental and processed results in this section. The first is a B-scan waveform 

image with the amplitude emphasised by (point-by-point) changing the trace colour 

with signal amplitude, according to the linear three colour scale included in Figure 

6.5.4. The second is a B-scan intensity image with waveform intensity in false 

colour scale. In the B-scan intensity image, the colour o f each pixel is determined 

by the power of the waveform amplitude according to a linear colour scale with 

fifteen colour steps as shown in Figure 6.5.7.

6.5.1 Time-space array processing based on optimal waveform estimation

A waveform image constructed from the original unprocessed data is 

shown in Figure 6.5.4. It can be seen that, due to the strong masking effect of the 

grain scattering, it is very difficult to identify the four defect positions from just this 

picture.

Spatial averaging can smooth out some of the grain noise as shown in 

Figure 6.5.5, where each trace represents an average of 6 adjacent A-scans, taken 

as the data was recorded. However it is still not possible to reliably locate all of the 

targets. Note that to aid direct comparison of each method, all o f the waveform 

images have been normalised to the same amplitude scale.

A significant improvement in image quality can be obtained by applying 

MVDR time-space array processing. The signal-to-noise ratio (see Eq. 6.1) of the 

image has been enhanced by 7dB. The following parameters were used: number of 

input channels M  = 6; processing window length N  = 64. Now the four target
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signals can be visually identified in Figure 6.5.6 at the locations which have 

significant number of points with the red colour that represents the high amplitude 

levels. However the signals corresponding to the shoulder o f the "double" FBH are 

still too small to be seen.

To demonstrate the processing effects, the above results were also 

presented in B-scan intensity image format as shown in Figure 6.5.7-Figure 6.5.9 

accordingly.
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Figure 6.5.4 The original unprocessed 64 A-scans.

Figure 6.5.5 Spatial averaged result provided by Rolls-Royce for the same test 
block and A-scans as in the Figure 6.5.4. It shows that some of the defect signals 
are even less visible than some of the grain noise.
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Figure 6.5.6 Result from time-space array processing based on optimal waveform 
estimation. The signal-to-noise ratio of the image has been enhanced by 7dB.

Figure 6.5.7 The false colour image of the same original A-scan data as shown in 
the Figure 6.5.4 - the original unprocessed 64 A-scan data.
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Figure 6.5.8 The false colour image of the same spatial averaged A-scan data as 

shown in the Figure 6.5.5.

5  6  7 8 9  l O  11 1 2  1 3  14 15 16

T ine M i c r o S e c s  .

Figure 6.5.9 The false colour image of the A-scan data processed by optimal time- 

space array processing method, same as shown in Figure 6.5.6. The four distinct 

target signals can be clearly identified. The signal-to-noise ratio of the image has 

been enhanced by 7dB.
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6.5.2 Adaptive Wiener filtering

The two dimensional adaptive Wiener filtering method described in Chapter 

5 has been applied to process the same A-scan data (Figure 6.5.4) as used in 

obtaining the results of Figure 6.5.6 and Figure 6.5.9. The processing cell consists 

o f 6 traces and each trace was windowed to contain 32 samples.

In order to give a consistent comparison, the unprocessed A-scan data 

(Figure 6.5.10), the spatial averaged A-scan data (Figure 6.5.11) and the A-scan 

data after adaptive Wiener filtering (Figure 6.5.12) are all presented in normalised 

format and applied with the same attenuation factor a  = 0.8.

It can be seen from the result after adaptive Wiener filtering in Figure 

6.5.12 that the time-space domain contrast and sharpness were greatly enhanced 

compared to both the unprocessed A-scan data (Figure 6.5.10) and the spatial 

averaged result (Figure 6.5.11). The four defect spots can now be distinguished 

from the grain noise by their significant number o f red colour points shown in 

Figure 6.5.12 or yellow colour points in Figure 6.5.13. These colours are 

indications of the high signal amplitude or intensity levels. The signal-to-noise ratio 

o f the image has been enhanced by 15dB. This is achieved by the non-linear 

processing based on the differential information extracted from the local image and 

its surrounding image of the time domain input signals. That is, if the local image 

variance is greater than the variance of its neighbouring image, the output signal 

amplitude will be proportional to its input signal amplitude, otherwise, the output 

signal amplitude will be set equal to the local mean. Typically, the areas filled with 

straight lines in the processed result (Figure 6.5.12) correspond to the regions 

where the waveform amplitudes were set to their local means.

