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Abstract 22 

The rapid decline in urban green (UGS) and blue space (UBS) in developing countries has led to a 23 

widespread degradation of available ecosystem services (ES). However, impacts of UGS and UBS changes 24 

on ES tend to vary over space and time, and to date these impacts have not been studied in sufficient detail 25 

in emerging economies. By comparing UGS and UBS change patterns with multitemporal Landsat data 26 

recorded during the past 30 years (1991–2021), this study has examined the impact of several factors on 27 

ES in some of the world’s climate hotspots. Although obtaining relevant and accurate information on ES is 28 

difficult in many parts of the developing world, this work has developed baseline data suitable for assessing 29 

ES loss over five densely populated cities in Bangladesh – Dhaka, Chattogram, Khulna, Rajshahi, and 30 
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Sylhet. ES loss was quantified in monetary terms using adjusted value coefficients. The topographic and 31 

anthropogenic factors driving spatial differences in ES degradation in these cities were analyzed with a 32 

geographical detector. The results indicated that the cities experienced a combined monetary loss of USD 33 

628.58 million as a result of specific ES degradation, primarily due to the decline of UGS and UBS. The 34 

value of ES loss was notably higher in Dhaka and Chattogram than in the other cities due to marked 35 

differences in anthropogenic activities. Population growth, extensive urban sprawl, and the development of 36 

dense road networks were identified as the major causes of urban green and blue space loss and consequent 37 

reduction of ES. The findings of this study provide important insights which can be used to support the 38 

formulation of public policies and management plans aimed at restoring and maintaining sustainable urban 39 

ecosystems. 40 

Keywords: Ecosystem services, green and blue space, spatial heterogeneity, Ecosystem services value 41 

(ESV), Cross-city comparison, spatiotemporal analysis     42 

1. Introduction 43 

An ecosystem is a community or region where energy and materials are transferred between 44 

organisms and their physical environment (Chapin et al., 2002). The public benefits provided by 45 

an ecosystem were first discussed in the 1970s when the concept of ecosystem services (ES) 46 

emerged (Nahlik et al., 2012). While there are different types of ES – e.g. regulatory, supporting, 47 

provisioning, and cultural (De Groot et al., 2002; MEA, 2005)) – they all contribute to the 48 

wellbeing of people and society (Vargas et al., 2019). The need to quantify ES has been recognized 49 

by various international organizations, including the Millennium Ecosystem Assessment Board 50 

(MEAB) (MEA, 2005), and in policy documents like The Intergovernmental Science-Policy 51 

Platform on Biodiversity and Ecosystem Services (IPBES) (Díaz et al., 2015), and The Economics 52 

of Ecosystems and Biodiversity (TEEB) (Russi et al., 2013).    53 
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Excessive use of natural resources in recent decades has resulted in a rapid decline in ES 54 

(Adegboyega et al., 2019). The MEAB (MEA, 2005) has reported that different types of wetland 55 

ecosystems (e.g. lakes, rivers, marshlands), have been destroyed/degraded during the twentieth 56 

century, with a resulting alteration of the Earth’s energy balance (Song et al., 2018) and 57 

biogeochemical cycles (Kaushal et al., 2014). The resulting damage to ecosystem service values 58 

(ESV1) is now being more broadly recognized (Costanza et al., 1998).  59 

An ever-increasing world population (Berihun et al., 2021), overexploitation of natural resources 60 

(Dong et al., 2014), rapid urbanization (Xiao et al., 2020), and industrialization (Sanchez-Porras 61 

et al., 2018) have resulted in a serious decline in ES across the world, most pronounced in 62 

developing countries like Bangladesh where land is scarce and the pattern of land use change is 63 

complex (Crespin and Simonetti, 2016; Hoque et al., 2022). In the context of highly urbanized 64 

countries, the quantification of ESV could inform conservation efforts and the sustainable use of 65 

natural capital (Jin et al., 2021).  66 

Intense anthropogenic activities in urban settings have major impacts on the natural environment, 67 

including a marked deterioration in vegetated and waterbody areas. This is especially common in 68 

developing countries. It has been noted that the pattern of urban land use change is strongly 69 

associated with ES in space and time (Kain et al., 2016). Different types of urban green space 70 

(UGS) such as parks or urban forests (Tian et al., 2020), and blue space (UBS) like lakes, ponds, 71 

and rivers (Dou et al., 2017) provide defined ES in urban areas (Amini Parsa et al., 2019). UGS 72 

and UBS offer a range of environmental benefits for urban dwellers, including local climate 73 

regulation (Adnan et al., 2022; Gunawardena et al., 2017) and air purification (Matos et al., 2019). 74 

 
1 Ecosystem service value (ESV) refers to the monetary values assigned to an ecosystem (Sannigrahi, et al., 2019) 
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The presence of UBS, for example, can reduce the ambient air temperature by 1–3 °C within 30 75 

meters (m) of the waterbody (Kleerekoper et al., 2012). UGS and UBS also play an important role 76 

in water storage and can be used to control the release of urban water flows (Bellezoni et al., 2021), 77 

reduce energy consumption (Bellezoni et al., 2021), reduce noise (Koprowska et al., 2018), and 78 

enhance carbon sequestration (Wang et al., 2021). They also provide suitable habitats for a range 79 

of bird and aquatic species (Kowarik et al., 2019), counteract biodiversity loss, and support 80 

pollination (Threlfall et al., 2015). From a public health point of view, UGS and UBS contribute 81 

positively to mental and physical health as well as some social interaction (Labib et al., 2020). In 82 

summary, protecting UGS and UBS is essential for achieving overall environmental sustainability. 83 

