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A B S T R A C T

Recent research on airport ground movement introduced an Active Routing framework to
support multi-objective trajectory-based operations. This results in edges in the airport taxiway
graph having multiple costs such as taxi time, fuel consumption and emissions. In such a graph,
multiple edges exist between two nodes reflecting different trade-offs among the multiple costs.
Aircraft will have to choose the most efficient edge from multiple edges in order to traverse
from one node to another respecting various operational constraints. In this paper, we introduce
a multi-objective routing and scheduling algorithm based on the enumerative approach that
can be used to solve such a multi-objective multi-graph problem. Results using the proposed
algorithm for a range of international airports are presented. Compared with other routing and
scheduling algorithms, the proposed algorithm can find a representative set of optimal or near
optimal solutions in a single run when the sequence of aircraft is fixed. In order to accelerate
the search, heuristic functions and a preference-based approach are introduced. We analyse the
performance of different approaches and discuss how the structure of the multi-graph affects
computational complexity and quality of solutions.

1. Introduction

Airports around the world are increasingly employing complex automated systems such as Advanced Surface Movement,
Guidance and Control Systems (A-SMGCS) (ICAO, 2004). This is due to increasing air traffic and hence pressure to achieve higher
throughput using existing airport infrastructure. Within this context, a better coordination of aircraft moving on the airport surface
plays a key role, as it is considered a critical link between other airport operations (runway scheduling, gate assignment) (Atkin et al.,
2010). The adoption of A-SMGCS enables more precise guidance and control for all aircraft on the airport surface via specialised
functions such as routing, guidance, control and surveillance. Among the four functions, the automated routing function is the key
element for increasing the efficiency of ground movement as it provides optimised aircraft routes and schedules.

Apart from time efficiency, which can improve the utilisation of existing airport infrastructure, environmental and other cost
aspects of ground movements are also of a concern in achieving sustainable airport operations. Due to financial pressures and
stricter regulations, objectives such as minimising fuel consumption and related emissions are of increasing importance and benefit
all stakeholders of airport operations such as airports and airlines. Recent research has seen a trend of moving away from single-
objective optimisation of ground movement towards multi-objective models, taking into account objectives such as taxi time, fuel
consumption and emissions (Ravizza et al., 2013b; Chen et al., 2016b,a; Evertse and Visser, 2017). The experimental results in (Chen
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et al., 2016b,a) have confirmed the presence of trade-off among different objectives, indicating that usually there is not a single
solution that can minimise all the objectives.

Different fuel consumption and emissions are a result of different speed profiles determined by the acceleration/deceleration
ate and their durations, which can be used by aircraft to taxi between two nodes, along a taxiway segment. This implies, that
he costs for each segment (i.e. taxi time, fuel consumption, emissions) are no longer a vector, but a matrix. Therefore, the routing
lgorithm has to make two decisions: (1) which segment to use when more segments are possible at an intersection; (2) which speed
rofile to apply within that segment. The combination of those two decisions over a series of segments defines a potential route.
he introduction of this cost matrix is equivalent to a multi-graph where nodes are connected with more than one parallel edges
orresponding to different speed profiles. Formulating the ground movement problem as a multi-graph increased complexity and
earch space for the routing algorithm. Recent research in other fields such as the time-constrained vehicle routing problem (Garaix
t al., 2010; Lai et al., 2016) followed the formulation of the airport ground movement problem. Both of them employ a multi-graph
tructure for finding better routes.

The ground movement problem is a combined routing and scheduling problem (Atkin et al., 2010). The algorithm has to find
n efficient route from the start node to the end node for each aircraft, avoiding conflicts with previously routed aircraft. Due
o this fact, conventional routing algorithms need to be modified to take into account scheduling aspects of the problem. Several
ingle-objective routing and scheduling algorithms have been proposed for the ground movement problem (Ravizza et al., 2013a;
esire, 2010; Clare and Richards, 2011). However, the single-objective routing and scheduling algorithms can only find a single
oute, rather than a set of optimal routes representing the trade-off between different objectives. To the best of our knowledge,
part from (Ravizza et al., 2013b; Chen et al., 2016a; Evertse and Visser, 2017) no other multi-objective multi-graph routing and
cheduling algorithms have been proposed for the ground movement problem. However, approaches in (Ravizza et al., 2013b; Chen
t al., 2016a; Evertse and Visser, 2017) have their limitations in that not all optimal solutions can be discovered or several runs of
he algorithm are needed.

In this paper, we extend a conventional multi-objective shortest path algorithm (Mandow et al., 2005; Mandow and De La Cruz,
010) to support trajectory-based ground operations (Chen et al., 2016b,a) formulated as a multi-graph. In order to accelerate
he search, while not compromising the optimality of solutions, two heuristic functions are described. Two cases are considered (1)
ulti-objective search, (2) search incorporating user preferences. The preference-based approach using economic value of objectives

s further proposed to reduce the search space of the problem. The contributions of this paper are summarised as follows:

1. We introduce a multi-objective routing and scheduling algorithm for airport ground movement capable of finding a
representative set of optimal or near optimal solutions in a single run when the sequence of aircraft is fixed.

2. A useful insight into how the structure of the multi-graph affects computational complexity and quality of solutions. This
in turn can shed light upon how to construct the multi-graph itself. We also investigated conditions when a multi-objective
multi-graph search can be simplified into a single-objective simple graph search when preference information is available.

The paper is organised as follows. The ground movement problem and related work are defined and reviewed in Section 2.
ection 3 describes the proposed algorithm. Section 4 presents experimental results of the proposed algorithm for the cases without
nd with preferences on data instances from Hong Kong International, Beijing Capital International and Doha International Airports.
astly, Section 5 draws conclusions and identifies challenges for the future work.

. Ground movement problem

In this section, we review previous research on ground movement and multi-objective shortest path problem. Then, the ground
ovement problem is defined in detail.

.1. Previous research

The previous works related to the ground movement problem can be categorised into two groups:

1. Sequential approach where aircraft are routed and scheduled according to a predetermined sequence (usually First-come-
first-served order). The algorithm searches for a route and schedule of a single aircraft, respecting the routes of previously
routed aircraft.

2. Global approach where routes and schedules of all aircraft are considered as a decision variable at the same time.

The sequential approaches use derivatives of the shortest path algorithms such as Dijkstra’s (Dijkstra, 1959) and A* (Hart et al.,
968) algorithms to route aircraft. The Quickest Path Problem with Time Windows (QPPTW) algorithm (Ravizza et al., 2013a) is a
odified Dijkstra’s algorithm taking into account reservations of edges imposed by previously routed aircraft. The time to traverse

n edge was based on a constant speed determined by an estimated taxi time. The QPPTW algorithm was also used in Benlic et al.
2016), Brownlee et al. (2018). Similarly, the A* algorithm was adapted in studies by Lesire (2010) and Zhou and Jiang (2015),
gain based on constant speeds for calculating traversal times.

In the global approaches, (1) a set of predefined routes is available for each aircraft and the aim is to select the best route for all
ircraft at the same time. Genetic algorithms was employed for this purpose in Gotteland et al. (2003), Deau et al. (2009) and Mori
2013), whereas Guépet et al. (2017) and Roling and Visser (2008) used mixed integer linear programming (MILP) to find the best
oute. Adacher et al. (2018) formulated the ground movement problem as a job-shop scheduling problem and adopted a heuristic
2
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approach to select a route. (2) The sequence of nodes traversed is the decision variable. In Marín and Codina (2008), Clare and
Richards (2011) and Samà et al. (2017), aircraft can take any route on the graph and MILP searches for the nodes and when they
should be traversed. Genetic algorithms were used to evolve routes in Jiang et al. (2013).

In the above mentioned approaches, the best route was defined as the one with the minimum taxi time or other time associated
bjectives, e.g. deviation from the assigned runway slot. However, as demonstrated in Chen et al. (2016b,a), reducing taxi time
equires longer and more frequent acceleration phases, resulting in a higher fuel burn. Furthermore, the assumption of constant
peeds can lead to unrealistic instructions causing potential conflicts with other aircraft (Chen et al., 2016a). Recently, research on
round movement has started to consider more detailed aircraft movement, capturing acceleration and deceleration phases and the
elated fuel consumption. This leads to the multi-objective shortest path problem (MSPP) algorithms being adapted for the ground
ovement problem. We will review approaches for the general MSPP and then describe algorithms specifically designed for the

round movement problem based on the MSPP.
The enumerative algorithms proposed for the MSPP, including label setting (Martins, 1984) and label correcting (Skriver and

ndersen, 2000) algorithms, work in a similar way to the single-objective Dijkstra’s algorithm (Dijkstra, 1959). In order to address
he multi-objective nature of the problem, the Pareto dominance is used for comparing the costs of routes. The enumerative search
an be accelerated if additional heuristic information is available. Stewart and White (1991) extended the A* algorithm (Hart et al.,
968) to a multi-objective A* (MOA*). Tung and Chew (1992) proposed an efficient way to calculate heuristic information as the
inimum of each objective. The NAMOA* (New approach to multi-objective A*) algorithm (Mandow et al., 2005; Mandow and De

a Cruz, 2010) improved the performance of the search compared to the MOA* by selecting and expanding routes instead of nodes.
Ranking approaches such as Climaco and Martins (1982) generate several 𝑘 shortest routes in terms of the first objective, in

order to find optimal routes for the other objectives. In practical applications, the value of 𝑘 is usually set to a low value to maintain
reasonable computational times. Two phase methods (Raith and Ehrgott, 2009) for bi-objective problems aggregate the objective
function in the first phase. As not all solutions can be discovered this way, the enumerative approach is used for the remaining
solutions in the second phase. Other approaches include metaheuristics (Chitra and Subbaraj, 2010; Pangilinan and Janssens, 2007)
to approximate the Pareto front.

The approaches for the MSPP can be applied to the multi-objective multi-graph ground movement problem by iterating over all
parallel edges and considering the routes of previously routed aircraft. A sequential approach based on the ranking method (Climaco
and Martins, 1982) was introduced in Ravizza et al. (2013b) denoted as 𝑘-QPPTW for this problem. The algorithm decomposed the
combined routing (search for a route) and scheduling problem (search for speed profiles) into two sequential steps. (1) In the first
stage, the algorithm generated 𝑘 = 3 shortest routes in terms of taxi time assuming a constant taxiing speed. The assumption of
constant speed enables the separation of the search for a route from the search for a speed profile and avoiding the construction
and search of the entire multi-graph. (2) Subsequently, the algorithm assigned feasible speed profiles to each route. As showed
in Chen et al. (2016a), the timings generated by constant speed are difficult to comply with realistic speed profiles that take
accelerations/decelerations into account. Therefore, these timings were not considered when selecting feasible speed profiles. Finally,
for each aircraft one nondominated solution with corresponding route and speed profile was selected. The disadvantages of this
approach, as pointed out in Chen et al. (2016a), are: (1) only a limited number of routes are explored during the search. The
algorithm is guaranteed to discover all optimal routes only if 𝑘 → ∞. (2) A constant taxiing speed is assumed during the search for a
route. As a result, the shortest route in terms of taxi time assuming a constant speed is not necessarily the same as the shortest one
considering realistic speed profiles. It should be noted, that even if costs from realistic speed profiles would be used to search for
routes, the algorithm would still only explore a limited number of routes thus potentially missing good solutions. As demonstrated
later in this paper, the above mentioned shortcomings significantly compromise the quality of solutions found by the 𝑘-QPPTW
algorithm. A global approach based on MILP was employed in Evertse and Visser (2017) considering taxi time, deviation from
departure slots and emissions in a weighted aggregation objective function. For each edge of the graph, the algorithm selects a speed
for traversal. Acceleration/deceleration after/before the constant speed phases related to breakaway, hold or turn were determined
for calculation of taxi time and fuel flow. However, the algorithm assumes acceleration/deceleration always to/from the maximum
allowed speed and speed changes between two edges to be instant. Furthermore, due to the weighted aggregation objective function,
several runs of the algorithm with different weights are needed in order to approximate a trade-off among objectives.

The main advantage of sequential algorithms is their lower computational complexity compared to the global approaches. This
is caused by focusing the search for a single (or limited number of) aircraft at a time. On the other hand, global approaches consider
all the decision variables at the same time thus obtaining potentially better solutions at the cost of higher complexity. A quantified
comparison of sequential and global approaches in terms of the quality of solutions and complexity is often missing in the literature.
Computational experiments showed that the taxi time found by the sequential QPPTW algorithm (Ravizza et al., 2013a) can be
improved by 0.88% when the interdependence of aircraft is considered as well.