It should be noted that, although after adaptive Wiener filtering some 

strong grain scattering is still present, the overall contrast o f the target image is 

visibly greater than that of the grain noise. Whereas before the filtering their 

contrasts are very similar.
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Figure 6.5.10 The same test block and A-scan as in the Figure 6.5.4 but with 
additional attenuation compensation. The attenuation factor used here is a = 0.8.

Figure 6.5.11 The same spatial averaged result as shown in Figure 6.5.5 but with 
additional attenuation compensation. The attenuation factor used here is same as 
used in the Figure 6.5.10 (a = 0.8).
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Figure 6.5.12 Output of two-dimensional adaptive Wiener filter for the same input 

A-scans as shown in Figure 6.5.4. The attenuation factor used here is same as used 

in the Figure 6.5.9 and Figure 6.5.11 (a = 0.8). Here the contrast and sharpness of 

the four defect spots were remarkably enhanced.

Figure 6.5.13 The false colour image of the 64 A-scans processed by Wiener 

filtering, same as shown in Figure 6.5.12 (a = 0.8). The signal-to-noise ratio of the 

image has been enhanced by 15dB.
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6.5.3 Discussion

From the above results, it can be seen that both optimal time-space array 

processing and two-dimensional adaptive Wiener filtering can greatly enhance the 

visibility o f defect images masked by grain scattering noise. Both methods offer 

better overall performance than that o f spatial averaging.

On comparing two-dimensional adaptive Wiener filtering to optimal time- 

space array processing, we can see that the Wiener filter enhances the sharpness 

and contrast o f the images to a greater extent. However, it is a non-linear method 

that distorts the waveforms. This of course would not be a problem if the enhanced 

images are interpreted visually according to colour thresholding and no further 

processing requiring original waveform information is planned. Furthermore, the 

assumption of an exponential attenuation model may introduce additional artificial 

effects. In contrast, optimal time-space array processing is a linear method without 

any attenuation compensation, and therefore keeps the original signal waveform 

undistorted. This feature can be useful for further automatic pattern recognition 

processing, such as defect identification, location, sizing and classification, but 

time-space array processing is much more computing intensive than is Wiener 

filtering. On the other hand, the adaptive Wiener filter used to produce the result 

shown in Figure 6.5.12 is only based on the time-space domain local mean and 

variance. This result in that the overall processing effects are mainly represented as 

enhancement o f contrast and sharpness of image. However the performance of the 

adaptive Wiener filter can be enhanced further, if more detailed statistical features 

that can discriminate the defects from the grain scattering could be exploited in the 

processing.
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7. Conclusion

A number o f signal processing methods, have been developed and 

evaluated for ultrasonic quantitative non-destructive testing o f highly scattering 

materials. The processing involves signal enhancement, signal detection and image 

enhancement. The data considered is for the case o f targets in materials with 

inhomogeneous grain structure, the target dimensions being similar to the average 

grain size and the dominant wavelengths o f the interrogating pulses. For such 

circumstances, the theoretical and experimental investigations presented here have 

shown that fixed threshold detection methods widely used in industry are not 

capable of reliably detecting targets. A major problem with fixed thresholding is 

that even after the signals have been enhanced, and for a single test piece, the 

detection false alarm rate will vary exponentially with the noise variance. Much 

better detection performance has been achieved here by novel applications of 

adaptive thresholding methods. In particular, methods originally developed for 

radar applications, such as constant false alarm rate (CFAR) based cell-averaging 

detector (CA-CFAR) and automatic censored mean level detector (ACML-CFAR), 

have been adapted and applied to the current application. Such approaches are able 

to reliably detect defects with a much lower false alarm rate than with fixed 

thresholding. Their detection performance can be quantitatively controlled by a 

desired false alarm rate that can be maintained consistently throughout a 

complicated test piece with widely varying grain structure. Indeed, where the 

unwanted scattering has certain statistical characteristics, the false alarm rate of 

CFAR detectors is in fact independent o f the noise variance. A number o f studies 

have shown that real scattering from grains has characteristics close to that 

assumed in the theory. However o f course, as defects become smaller, the signal to 

grain noise ratio can be so poor that some form of signal enhancement is required 

prior to detection.
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Major improvements in signal to grain noise ratios can be obtained with 

a number o f signal processing techniques, but some o f these are very sensitive to 

the optimum choice of signal processing parameters. For instance, split spectrum 

minimisation in conjunction with polarity thresholding can only give good results 

with the current data if optimised for each individual A-scan. The optimisation 

requires knowledge of the input signal to noise ratio which is usually unknown a 

priori. Simpler methods such as spatial averaging are less susceptible to parameter 

selection, but only moderate signal enhancement can be obtained.