Advances in geospatial technology have enabled researchers to use geographical information 84 

systems (GIS) and remotely sensed data to evaluate the spatiotemporal pattern of geographic 85 

phenomena such as ES (Vargas et al., 2019). Land cover data derived from satellite images is now 86 

routinely used in ESV estimation (Hoque et al., 2022; Mallick et al., 2022). Various econometric, 87 

physical, and energy models are also available (Zhang et al., 2020). Econometric techniques such 88 

as market price method, benefit/value transfer method (B/VTM), contingent valuation, hedonic 89 

pricing, conjoint analysis, replacement cost, and spatially explicit biophysical models are among 90 

the various ES quantification approaches now widely used (Costanza et al., 1998; Costanza et al., 91 

2014; De Groot et al., 2012; Sannigrahi et al., 2019). Due to continual inflation and associated 92 

price hikes, however, methods like BTM do not accurately reflect the actual loss of ES, so reliable 93 

information is difficult to obtain. To overcome this problem, coefficient values of ES were used 94 

and adjusted to minimize the sensitivity of the covariates (e.g. land use types) (Sannigrahi et al., 95 

2019). 96 
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Estimating ES is a challenging task due to the complex interactions between various landscape 97 

elements (Braun et al., 2019; Islam et al., 2018) which play a critical role in modifying features 98 

like UGS and UBS. Different drivers need to be considered when investigating the responses of 99 

ES to landscape change caused by human activities. By detailing the changing patterns of UGS 100 

and UBS, appropriate strategies can be developed to minimize possible negative impacts on these 101 

valuable natural features. Although changes in ESV are driven by different factors (MEA, 2005), 102 

such as climate change (Sannigrahi et al., 2020), land use changes (Lin et al., 2018), and 103 

urbanization (Fei et al., 2016), most studies to date have quantified ESV by considering only a 104 

single driver (Runting et al., 2017; Zhang et al., 2020).  105 

Quantifying ESV using multiple factors is a complex process because of the dynamic nature of the 106 

variables used and their different scales. The non-availability of data at the local scale sometimes 107 

prompts researchers to quantify bivariate associations between ESV and particular influencing 108 

factors (Li and Song, 2021). Challenges can be overcome by using credible global datasets and the 109 

establishment of applications such as the geographical detector model (GDM) (Fang et al., 2021; 110 

He et al., 2021). These provide a comprehensive explanation of interdependency and a 111 

determination of the influence of various drivers. Most existing studies have used only a single 112 

city when estimating ES loss. Rahman and Szabó (2021) investigated the spatiotemporal ES loss 113 

in Dhaka city between 1990 and 2020. Similar studies were also conducted in Taiyuan (Liu et al., 114 

2012), New York (Miller and Montalto, 2019), Delhi (Morya and Punia, 2022), and Barcelona 115 

(Langemeyer et al., 2020). Since population growth dynamics and anthropogenic activities differ 116 

significantly between cities, it is expected that ES loss should also vary.  117 

This study aims to: (i) investigate spatiotemporal patterns of urban green and blue spaces in five 118 

large cities of Bangladesh (Dhaka, Chattogram, Khulna, Rajshahi, and Sylhet); (ii) develop 119 
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baseline information on ES loss due to anthropogenic activities at the metropolitan scale; and (iii) 120 

determine factors driving the loss of these spaces. Baseline information on ES loss is essential for 121 

the formulation of conservation and restoration strategies, but such information does not currently 122 

exist for large Bangladeshi cities. This study not only allows comparisons between cities, but also 123 

provides important insights into the wise use of the natural capital of a city.  124 

2. Materials and methods 125 

2.1. Study area 126 

This study examines five of the major cities of Bangladesh – Dhaka, Chattogram, Rajshahi, 127 

Khulna, and Sylhet (Fig. 1). All these cities are located adjacent to major rivers: the Buriganga 128 

(Dhaka); Karnafuli (Chattogram); Ganges (Rajshahi); Rupsha (Khulna); and Surma (Sylhet). 129 

Dhaka has the largest area (1488.4 km2), followed by Chattogram (729.9 km2), Rajshahi (366.6 130 

km2), Khulna (233.3 km2), and Sylhet (82.5 km2). Dhaka also has the highest population, 131 

approximately 23 million (m) people, while Rajshahi has 9.5m, Chattogram 9m, Khulna 3m, and 132 

Sylhet 0.95m (Bondarenko et al., 2020). All five cities have experienced rapid urbanization in the 133 

recent past, with the associated conversion of extensive vegetated and waterbody areas into built-134 

up urban areas (Abdullah et al., 2022; Moniruzzaman et al., 2020). The current annual rate of 135 

spatial growth of Dhaka is 11.5% (Moniruzzaman et al., 2020), while for Rajshahi it is 5.0% 136 

