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Abstract
The identification of the stable phases in alloy materials is challenging because composition
affects the structural stability of different intermediate phases. Computational simulation, via
multiscale modelling approaches, can significantly accelerate the exploration of phase space and
help to identify stable phases. Here, we apply such new approaches to understand the complex
phase diagram of binary alloys of PdZn, with the relative stability of structural polymorphs
considered through application of density functional theory coupled with cluster expansion
(CE). The experimental phase diagram has several competing crystal structures, and we focus
on three different closed-packed phases that are commonly observed for PdZn, namely the
face-centred cubic (FCC), body-centred tetragonal (BCT) and hexagonal close packed (HCP),
to identify their respective stability ranges. Our multiscale approach confirms a narrow range of
stability for the BCT mixed alloy, within the Zn concentration range from 43.75% to 50%,
which aligns with experimental observations. We subsequently use CE to show that the phases
are competitive across all concentrations, but with the FCC alloy phase favoured for Zn
concentrations below 43.75%, and that the HCP structure favoured for Zn-rich concentrations.
Our methodology and results provide a platform for future investigations of PdZn and other
close-packed alloy systems with multiscale modelling techniques.
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1. Introduction

Computational approaches now provide opportunities for
accelerated exploration of material phase space, though sig-
nificant challenges remain [1–3]. Whilst experimental verific-
ation of relative phase stability is challenging, the ability to
interrogate and understand phase diagrams through applica-
tion of computational modelling can be achieved by taking
initial estimates of the thermodynamically accessible phases,
and their boundaries, and interpolating between the available
data points and extrapolating to experimentally inaccessible
regions. Computational explorations of phase diagrams typ-
ically combine high throughput first-principles calculations
and data mining techniques, and are facilitated by the avail-
ability of extensive thermodynamic databases [4, 5]. These
modern capabilities allow the prediction of new stable mater-
ials, and their properties, and understanding of phase stabil-
ity for compositions that have not been previously considered
experimentally.

In catalysis, the stability of a specific phase can alter reac-
tion efficacy. The PdZn alloy is widely studied owing to its
catalytic performance toward CO2 hydrogenation and related
catalytic chemistry. Compared to Cu based catalysts, Pd/ZnO
has greater stability for the methanol steam reforming reaction
[6]. Pd/ZnO catalysts can be active for CO2 hydrogenation to
methanol depending on the choice of preparation method and
the Pd precursor, which affects the selectivity of the products.
Pd has a strong tendency to form intermetallic species with
ZnO when exposed at a high temperature under a reducing
environment, such as during hydrogenation reactions [7]. For
the CO2 hydrogenation reaction, the proximity between the
metal and substrate stabilises the formate (HCOO) species,
which is reported as the intermediate on PdZn alloy.

The complex phase diagram of PdZn [8] comprises several
structures, as shown in figure 1. Amongst the different phases,
the most important are:

(1) The body-centred tetragonal (BCT) structure named β-
PdZn, in the P4/mmm space group, which is observed at
compositions close to 1:1 at thematerial’s surface for tem-
peratures of 230 ◦C, but does not penetrate to the bulk
until 500 ◦C [9].

(2) The face-centred cubic (FCC) phase with random substi-
tutional alloying, denoted α-PdZn, which is observed in
the Pd-rich region of the PdZn phase diagram [9], influ-
enced by the stability of the Pd FCC structure.

(3) The intermediate phases that include Pd2Zn, Pd2Zn3,
PdZn2, Pd2Zn9 [10]. Pd2Zn is especially interesting as
it lies in the area between the α- and β-PdZn. An inter-
mediate Pd2Zn phase was observed to form at interme-
diate temperatures during the increase from room tem-
perature to 600 ◦C [11]. Moreover, in a recent paper,
Wang et al have identified different intermetallics [12]
such as Pd2Zn3, PdZn2 and Pd3Zn10 during the synthesis
of AgPd30/CuNi18Zn26 bilayer laminated composites.

(4) The preferred phases of the individual elements, which
dominate at the borders of the phase diagram: FCC is
observed at high Pd concentrations (from 70% to 100%)

while the hexagonal close packed (HCP) phase is present
at high Zn concentrations (from 85% to 100%).