It is evident from the review of previous literature that a multi-objective routing algorithm for the ground movement that can
find high quality solutions or a representative subset of them is lacking. In light of this, the NAMOA* algorithm (Mandow et al.,
2005; Mandow and De La Cruz, 2010) is adapted in this paper to the ground movement problem, as it can find a set of Pareto
optimal or near optimal solutions while utilising a heuristic function for speeding up the search.

2.2. Problem description

The airport layout is represented as a directed graph 𝐺 = (𝑉 ,𝐸). Nodes 𝑛 ∈ 𝑉 represent gates, stands, taxiway intersections,
3
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Table 1
Definitions.

Variable Description

𝐺 = (𝑉 ,𝐸) The directed graph of airport taxiways with nodes 𝑛 ∈ 𝑉 and edges 𝑒 ∈ 𝐸.
𝑒 The set of time windows associated with edge 𝑒.
𝑐𝑜𝑛𝑓 (𝑒) The set of conflicting edges with edge 𝑒.
𝑠𝑛,𝑚 = (𝑒1 , 𝑒2 ,… , 𝑒ℎ) A segment which is a sequence of edges connecting two nodes 𝑛, 𝑚.
𝑉 𝑠 ⊆ 𝑉 The subset of nodes which can be a start node of a segment.
𝑝 The number of speed profiles.
𝑞 The number of objectives.
𝐶𝑛,𝑚 The cost matrix of a segment between two nodes 𝑛, 𝑚 with size 𝑝 × 𝑞.
𝑐𝑛,𝑚,𝑙,∗ Cost vector, i.e. the 𝑙th row of 𝐶𝑛,𝑚.
𝑟 ∈ 𝑅𝑖 A route from the set of routes 𝑅𝑖 with nondominated cost vectors for aircraft 𝑎𝑖.
𝑐𝑜𝑠𝑡(𝑟) The cost vector of route 𝑟.
𝑎𝑖 ∈ {𝐴𝑅𝑅 ∪𝐷𝐸𝑃 } The aircraft 𝑎𝑖 from the set of arrivals 𝐴𝑅𝑅 and departures 𝐷𝐸𝑃 .
𝑜𝑏𝑗1, 𝑜𝑏𝑗2 The objectives, i.e. taxi time and fuel consumption.
𝑅𝑖 = 𝑟𝑜𝑢𝑡𝑒(𝑎𝑖) The set of routes 𝑅𝑖 with nondominated cost vectors found by the procedure 𝑟𝑜𝑢𝑡𝑒 for aircraft 𝑎𝑖.
𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 The start and end node of aircraft 𝑎𝑖.
𝑡𝑖 The start time of aircraft 𝑎𝑖.
𝑤𝑖 The weight category of aircraft 𝑎𝑖.
𝑆𝐺 The search graph for recording partial routes.
𝐺𝑜𝑝

𝑛 , 𝐺𝑐𝑙
𝑛 The open and closed sets of nondominated cost vectors of routes reaching node 𝑛.

𝑂𝑃𝐸𝑁 The list of alternatives (𝑛, 𝑔𝑛 , 𝑓𝑛), which represent partial routes reaching node 𝑛.
𝑔𝑛 The cost vector of a partial route reaching 𝑛.
𝑓𝑛 = 𝑔𝑛 +𝐻(𝑛, 𝑒𝑛𝑑) The vector of heuristic estimates for node 𝑛.
𝐻(𝑛, 𝑒𝑛𝑑) The heuristic function returning a vector of estimates for a route from 𝑛 to 𝑒𝑛𝑑.
𝐶𝑂𝑆𝑇𝑆 The set for recording cost vectors of routes which have reached the 𝑒𝑛𝑑 node.
𝑢 The number of rows in the submatrix 𝐶 ′

𝑛,𝑚 of 𝐶𝑛,𝑚.
𝑤𝑃 = (𝑤𝑃

1 , 𝑤
𝑃
2 ) The vector of preferences representing unit costs.

Fig. 1. Creation of segments.

one aircraft at a time. For this purpose, nodes are placed on taxiways to divide them into relatively short edges ensuring minimum
safe separation distance of aircraft. In this paper, this distance is set to 60 m. It should be noted that due to short edges several
aircraft can taxi simultaneously on a long taxiway. Each 𝑒 has a list of time windows 𝑒 associated with it. A time window is a time
interval during which the edge is free to be traversed by an aircraft. Additionally, for each 𝑒 a set of conflicting edges 𝑐𝑜𝑛𝑓 (𝑒) is
defined. An edge conflicting with 𝑒 is located within a threshold distance of 60 m. To ensure a safe separation of aircraft, when an
aircraft is using 𝑒, time windows of 𝑐𝑜𝑛𝑓 (𝑒) are updated to prevent other aircraft occupying 𝑐𝑜𝑛𝑓 (𝑒) at the same time. A side effect
of this approach is a potential over restriction of locations. For example if an aircraft is located at the beginning of a 60 m long
edge, the neighbouring edge (60 m long as well) will be marked as conflicting even though the far end of the edge has a distance
of 120 m to the aircraft. However, this can be mitigated by dividing the airport taxiways into shorter edges. The adoption of time
windows and the sequential routing of aircraft effectively prevent any potential conflict between aircraft, e.g. head-on conflicts.
Table 1 summarises the definitions used in this paper.

In addition to edges, we define a segment 𝑠𝑛,𝑚 = (𝑒1, 𝑒2,… , 𝑒ℎ) as a sequence of edges connecting two nodes 𝑛, 𝑚. The segments
are created as showed in Fig. 1. If an edge and its predecessor edge (in the direction of a taxiing aircraft) have an angle ≥ 30 degrees
(Khadilkar and Balakrishnan, 2012; Ravizza et al., 2013b), then it will belong to a turning segment. Otherwise, it is part of a straight
segment. Consecutive edges of a similar type (straight, turning) are grouped together. For all nodes 𝑛, if they are a start node of a
segment, they belong to 𝑉 𝑠 ⊆ 𝑉 .
4



Transportation Research Part C 119 (2020) 102734M. Weiszer et al.
Fig. 2. Example of a directed multi graph.

Fig. 3. Illustration of the nonadditivity property.

Each segment between nodes 𝑛, 𝑚 has a cost matrix 𝐶𝑛,𝑚 ∈ R𝑝×𝑞 with size 𝑝 × 𝑞 associated with it (defined in (1)), where 𝑝 and
𝑞 are the number of speed profiles and objectives, respectively.

𝐶𝑛,𝑚 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑐𝑛,𝑚,1,1 𝑐𝑛,𝑚,1,2 ⋯ 𝑐𝑛,𝑚,1,𝑞
𝑐𝑛,𝑚,2,1 𝑐𝑛,𝑚,2,2 ⋯ 𝑐𝑛,𝑚,2,𝑞

⋮ ⋮ ⋱ ⋮
𝑐𝑛,𝑚,𝑙,1 𝑐𝑛,𝑚,𝑙,2 ⋯ 𝑐𝑛,𝑚,𝑙,𝑞

⋮ ⋮ ⋱ ⋮
𝑐𝑛,𝑚,𝑝,1 𝑐𝑛,𝑚,𝑝,2 ⋯ 𝑐𝑛,𝑚,𝑝,𝑞

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(1)

For a segment between two nodes 𝑛, 𝑚, each 𝑙th row (𝑐𝑛,𝑚,𝑙,1, 𝑐𝑛,𝑚,𝑙,2,… , 𝑐𝑛,𝑚,𝑙,𝑞) ∈ 𝐶𝑛,𝑚 is a cost vector which corresponds to a speed
profile for that segment. Segments and corresponding cost matrices can be viewed as a directed multi-graph, for which an example
is shown in Fig. 2.

A route 𝑟 in 𝐺 is defined as a sequence of segments 𝑠𝑛,𝑚, 𝑛, 𝑚 ∈ 𝑉 𝑠 and corresponding cost vector (𝑐𝑛,𝑚,𝑙,1, 𝑐𝑛,𝑚,𝑙,2,… , 𝑐𝑛,𝑚,𝑙,𝑞) for
each segment. A cost vector of 𝑟 𝑐𝑜𝑠𝑡(𝑟) is the sum of cost vectors of its component segments.

The set of all aircraft consists of a set of arriving aircraft 𝐴𝑅𝑅 and departing aircraft 𝐷𝐸𝑃 . Each aircraft 𝑎𝑖 has a corresponding
start time 𝑡𝑖, start node 𝑠𝑡𝑎𝑟𝑡, end node 𝑒𝑛𝑑 and weight category 𝑤𝑖 ∈ {medium, heavy} associated with it. Note, that light weight
category aircraft are not considered here, as aircraft within this category (small aircraft) are not present in the data instances
used in this paper. The aim of the ground movement problem is to find a set of routes with nondominated cost vectors for each
𝑎𝑖 ∈ {𝐴𝑅𝑅 ∪𝐷𝐸𝑃 } in 𝐺 from 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑, starting at 𝑡𝑖 and respecting time windows.

Cost vector 𝑐 is said to be dominating 𝑐′, denoted as 𝑐 ≺ 𝑐′,

∀𝑐, 𝑐′ ∈ R𝑞 𝑐 ≺ 𝑐′ ⇔ ∀𝑗 𝑐𝑗 ≤ 𝑐′𝑗 ∧ 𝑐 ≠ 𝑐′, (2)

where 𝑐𝑗 denotes the 𝑗th element of 𝑐. 𝑛𝑜𝑛𝑑𝑜𝑚(𝑋) is defined as a set of nondominated vectors in set 𝑋:

𝑛𝑜𝑛𝑑𝑜𝑚(𝑋) = {𝑐 ∈ 𝑋 ∶ ∄𝑐′ ∈ 𝑋 𝑐′ ≺ 𝑐}. (3)

It is worth pointing out that as the designation of an edge as part of the turning segment is depending on the predecessor edge,
5
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Fig. 4. Modelling approaches for preventing nonadditivity: (a) edges having a fixed designation as a turn or straight, (b) dual model.

sub-routes are discarded during the search. Therefore, this optimal route may be not found. We illustrate such a case in Fig. 3. There
are two routes reaching node 2, the first one consisting of a straight segment with cost 𝑐1,2. The second route consists of a straight
and turning segment with costs 𝑐3,4 and 𝑐4,2. For costs of the sub-routes to node 2, 𝑐1,2 ≺ 𝑐3,4 + 𝑐4,2 holds. The subsequent segment
2–5 is a turning segment with cost 𝑐′2,5 if the predecessor segment is 1–2 and a straight segment with cost 𝑐2,5 if the predecessor
is 4–2. A turning segment has usually higher costs (i.e. longer taxi time and fuel consumption) than a straight segment with the
same length due to aircraft moving more slowly during turning. As 2–5 is a longer turning segment than 4–2, 2–5 has higher costs,
i.e. 𝑐1,2 + 𝑐′2,5 ≻ 𝑐3,4 + 𝑐4,2 + 𝑐2,5. During the search, the second route via node 4 is eliminated upon reaching node 2 and the optimal
route to node 5 via node 4 is therefore not found.

Fig. 4 shows alternative modelling approaches for preventing the above mentioned nonadditivity. A more detailed modelling of
turns such as duplicating node 2 would enable each edge having a fixed designation as a turn or straight. Another approach is a
dual model (Gotteland et al., 2003), where the nodes represent the taxiway edges and edges represent the taxiway intersections.
Nodes have weights corresponding to taxi time or fuel consumption and edges have weights for transitions between the taxiways.
A transition between two edges representing a turn imposes weights corresponding to turn taxi time and fuel consumption. For two
edges within a straight segment the transition imposes zero weights. These approaches could be adopted in future work. In this
paper we found nonadditivity cases were rare in practice as it is possible only if (1) a node is an end of both straight and turning
segment at the same time, and (2) all objectives are dominated in order to be eliminated from the search. For the airport instance
from Hong Kong International Airport investigated in this paper, the number of such cases has been counted maximum 1.72% of
all pairs of parallel segments similar as in Fig. 3. Furthermore, adopting the same modelling approach as QPPTW and 𝑘-QPPTW
algorithms facilitates fair comparison of these algorithms with the proposed algorithm and enables to employ the same database of
speed profiles (Weiszer et al., 2015b) regardless of the routing and scheduling algorithm.