(Faridatul, 2017), and for Chattogram 3.75% (Abdullah et al., 2022). Urbanization contributes 137 

significantly to increasing Gross Domestic Product (GDP), but unplanned growth can be 138 

detrimental to both physical and social environments. 139 
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 140 

Fig. 1 Location of five cities in Bangladesh  141 

 142 

2.2. Data collection and image preprocessing  143 

The current study has employed multi-date Landsat images to investigate the spatiotemporal 144 

pattern of UGS and UBS during the period 1991 to 2021. A total of 49 Landsat 5 and 8 images 145 

were acquired from EarthExplorer (https://earthexplorer.usgs.gov/) for the following years – 1991, 146 

1996, 2001, 2006, 2011, 2016, and 2021. All images used in this work were taken in the pre-147 

monsoon month of March because the cloud cover at other times of the year was a significant 148 
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problem. The images have undergone various preprocessing steps, including radiometric 149 

correction.  150 

2.3. UGS and UBS extraction  151 

This study has employed a normalized difference vegetation index (NDVI) (Rouse Jr et al., 1974) 152 

and a modified normalized difference water index (MNDWI) (Xu, 2006) to identify and extract 153 

UGS and UBS in the five cities. The following equations were used to compute NDVI and 154 

MNDWI from the Landsat images:  155 

𝑁𝐷𝑉𝐼 = (𝐵𝑁𝐼𝑅 − 𝐵𝑅) (𝐵𝑁𝐼𝑅 + 𝐵𝑅)⁄    (1) 

𝑀𝑁𝐷𝑊𝐼 = (𝐵𝐺 − 𝐵𝑀𝐼𝑅) (𝐵𝐺 + 𝐵𝑀𝐼𝑅)⁄  (2) 

where BNIR is near-infrared, BR is red, BG is green, and BMIR is mid-infrared band.  156 

NDVI values range from -1 to +1, with negative values indicating no vegetation, values 0-0.2 157 

indicating unhealthy vegetation, 0.2-0.5 indicating moderately healthy vegetation, and >0.5 158 

indicating healthy vegetation (Hashim et al., 2019). According to the World Health Organization 159 

(WHO), the area of an ideal UGS should be at least 0.5 ha (WHO, 2017), so locations with NDVI 160 

values ≥0.2 and area ≥0.5 ha were classified as UGS for this work. MNDWI also ranges from -1 161 

to +1, with positive values indicating waterbodies. Locations with MNDWI ≥ 0.2 and area ≥0.5 ha 162 

were defined as UBS in a similar manner to UGS (WHO, 2017; Wu et al., 2020). The accuracy of 163 

NDVI and MNDWI for 1991, 1996, 2001, 2006, 2011, 2016, and 2021 was assessed by estimating 164 

overall accuracy and kappa statistics, and comparing with reference data collected from Google 165 

Earth. Overall accuracy illustrates the percentage of correctly classified pixels (Congalton, 1991). 166 

The kappa statistics range between 0 and 1, with 0 indicating poor agreement and 1 indicating 167 

nearly perfect agreement (Cohen, 1960). 168 
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2.4. Estimating ecosystem services values (ESV) 169 

The benefit transfer method (BTM) (Costanza et al., 1998) was used to estimate ESV. This method 170 

is particularly useful for a quick assessment of ESV in large areas with typically large datasets 171 

(Emerton, 2014; Estoque et al., 2018). Costanza et al. (1998) proposed this method and 172 

subsequently estimated worldwide equivalent values for different biomes which were adopted by 173 

various other countries (Hoque et al., 2022; Khan et al., 2019; Liu et al., 2010; Rahman and Szabó, 174 

2021; Sharma et al., 2020; Zhou et al., 2020). ESV is divided into four categories – provisioning, 175 

regulating, supporting, and cultural, and also includes several sub-classes (Table 1). A detailed 176 

ESV dataset for Bangladesh was not available, so the study adopted value coefficients (VC) from 177 

previous studies of the same biome (Costanza et al., 1998; De Groot et al., 2012). Most of the VC 178 

were outdated and not representative of current values, so the present BTM values were adjusted 179 

as explained in the next section.   180 

2.4.1.  Modifying the ESV 181 

The current ES values of UGS and UBS were estimated by adjusting for the inflation rate, using a 182 

Consumer Price Index (CPI) method (Equation 3) (BLS, 2022):  183 

𝐶𝑃𝐼 =  
𝐶𝑡

𝐶𝑜
× 100 (3) 

 184 

where CPI is the consumer price index at present (2022), 𝐶𝑡 is the cost of a market basket in the 185 

current period, and 𝐶𝑜 is the cost of a market basket in the base period.  186 

2.4.2.  Calculating ESV 187 
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Using the adjusted values (Table 1), ESV of UGS and UBS for all five cities were estimated with 188 

the following equation (Costanza et al., 1998): 189 

𝐸𝑆𝑉𝑡 = ∑(𝐴𝑘 × 𝑉𝐶𝑘) (4) 

where ESVt is the total estimated ecosystem services value, Ak is area (ha), and VCk is value 190 

coefficient (USD ha-1year-1) for land feature k.  191 

The following equation (Song and Deng, 2017) was subsequently employed to estimate long-term 192 

and short-term changes in ESV:  193 

𝐸𝑆𝑉𝑐 =  
𝐸𝑆𝑉𝑓 − 𝐸𝑆𝑉𝑖

𝐸𝑆𝑉𝑖
× 100 

(5) 

where ESVc is the change in ecosystem service and ESVi and ESVf are ecosystem values for the 194 

base and final years, respectively.  195 

2.5. Estimating coefficients of sensitivity and elasticity 196 

Surrogate values were used to estimate ESV, so the potential for uncertainties was large. A 197 

sensitivity test was also conducted to understand this possible issue. The response of ESV to the 198 

changes in VC (Kindu et al., 2016) was estimated using a well-known coefficient of sensitivity 199 