Information on the relative stability of competing struc-
tural phases as a function of composition can help to drive
forward materials design and application, especially in fields
such as heterogeneous catalysis where alloyed metals play
a crucial role. However, developing knowledge of multi-
element phase diagrams remains a significant challenge, due
to the combinatorial problem of atomic distribution. Several
approaches have been developed to address this challenge,
such as global optimisation and parameterised models for
accelerated sampling. Cluster expansion (CE) is a parametric
approach that has been widely and successfully used for alloys
[23] as configuration-dependent properties (such as energy)
can be described by the CE model once trained appropriately.
Energy is a key property of interest when determining phase
stability, and can be obtained from e.g. first-principles calcu-
lations; for semiconductor materials, CE trained with bandgap
data [24] has been employed alternatively.

In this article, we extend previous efforts to model alloy
phase diagrams by investigating the complex PdZn landscape
with a combination of density functional theory (DFT) and CE
techniques. We aim to develop models of the bulk phases that
can subsequently be used to predict properties and to explore
surface structures and properties. We also aim to demonstrate
the potential capability of coupling first-principles modelling
with parameterisedmodels for accelerated exploration of com-
plex materials phase space. Our methodology and results are
presented herein, followed by a conclusion discussing current
opportunities and challenges.

2. Methodology

2.1. Density functional theory

DFT calculations have been performed with the Fritz Haber
Institute ab initio materials simulations (FHI-aims) all-
electron full-potential software package (date stamp: 210311)
[25] coupled with the LibXC library [26]. Unless stated, all
calculations were performed using the mBEEF exchange-
correlation functional, a ‘light’ basis set (version 2010), and
a Monkhorst-Pack k-grid sampling density of one k-point
per 0.018 × 2π Å−1, as determined as optimal in previous
studies for Pd, Cu and Zn monometallic materials [27]. The
self-consistent field cycle was deemed converged when the
changes in the total energy and electron density were less than
1 × 10−6 eV and 1 × 10−6 e a03, respectively. Throughout, a
spin-paired configuration has been used with scalar relativity
included via the atomic zero order regular approximation [28].
The unit cell optimisation was performed using the analytical
stress tensor in FHI-aims. Unit cell and geometry optimisa-
tions were applied until forces on all unconstrained atoms and
lattice vectors were less than 0.05 eV Å−1. To demonstrate
validity of our force convergence criterion, a more stringent
0.01 eV Å−1 force convergence criterion was tested on the
ordered PdZn structure, and the difference in energy was less
than 0.0001 eV/atom without any structural changes.

2



J. Phys.: Condens. Matter 35 (2023) 405402 L Kabalan et al

Figure 1. Experimental phase diagram taken from [10] 2013, reprinted by permission of the publisher (Taylor & Francis Ltd, www.
tandfonline.com). The white regions represent the unstable compositions that decompose into stable compositions, which are represented by
the grey regions. The abbreviations of rt and ht are for room and high temperature, respectively, and L for liquid. The data points given
indicate the temperatures reported. Symbols depict important data from: □ [13, 14],⃝ [15],△ [16], ⋄ [17, 18],▽ [19], • [20], and ▲

[8, 21, 22].

2.2. Cluster expansion

The configurational space of a binary system with compos-
ition A1−xBx, when represented with a supercell containing
N lattice sites, gives rise to 2N configurations without consid-
ering symmetries, thus yielding a combinatorial explosion of
the number of configurations with supercell size. The quantity
of configurations poses a challenge to ab initio descriptions
of alloy phase diagrams, due to the computational expense in
performing simulations. CE provides capability to address this
challenge, offering a compact and numerically efficient way to
describe the configurational dependence of physical properties
for mixed systems [29] while retaining ab initio accuracy. In
CE, the occupation of every crystal site is represented by a
variable σi, which takes the value (+1) if the site is occupied
by atom A or (−1) if the site is occupied by atom B. A con-
figuration of the N-site lattice can be represented as σ = (σ1,
σ2,…, σN). Then, the energy E(σ) is modelled by [30]:

E(σ) =
∑Ncl

α

mαJαXσα. (1)