2.3. Objectives

As explained above, each row in 𝐶𝑛,𝑚 is a cost vector corresponding to a speed profile for segment 𝑠𝑛,𝑚. Each objective for a
route 𝑟 of 𝑎𝑖 is a sum of the 𝑗th components of the cost vectors corresponding to each segment 𝑠𝑛,𝑚 in that route:

𝑜𝑏𝑗𝑗 =
∑

𝑠𝑛,𝑚∈𝑟
𝑐𝑛,𝑚,𝑙,𝑗 . (4)

Where, 𝑛, 𝑚 and 𝑙 are the decision variables. In this paper, we consider two objectives: 𝑜𝑏𝑗1 is the taxi time and 𝑜𝑏𝑗2 is the fuel
consumption. Speed profiles, with the corresponding nondominated costs for each objective are stored in a database. The database
of speed profiles is created in the preprocessing step using 𝐺, as described in Weiszer et al. (2015b), such that every possible segment
for a specific airport is stored in the database. Each straight segment is further categorised as breakaway, intermediate and holding
determining their start/end speed. The start/end speed is fixed to 5.14 m/s (10 knots) except for breakaway and holding segments
where the start and end speeds are 0, respectively. As mentioned above, consecutive straight and turning edges are grouped together
and therefore straight and turning segments always alternate in a route (i.e. there are no two consecutive straight/turn segments as
these would be grouped together). Due to the fixed start/end speed of each segment, straight and turning segments from the database
can be seamlessly combined such that any route between gates/stands and runway (or vice versa) can be recreated. Speed profiles for
a single segment are a continuous function of time as detailed in Chen et al. (2016b). Due to infinite degrees of freedom, the speed
profile in this paper is reduced by adopting a piece-wise linear function with four phases (Chen et al., 2016b) including acceleration,
constant speed, deceleration and rapid deceleration as shown in Fig. 5. However, more complex speed profiles (e.g. non-linear) could
be adopted and stored in the database in future.
6
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Table 2
Definitions of aicraft parameters.

Variable Description

𝑎𝑐𝑐 acceleration rate
𝜏𝑝ℎ𝑎𝑠𝑒𝑖 (𝑠𝑛,𝑚) taxi time spent in phase 𝑝ℎ𝑎𝑠𝑒 of segment (𝑠𝑛,𝑚)
𝜂 thrust level
𝐹𝑜𝑜 maximum power output of jet engine
𝑤𝑒𝑖𝑔ℎ𝑡 aircraft weight
𝜇 rolling resistance coefficient
𝜙𝑝ℎ𝑎𝑠𝑒
𝑖 (𝑠𝑛,𝑚) fuel flow in phase 𝑝ℎ𝑎𝑠𝑒 of segment (𝑠𝑛,𝑚)

𝑡𝑡𝑎𝑥𝑖 total taxi time
𝜏𝑖(𝑠𝑛,𝑚) taxi time for segment (𝑠𝑛,𝑚)
𝛷𝑖(𝑠𝑛,𝑚) fuel consumption for segment (𝑠𝑛,𝑚)

The duration 𝜏𝑝ℎ𝑎𝑠𝑒𝑖 (𝑠𝑛,𝑚) ≥ 0 of each 𝑝ℎ𝑎𝑠𝑒 for segment 𝑠𝑛,𝑚 determines the required taxi time 𝜏𝑖(𝑠𝑛,𝑚) for aircraft 𝑖 to cover the
istance between nodes 𝑛, 𝑚:

𝜏𝑖(𝑠𝑛,𝑚) =
4
∑

𝑝ℎ𝑎𝑠𝑒=1
𝜏𝑝ℎ𝑎𝑠𝑒𝑖 (𝑠𝑛,𝑚). (5)

ote, that the taxi time of a segment does not depend on aircraft start time 𝑡𝑖. Following the approach described in Chen et al.
2016b), fuel consumption needed to follow a speed profile depends on thrust levels 𝜂 which are determined for each taxiing 𝑝ℎ𝑎𝑠𝑒.
uring deceleration and rapid deceleration, 𝜂 = 5% of the full rated power, and during turning 𝜂 = 7% (Nikoleris et al., 2011).
or acceleration and constant speed phases, 𝜂 is calculated in (6) where 𝑤𝑒𝑖𝑔ℎ𝑡 is the weight of the aircraft, 𝑎𝑐𝑐 is the acceleration
ate, 𝜇 ⋅ 𝑤𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑔𝑎𝑐𝑐 is the rolling resistance force and 𝐹𝑜𝑜 is the maximum power output of the jet engine. 𝜇 is rolling resistance
oefficient, set to 0.015 (Chen et al., 2016b) in this paper. 𝑔𝑎𝑐𝑐 = 9.81 m ⋅ s−2 is the gravitational acceleration. Note, that the air
esistance is not assumed here due to low speeds involved.

𝜂 =
𝑤𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑎𝑐𝑐 + 𝜇 ⋅𝑤𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑔𝑎𝑐𝑐

𝐹𝑜𝑜
(6)

The thrust level 𝜂 corresponds to a fuel flow 𝜙𝑝ℎ𝑎𝑠𝑒
𝑖 (𝑠𝑛,𝑚) which is calculated by linearly interpolating or extrapolating fuel flow values

for 𝜂 = 7% and 𝜂 = 30% reported in ICAO database, following the approach in Nikoleris et al. (2011). The fuel 𝛷𝑖(𝑠𝑛,𝑚) consumed to
traverse segment 𝑠𝑛,𝑚 is then calculated as:

𝛷𝑖(𝑠𝑛,𝑚) =
4
∑

𝑝ℎ𝑎𝑠𝑒=1
𝜙𝑝ℎ𝑎𝑠𝑒
𝑖 (𝑠𝑛,𝑚) ⋅ 𝜏

𝑝ℎ𝑎𝑠𝑒
𝑖 (𝑠𝑛,𝑚). (7)

In order to make the calculation tractable, for aircraft belonging to the same weight category, a representative aicraft is chosen in
this study and its values are used in calculation. The aircraft parameters used to calculate 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 are summarised in Table 2.

In order to generate the Pareto set of speed profiles for each segment, a Population Adaptive Based Immune Algorithm
(PAIA) (Chen et al., 2016b; Chen and Mahfouf, 2006) is employed in this paper. PAIA is an population-based evolutionary algorithm
which iteratively evaluates, sorts, selects and improves the solutions representing the values of 𝜏𝑝ℎ𝑎𝑠𝑒𝑖 (𝑠𝑛,𝑚). The detailed description
of PAIA for the speed profile generation is given in Chen et al. (2016b). In this paper, the parameters related to PAIA are set
according to Chen et al. (2016b). The initial population size is 7; the number of generations is 40; the maximum clonal size is 95;
clonal selection threshold is 0.4 and network suppression threshold is set to 0.008. It should be noted, that any search algorithm
can be adopted for the speed profile generation.

The obtained Pareto set is then filtered by a filtering procedure (Weiszer et al., 2018) into 𝑝 evenly distributed solutions. For
each straight segment 𝑠𝑛,𝑚, 𝑝 speed profiles with nondominated costs are stored. Following our previous work (Weiszer et al., 2018),
= 10 and 𝑝 = 20 for medium and heavy category aircraft, are respectively chosen as a representative subset of the Pareto set. For

urning segments, a constant speed profile of 5.14 m/s (10 knots) is adopted as in Ravizza et al. (2013b).
If the aircraft under investigation cannot traverse segment 𝑠𝑛,𝑚 as 𝑠𝑛,𝑚 is occupied by other aircraft, it can be held before entering

𝑛,𝑚 until 𝑠𝑛,𝑚 becomes available. The corresponding cost of 𝑠𝑛,𝑚 is then increased by holding time and fuel. The fuel consumed during
he holding is based on idle fuel flow with 𝜂 = 4%. After holding, the aircraft needs also to accelerate to the speed matching the
nitial speed of (𝑠𝑛,𝑚) which incurs time to accelerate and corresponding fuel. The acceleration rate is fixed to 𝑎𝑐𝑐 = 0.98 m ⋅ s−2 in

this case as in (Chen et al., 2016b).

3. Routing and scheduling framework

The routing and scheduling framework is outlined in Algorithm 1. The set of aircraft {𝐴𝑅𝑅 ∪𝐷𝐸𝑃 } is sorted according to their
start time 𝑡𝑖. This first-come-first-served sequencing has an advantage to consider aircraft sequentially as they become ready to start
taxiing. For each aircraft 𝑎𝑖, a set of routes 𝑅𝑖 with nondominated costs are found by procedure 𝑟𝑜𝑢𝑡𝑒. In Line 4, the algorithm
considers two ways to proceed when no time windows are available for 𝑎𝑖. Firstly, if ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is enabled the aircraft can wait at an
intermediate node until a time window becomes available as will be detailed later. Otherwise, the start time is postponed by 60 s.
7
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Fig. 5. An example of a speed profile with four phases.

This value is set approximately as airports usually operate (e.g. estimated time of departure) with a precision in minutes. Note, that
postponing the aircraft will not change their order in the FCFS sequence. The start time is iteratively extended until time windows
become eventually available. Once 𝑅𝑖 is obtained, one route 𝑟 is selected for 𝑎𝑖 and time windows are updated for edges belonging
to the segments of the route and their associated conflicting edges.

The selection of a route 𝑟 in Line 8 enables to consider constraints such as target take-off time. Routes which violate such
constraints can be eliminated in this step as well as when expanding routes as described later. Also, postponing aircraft for too long
can cause gate allocation time violation. In such case, the algorithm will enable ℎ𝑜𝑙𝑑𝑖𝑛𝑔 at an intermediate nodes and vacate the
gate. The target take-off time and gate allocation constraints are not considered in the computational experiments in this paper as
the data do not contain such information. However, as described above these constraints can be handled by the algorithm.
Algorithm 1: Routing and scheduling algorithm.
1 Sort aircraft according to 𝑡𝑖;
2 forall the 𝑎𝑖 ∈ {𝐴𝑅𝑅 ∪𝐷𝐸𝑃 } do
3 Route aircraft 𝑅𝑖 = 𝑟𝑜𝑢𝑡𝑒(𝑎𝑖);
4 if 𝑅𝑖 = ∅ and holding not enabled then
5 𝑡𝑖 = 𝑡𝑖 + 60 s;
6 Go to Line 3;
7 end
8 Select preferred 𝑟 ∈ 𝑅𝑖;
9 Reserve route 𝑟 and update time windows;
10 end

3.1. AMOA*

Procedure 𝑟𝑜𝑢𝑡𝑒 is called every time an aircraft is to be routed. 𝑟𝑜𝑢𝑡𝑒 is performed by airport multi-objective A* (AMOA*)
algorithm which is based on multi-objective shortest path algorithm NAMOA* (Mandow et al., 2005; Mandow and De La Cruz,
2010). Algorithm 2 outlines AMOA*. Firstly, an acyclic search graph 𝑆𝐺 is created in Line 1. 𝑆𝐺 is used to record partial routes. A
single node 𝑠𝑡𝑎𝑟𝑡 is initially in 𝑆𝐺. For each node 𝑛 in 𝑆𝐺, 𝐺𝑜𝑝

𝑛 and 𝐺𝑐𝑙
𝑛 are the sets of nondominated cost vectors of routes reaching

𝑛. If a successor of 𝑛 has been explored, the corresponding cost vector is in 𝐺𝑐𝑙
𝑛 (closed), otherwise it is in 𝐺𝑜𝑝

𝑛 (open). A list 𝑂𝑃𝐸𝑁
contains alternatives (𝑛, 𝑔𝑛, 𝑓𝑛), which represent partial routes reaching 𝑛, which can be further expanded. An alternative is a list
with node 𝑛, cost vector 𝑔𝑛 and a vector of heuristic estimates 𝑓𝑛 = 𝑔𝑛 +𝐻(𝑛, 𝑒𝑛𝑑). 𝐻(𝑛, 𝑒𝑛𝑑) = (𝑐𝑒𝑠𝑡1 , 𝑐𝑒𝑠𝑡2 ,… , 𝑐𝑒𝑠𝑡𝑞 ) is a function that
for each node 𝑛 ∈ 𝑉 returns a vector of heuristic estimates for the route from 𝑛 to 𝑒𝑛𝑑. 𝑐𝑒𝑠𝑡𝑗 denotes an estimate of the minimum
cost of the 𝑗th objective (i.e. the lower bound). The heuristic function 𝐻 is discussed in more detail in Section 3.2. Initially, 𝑂𝑃𝐸𝑁
contains (𝑠𝑡𝑎𝑟𝑡, 𝑔𝑠𝑡𝑎𝑟𝑡, 𝑓𝑠𝑡𝑎𝑟𝑡), where 𝑔𝑠𝑡𝑎𝑟𝑡 = (0, 0). In Line 4, 𝐶𝑂𝑆𝑇𝑆 is used to record cost vectors of routes which have reached the
𝑒𝑛𝑑 node.