(CS) test (Sannigrahi et al., 2019). The CS is based on a standard economic concept of elasticity, 200 

which was measured as:  201 

𝐶𝑆 =  
(𝐸𝑆𝑉𝑗 − 𝐸𝑆𝑉𝑖)/𝐸𝑆𝑉𝑖

(𝑉𝐶𝑗𝑘 −  𝑉𝐶𝑖𝑘)/𝑉𝐶𝑖𝑘
 

(6) 

where ESV is ecosystem services value, VC is value coefficient, i and j represent initial (modified 202 

values from Table 1) and adjusted values (±50% adjusted values), and k is ecosystem type. ESV 203 

was measured for each ecosystem type. Services can be elastic (less reliable) when CS exceeds a 204 
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threshold value of >1 or can be inelastic (reliable) when CS is <1. In addition, CS values of 1 and 205 

0 indicate complete elasticity and inelasticity, respectively. The larger the CS value, the more 206 

critical (less reliable) the accuracy of an ESV index and vice versa. 207 

Table 1 Old and modified ESV values of UGS and UBS 208 

Indicators  UGS UBS Reference(s)  

Old values Converted values Old values Converted values 

Provisioning      

Food production 200 253.2 106 134.2 (Costanza et al., 2014) 

Raw materials 84 106.34 
  

’’ 

Medicinal resources 1504 2,071.57 
  

(De Groot et al., 2012) 

Water supply 27 34.18 1808 2,288.93 (Costanza et al., 2014) 

Genetic resources 1517 1,920.52 
  

’’ 

Regulating      

Gas regulation  12 15.19 
  

(Costanza et al., 2014) 

Climate regulation  2044 2,587.70 
  

’’ 

Disturbance regulation  66 83.56 
  

’’ 

Water regulation  8 10.13 7514.1 9,512.84 ’’ 

Waste treatment 120.06 152 917.7 1,161.81 ’’ 

Pollination 30 37.98 
  

’’ 

Biological control 11 13.93 
  

’’ 

Erosion control 337.45 427.21 
  

’’ 

Moderating extreme events  66 90.91 
  

(De Groot et al., 2012) 

Carbon sequestration 141 161.88 160.6 184.38 (Kibria et al., 2017) 

Air purification 1010 1,159.57 1150.37 1,320.73 ’’ 

Supporting 

Habitat/refugia 374.5 417.9 200.57 223.81 (Lin et al., 2018) 

Soil formation 333.81 372.49 23.98 26.76 ’’ 

Nutrient cycling 3 3.8 
  

(Costanza et al., 2014) 

Cultural  
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Recreation 867 1,097.62 2166 2,742.15 (Costanza et al., 2014) 

Cultural 2.0727 2.62 
  

’’ 

Total 8757.9 11020.3 14047.32 17595.61  

 209 

2.6. Transition of UGS and UBS to different land covers  210 

The transition of UGS and UBS to other land covers, such as built-up or bare land, cannot be 211 

determined only with NDVI and MNDWI statistics. This study also conducted a land use and land 212 

cover (LULC) classification for the year 2021 in the five cities to examine in more detail transitions 213 

of UGS and UBS into other LULC categories. A pixel-based classification using a Random Forest 214 

(RF) classifier was implemented because this method is regarded as superior to other methods 215 

(Abdullah et al., 2019; Adam et al., 2014). The RF algorithm is based on classification and 216 

regression trees (CART), which use a recursive binary split technique to produce the final nodes 217 

in a tree structure (Breiman, 2001). RF was implemented using the random forest package 218 

(https://www.r-project.org/) in R. All parameters (except for the number of trees) were accepted 219 

as default values. To understand more fully the transition of UGS and UBS into other land cover 220 

types, the 1991 UGS and UBS boundaries were used to extract 2021 LULC data for each city.  221 

2.7. Investigating forces driving UGS and UBS change 222 

Spatiotemporal variations in ESV are driven by many factors (He et al., 2021; Yang et al., 2022). 223 

A geographical detector model (GDM), based on spatial variation theory, was designed to measure 224 

the spatially stratified heterogeneity of a response variable and the impacts of various driving 225 

factors (Wang et al., 2010). The GDM operates on the assumption that if an environmental factor 226 

(X) contributes to a response variable (Y), their spatial distribution should be similar. Such 227 

similarities or spatial associations can be measured via q-statistics (Fig. 2) (Wang et al., 2016). By 228 
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overlaying the distribution of independent and dependent variables, variance σi
2 of ESV for each 229 

sub-region and σ2 for the whole study area can be calculated. The larger the value of q, the stronger 230 

the explanatory power of an independent variable X for the dependent variable of Y, or vice versa. 231 