Here, the summation runs over Ncl symmetrically inequi-
valent sets of crystal sites, termed clusters (α). Jα is the effect-
ive cluster interaction (ECI) for cluster α, mα is the corres-

ponding cluster multiplicity, and Xσα is the cluster correlation
defined as

Xσα =
∏

i∈α

σi. (2)

The overline represents the average over all mα clusters
symmetrically equivalent to α. Although the number of
clusters is in principle infinite, for practical applications one
must truncate the summation, resulting in a finite set of clusters
of sizeNcl. A few examples of the kind of Zn clusters contained
in the clusters set for the PdZn alloy starting from a pristine Pd
supercell are shown in figure 2.

In this work, CE models have been built using the CELL
package [31], a python package for CE with a focus on com-
plex alloys. In CELL, the ECIs are obtained by fitting the
model of equation (1) to a set of Ns ab initio calculations for
configurations σ1, σ2, . . . , σNs :

J= argmin
J∗

(

∥

∥

∥
E− Ê(J∗)

∥

∥

∥

2
+λR(J∗)

)

. (3)

Here, J= (J1,J2, . . . ,JNcl), E= (E1,E2, . . . ,ENs) with Ei
the property computed ab initio for structure σi; Ê(J) is the
corresponding CE predictions using the model of equation (1),
computed as Ê(J) = XJ, with X the matrix of cluster correl-
ations Xij = mαjXσiαj ; and λ and R(J) are the regularisation

3
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Figure 2. Examples of 2-, 3- and 4-body clusters generated for PdZn starting from a pristine Pd supercell. Pd is presented by blue spheres
and Zn by grey spheres. The black lines represent the supercell boundaries.

parameter and the regularisation function, respectively, whose
role in building CE models are explained below.

In this work, we build CE models of the energy of mixing
for each of the three crystallographic representations of the
phase diagram: FCC, BCT and HCP. The energy of mixing
per atom is given by:

Emix =
Etot − [(n− xZn)EPd + xZnEZn]

n
(4)

where Etot is the calculated total DFT energy for the relaxed
structure; EPd and EZn are the energy of the respective pure Pd
and Zn bulk structures in the same phase, n is the total number
of atoms in the structure, and xZn is the number of Zn atoms.

The formation energy per atom, Efor, is calculated taking in
account the most stable phases of Pd and Zn, which are FCC
and HCP, respectively. Therefore, for the alloys in an FCC
configuration Efor is calculated as:

Efor,FCC = Emix +
xZn
n

µZn (5)

and for an HCP configuration as:

Efor,HCP = Emix +
(

1−
xZn
n

)

µPd (6)

where Emixis the mixing energy per atom calculated in
equation (4); xZn

n is the Zn concentration; µZn is the chem-
ical potential difference for Zn in the non-ground state (GS)
FCC structure, defined as EZnfcc −EZnhep = 0.036 eV/atom; and
µPd is a similar quantity calculated for Pd in the non-GS HCP
structure, defined as EPdhep −EPdfcc = 0.026 eV/atom.

For training of the CE models, supercells consisting of 16
atoms were considered, which is sufficient to reproduce many
possible configurations for each substitution, while being still
tractable by ab initio calculations within a reasonable comput-
ing time.

Once the training data are obtained, consisting of the super-
cell structures and the corresponding Emix computed via ab
initio approaches, the remaining task is to find the optimal CE
model, which entails determining (i) the optimal set of clusters
and (ii) the ECIs yielding the best possible predictions. For (i)

we have considered strategies of subset selection, combinat-
orial search, and least absolute shrinkage and selection oper-
ator (LASSO) [32]. All of them are aimed at yielding sparse
models, i.e. models with few clusters that avoid over fitting
and minimise test errors. They are explained in more detail
in section 4.1.4. For (ii) we have used linear regression and
ridge regression, which correspond to taking R(J) = 0 and
R(J) =

∑

α
J2
α
in equation (3), respectively [32].