In Line 5, the algorithm checks if 𝑂𝑃𝐸𝑁 is empty. In such a case, no alternatives are left to expand, the search terminates and
𝑆𝐺 contains all nondominated routes from 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑. To obtain an individual route 𝑟 with cost 𝑐𝑜𝑠𝑡(𝑟) ∈ 𝐶𝑂𝑆𝑇𝑆, 𝑆𝐺 is traversed
backwards from 𝑒𝑛𝑑 to 𝑠𝑡𝑎𝑟𝑡.

In line 8, the algorithm selects a nondominated alternative (𝑛, 𝑔𝑛, 𝑓𝑛) from 𝑂𝑃𝐸𝑁 based on cost estimate 𝑓𝑛. This alternative is
deleted from 𝑂𝑃𝐸𝑁 and 𝑔𝑛 is moved from 𝐺𝑜𝑝

𝑛 to 𝐺𝑐𝑙
𝑛 . If 𝑛 is the end node 𝑒𝑛𝑑, then a route has been found. The cost 𝑔𝑛 of this route

is included in 𝐶𝑂𝑆𝑇𝑆 and used to prune alternatives in 𝑂𝑃𝐸𝑁 which are dominated by 𝑔𝑛. It should be noted, that additional
constraints such as the target take-off time can be used to prune selected solutions which violate such constraints in Line 8.

If 𝑛 is not the end node, then it is further expanded in Line 15. Algorithm 3 details the expansion procedure. In Line 1, successor
segments starting in 𝑛 are generated. A successor segment 𝑠𝑛,𝑚 from 𝑛 to 𝑚 is created by iteratively expanding the edge 𝑛, 𝑛′, where
𝑛′ is the successor of 𝑛 in 𝐺, if the angle between the edge and its preceding edge is not greater than or equal to 30 degrees (as
shown in Fig. 1). Straight segments are further divided into straight breakaway (if 𝑛 is gate/stand) and straight holding segments
8
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Algorithm 2: AMOA*.
Create:

1 An acyclic search graph 𝑆𝐺 ;
2 Two sets 𝐺𝑜𝑝

𝑠𝑡𝑎𝑟𝑡 = {(0, 0)}, 𝐺𝑐𝑙
𝑠𝑡𝑎𝑟𝑡 = {∅};

3 A list of alternatives 𝑂𝑃𝐸𝑁 = {(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑠𝑡𝑎𝑟𝑡, 𝑓𝑠𝑡𝑎𝑟𝑡)};
4 𝐶𝑂𝑆𝑇𝑆 = {∅};
/* Check Termination: */

5 if 𝑂𝑃𝐸𝑁 is empty then
6 search backward in 𝑆𝐺 from 𝑒𝑛𝑑 node and return set of routes 𝑅𝑖.
7 end
/* Path selection: */

8 Select an alternative (𝑛, 𝑔𝑛, 𝑓𝑛) from 𝑛𝑜𝑛𝑑𝑜𝑚(𝑂𝑃𝐸𝑁).;
9 Delete (𝑛, 𝑔𝑛, 𝑓𝑛) from 𝑂𝑃𝐸𝑁 and move 𝑔𝑛 from 𝐺𝑜𝑝

𝑛 to 𝐺𝑐𝑙
𝑛 .;

10 if 𝑛 is 𝑒𝑛𝑑 node then
/* Solution recording: */

11 Include 𝑔𝑛 in 𝐶𝑂𝑆𝑇𝑆;
12 Eliminate from 𝑂𝑃𝐸𝑁 all alternatives (𝑥, 𝑔𝑥, 𝑓𝑥) if 𝑔𝑛 ≺ 𝑓𝑥;
13 Go to Line 5;
14 else

/* Path expansion: */
15 Expand (𝑛, 𝑔𝑛, 𝑓𝑛). ;
16 Go to Line 5;
17 end

(if 𝑚 is gate/stand or runway exit). Then, for each successor segment that does not produce a cycle in 𝑆𝐺 speed profiles and the
corresponding cost matrix 𝐶𝑛,𝑚 are retrieved from the database. The loop in Line 4 iterates over 𝑝 rows in 𝐶𝑛,𝑚, and the current 𝑙th
row is considered in Line 5. For each edge belonging to segment 𝑠𝑛,𝑚, entry and exit times are calculated, according to the speed
profile. For each edge 𝑒 within the segment and conflicting edges 𝑐𝑜𝑛𝑓 (𝑒), time windows 𝑒 are checked. If some edge 𝑒 does not have
any time window available, then the following options are carried out. If ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is enabled at intermediate nodes, the holding time
is calculated as maximum time window violation among all edges of 𝑠𝑛,𝑚. Then, the cost of holding is added to 𝑐𝑛,𝑚,𝑙,∗ as described
in Section 2.3 and time windows are checked again. If ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is not enabled, then the current row in 𝐶𝑛,𝑚 is not considered. The
new cost of the route found to 𝑚 is calculated as 𝑔𝑚 = 𝑔𝑛+(𝑐𝑛,𝑚,𝑙,1, 𝑐𝑛,𝑚,𝑙,2,… , 𝑐𝑛,𝑚,𝑙,𝑞). The new cost is used to update 𝑂𝑃𝐸𝑁 , 𝐺𝑜𝑝

𝑚 and
𝑆𝐺 in Lines 18–18. Note that for node 𝑛 and its successor 𝑚, an edge (𝑚, 𝑛) is inserted in 𝑆𝐺 as 𝑆𝐺 is searched backwards from 𝑒𝑛𝑑
to 𝑠𝑡𝑎𝑟𝑡 in Algorithm 2. Any vectors dominated by 𝑔𝑚 are discarded from 𝐺𝑜𝑝

𝑚 and 𝐺𝑐𝑙
𝑚 , together with the corresponding alternatives

from 𝑂𝑃𝐸𝑁 in Line 26.
One of the challenges of real-world airport operations is the inherent nature of uncertainty. Due to the influence of various factors

such as human factors of pilots, weather or delays, the aircraft movements may deviate from the pre-calculated speed profiles. In
general, there are two ways how to consider these uncertainties in routing and scheduling: (1) a proactive approach where the
movements include buffer times (Ravizza et al., 2013a) or are characterised by distribution of taxi times, fuel consumption, etc.,
rather than a deterministic value. The routing and scheduling algorithm then incorporates times with buffers or distributions and
selects robust routes and schedules. One example considering uncertain distributions is the Fuzzy QPPTW algorithm (Brownlee et al.,
2018); (2) A reactive approach where the routing and scheduling algorithm reacts to disturbances after they occur by replanning
(e.g. Evertse and Visser, 2017). Quantifying buffer times for continuous speed profiles or the integration of speed profiles with
uncertainty distributions in the context of a multi-objective routing and scheduling algorithm are complex tasks and beyond the
scope of this paper. AMOA* can be used in the reactive mode when the computational time is short enough. Indeed, the sequential
nature of AMOA* facilitates replanning of a single aircraft without affecting other aircraft. For cases with long computational times,
an approximate algorithm can be adopted in future work.

3.2. Heuristic functions

The heuristic function 𝐻 plays an important role in AMOA* as it determines if an alternative should be included in 𝑂𝑃𝐸𝑁 and
hich alternative from 𝑂𝑃𝐸𝑁 should be selected for expansion. It can speed up the search by limiting the number of alternatives

o be expanded (Lines 18 and 28 in Algorithm 3 and Line 12 in Algorithm 2). Function 𝐻(𝑛, 𝑒𝑛𝑑) provides optimistic estimates of
osts for the route from 𝑛 to 𝑒𝑛𝑑, i.e. estimates are always smaller than the real costs. Let 𝐻∗(𝑛, 𝑒𝑛𝑑) be the real cost vector of the
oute from 𝑛 to 𝑒𝑛𝑑. The heuristic function 𝐻 is admissible if 𝐻(𝑛, 𝑒𝑛𝑑) ⪯ 𝐻∗(𝑛, 𝑒𝑛𝑑) ∀𝑛, 𝑒𝑛𝑑 ∈ 𝑉 , where ⪯ denotes ‘‘dominates
r equals’’. It has been proven in Mandow and De La Cruz (2010) that if 𝐻 is admissible, the search with 𝐻 will return no fewer
ptimal routes than it would without the heuristic function.

The estimates provided by 𝐻 represent an approximate lower bound of costs. The more accurate 𝐻 is, the less alternatives are
9
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Algorithm 3: Route expansion.
/* Path expansion: */

1 Generate all segments starting at node 𝑛;
2 for All successor segments of 𝑛 to node 𝑚 without cycles in 𝑆𝐺 do
3 Read 𝐶𝑛,𝑚 from the database;
4 for 𝑙 = 1,… , 𝑝 do
5 Cost vector is 𝑐𝑛,𝑚,𝑙,∗ = (𝑐𝑛,𝑚,𝑙,1, 𝑐𝑛,𝑚,𝑙,2,… , 𝑐𝑛,𝑚,𝑙,𝑞);
6 Calculate entry and exit times for all edges in segment 𝑠𝑛,𝑚;
7 Check time windows for all edges within segment;
8 if Time windows are not available for all edges in 𝑠𝑛,𝑚 then
9 if holding enabled then
10 add cost of holding to 𝑐𝑛,𝑚,𝑙,∗ and Go to Line 6;
11 else
12 𝑙 = 𝑙 + 1 and Go to Line 5;
13 end
14 end
15 Calculate the cost of the new route found to 𝑚: 𝑔𝑚 = 𝑔𝑛 + 𝑐𝑛,𝑚,𝑙,∗;
16 if 𝑚 is not in 𝑆𝐺 then
17 Calculate 𝑓𝑚 = 𝑔𝑚 +𝐻(𝑚, 𝑒𝑛𝑑);
18 if 𝑓𝑚 is not dominated by any vector in 𝐶𝑂𝑆𝑇𝑆, then
19 put (𝑚, 𝑔𝑚, 𝐹𝑚) in 𝑂𝑃𝐸𝑁 ;
20 put 𝑔𝑚 in 𝐺𝑜𝑝

𝑚 ;
21 create edge (𝑚, 𝑛) in 𝑆𝐺 with labels 𝑔𝑚 and 𝑐𝑛,𝑚,𝑙,∗;
22 end
23 else if 𝑔𝑚 equals some cost vector 𝐺

𝑜𝑝
𝑚 ∪ 𝐺𝑐𝑙

𝑚 then
24 create edge (𝑚, 𝑛) in 𝑆𝐺 with labels 𝑔𝑚 and 𝑐𝑛,𝑚,𝑙,∗;
25 else if 𝑔𝑚 is not dominated by any vector in 𝐺𝑜𝑝

𝑚 ∪ 𝐺𝑐𝑙
𝑚 then

/* a path to 𝑚 with new interesting cost has been found */
26 Eliminate from 𝐺𝑜𝑝

𝑚 and 𝐺𝑐𝑙
𝑚 vectors dominated by 𝑔𝑚. For each vector 𝑔′𝑚 eliminated from 𝐺𝑜𝑝

𝑚 , eliminate the
corresponding (𝑚, 𝑔′𝑚, 𝑓

′
𝑚) from 𝑂𝑃𝐸𝑁 ;

27 Calculate 𝑓𝑚 = 𝑔𝑚 +𝐻(𝑚, 𝑒𝑛𝑑);
28 if 𝑓𝑚 is not dominated by any vector in 𝐶𝑂𝑆𝑇𝑆, then
29 put (𝑚, 𝑔𝑚, 𝐹𝑚) in 𝑂𝑃𝐸𝑁 ;
30 put 𝑔𝑚 in 𝐺𝑜𝑝

𝑚 ;
31 create edge (𝑚, 𝑛) in 𝑆𝐺 with labels 𝑔𝑚 and 𝑐𝑛,𝑚,𝑙,∗;
32 end
33 end
34 end
35 end

for all objectives. In this case, the estimate information is not utilised at all. This can be considered as a baseline heuristic. In this
paper, in order to speed up the search, we propose two heuristic functions:

(1) 𝐻1 is defined as follows. (I) For taxi time, it is calculated as the length of the shortest path to 𝑒𝑛𝑑 in terms of distance divided
y the maximum allowed speed (30 kts). (II) For the fuel consumption, taxi time estimated using (I) is multiplied by the idle fuel
low for medium category aircraft. The shortest path and idle fuel flow provide a lower bound, as aircraft cannot travel a shorter
istance or consume less fuel. Note that the idle fuel flow of heavy category aircraft is assumed to be greater than or equal to the
dle fuel flow for medium category aircraft, satisfying the admissibility condition.