The GDM included a differentiation and factor detector, and interaction, ecological, and risk 232 

detectors. Interaction detectors, which compare the contributions of two attributes individually 233 

versus their combined contribution, were selected. 234 

 235 

Fig. 2 Principles of the geographical detector model (GDM)  236 

 237 

A differentiation and factor detector can be used to detect spatial differentiation of ESV and the 238 

extent to which factor X explains the spatial variation in ESV. Measured with the q value, the 239 

expression is as follows (Wang et al. 2010): 240 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2
 

(7) 

where h = 1, 2, …, L is stratification of ESV or factor X, N is the number of samples, σ2 is the 241 

variance in ESV, and q is the degree of explanation of ESV by factor X. The value of q ranges 242 

from 0 to 1. When q = 1, factor X completely controls the spatial distribution of ESV; q = 0 243 
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indicates that there is no association between X and ESV. The interaction detector is defined to 244 

identify interaction between various factors by comparing q (X1 ∩ X2) with q (X1) and q (X2). 245 

Five factors were selected to investigate spatial variability of ESV in five cities. They were 246 

elevation (E), slope (S), population (P), proximity to roads (R), and proximity to built-up areas (B) 247 

(Table 2). The degree of association between each factor and ESV differentiation was then 248 

estimated. The results can be used to understand whether the changes in UGS and UBS are 249 

systematic or random. In this work, a nominal grid size of 30 m was used.  250 

Table 2 Data sources and resolution levels of factors  251 

Data Resolution Source 

Elevation 30 m NASA Shuttle Radar Topography Mission (SRTM) Version 3.0 (https://earthdata.nasa.gov) 

Slope 30 m Derived from DEM 

Population 100 m WorldPop (https://www.worldpop.org) 

Road 30 m OpenStreetMap (https://www.openstreetmap.org) 

Built-up area 30 m Derived from Landsat 8, USGS (https://www.usgs.gov) 

 252 

3. Results 253 

3.1. Ecosystem valuation of UGS and UBS 254 

The results indicated a trend of decreasing UGS in all five cities (Table 3). From 1991 to 2021, 255 

Dhaka experienced a decline in UGS from 27.46% in 1991 to 10.14% in 2021, with Sylhet going 256 

from 49.43 to 20.13%, Rajshahi from 35.6% to 21.7%, Chattogram from 27.79% to 18.1%, and 257 

Khulna from 40.1% to 32.17% (Fig. 3). These cities also experienced a significant loss of UBS 258 

during the study period (1991–2021). The greatest loss of UBS was observed in Sylhet, declining 259 

from 3.42% to 2.23%, while Chattogram had the least decline. Loss of UGS and UBS resulted in 260 
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significant loss of ESV (Table 4). For instance, ESV associated with UGS in Dhaka was USD 261 

244m in 1991, but decreased to USD 90.22m by 2021. Likewise, ESV of UBS reduced from USD 262 

20.32m in 1991 to USD 13.44m in 2021. Fig. 4 shows the gains and losses of UGS and UBS in 263 

the five cities analyzed. Stable green and blue spaces in Dhaka appeared to diminish more rapidly 264 

than in the other four cities.   265 

Table 3 Temporal variations in UGS and UBS in five cities, 1991-2021  266 

Year Area (ha) 

Dhaka Chattogram Khulna Rajshahi Sylhet 

USG UBS UGS UBS UGS UBS UGS UBS UGS UBS 

1991 
40866.84 

(27.46%) 

6788.79 

(4.56%) 

41358.24 

(27.79%) 

5975.64 

(4.01%) 

9376.56 

(40.1%) 

9376.56 

(10.78%) 

13058.28 

(35.6%) 

5756.13 

(15.69%) 

4077.99 

(49.43%) 

282.24 

(3.42%) 

1996 
28576.80 

(19.2%) 

6700.95 

(4.5%) 

38843.1 

(26.1%) 

5004.45 

(3.36%) 

9195.57 

(39.33%) 

9195.57 

(9.95%) 

9299.52 

(25.35%) 

3163.68 

(8.69%) 

3028.23 

(36.71%) 

232.56 

(2.82%) 

2001 
27498.24 

(18.48%) 

7997.31 

(5.37%) 

32542.2 

(21.86%) 

5291.28 

(3.56%) 

8300.61 

(35.5%) 

8300.61 

(6.74%) 

9903.33 

(27%) 

1278.09 

(3.48%) 

2968.11 

(35.98%) 

164.34 

(1.99%) 

2006 
27810.90 

(18.69%) 

3529.35 

(2.37%) 

34212.33 

(22.99%) 

5720.94 

(3.84%) 

8307.99 

(35.53%) 

8307.99 

(5.96%) 

8346.06 

(22.75%) 

3653.37 

(9.96%) 

2439.72 

(29.57%) 

231.93 

(2.81%) 

2011 
23369.22 

(15.7%) 

4639.50 

(3.12%) 

32715.36 

(21.98%) 

5421.87 

(3.64%) 

8338.41 

(35.66%) 