2.3. Metropolis Monte Carlo

The Metropolis Monte-Carlo (MMC) approach [33] is imple-
mented in the CELL package and allows simulations in the
canonical ensemble at constant pressure and temperature.
During MMC, new configurations are generated by swapping
two random atoms in the previous structure. Each of the new
structures, with energy E1, are accepted with the probability:

P(E0 → E1) = min

[

exp

(

−
E1 − E0

kBT

)

, 1

]

(7)

where E0 is the energy of the structure before the swap, T
is the given simulation temperature, and kB is the Boltzmann
constant.

The specific heat capacity, Cp, is calculated as:

Cp =

〈

E2
T
〉

−
〈

E2
T

〉

kBT 2
(8)

where ⟨ET ⟩ and
〈

E2
T
〉

are the ensemble-averaged energy and
the ensemble-averaged squared energy at T, respectively.

3. Atomistic model optimisation

3.1. FCC

A dataset has been built consisting of derivative structures
from a 4× 2× 2 supercell of Pd (16 atoms). The FCC par-
ent lattice and an example derivative structure are shown in
figure 3. The primitive cell for Pd has an optimised lattice
parameter of a0 = 3.888 Å, which corresponds to supercell

4
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Figure 3. Left: representation of the parent primitive FCC lattice;
Right: 4× 2× 2supercell. Blue (grey) spheres represent Pd (Zn)
atoms. The supercell lattice vectors are labelled a, b and c.

parameters of a= 10.996 Å and b= c= 5.498 Å, as shown
in figure 3. Compositions have been generated with random
configurations ranging from 0%–100% concentration of Zn,
to obtain data for the full composition range.

Initially, 100 structures were generated and optimised (unit
cell and geometry) usingDFT for training the CEmodel. Then,
MMC simulations were performed with the CE model at a
temperature of 500 K, with various concentrations, to find new
low energy configurations. The final dataset is the combina-
tion of the 100 structures generated randomly with the low-
est energy structures collected from the MMC simulations.
The same approach was taken for primitive 4× 2× 2 (16
atoms) and for conventional 2× 2× 2 (32 atoms) supercells.
The lowest energy structures for each concentration tested in
the MMC simulations were further optimised; most structures
were stable, though a few select systems deviated signific-
antly from the ideal FCC parameters, namely 2c/a= 1 and
α= 60◦, as shown in figure 4. The factor of 2 in 2c/a accounts
for the asymmetry in the 4× 2× 2 supercell expansion of the
unit cell.

Distorted structures with large 2c/a ratios have large devi-
ations in cell angles too. Some structures that present very
large distortions are obtained for Zn-rich cases [62.5, 81.25
and 87.5%, represented by the grey circles in figure 4 (bot-
tom)] and could be related to structures relaxing toward
orthorhombic phases such as the PdZn2 and Pd2Zn9 inter-
metallic alloys, which are stable for these compositions [13].
Examples of the distorted structures are given in figure 5:
a structure with an 87.5% concentration of Zn is presented,
which optimised to a triclinic phase (α = 44.96◦, β = 44.68◦

and γ = 59.94◦).
An additional 82 FCC configurations were identified during

the MMC stages. There were collated with the original 100
structures to form a training dataset of 182 structures.

3.2. BCT

For a concentration of 50% Zn, PdZn forms a stable tetra-
gonal L10 structure, denoted the β-phase [9]. The L10 struc-
ture can be viewed either as (i) a BCT-based superstruc-
ture with a stacking of pure Pd and Zn layers, or as (ii)

Figure 4. Variation of the lattice parameter ratios (top) and unit cell
angles (bottom) after structure optimisation for FCC primitive
models. A key is provided in both graphs, with grey circles in the
lower graph highlighting the structures with high angular distortion.
The horizontal black dashed lines indicate a threshold ±5 ◦, which
is applied when considering filtering of the dataset (section 4).