(2) 𝐻2 is based on the heuristic function proposed by Tung and Chew (1992) and defined as follows. For each 𝑛 ∈ 𝑉 𝑠 which is
possible start node of a segment all nondominated routes to 𝑒𝑛𝑑 are found by AMOA*, assuming no other aircraft are present at

he airport. 𝐻2(𝑛, 𝑒𝑛𝑑) then returns the minimum value of taxi time and fuel consumption from the set of costs of all nondominated
outes. Therefore, a tuple (taxi time, fuel consumption) in this case is effectively an ideal point of Pareto front of nondominated and
nimpeded routes, representing the minimum time/fuel consumption that can be achieved from 𝑛 to 𝑒𝑛𝑑.

As heuristic function 𝐻2 requires finding optimal unimpeded routes for each 𝑛 to every possible 𝑒𝑛𝑑, they are time consuming
due to the large number of nodes. Therefore, only 𝑛 ∈ 𝑉 𝑠 and 𝑒𝑛𝑑 ∈ 𝑉 𝑒𝑛𝑑 are considered, where 𝑉 𝑒𝑛𝑑 ⊆ 𝑉 denotes a set of gates and
runway exits. Furthermore, all 𝐶𝑛,𝑚 are assumed to be for the medium category aircraft and no breakaway segment is considered
in order to use the same heuristic function for arrivals and departures. Note that these assumptions do not violate the admissibility
10

property of the heuristic function.
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3.3. Multi-graph reduction

The size of 𝐶𝑛,𝑚 significantly affects the size of the search space. However, the size of the search space can be reduced if only
elected rows of 𝐶𝑛,𝑚 are considered. Let 𝐶 ′

𝑛,𝑚 with size 𝑢 × 𝑞 be a submatrix of 𝐶𝑛,𝑚 for ∀𝑛, 𝑚 ∈ 𝑉 and 𝑢 ≤ 𝑝. Considering only
𝐶 ′
𝑛,𝑚 instead of 𝐶𝑛,𝑚 reduces the size of the multi-graph. Two approaches for submatrix selection are considered in this paper: (1)
rom the Pareto front for a segment, 𝑢 evenly distributed solutions are selected. Rows in 𝐶𝑛,𝑚 are ordered according to the first

objective and 𝑢 solutions are selected with even distance from each other according to the first objective. Note, that no preference
information for selecting the submatrix is needed. (2) If preferences for the search are known beforehand, the decision maker can
express a preference according to the ranking of the rows in 𝐶𝑛,𝑚, from which a subset of 𝐶𝑛,𝑚 of size 𝑢 is selected. For example,
the decision maker can be interested only in the 𝑙th row in 𝐶𝑛,𝑚 for each 𝑛, 𝑚, corresponding to the fastest solution or the most fuel
efficient one. In this case, 𝑢 = 1. Similarly, the decision maker can be interested in several rows in 𝐶, i.e. 𝑢 ≥ 2. This approach is
enoted as AMOA* with preferences.

The reduction affects the number of found solutions. Therefore, not all solutions may be discovered. Furthermore, with a
eduction 𝑢 < 𝑝 the combination of all 𝑝 speed profiles, e.g. the fastest speed profile on one segment and the most fuel efficient one
n another segment, is not searched. This may affect not only the number of found solutions but also available time windows as a
esult leading to worse solutions.

Note, that if 𝑢 = 1, the following reduction is possible: (1) the multi-graph is de facto reduced to a simple graph with multiple
bjectives on its segments. (2) the multi-objective search can be transformed into a single-objective one. The transformation is
chieved by aggregating objective values pertaining to segments into a single value if preferences used to select the route for
𝑖 from 𝑅𝑖 are the same ones as those used to create 𝐶 ′

𝑛,𝑚. Note that such transformation into a single objective search can
ompromise optimality of solutions in multiple cases. Firstly, if the weighted sum aggregation is used, it is not able to find solutions
n a non-convex Pareto front. Secondly, the single objective search is more likely to encounter non-nonadditivity as described in
ection 2.2 due to the absent Pareto dominance check. This will be demonstrated later in Section 4.6. Finally, as mentioned above
he combination of all 𝑝 speed profiles is not explored, potentially missing good solutions as the preferred speed profile may not
omply with time windows. It is worth noting that the multi-objective search is equivalent to the single-objective search in a special
ase when the cardinality of the Pareto front is equal to one. This is often the case when objective values pertaining to segments
re correlated as indicated in Mote et al. (1991).

As an example of preferences, economic costs pertaining to each objective were specified in Chen et al. (2016a). Each second of
axi time and kg of fuel burned incur economic costs. The values of 𝑜𝑏𝑗1, 𝑜𝑏𝑗2 of each row in 𝐶𝑛,𝑚 are multiplied by corresponding
nit costs 𝑤𝑃 = (𝑤𝑃

1 , 𝑤
𝑃
2 ), where 𝑤𝑃

1 , 𝑤
𝑃
2 are the unit costs of taxi time and fuel consumption, respectively. The aggregated costs

hen give the ranking of the rows in 𝐶𝑛,𝑚 and lower costs are preferred. If any of the unit costs equals 𝑀 , where 𝑀 is a large positive
umber, the decision maker prefers the solution with the minimum of the corresponding objective. The same approach is applied
or selecting the cost optimal route from a set of nondominated routes (Chen et al., 2016a).

. Computational results

This section provides details of experiments with AMOA*. The AMOA* was programmed in Python as a single-threaded
pplication and executed on a laptop computer (Intel Core i7, 2.6 GHz, 16GB RAM). For experiments with runtimes of days a
niversity high-performance computer 1 (HPC) was used. In order to speed up the online computation, heuristic function values,
et of conflicting edges and set of segments were pre-computed. As will be described later, the computational time of 𝐻2 is highly
ependent on the size of the airport. Therefore, it was only used in experiments to investigate the impact of different heuristics
n the computational time. In all other experiments, H1 was used. Note that the choice of the heuristic function only affects the
omputational time, not the optimality of solutions. In practical applications, it is assumed that enough computational time and
esources are available to calculate 𝐻2.

.1. Data

In this paper, we use a set of instances of real arrival and departure flights from 3 airports: Doha International Airport (DOH),
ong Kong International Airport (HKG) and Beijing Capital International (PEK). The complexity of the taxiway layout ranges from

imple (DOH), medium (HKG) to complex (PEK), as shown in Fig. 6. The graphs and flights are detailed in Table 3 and the instances
ontain flights from 16.3.2014 (17:00–23:00) for DOH, 17.1.2017 (0:00–24:00) for HKG and 9.7.2014 (9:00–14:00) for PEK. The
axiway layout was processed from OpenStreetMap2 by tools from (Brownlee et al., 2014). All edges were set as bi-directional. The
lights for DOH and HKG instances were captured with specialised tools described in (Brownlee et al., 2014) from freely-available
ata on FlightRadar24.com. The data specifies landing/pushback times, gates/runway exits and weight category for each flight.

As mentioned in Section 2.3 all aircraft have been categorised into medium and heavy weight categories and representative
ircraft is designated for each category: Airbus A320 and A333 for medium and heavy category, respectively. The specifications of
he representative aircraft are used for calculation of fuel consumption (see Table 4).

1 https://doi.org/10.5281/zenodo.438045.
2 www.openstreetmap.org.
11
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Fig. 6. A directed graph representation of the airport surface for (a) Doha International Airport, (b) Hong Kong International Airport, (c) Beijing Capital
International Airport.

Table 3
Data instances.

nodes edges gates rwy exits arrivals departures aircraft

DOH 434 436 55 14 103 77 180
HKG 1309 1491 160 38 290 216 506
PEK 3194 3928 286 53 185 164 349

Table 4
Specifications of the representative aircraft.

Airbus A320 Airbus A333

Take-off weight 78000 kg 230000 kg
Engines CMF56-5-A1 CF6-80E1A2
Number of engines 2 2
Rated output 𝐹𝑜𝑜 2 × 111.2 kN 2 × 287 kN
Rolling resistance 11.48 kN 33.84 kN
Fuel flow at 7% 𝐹𝑜𝑜 0.101 kg⋅s−1 0.228 kg⋅s−1

Fuel flow at 30% 𝐹𝑜𝑜 0.291 kg⋅s−1 0.724 kg⋅s−1

4.2. Description of baseline approaches

To illustrate the difference between AMOA* and previous approaches, 𝑘-QPPTW (Ravizza et al., 2013b), QPPTW (Ravizza et al.,
2013a) and Shortest path algorithm are used for comparison. 𝑘-QPPTW and QPPTW algorithms used in this paper follow Ravizza
et al. (2013b). These two algorithms have been adapted to use the database of speed profiles (Weiszer et al., 2015b).

𝑘-QPPTW is a representative algorithm of a class of multi-objective ranking algorithms. As mentioned in Section 2.1, the main
shortcoming of 𝑘-QPPTW algorithm is the limited number of explored routes and assumption of constant speed in the route search.

The 𝑘-QPPTW algorithm processes aircraft sequentially and the procedure for routing a single aircraft is shown in Algorithm 4.
𝑘 fastest routes are generated, based on assumed constant speed 10 m/s for straight segments and 5.14 m/s (10 knots) for turns,
respecting time windows. Each route is divided into segments. For each segment 𝑠𝑛,𝑚, the 𝑙th row of 𝐶𝑛,𝑚 is considered and the route
with the summed cost is added to the Pareto front. If no solutions are found in Line 10 as a result of no available time windows,
then the start time is postponed by 60 s. The option with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled was not implemented in 𝑘-QPPTW and therefore is not
used here. After the Pareto front for each route has been iteratively generated, the Pareto fronts are combined in Line 13, keeping
only nondominated solutions. The final Pareto front is then discretised into 𝑑𝑖𝑠𝑐 roughly equally spaced solutions. 𝑑𝑖𝑠𝑐 is set to 10
and 20 for medium and heavy category aircraft, respectively. Finally, the preferred route is selected and reserved for aircraft 𝑎𝑖 in
Line 14.

The QPPTW and Shortest path algorithms are representatives of the single objective routing algorithms. It should be noted,
that the single objective search applies only to finding a route. Once the route is found, multi-objective speed profiles are applied
to this route, resulting in multi-objective final solutions. In order to fairly compare the algorithms with AMOA*, the QPPTW and
Shortest path algorithms use a similar framework as is outlined in Algorithm 4. The QPPTW and the Shortest path algorithm are
single-objective algorithms, and therefore return a single route in Line 1. QPPTW is a specialised routing algorithm taking into
account time windows during the search for the route. The 𝑘-QPPTW algorithm is equivalent to QPPTW for 𝑘 = 1. Therefore, 𝑘 is
set to 1 in Line 1. The found route is divided into segments, for which 𝑝 rows of 𝐶𝑛,𝑚 are iteratively applied in Lines 4–7. The rest
of Lines 8–12, 14 are unchanged. Line 13 is skipped, as the number of solutions 𝑝 is equal to 𝑑𝑖𝑠𝑐.
12
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Algorithm 4: 𝑘-QPPTW algorithm.
1 Generate the fastest 𝑘 routes for 𝑎𝑖 w.r.t. to time windows;
2 for each route 𝑘 do
3 Divide the route into segments;
4 for 𝑙 = 1, 2,… , 𝑝 do
5 Use the 𝑙-th row of 𝐶𝑛,𝑚 for all segments 𝑠𝑛,𝑚;
6 Add a solution to the Pareto front;
7 end
8 end
9 if no solutions comply with time windows then
10 𝑡𝑖 = 𝑡𝑖 + 60 s;
11 Go to Line 1;
12 end
13 Combine and discretise the Pareto front into 𝑑𝑖𝑠𝑐 solutions;
14 Select the preferred solution and reserve the relevant route;

In contrast, the Shortest path algorithm is a simple approach based on Dijkstra’s algorithm. A shortest route in terms of physical
istance is found in Line 1 without considering time windows. Time windows are only considered after the route has been found,
iscarding solutions not complying with them. The rest of Lines 2–12, 14 are the same as for the QPPTW algorithm.