In most earlier work related to the current application, the input 

information from a single channel was used - usually a one-dimensional A-scan 

time series obtained at one transducer position. Based on analyses o f the 

differential features o f typical grain and defect scattering, the novel multi-channel 

approaches introduced and developed here include: the normalised least mean 

square (NLMS) adaptive filtering in conjunction with ACML-CFAR adaptive 

detection, minimum variance distortionless response (MVDR) array processing and 

two-dimensional adaptive Wiener filtering. Major improvements over existing 

methods have been achieved by self-optimising filter responses not only according 

to differential features between the signals and grain noise in the time and or 

frequency domain, but also according to differential features in the spatial domain.

Experimental evaluations on a set of 64 A-scans obtained during scanning 

of a coarse-grained JED test piece have shown that small defect signals masked by 

scattering noise can be detected automatically with near-zero false alarm rate by 

using novel implementations of NLMS filters in conjunction with ACML-CFAR 

detection. Typically, NLMS filters can enhance the signal-to-noise ratio by 5~7dB 

over a whole set of data using constant processing parameters throughout. Not 

only do these new methods offer much lower false alarm rates than does for 

instance split spectrum processing, the processing time is much shorter than FFT 

based methods. In fact, it is feasible to implement the new methods for on-line 

processing. For instance, as estimated in the Table 6.4.2 a typical number of 

FLOP’S for NLMS adaptive filtering is about 105 for a single A-scan. If  the
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processing is operated in real time at a typical scan rate o f 1000 A-scan/sec., the 

number of float point operation required per second (FLOPS) is about 108 or 100 

MFLOPS. Using a parallel implementation o f the algorithms, it is feasible that this 

processing speed can be achieved by currently available digital signal processors, 

such as the TMS320C40’s that each have an operating speed of 50 MFLOPS.

Another novel approach evaluated here is to produce enhanced pseudo B- 

scan images from a set of sequential A-scans using MVDR array processing and 

two-dimensional adaptive Wiener filtering methods. Results from real A-scan data 

have shown that the signal-to-noise ratio of images can be significantly enhanced, 

typically by 7dB with MVDR processing and 15dB with adaptive Wiener filtering. 

The enhanced images provide visual information that can be interpreted manually 

according to colour thresholding or automatically by further pattern recognition 

processing for defect identification, location, sizing and classification.

To summarise: major improvements over existing methods have been 

achieved by introducing and developing novel multi-channel adaptive filtering 

approaches based on analyses of the differential features o f grain and defect 

scattering. These approaches optimise filter responses by not only using differential 

features between the defect signals and grain noise in the time and or frequency 

domains as in traditional existing methods, but also by adaptively exploiting 

additional differential features in the spatial domain to enhance the defect signals 

and images. Automatic detection o f the enhanced signals is achieved using constant 

false alarm rate detectors adapted and developed from well-established radar 

techniques. The performance of the new approaches is evaluated by processing not 

just a few A-scans or simulated data as usually shown in the literature, but 

extensive sets o f A-scan data from test blocks containing both artificial targets and 

real flaws. The results show that the new methods can detect all the test target 

signals masked by grain noise, with near zero false alarms, and that the visibility of 

defect images corrupted by grain scattering has been considerably enhanced. An 

important advantage o f the current work is that fixed processing parameters have
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been used throughout. Furthermore, some of the methods could be implemented 

for on-line real-time application using currently available digital signal processors 

to construct a programmable system that is capable o f operation in real time at 

typical scan rates. These results should encourage further research and 

development o f the approaches proposed. In particular, it could be beneficial to 

make use o f the concepts introduced here in other methods, such as the wavelet 

transform or neural network-based processing.
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8. Future work

The results presented here have shown encouraging improvement in the 

detection o f defect signals masked by grain noise, and in the enhancement of the 

visibility o f defect images embedded in grain scattering. They are a first step 

towards providing a statistically reliable evaluation for the digital signal/image 

processing techniques used. A fuller evaluation would involve a larger number of 

test blocks than available at present as well as large-scale tests with components 

containing real defects.