Figure 5. Left: an initial FCC primitive 4× 2× 2 structure; Right:
the same structure after geometry optimisation, showing cell
distortion.

a tetragonal distortion of an FCC-based superstructure. The
experimental c/a ratio is 1.15 when the BCT representation
(i) is used, which contrasts distinctly with a c/a ratio of 1.41

5
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Figure 6. Parent lattice used for the BCT model (left) and
conventional supercell (right); Pd represented by blue spheres and
Zn by grey spheres, with unit cell vectors labelled as a, b, and c.

for the ideal FCC structure. Given the importance of the L10
structure for the PdZn alloy, a dataset of derivative structures
was generated from BCT-based supercells with an initial c/a
ratio of 1.15. The experimental β-phase, which is depicted in
figure 6, is included in this set. The computed lattice paramet-
ers are a =b =2.87 Å and c =3.36 Å, which corresponds to
c/a = 1.17, in close agreement with experiment [34].

Based on the conventional supercell in figure 6, 100 ran-
dom structures were generated with Zn concentrations ranging
from 0% to 100%, in a similar approach to the initial FCC data-
set creation. The calculated c ′/a ′ and b ′/a ′ ratios, and the
cell angles α, β, and γ, are given in figure 7 for the optimised
structures.

Structural optimisation of the BCT models resulted in 92%
conversion to a c ′/a ′ ratio of 1.39–1.41, while b ′/a ′ remained
as unity, indicating that most structures converted to an FCC
phase. The conversion observed is unsurprising given the nar-
row range of stability for the L10 structure in experiment; fur-
thermore, the conversion of structures with high Pd concentra-
tions (>70%) to FCC agrees with experimental findings that
this phase is dominant in Pd-rich compositions. For the Zn
concentration of 50%, the c ′/a ′ ratio is recorded as ranging
from 1.17 to around 1.41, with 29% of structures having c ′/a ′

ratios below 1.30. The lowest-energy structure, corresponding
to a c ′/a ′ ratio of 1.17 in the β-phase, is marked with a red
circle in figure 7 (top), while all the others have higher c ′/a ′

ratios and could correspond to metastable phases of PdZn. A
c ′/a ′ ratio of 1.29 and 1.30 is also observed for some struc-
tures with Zn concentrations between∼ 40% and∼ 80%, with
the b ′/a ′ ratio remaining close to unity. Thus, these structures
could be considered as BCT phases because they have not fully
converted to an FCC structure. It is noted that the changes in
b ′/a ′ with varying Zn concentration are less pronounced than
for c ′/a ′, except for the Zn concentration of 93.75% where
large distortions in all ratios were accompanied by significant
angular distortions.

Overall, no consistent BCT-based training set could be
derived for building a CE model, as very few structures
remained in a BCT phase after geometry optimisation.
Nonetheless, our calculations confirm experimental observa-
tions regarding (i) the stability of the β-phase, (ii) the narrow

Figure 7. Lattice parameters (top) and angles (bottom) after the
atomistic optimisation for the BCT conventional supercell with
varying Zn concentration. A key is provided on each graph; the red
circle on the lattice parameter plot highlights the lowest energy
structure, corresponding to c/a = 1.17.

stability range around 50%Zn concentration for this phase and
(iii) the general stability of the FCC phase for low Zn concen-
trations.

3.3. HCP

Analogous to the procedure used for generating the FCC and
BCT structures that formed the CE datasets, 100 random struc-
tures with an HCP primitive 2× 2× 2 supercell structure, con-
taining 16 atoms, were generated with Zn concentrations ran-
ging from 0% to 100%; further structures were added via
a MMC configuration search at 500 K. The optimised lat-
tice parameters for the Pd 2-atom primitive cell (figure 8) are
a′′ = b′′ = 5.41 Å and c′′ = 8.90 Å. An example of the super-
cell model employed to generate the derivative structures is
also provided in figure 8.

The structural results from optimising the HCP models,
specifically the b ′ ′/a ′ ′ ratio and the cell angles, are presented
in figure 9. The lattice parameter ratio (b ′ ′/a ′ ′) varies from
0.94 to 1.04 except for two structures with ratios >1.05, as

6
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Figure 8. Left: Parent primitive cell used for the HCP model;
Right: supercell of the same HCP model. The Pd and Zn atoms are
represented by blue and grey spheres, respectively. The unit cell
boundaries are defined by a black line, with labels indicating the
lattice vectors.

highlighted by the red circles in figure 9 (top). These two struc-
tures are for Zn concentrations of 31.25% and 62.5%. These
compositions are close to those of the orthorhombic Pd2Zn
and PdZn2 structures in the phase diagram [10], and therefore
we believe these structures were relaxing to the orthorhombic
phase. The unit cell angles were less distorted than the lattice
parameters for the HCP structures overall; γ distorts by less
than 4◦ in most structures, while α distorts by a maximum of
9◦, which is observed for Zn concentrations of 75%, 37.5%
and 57% (figure 9, bottom).