In order to illustrate the similarity and difference between the multi-objective and single-objective search under multi-graph
eduction when 𝑢 = 1 and available preferences as described in Section 3.3, AMOA* is also compared with a single objective version
f itself. To this end, the Pareto dominance check in AMOA* is replaced with a comparison based on economic costs. For each
olution, the value of taxi time and fuel consumption is multiplied by the corresponding unit costs and solutions with smaller
conomic costs are selected. This version of the algorithm is denoted as airport single-objective A* (ASOA*). Note that ASOA* is
modified version of the multi-objective AMOA* and therefore not the most computationally efficient one compared to the pure

ingle objective A* algorithm.

.3. Pareto front for a single aircraft

In this section, we will give examples of results for a single aircraft in order to illustrate the performance of AMOA* in two
pecific cases. As all algorithms compared in this study are sequential, using a single aircraft can demonstrate the performance
ore clearly without the loss of generality.

Firstly, to compare different approaches, a medium weight category aircraft (id 61) from HKG instance with 𝑝 = 10 speed
profiles for each straight segment is examined without considering other aircraft in the airport. In sequential routing and scheduling
algorithms routes of preceding aircraft affect the routes of subsequent aircraft. Excluding all other aircraft ensures that the time
windows are all set to (0,∞) (i.e. unimpeded) for the different algorithms presented here.

AMOA* was run using 𝐻1 and 𝑢 = 10 without preferences. For AMOA* with preferences, 𝑢 = 1. Without the loss of generality,
four arbitrary preferences are considered, (1) the solution with minimum taxi time for which 𝑤𝑃 = (𝑀, 0), where 𝑀 is a large
positive number, (2) solution with minimum economic cost for 𝑤𝑃 = (0.469, 0.71), where the unit cost for taxi time is 0.469 e/s
and 0.71 e/kg for fuel consumed as in Weiszer et al. (2015a), (3) solution with minimum economic cost for 𝑤𝑃 = (0.469, 1.42) with
double unit cost for fuel and (4) solution with minimum fuel consumption for which 𝑤𝑃 = (0,𝑀).

The Pareto front of routes obtained by different algorithms is shown in Fig. 7a. The Pareto front for AMOA* contains 89
nondominated solutions whereas the Pareto front for 𝑘-QPPTW/QPPTW/Shortest path algorithms has 10 nondominated solutions.
AMOA* with preferences and ASOA* returned a single solution for each preference. As can be seen, AMOA*, AMOA* with
preferences and ASOA* resulted in better solutions in terms of both objectives. 𝑘-QPPTW, QPPTW and Shortest path generated the
same solutions for this aircraft. Fig. 7b shows that ASOA* reached solutions in different regions of the Pareto front with different
preferences. When changing 𝑢 = 1, 2,… , 10 using the two multi-graph reduction methods (described in Section 3.3), the number of
solutions found by AMOA* without and with preferences gradually increased with the larger value of 𝑢 as shown in Fig. 7c and
Fig. 7d. The results also illustrate the difference between the multi-graph reduction methods. The multi-graph reduction based on
evenly distributed solutions gradually covers the whole Pareto front, the reduction based on preferences and ranking concentrates
solutions close to one region of the Pareto front. The fastest routes for each algorithm from Fig. 7a are shown in Fig. 8. The fastest
route found by AMOA* (409 s, 95 kg) is better than the fastest route found by other algorithms (448 s, 109 kg) due to lower
number of turns. Specifically, the route found by AMOA* has only 5 turning segments compared to 6 in the other route. This results
in shorter taxi time and less fuel consumption due to less acceleration after turning segments. Other algorithms cannot discover
the most efficient route as: (1) The other algorithms explore only limited number of routes (3 routes for 𝑘-QPPTW and 1 route for
QPPTW and Shortest path algorithm). (2) The search for the route is based on other objectives rather than real costs corresponding
to the speed profiles. The 𝑘-QPPTW and QPPTW algorithms search for the fastest route based on the constant speed, the Shortest
path algorithm is based on the shortest distance.
13
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Fig. 7. Pareto front for aircraft id 61: (a) AMOA* with 𝑢 = 10 compared with other approaches, (b) solutions obtained with 𝑢 = 1 and different preferences,
c) solutions obtained by AMOA* with multi-graph reduction based on evenly distributed solutions and increasing 𝑢, (d) solutions obtained by AMOA* with
references with 𝑤𝑝 = (𝑀, 0) and increasing 𝑢.

Fig. 8. Route of aircraft id 61.
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Fig. 9. Pareto front of solutions obtained by AMOA* with increasing 𝑢 for aircraft id 321.

In the second case, we investigate the impact of increasing 𝑢 on a single aircraft (id 321) from HKG instance. As mentioned in
ection 3.3, considering a limited number of speed profiles affects the quality of solutions. In the following experiment, the multi-
raph was reduced using the preferences. However, similar results are expected from using another multi-graph reduction method
escribed in Section 3.3. Firstly, AMOA* with preferences was run using 𝐻1, 𝑢 = 1 and 𝑤𝑝 = (0,𝑀) for all aircraft preceding (id
21) in order to initiate the time windows. Then, AMOA* with preferences was run with varied 𝑢 = 1, 2,… , 10 for aircraft (id 321).

The Pareto front of the obtained routes is shown in Fig. 9. As can be seen, with the increasing value of 𝑢, the algorithm found better
solutions. When the value of 𝑢 is small, the algorithm could not find efficient routes due to the tight time windows imposed by other
aircraft. Larger values of 𝑢 enable the algorithm to consider more speed profiles which may comply with the tight time windows,
leading to better and more routes.

In the next section, a detailed analysis of factors affecting the performance of AMOA* is carried out on the complete instances
of DOH, HKG and PEK.

4.4. Parameter analysis

Two factors are examined: the size of the search space and the heuristic function. Note that for experiments using PEK instance
and heuristic function 𝐻2, only the first 50 aircraft were considered (denoted as PEK50). This is due to the size of the graph and
the resulting long time to calculate 𝐻2 for all combinations of nodes and gates and runway exits. As only combinations of nodes
and gates and runway exits used by the aircraft in the instance need to be calculated, by considering a limited number of aircraft,
the number of gates/runway exits is capped at maximum 50. AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 not enabled is used in the following experiments
without the loss of generality. The effect of the parameter ℎ𝑜𝑙𝑑𝑖𝑛𝑔 on the computational time was very small during the initial
experiments and therefore not investigated further.

Firstly, experiments with the varying size of the search space are carried out. The size of the search space with a given graph 𝐺
is determined by the size 𝑝× 𝑞 of 𝐶𝑛,𝑚 for each segment 𝑠𝑛,𝑚. As described in Section 3.3, the size of the search space can be reduced
by setting 𝑢 < 𝑝 according to some reduction methods. Without the loss of generality, for the analysis of computational time the first
𝑢 rows of 𝐶𝑛,𝑚 are considered based on 𝑤𝑃 = (0,𝑀) as the preference for ranking. From the set of nondominated routes, the route
with minimum taxi time is selected for each aircraft. The heuristic function 𝐻2 was used during the experiments, as 𝐻2 provided
the best results as will be described later. Table 5 details minimum, maximum and average computational time for routing a single
aircraft with the increasing value of 𝑢. A-SMGCS specifies that the time to generate a route for a single aircraft should not exceed
10 s for on-line decision support (ICAO, 2004). The computational times quickly increase with larger values of 𝑢. The experiments
marked with * were run on the HPC, which has a maximum limit of 10 days for a single run. The missing experiments could not be
completed within that limit. The results show that only for 𝑢 = 1 the average time is within 10 s limit for all instances, although the
maximum time for PEK is more than doubled than this limit. The increase in computational time is caused by more alternatives in
𝑂𝑃𝐸𝑁 to be expanded in Algorithm 2. In comparison, the average computational times for ASOA* with 𝐻2 did not exceed 1 s for
DOH, HKG and PEK50 instances, demonstrating the value of multi-graph reduction when preference information is available and
computational time requirement is stringent.

Fig. 10 shows a distribution of computational times for HKG instance with 𝑢 = 5. As can be seen, the majority of runtimes is
elatively fast. Only a smaller portion of aircraft had very long algorithm runtimes. Similar distributions were observed in other
ases with different 𝑢.

Table 6 further illustrates the effect of 𝑢 on the number of nondominated routes for each aircraft. With larger 𝑢, more
nondominated solutions are found. For 𝑢 = 1, the number of nondominated solutions is close to 1 and seems to increase with
15
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Table 5
Computational times for a single aircraft in seconds for 𝐻2 and varying 𝑢.

DOH HKG PEK50

𝑢 = 1
min <0.01 0.01 0.01
max 0.14 5.71 21.76
avg 0.03 1.07 2.47

𝑢 = 2
min 0.01 0.02 0.05
max 2.16 71.93 280.37
avg 0.19 6.87 24.48

𝑢 = 3
min 0.01 0.05 0.11*
max 13.73 324.98 2439.91*
avg 0.61 25.62 149.41*

𝑢 = 5
min 0.01 0.09* 0.29*
max 29.12 8370.49* 9269.09*
avg 1.73 252.90* 456.73*

𝑢 = 10
min 0.02 0.05* –
max 1283.48 28984.62* –
avg 24.81 1416.65* –

Fig. 10. Histogram of runtime for HKG and 𝑢 = 5.

Table 6
Number of nondominated solutions.

DOH HKG PEK50

𝑢 = 1
max 3 6 5
avg 1.12 1.56 1.68

𝑢 = 2
max 28 32 58
avg 6.51 6.82 8.22

𝑢 = 3
max 67 85 57
avg 12.63 13.48 13.34

𝑢 = 5
max 198 214 62
avg 24.77 25.34 21.04

𝑢 = 10
max 567 529 –
avg 67.18 48.38 –

is available, the multi-objective search is equivalent to the single-objective search with preferences in those cases. This supports
the hypothesis of low cardinality of the Pareto front with correlated objectives (Mote et al., 1991). Although taxi time and fuel
consumption are conflicting for a single segment as demonstrated in Chen et al. (2016b), in general longer segments require longer
taxi time, resulting in higher fuel consumption and therefore reduce the cardinality of the Pareto front.

The effect of 𝑢 on the performances of the obtained results is further investigated. To enable comparison, the submatrix of costs
or each edge and the selected route for each aircraft is selected according to preferences 𝑤𝑃 and ranking as outlined in Section 3.3.

The preferences are set to the same values as in Section 4.3. Table 7 shows savings of costs obtained with varying 𝑢, relative to
16
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Table 7
Comparison of cost savings compared with 𝑢 = 1.

𝑤𝑃 DOH HKG PEK PEK50

𝑢 = 2

(0,𝑀) 0.00% 0.00% −0.04% 0.00%
(0.469, 0.71) 0.34% 0.24% −0.01% 0.00%
(0.469, 1.42) 0.01% 0.36% 0.05% 0.02%
(𝑀, 0) 0.00% 0.17% 0.00% 0.00%

𝑢 = 3

(0,𝑀) 0.00% 0.02% 0.00% 0.14%
(0.469, 0.71) 0.34% 0.29% 0.33% 0.00%
(0.469, 1.42) 0.05% 0.47% 0.07% 0.02%
(𝑀, 0) 0.00% 0.18% 0.01% 0.00%

𝑢 = 5

(0,𝑀) 0.00% −0.11% 0.37% 0.14%
(0.469, 0.71) 0.49% 0.29% – 0.00%
(0.469, 1.42) 0.03% 0.55% – 0.02%
(𝑀, 0) 0.01% 0.31% – 0.00%

𝑢 = 10

(0,𝑀) 0.17% 0.05% – –
(0.469, 0.71) 0.51% – – –
(0.469, 1.42) 0.20% – – –
(𝑀, 0) −0.08% – –

Table 8
Computational time analysis of 𝐻 for 𝑢=1 in seconds.