In the current work, signal and image enhancement involving frequency 

domain characteristics has been carried out using the Fast Fourier Transform. An 

alternative approach for time-frequency domain analysis that has recently attracted 

some interest in the signal-processing community [Weiss, L.G., 1994] is the 

wavelet transform method. Since the ultrasound echo signals from defects can be 

viewed as superposition of scaled and translated replicas of the transmitted signal - 

a “mother” wavelet, defect signals could be identified by decomposing the signals 

over the collection of the wavelets, i.e. by taking a wavelet transform. Also, the 

echo signals scattered by grains are often nonstationary as a result o f the 

inhomogeneous nature of the grain structure. Thus, as has already been discussed, 

the characteristics of the signal and noise might be anticipated to have localised 

differential features in both the time and frequency domains. Such characteristics 

suggest that the performance of signal and image processing based on frequency 

analysis could be improved by using a wavelet transform in place o f a FFT. 

However, it should be borne in mind that to work well the wavelet transform 

approach requires at least some distinctive differential features between the wanted 

signal and the unwanted noise after the transform. One such feature is that the 

wanted signals are better correlated with the hypothesised wavelets than is the 

unwanted grain scattering. The current work shows that the data encountered here
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is such that these features could be extracted but at a level that may not be 

significantly distinguishable to offer any major improvement over the methods 

investigated here. Nevertheless, wavelet transform methods for the current 

application may be worth investigating in future, especially in conjunction with any 

new development in signal processing involving localised time-frequency analysis.

Further developments in signal/image enhancement and defect detection, 

location, sizing and classification could result from an improved understanding of 

the scattering characteristics of the grains and the true defects. In particular, more 

theoretical and experimental research is required for the case o f small targets with 

dimensions similar to the grain size, and the dominant wavelengths o f the 

interrogating pulses. Obviously, to discriminate the true defect-signals from the 

grain noise, it is crucial to identify sufficient differential features that can be 

incorporated into the processing. However, at present only very limited knowledge 

of such features is available, therefore the full potential o f the techniques 

investigated has probably not yet been achieved.

One approach to obtain such knowledge could be to make use o f recent 

work1 to predict echo responses from targets in, albeit, idealised loss-free solids, as 

a means towards predicting realistic scattering patterns. The ability to do this 

would not only provide unlimited data for evaluating existing signal processing 

methods, but could also provide some insight into the physical mechanism of the 

grain and true defect scattering. This in turn could facilitate further development 

o f improved techniques including, for instance neural network methods, where a 

detailed knowledge o f the features of wanted and unwanted signals is o f great 

benefit. Alternatively, neural network methods could be used as tools to extract 

discriminating features that could be exploited in further processing.

1 . See for instance: [Weight, J.P., 1993], [Stacey, R., 1993], [Lhemery, A., 1995][ Sumbatyan, M. A.,1994] 

[Sedov, A., 1992]
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Finally it is likely that the existing methods developed here could have 

application for on-line real-time signal processing. A feasibility study is being 

carried out in conjunction with a number of state-of-the-art digital signal processor 

suppliers, the conclusion being that adaptive Wiener filtering and NLMS adaptive 

filter in conjunction with ACML adaptive detection techniques could be 

implemented in real time with a moderate amount of parallel processing. Such a 

system would be fully programmable and could therefore incorporate and/or 

develop further improvements in real-time signal processing.
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Glossary of Acronyms

ACML - automatic censored mean level (see page 29).

CFAR - constant False Alarm Rate (see page 23).

FBH - flat-bottom hole (see page 94).

JED - jet engine disc used in the current application (see page 94). 

LMS - the least mean square (see page 58).

MGF - moment generating function (see page 19).

MNDR - minimum-noise distortionless response (see page 63).

MVDR - a minimum-variance distortionless response (see page 63). 

NLMS - normalised LMS algorithm (see page 60).

SNR - the defect signal to grain noise ratio (see page 90).

SSM - split spectrum minimisation (see page 40)

SSP - split spectrum processing (see page 35).

SSPTM - SSM in conjunction with polarity thresholding (see page 42) 

PDF - Probability distribution function (see page 14).

QNDE - quantitative non-destructive evaluation (see page 6).
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