8338.41 

(5.9%) 

8277.66 

(22.57%) 

3380.22 

(9.22%) 

1995.93 

(24.19%) 

232.38 

(2.82%) 

2016 
19143.09 

(12.86%) 

4126.77 

(2.77%) 

27933.03 

(18.77%) 

6383.79 

(4.29%) 

7987.95 

(34.17%) 

7987.95 

(5.5%) 

9577.08 

(26.11%) 

3752.19 

(10.23%) 

2169.36 

(26.3%) 

181.98 

(2.21%) 

2021 
15098.85 

(10.14%) 

4491.72 

(3.02%) 

26941.14 

(18.1%) 

5644.62 

(3.79%) 

7662.15 

(32.17%) 

7662.15 

(6.95%) 

7958.25 

(21.7%) 

4605.48 

(12.56%) 

1660.32 

(20.13%) 

184.32 

(2.23%) 

 267 

 268 

 269 
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Table 4 Temporal changes in ESV over five cities, 1991–2021 270 

Year ESV (million USD) 

Dhaka Chattogram Khulna Rajshahi Sylhet 

UGS UBS UGS UBS UGS UBS UGS UBS UGS UBS 

1991 244.19 20.32 455.78 105.15 103.33 44.35 143.91 101.28 44.94 4.97 

1996 170.76 20.06 428.06 88.06 101.34 40.95 102.48 55.67 33.37 4.09 

2001 164.31 23.94 358.62 93.1 91.48 27.71 109.14 22.49 32.71 2.89 

2006 166.18 10.56 377.03 100.66 91.56 24.5 91.98 64.28 26.89 4.08 

2011 139.64 13.89 360.53 95.4 91.89 24.26 91.22 59.48 22 4.09 

2016 114.39 12.35 307.83 112.33 88.03 22.64 105.54 66.02 23.91 3.2 

2021 90.22 13.44 296.9 99.32 84.44 28.58 87.7 81.04 18.3 3.24 

 271 
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 272 

Fig. 3 Spatial distributions of UGS and UBS in five cities, 1991–2021 273 
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 274 

Fig. 4 Gains and losses of UGS and UBS in five cities, 1991–2021 275 

Fig 5 shows the distribution of ESV loss for UGS and UBS between 1991 and 2021. The highest 276 

ESV loss (per km2) was found in Rajshahi (USD 2.09m), followed by Dhaka (USD 1.94m), Khulna 277 

(USD 1.25m), Chattogram (USD 0.99m), and Sylhet (USD 0.56m). In Dhaka, Khulna, and 278 

Rajshahi, ESV declined most around the city center, while in Chattogram and Sylhet the losses 279 

were predominantly on the outskirts of the city.   280 
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  281 

Fig. 5 Combined loss of ESV resulting from UGS and UBS degradation, 1991–2021: (a) Dhaka; 282 

(b) Chattogram; (c) Khulna; (d) Rajshahi; (f) Sylhet. 283 

Index-based UGS and UBS accuracy was checked by computing overall accuracy and kappa 284 

statistics. The overall accuracy for UGS and UBS was 86.52%, 86.93%, 87.74 %, 86.85%, 89.21%, 285 

89.37%, and 92.56% for the years 1991, 1996, 2001, 2006, 2011, 2016, and 2021, respectively. 286 

The corresponding kappa coefficients were 0.836, 0.839, 0.842, 0.835, 0.863, 0.872, and 0.896. 287 

Both accuracy indices indicated satisfactory results.  288 

3.2. Transition of UGS and UBS to other land covers  289 

This study established that a significant proportion of UGS and UBS in all five cities was 290 

transformed into bare land and land for agricultural use (Fig. 6). In Dhaka, for example, 291 

approximately 29% of UGS and 21% of UBS have been transformed into bare land over the last 292 

30 years, with the bare land further converted into settlement or agricultural areas. Overall, around 293 
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17% of UGS and 20% of UBS was converted into agricultural land. The study also noted that a 294 

substantial portion of UGS in Dhaka (16%) was converted into built-up areas. A significant 295 

proportion of agricultural land adjacent to the city center was also converted into built-up land.  296 

 297 

Fig. 6 Transition of UGS and UBS to different LULC types between 1991 and 2021: (a) Dhaka; 298 

(b) Chattogram; (c) Khulna; (d) Rajshahi; (e) Sylhet. 299 

3.3. Sensitivity and elasticity of ESV  300 

To test the reliability of the ESV loss results, CS was calculated by adjusting VC by ±50%. The 301 

results for the five cities are shown in Table 5. The annual CS values of UGS and UBS in the five 302 

cities were <1, indicating that the results are inelastic and reliable. The highest CS value of 0.6937 303 

was for Sylhet UGS in 2021, indicating that a 1% increase in UGS is likely to increase ESV by 304 

0.6937%. The CS values for UBS are generally lower than for UGS, suggesting that ESV is more 305 

sensitive to UGS.  306 

 307 
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Table 5 CS values of UGS and UBS for the five cities 308 