DOH HKG PEK PEK50

𝐻0
min 0.03 0.11 0.48 –
max 0.17 7.88 62.71 –
avg 0.08 2.27 18.25 –

𝐻1
min 0.01 0.04 0.15 –
max 0.15 5.94 49.72 –
avg 0.05 1.47 7.55 –

𝐻2
min <0.01 0.01 – 0.01
max 0.14 5.71 – 21.76
avg 0.03 1.07 – 2.47

the base case with 𝑢 = 1. Only experiments which could be completed within 10 days on the HPC are reported. Positive values
efer to lower costs compared to the case with 𝑢 = 1. As can be seen, larger values of 𝑢 resulted in increasing but relatively small
avings in most cases. In some cases as demonstrated in Section 4.3, experiments with larger 𝑢 resulted in higher costs than the
ase case with 𝑢 = 1. This seems in contradiction with the results reported in Section 4.3 for a single aircraft. However, further
nvestigation reveals that this is caused by sequential routing of aircraft in AMOA*. In individual cases, AMOA* with larger 𝑢 can
ind a route with better costs, however this may have adverse impact on the available route for the subsequent aircraft, resulting
n larger total costs. Similar results were observed with the multi-graph reduction method based on evenly distributed solutions. It
hould be noted, that the multi-graph reduction method affected the computational time and in some cases the experiments with
venly distributed solutions could finish within the time limit where with the other reduction method could not. With increasing 𝑢,
ore solutions are found as documented in Table 6 but not necessarily with higher quality.

We can observe that higher values of 𝑢 can be beneficial in individual cases as documented in Section 4.3, when a tight time
indow is on an edge which usually occurs during high traffic conditions. In such case, AMOA* with a small value of 𝑢 makes a
etour or holds the aircraft if no feasible speed profile exists for that edge. With larger 𝑢, more speed profiles can be considered to
ind feasible routes with lower costs compared to a detour. An example of such case will be described later. However, such benefit
s limited for the examined instances and the sequential approach that AMOA* is currently following. A more detailed analysis of
he effect of higher 𝑢 on the quality of solutions is needed for high traffic instances as well as when a global approach (i.e. searching
or sequence of aircraft and their route) is adopted in future work.

Next, different heuristic functions are examined for AMOA* with preferences with 𝑢 = 1. Without the loss of generality, 𝑤𝑝 was
et to (𝑀, 0). Note that the heuristic function does not affect the number or cost of nondominated routes (under the admissibility
ondition as explained in Section 3.2). Only the computational time will be different. Table 8 details the computational time of
MOA* for each heuristic function. Note that the pre-calculation time is excluded. As expected, the computational times decrease
ith more accurate heuristic function.

.5. Comparison with baseline approaches

In this section, AMOA* is compared with 𝑘-QPPTW, QPPTW and the Shortest path algorithms in terms of the costs of the resulting
17
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Transportation Research Part C 119 (2020) 102734M. Weiszer et al.

e
w

ℎ
a
n
t
t

a

c
t
e
f
Q
t
a
a
f
𝑘
u
a
e

Table 9
Taxi time and fuel consumption of routes for different algorithms.

Algorithm 𝑤𝑃 DOH HKG PEK

𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2
(𝑀, 0) 32641 16081 130024 68848 89010 30027

AMOA* 𝑢 = 3 (0.469, 0.71) 33783 14584 132803 64256 90151 28255
hold (0.469, 1.42) 34964 13970 135900 63002 91732 27528

(0,𝑀) 36125 13838 139381 62468 95650 27171

AMOA* 𝑢 = 3

(𝑀, 0) 33576 16251 131019 68803 89522 29917
(0.469, 0.71) 34581 14562 134394 64389 91056 28225
(0.469, 1.42) 35539 13970 137202 62807 92633 27490
(0,𝑀) 36885 13866 141202 62525 96080 27098

(𝑀, 0) 32636 16077 130023 68890 88994 29966
AMOA* 𝑢 = 5 (0.469, 0.71) 33710 14453 133163 63951 90299 27950
hold (0.469, 1.42) 34377 14091 134861 63000 91093 27539

(0,𝑀) 36127 13833 139285 62414 95604 27170

AMOA* 𝑢 = 5

(𝑀, 0) 33571 16253 131062 68863 89503 29887
(0.469, 0.71) 34612 14465 134633 63968 91208 27919
(0.469, 1.42) 34995 14085 136152 62867 91980 27526
(0,𝑀) 36886 13860 141215 62524 96081 27107

𝑘-QPPTW

(𝑀, 0) 32472 15915 143856 72945 98742 32747
(0.469, 0.71) 33306 14515 146117 68495 100871 30925
(0.469, 1.42) 34251 14072 149008 67084 103126 30154
(0,𝑀) 35928 13839 156547 66497 109189 29444

QPPTW

(𝑀, 0) 32522 15941 146568 74400 101493 33854
(0.469, 0.71) 33306 14515 151021 69872 102814 32136
(0.469, 1.42) 34251 14072 156621 68388 106104 31181
(0,𝑀) 36067 13864 161258 67434 113852 30289

shortest path

(𝑀, 0) 33962 15941 141089 74011 97776 33964
(0.469, 0.71) 34257 14335 143216 68300 98303 31539
(0.469, 1.42) 34868 14033 145833 67260 99601 30884
(0,𝑀) 36993 13881 152979 67154 106996 30202

QPPTW and the Shortest path algorithms return a Pareto set of solutions for each aircraft. However, due to the sequential nature
of the algorithms, one solution for each aircraft need to be chosen before the next aircraft can be processed. For the this purpose,
the same preferences 𝑤𝑃 were used as in Section 4.3. It should be noted, that the preferences are not used here for multi-graph
reduction. Multi-graph reduction was applied with 𝑢 = 3 and 𝑢 = 5 and evenly distributed speed profiles. With 𝑢 = 3, for each
segment, two extreme and a middle speed profile in terms of the first objective were considered. With 𝑢 = 5, the speed profiles were
venly distributed. Lower values of 𝑢 < 3 seemed not to represent the Pareto front for each segment as seen in results in Section 4.3,
hile values 𝑢 > 5 are too computationally demanding and therefore not reported here.

The heuristic function 𝐻1 was used. Table 9 shows the obtained results for 𝑜𝑏𝑗1 (s) and 𝑜𝑏𝑗2 (kg). For AMOA*, its variant with
𝑜𝑙𝑑𝑖𝑛𝑔 enabled (indicated as AMOA* hold) is also investigated. It should be noted that 𝑜𝑏𝑗1 includes holding time and time if the
ircraft was postponed. For AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled 𝑜𝑏𝑗2 includes the fuel corresponding to holding. For AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔
ot enabled no extra fuel is considered, as the postponing happens at the start/end of the route. For departures this is achieved at
he gate with engines turned off. For arrivals, it is assumed that postponing can be achieved before landing via ATC procedures and
herefore not affecting taxiing costs. Tables 10 and 11 show the corresponding increase/decrease in the values of 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 for

the solutions of AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled with respect to AMOA* without holding, 𝑘-QPPTW, QPPTW and the Shortest path
lgorithm.

For HKG and PEK instances, the routes found by AMOA* hold are 6.8%–16.0% better in taxi time and 5.6%–13.0% better in fuel
onsumption for both 𝑢 = 3 and 𝑢 = 5 compared to the 𝑘-QPPTW, QPPTW and the Shortest path algorithms. These results confirm
hat 𝑘-QPPTW, QPPTW and the Shortest path algorithms could not efficiently search the search space due to limited number of
xplored routes. Furthermore, not considering real costs pertaining to speed profiles during the search further limits the chance of
inding good solutions. For the DOH instance, AMOA* hold performed slightly worse in some cases (maximum 2.1%) than 𝑘-QPPTW,
PPTW and the Shortest path algorithm. Possible reasons are the following: (1) A limited number of possible routes exists due to

he simple taxiway layout of DOH. Therefore, the optimal route is easy to be found by 𝑘-QPPTW, QPPTW and the Shortest path
lgorithm. (2) As 𝑢 is low, only few speed profiles are considered during the search by AMOA* and the Pareto front is not covered
dequately. Furthermore, if no feasible time windows exist for an edge, AMOA* will try to hold the aircraft or take a detour to
ind edges with feasible time windows. The holding and detour cause longer taxi time and higher fuel consumption. In contrast,
-QPPTW, QPPTW and the Shortest path algorithm have only a limited number of alternative routes available, hence they have to
tilise the complete set of 𝑝 speed profiles and postponing (if necessary) to comply with time windows. An example of a route with
detour found by AMOA* hold and a better route found by 𝑘-QPPTW for the same aircraft is shown in Fig. 11. However, the overall
18

ffect of 𝑢 is relatively small as reported in Table 7. (3) Another reason for worse results is the sequential processing of aircraft,
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Table 10
Increase/decrease in the values of 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 for the solutions of AMOA* hold with 𝑢 = 3 with respect to the different
algorithms.

Algorithm 𝑤𝑃 DOH HKG PEK

𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2

AMOA* 𝑢 = 3

(𝑀, 0) 2.8% 1.0% 0.8% −0.1% 0.6% −0.4%
(0.469, 0.71) 2.3% −0.2% 1.2% 0.2% 1.0% −0.1%
(0.469, 1.42) 1.6% 0.0% 0.9% −0.3% 1.0% −0.1%
(0,𝑀) 2.1% 0.2% 1.3% 0.1% 0.4% −0.3%

𝑘-QPPTW

(𝑀, 0) −0.5% −1.0% 9.6% 5.6% 9.9% 8.3%
(0.469, 0.71) −1.4% −0.5% 9.1% 6.2% 10.6% 8.6%
(0.469, 1.42) −2.1% 0.7% 8.8% 6.1% 11.0% 8.7%
(0,𝑀) −0.6% 0.0% 11.0% 6.1% 12.4% 7.7%

QPPTW

(𝑀, 0) −0.4% −0.9% 11.3% 7.5% 12.3% 11.3%
(0.469, 0.71) −1.4% −0.5% 12.1% 8.0% 12.3% 12.1%
(0.469, 1.42) −2.1% 0.7% 13.2% 7.9% 13.5% 11.7%
(0,𝑀) −0.2% 0.2% 13.6% 7.4% 16.0% 10.3%

Shortest path

(𝑀, 0) 3.9% −0.9% 7.8% 7.0% 9.0% 11.6%
(0.469, 0.71) 1.4% −1.7% 7.3% 5.9% 8.3% 10.4%
(0.469, 1.42) −0.3% 0.4% 6.8% 6.3% 7.9% 10.9%
(0,𝑀) 2.3% 0.3% 8.9% 7.0% 10.6% 10.0%

Table 11
Increase/decrease in the values of 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 for the solutions of AMOA* hold with 𝑢 = 5 with respect to the different
algorithms.

Algorithm 𝑤𝑃 DOH HKG PEK

𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2

AMOA* 𝑢 = 5

(𝑀, 0) 2.8% 1.1% 0.8% −0.0% 0.6% −0.3%
(0.469, 0.71) 2.6% 0.1% 1.1% 0.0% 1.0% −0.1%
(0.469, 1.42) 1.8% −0.0% 0.9% −0.2% 1.0% −0.1%
(0,𝑀) 2.1% 0.2% 1.4% 0.2% 0.5% −0.2%

𝑘-QPPTW

(𝑀, 0) −0.5% −1.0% 9.6% 5.6% 9.9% 8.5%
(0.469, 0.71) −1.2% 0.4% 8.9% 6.6% 10.5% 9.6%
(0.469, 1.42) −0.4% −0.1% 9.5% 6.1% 11.7% 8.7%
(0,𝑀) −0.6% 0.0% 11.0% 6.1% 12.4% 7.7%

QPPTW

(𝑀, 0) −0.4% −0.9% 11.3% 7.4% 12.3% 11.5%
(0.469, 0.71) −1.2% 0.4% 11.8% 8.5% 12.2% 13.0%
(0.469, 1.42) −0.4% −0.1% 13.9% 7.9% 14.1% 11.7%
(0,𝑀) −0.2% 0.2% 13.6% 7.4% 16.0% 10.3%

Shortest path

(𝑀, 0) 3.9% −0.9% 7.8% 6.9% 9.0% 11.8%
(0.469, 0.71) 1.6% −0.8% 7.0% 6.4% 8.1% 11.4%
(0.469, 1.42) 1.4% −0.4% 7.5% 6.3% 8.5% 10.8%
(0,𝑀) 2.3% 0.3% 9.0% 7.1% 10.6% 10.0%

Fig. 11. Route of aircraft id 270 (a) with a detour (AMOA* hold with preferences), (b) (𝑘-QPPTW) with differences encircled.

where one aircraft with better route can randomly cause a longer route for subsequent aircraft. For the two variants of AMOA* with
and without ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled, both algorithms achieved similar results. In some cases, AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 performed better, in
others worse. These results show that it is difficult to determine the best holding strategy. If ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is enabled, potentially better
routes can be found without a detour. On the other hand, holding at an intermediate node incur additional costs while if ℎ𝑜𝑙𝑑𝑖𝑛𝑔 is
not enabled the aircraft will be postponed without a fuel penalty. The future work could focus on the search for the best allocation
of the holding times.
19
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Table 12
Comparison of holding time (s).

Algorithm 𝑤𝑃 DOH HKG PEK

(𝑀, 0) 86 365 184
AMOA* 𝑢 = 3 (0.469, 0.71) 98 327 288
hold (0.469, 1.42) 94 436 320

(0,𝑀) 119 458 406

AMOA* 𝑢 = 3

(𝑀, 0) 600 1140 780
(0.469, 0.71) 660 1320 900
(0.469, 1.42) 480 1260 840
(0,𝑀) 420 1140 660

(𝑀, 0) 83 366 174
AMOA* 𝑢 = 5 (0.469, 0.71) 86 398 266
hold (0.469, 1.42) 81 414 246

(0,𝑀) 122 430 399

AMOA* 𝑢 = 5

(𝑀, 0) 600 1140 780
(0.469, 0.71) 660 1320 900
(0.469, 1.42) 480 1260 840
(0,𝑀) 420 1140 660

𝑘-QPPTW

(𝑀, 0) 0 7500 5160
(0.469, 0.71) 0 7020 6120
(0.469, 1.42) 0 6900 6540
(0,𝑀) 0 8580 6840

QPPTW

(𝑀, 0) 0 8520 6540
(0.469, 0.71) 0 9960 6540
(0.469, 1.42) 0 11700 7680
(0,𝑀) 0 11160 9060

shortest path

(𝑀, 0) 1440 4260 3600
(0.469, 0.71) 960 3720 2960
(0.469, 1.42) 960 4140 2880
(0,𝑀) 840 3180 2400

The results obtained for AMOA* with 𝑢 = 3 and 𝑢 = 5 are very similar and only slightly better for 𝑢 = 5. This suggests that
he coverage of the Pareto front is sufficient for 𝑢 = 3 for most of the given data instances. Also, the effect of higher 𝑢 is small as
resented in Table 7.

Since 𝑘-QPPTW explored 𝑘 = 3 routes, better solutions were found than those of QPPTW and Shortest path algorithms, which
xplored only one route. Interestingly, QPPTW found routes with higher costs than the Shortest path algorithm. In contrast to the
hortest path algorithm, QPPTW takes into account time windows during the search. Therefore, QPPTW may take a detour if no
ime windows are available, whereas the Shortest path algorithm postpones the aircraft (extends 𝑡𝑖) instead.

Table 12 shows the total holding time, summed for all aircraft. For AMOA* with ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled aircraft can be held at an
ntermediate node. For AMOA* without ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled and the baseline algorithms, if no time windows are available for the
ircraft to traverse an edge, the start time 𝑡𝑖 of aircraft 𝑎𝑖 is postponed by 60 s (Line 5 in Algorithm 1 and Line 10 in Algorithm 4).
𝑘-QPPTW and QPPTW have a higher total holding time than the other algorithms. As described in Section 4.2, 𝑘-QPPTW and

PPTW search for the route assuming constant speeds, and the time for edge traversal is calculated according to this speed. However,
his is often not realistic and therefore the real speed profiles can violate the time windows. As a result, postponing is applied to
esolve the violation. As expected, 𝑘-QPPTW has a lower total holding time than QPPTW, due to a higher number of routes explored
uring the search and thus a higher chance of finding a feasible route.

Surprisingly, the Shortest path algorithm achieved a shorter total holding time than 𝑘-QPPTW and QPPTW. This is despite the
fact that the Shortest path algorithm does not take into account time windows during the search for the route. The results suggest
that assuming constant speeds during the search in 𝑘-QPPTW and QPPTW mislead the algorithms into routes with infeasible time
windows. By not considering time windows and using constant speeds, the Shortest path algorithm could find more feasible routes
on average than 𝑘-QPPTW and QPPTW. The shortest holding time is achieved by AMOA* for both ℎ𝑜𝑙𝑑𝑖𝑛𝑔 variants with better
values for ℎ𝑜𝑙𝑑𝑖𝑛𝑔 enabled. The better results compared to other algorithms are achieved by efficient holding at intermediate nodes,
considering speed profiles and the ability to take detours. An exception is the DOH instance with a simple taxiway layout. As
explained above, 𝑢 < 𝑝 results in either a detour or holding time for AMOA*, in contrast to 𝑘-QPPTW and QPPTW which can
consider 𝑝 speed profiles to resolve time window violations.

In terms of computational time, AMOA* with 𝑢 = 3 and 𝑢 = 5 could not find routes within 10 s on average as documented in
Table 5. In the next section, we explore how the search can be carried out faster when preferences are formulated.
20
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Table 13
Taxi time and fuel consumption of routes for different algorithms.

DOH HKG PEK

Algorithm 𝑤𝑃 𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2 𝑜𝑏𝑗1 𝑜𝑏𝑗2
(𝑀, 0) 32644 16116 130063 69139 89051 30184

AMOA* /w pref. (0.469, 0.71) 33480 14431 132385 64002 90003 28153
hold (0.469, 1.42) 34102 14133 134080 63099 90894 27681

(0,𝑀) 36234 13868 139999 62563 95800 27205

AMOA* /w pref.

(𝑀, 0) 33678 16288 131499 69214 90192 30199
(0.469, 0.71) 34403 14431 134001 64120 91066 28159
(0.469, 1.42) 34899 14099 135956 63371 91947 27677
(0,𝑀) 37157 13848 141529 62503 96404 27143

ASOA*

(𝑀, 0) 33678 16288 131656 69297 90014 30170
(0.469, 0.71) 34403 14431 134234 64218 91204 28255
(0.469, 1.42) 35003 14128 135928 63383 92080 27696
(0,𝑀) 37221 13848 141678 62567 96523 27158

(𝑀, 0) 32644 16116 130081 69235 89183 30208
ASOA* (0.469, 0.71) 33480 14431 132299 63966 90021 28159
hold (0.469, 1.42) 34102 14138 134074 63157 91045 27711

(0,𝑀) 36256 13874 139999 62563 95891 27217

Table 14
Comparison of holding time (s).

Algorithm 𝑤𝑃 DOH HKG PEK

(𝑀, 0) 109 587 313
AMOA* /w pref. (0.469, 0.71) 114 606 514
hold (0.469, 1.42) 115 617 504

(0,𝑀) 116 771 472

AMOA* /w pref.

(𝑀, 0) 660 1320 900
(0.469, 0.71) 660 1260 1020
(0.469, 1.42) 660 1200 900
(0,𝑀) 720 1320 660

(𝑀, 0) 109 616 446
ASOA* (0.469, 0.71) 114 676 556
hold (0.469, 1.42) 124 710 663

(0,𝑀) 128 771 521

ASOA*

(𝑀, 0) 660 1320 960
(0.469, 0.71) 660 1200 960
(0.469, 1.42) 660 1200 960
(0,𝑀) 780 1320 720

4.6. Search with preferences

As explained in Section 3.3, when preference information is available, a multi-graph can be reduced into a simple graph and a
ulti-objective search to a single-objective one. The same preferences were used as in Section 4.3. For the multi-objective search,
MOA* with preferences and 𝑢 = 1 was used, whereas ASOA* was run for the single-objective search. It should be noted, when the

multi-graph is transformed into the simple graph with single objectives on its edges, 𝑘-QPPTW and QPPTW algorithm are expected
to give the same performance as ASOA*. If 𝑘-QPPTW and QPPTW search on a simple graph with aggregated costs according to
preferences, only one shortest route exists which is found with 𝑘 = 1.

Tables 13 and 14 show the obtained results in terms of objectives and holding time, respectively. As described in Section 3.3,
transformation into a single-objective search with ASOA* can compromise the quality of solutions. However, AMOA* with
preferences performed very similarly to ASOA* in terms of the quality of the obtained routes. Small differences are caused by the
nonadditivity effect explained in Section 2.2 to which ASOA* is more prone due to the absent Pareto dominance check. Together
with the results for a single aircraft in Section 4.3, it can be observed that: (1) AMOA* with preferences can simultaneously find set
of nondominated solutions, which is particularly evident when 𝑢 > 1. Also, as indicated in the results for a single aircraft, AMOA*

ith preferences with 𝑢 > 1 can find better solutions than ASOA* in some cases. (2) When 𝑢 = 1, AMOA* with preferences performs
imilarly to ASOA*. Furthermore, ASOA* is much faster than AMOA* with preferences. To conclude, if preferences are available and
he decision maker is interested only in one solution, ASOA* can be considered as a better option than AMOA* with preferences.
21
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5. Conclusions

In this paper, a multi-objective routing and scheduling algorithm AMOA* for airport ground movement was introduced to find
ptimal or near optimal routes for a fixed sequence of aircraft in terms of taxi time and fuel consumption taking into account
ealistic speed profiles. Two heuristic functions were proposed in order to accelerate the search. The ground movement problem
as modelled as a multi-graph, which proved to be computationally challenging on larger instances of HKG and PEK and higher
umber of parallel segments. As a solution, two multi-graph reduction methods were proposed, one for a general case and another
ne when preferences for the search in terms of economic costs for each objective are available. AMOA* with reduced multi-graph
ound routes on medium (HKG) and large (PEK) instances which are 6.8%–16.0% better in taxi time and 5.6%–13.0% better in fuel
onsumption compared to the previously used baseline algorithms. In some cases, the proposed algorithm generated a maximum
.1% worse route in both objectives than the baseline algorithms due to no available time windows for all the speed profiles. The
esults showed only a limited effect on optimality of found solutions with more parallel edges in the multi-graph while computational
imes increased quickly. Although the computational time still remained high for the reduced multi-graph, the results suggest that if
references are available and the decision maker is interested only in one solution, a single-objective search can find a high quality
olution faster than the multi-objective AMOA* with preferences.

For the future work, several areas deserve more attention:

1. The routing algorithm could incorporate more accurate speed profiles incorporating nonlinear jet engine behaviour and
uncertainty due to pilots following the speed profiles.

2. As shown in this paper, there are different solutions for cases when no time windows are feasible for the speed profiles
retrieved from the database. The algorithm can postpone the start time of the aircraft, hold it at an intermediate node, take
a detour or generate another speed profile in real time such as in (Zhang et al., 2018). In fact, there is trade-off between
different holding approaches, a longer route and an alternative speed profile meeting the time window which should be
investigated.

3. Results suggest that a lower value of 𝑢 is sufficient in most cases to provide faster computational time without compromising
the quality of solutions. However, the best value of 𝑢 differs depending on the conditions. When edges have tight time windows
such as during high traffic conditions, higher values of 𝑢 could improve the quality of solutions. This could be utilised in
construction of the multi-graph where value of 𝑢 (i.e. number of parallel edges) could be varied for different aircraft or
scenarios.

4. Computational times showed a wide distribution, where a few aircraft needed extremely long times. Further research could
investigate the attributes of these cases in order to predict them before the search. Suitable search space reduction methods
could be employed for those aircraft.

5. In this paper, a sequential approach was implemented. However, the sequencing of aircraft as demonstrated in Ravizza et al.
(2013a) has an impact on the best taxi time/fuel consumption that can be obtained.

6. An alternative approach, such as the one based on metaheuristics is needed for the larger number of parallel segments in the
multi-graph to be computationally tractable.

7. Faster computational time could be achieved by preprocessing techniques, such as multi-objective shortcuts (Delling and
Wagner, 2009).

8. It is believed that knowledge about the multi-graph search for this problem could be utilised for other similar problems such
as the time-constrained vehicle routing problem (Garaix et al., 2010; Lai et al., 2016).
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