Year Dhaka Chattogram Khulna Rajshahi Sylhet 

UGS UBS UGS UBS UGS UBS UGS UBS UGS UBS 

1991 0.5877 0.4663 0.6579 0.4772 0.5702 0.4823 0.6693 0.4849 0.619 0.4516 

1996 0.5696 0.2299 0.6296 0.3815 0.4092 0.451 0.6183 0.4284 0.6187 0.2329 

2001 0.5285 0.4142 0.5575 0.4005 0.5224 0.3536 0.6075 0.2936 0.5369 0.3413 

2006 0.476 0.355 0.5129 0.337 0.5184 0.3074 0.6014 0.3281 0.5114 0.3118 

2011 0.4364 0.4526 0.4282 0.3653 0.4832 0.2921 0.5086 0.325 0.4707 0.2411 

2016 0.4019 0.3028 0.3926 0.4508 0.5401 0.2581 0.4631 0.26 0.4404 0.4365 

2021 0.3872 0.3432 0.3384 0.2381 0.3496 0.2537 0.4321 0.2303 0.3331 0.2053 

 309 

3.4. Factors driving spatial heterogeneity in ESV and patterns of UGS and UBS change 310 

Multiple factors influence the ESV of UGS (p-value <0.05). Elevation appears to be the most 311 

important factor for Khulna (q = 0.126) and Rajshahi (q = 0.103), suggesting elevation is 312 

significantly associated with ESV loss in these cities. Road density, extent of built-up areas, and 313 

population were significant factors for Chattogram (q = 0.129), Dhaka (q = 0.105), and Sylhet (q 314 

= 0.338), respectively (Fig. 7a). For UBS, elevation was found to be the most influential factor 315 

affecting spatial heterogeneity of ESV in all five cities (Fig. 8a).   316 

 
(a) 
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(b) 

Fig. 7 Factors affecting UGS loss: (a) influence of individual factors (p value < 0.05 is shown 317 

only); (b) Combined influence of factors (B = built-up, E = elevation P = population, R = road, S 318 

= slope). 319 

Fig. 7b and Fig. 8b show the influence of pairwise indicators on ESV loss. For instance, the extent 320 

of built-up area and population combined influenced ESV for UGS the most in Chattogram (Fig. 321 

7b), where a combination of elevation and road density had the greatest influence on ESV loss due 322 

to UBS degradation (Fig. 8b).  323 

 
(a) 

 
(b) 

Fig. 8 Factors affecting loss of UBS: (a) influence of individual factors (p value < 0.05 is shown 324 

only); (b) combined influence (B = built-up, E= elevation, P = population, R = road, S = slope). 325 
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4. Discussion 326 

An extensive review of the available literature on the study topic has been undertaken and it 327 

appears that this is possibly the first research using geospatial data to estimate the loss of ecosystem 328 

services in several cities of a developing country. Even though the concept of ecosystem services 329 

(ES) gained popularity in the 1970s (Costanza et al., 2017), very little attention has been paid to 330 

these services in Bangladesh (Zinia and McShane, 2018), in large part due to the lack of 331 

dependable data. This lack of scientific data also means that policymakers have difficulty devising 332 

effective conservation strategies or detailed plans for ecosystem restoration (Biao et al., 2022).  333 

The study analysis indicated that all five cities experienced a gradual, yet substantial, loss of ESV 334 

between 1991 and 2021. Cities in developing countries lack the resources to deal with the rapid 335 

urbanization resulting from population growth (Moretti, 2014), so ongoing reduction in areas of 336 

green and blue spaces tends to be widespread (Table 3). The decline observed is in large part 337 

because these lands are relatively cheap and are therefore often targeted for urban development 338 

(Yang et al., 2017), especially in Bangladesh (Dewan and Corner, 2013; Jaman et al., 2020). There 339 

are no studies showing the degree of loss of ES in other cities, though previous smaller-scale 340 

studies focusing on Dhaka (Rahman and Szabó, 2021; Zinia and McShane, 2018) indicated that 341 

ES are being depleted at a great rate due to the pressure of human activity. Rahman and Szabó 342 

(2021), using the Dhaka metropolitan area (DMA) boundary, showed that built-up land had 343 

increased by 188.35% from 1990 to 2020, thereby causing a decline in ESV from USD 142.72m 344 

in 1990 to USD 57.72m in 2020. The ability of ESV to regulate factors like air pollution means 345 

that negative impacts on microclimatic conditions are increasingly becoming a matter of grave 346 

concern. Dewan et al. (2021) showed that the differences between day and night temperatures have 347 

decreased in the five cities studied due to the massive loss of vegetated areas to urbanization. This 348 
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has resulted in increased energy consumption and air pollution in the cities has become chronic, 349 

severely affecting public health (Dewan et al., 2022) and overwhelming the ability to effectively 350 

remove these pollutants in a timely manner (Fletcher et al., 2021). As greenspaces are declining at 351 

a great rate in Bangladeshi cities like Dhaka, cultural ecosystem services are reduced considerably, 352 

affecting the wellbeing of urban dwellers (Sultana and Selim, 2021). 353 

Large and densely populated megacities exert significant pressure on the natural capital of a region. 354 

The way cities are planned, however, also plays a critical role in influencing development patterns 355 

and the resulting impacts on the existing environment. While sprawling cities can produce more 356 

greenhouse gas emissions due to high dependence on motor vehicles, unplanned urban growth and 357 

density can also contribute significantly to ongoing environmental problems. Urban expansion has 358 

been shown to increase overall water yield and thus increase flood risk (Delphin et al., 2016). 359 

Bangladesh is situated on a deltaic floodplain, so most of its cities are well endowed with 360 

waterbodies that provide various provisioning, cultural, and regulation services. Flooding of 361 

existing waterbodies and waterlogging of low-lying areas are very common during the monsoon 362 

season in almost all the large cities, but the process of urbanization can reduce the associated 363 

supporting services. A study in the Pearl River Delta (PRD), for example, observed a 50% decline 364 

in habitat quality caused by urban land expansion (Wang et al., 2022). In the case of Bangladesh, 365 

a large decline in the extent and quality of fish habitat has been reported, causing a significant 366 

degradation of the aquaculture industry (Islam et al., 2004).  367 

Climate change and land use/land cover changes are the two main factors affecting ecosystem 368 

services (Biao et al., 2022). Although this study did not consider the role of climate change in 369 

ecosystem service changes, it can be strongly suggested that rapid land use/land cover changes, 370 

responding to the various demands of ever-increasing populations, are mainly accountable for the 371 
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deterioration of ES in the five cities studied. Land use/land cover changes bring significant changes 372 

to ecosystems at all levels, from local to global scale. As demonstrated by Costanza et al. (2014), 373 

the value of ecosystem services lost due to land use/land cover changes between 1997 and 2011 374 

ranged from USD 4.3 to 20.2 trillion per annum. Land use composition and configuration can also 375 

affect the proper functioning of an ecosystem (Guo et al., 2021), which inevitably reduces ES 376 

supply (Eigenbrod et al., 2011). Ma et al. (2022) showed that, between 2000 and 2020, 377 

deforestation and urbanization in Zhejiang province resulted in net primary productivity (NPP) 378 

loss of 192 gC/m2 and 115.75 gC/m2, respectively.  379 

The interaction of different factors affecting UBS and UGS loss were examined. Variables such 380 

as elevation and slope were strongly associated with spatial heterogeneity of ESV, particularly in 381 

Khulna, which has the lowest mean elevation and slope of all the cities examined. Results from 382 

previous studies have indicated that elevation is positively associated with greater vegetation 383 

cover, as built-up areas are usually concentrated in areas of low elevation (Liu et al., 2019; Wang 384 

et al., 2018). This observation appears to be true in our cases too, meaning that urban expansion is 385 

both directly and indirectly linked with loss of UGS and UBS. Population growth and proportion 386 

of built-up areas drove loss of UGS in Khulna, Rajshahi, and Sylhet, but in Dhaka and Chattogram 387 

all five factors (elevation, slope, population, road, and built-up area) were associated with the 388 

degradation of UGS.  389 

This study investigated the spatiotemporal degradation of urban green-blue spaces and the 390 

resultant ES loss. The work is, however, not entirely free of limitations and there is scope for 391 

improvement. Surrogate VC values were used in this work for the whole biome, not specifically 392 

for Bangladesh, so there could be some deviation in the VC of the same ES for different regions, 393 

which has the potential to produce some uncertainty in the results. This method is also unable to 394 
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calculate ESV for some abstract ES services, such as aesthetic beauty and cooling effects. Future 395 

studies could address these limitations. This study tested five drivers to explain the causes of 396 

changes in UGS and UBS. Inclusion of other variables, such as public policy, could also improve 397 

the research results. Despite these limitations, this study does provide useful baseline information 398 

which can be used to inform policies for saving the valuable natural capital of Bangladesh.   399 

5. Conclusion 400 

This study mapped spatiotemporal patterns of urban green and blue spaces in five major cities 401 

(Dhaka, Chattogram, Khulna, Rajshahi, and Sylhet) of Bangladesh using multitemporal Landsat 402 

data. The benefit transfer method (BTM), adjusted for present-day values, was used to understand 403 

the impacts of rapid urban growth on ecosystem service values (ESV). Finally, drivers of urban 404 

green and blue space loss were determined. The results revealed a significant loss in UGS and 405 

UBS in all five cities during the past 30 years, with Dhaka experiencing the greatest decline in 406 

both types of space, followed by Chattogram, Rajshahi, Sylhet, and Khulna, respectively. Rapid, 407 

unplanned urbanization associated with population growth has led to substantial increases in the 408 

proportion of built-up areas and is the predominant cause of green and blue space loss. Elevation, 409 

slope, and road density were factors which also had a significant influence on the depletion of 410 

UGS. An estimated total ESV loss of USD 628.6m was calculated for the five cities. 411 

A detailed understanding of the spatiotemporal patterns of UGS and UBS is essential when 412 

developing plans to protect these areas. The findings of this study can be used to inform planning, 413 

both high-level policy development and detailed planning work aimed at protecting the   414 

environments of these rapidly growing cities. The results could also help to improve city land use 415 

structure. This study was conducted in five cities of Bangladesh, but the results could have wider 416 

applicability, e.g., in enhancing ecosystem-based climate adaptation, providing efficient 417 
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governance of urban ecosystems, and promoting sustainable urban development. The framework 418 

of this work could be transferred to other areas experiencing similar growth patterns.  419 
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