4. CE model optimisation

The generation and optimisation of the CE models for FCC
and HCP systems are discussed herein. The description of the
different estimators used in the CE model for building and
optimisation tasks are also provided.

4.1. FCC

4.1.1. Effect of distortion. As discussed in section 3.1, struc-
ture optimisation of the FCC model leads to various degrees
of distortions in the structures contained in the datasets. Here,
we investigate how the presence of strongly distorted struc-
tures in a dataset can affect the quality of the obtained CE
models. To this end, different thresholds are tested for the per-
missible angles between unit cell vectors when creating the
training dataset. Structures that lie outside the threshold after
relaxation are excluded from the dataset, with the final dataset
tested for training of the FCC CEmodel. Three different filters
were applied based on angular distortion, namely:

(1) All optimised structures are included (i.e. no filter is
applied).

(2) Only structures with angles that deviate by less than±10◦

from the ideal FCC angle, i.e. 50◦ ⩽ α, β, γ ⩽ 60◦, were

Figure 9. Ratio of lattice parameters b ′ ′/a ′ ′ for the HCP models
(top) and optimised cell angles (bottom) after the atomistic
optimisation for the HCP supercell with varying Zn concentration.
Red circles in the top graph highlight the orthorhombic Pd2Zn and
PdZn2 structures.

Table 1. Errors in eV/atom for cross-validation (CV) when
selection rules were applied using the LASSO selector. The root
mean squared error (RMSE), the mean absolute errors (MAEs), and
the maximum absolute errors (MaxAE) are reported from the CV
testing.

Filter 1 (No filter) Filter 2 (±10◦) Filter 3 (±5◦)

RMSE (eV/atom) 0.014 98 0.008 10 0.005 92
MAE (eV/atom) 0.011 61 0.006 11 0.004 39
MaxAE
(eV/atom)

0.039 90 0.028 34 0.018 14

included. 96.64% of structures from the initial training set
comply with this filter.

(3) Only structures with angles that deviate by less than ±5◦

from the ideal FCC angles, i.e. 55◦ ⩽ α, β, γ ⩽ 65◦, are
included. 89% of structures from the initial training set
comply with this filter.

In table 1, the errors estimated by cross-validation (CV)
[32] using the LASSO selector are presented when applying
each threshold. CV tests themodel’s ability to predict new data
that was not used in its creation and allows the identification

7
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Figure 10. Plot of dataset size against AE for the CE models
constructed with datasets containing 50, 100 and 182 structures. The
median AE is indicated by the horizontal orange line and represents
50% of the data; the lower edge of each box represents the boundary
for the lower 25% of the data (Q1) and the upper 75% of the data
(Q3). The lower whisker corresponds to the lowest value observed,
while the higher whisker corresponds to the largest value obtained
that is deemed accurate. Circles indicate outliers, i.e. data points that
are not well captured by the model. The green triangle corresponds
to the mean of AE on the given dataset.

of over- or under-fitting, as well as giving an insight as to how
the model will generalise to an independent or new dataset.

Introduction of filters for the structures that are included
in the training dataset has a notable impact on the CV res-
ults. Table 1 shows an improvement of 65%, 62% and 55% for
the RMSE, MAE andMaxAE, respectively, has been obtained
with the CE model trained on a dataset where threshold (3)
was applied; a similar but smaller improvement occurs when
applying threshold (2), i.e. including structures with angular
deviation in the unit cell ⩽10◦, with improvements of 45%,
47% and 29% for the RMSE, MAE and MaxAE, respectively.
The results highlight the importance of excluding structures
from the training set that significantly distort from the initial
FCC geometry. The improvement is noted as not simply due to
reduction of the dataset size when the threshold is applied, as
will be discussed in the next subsection.We conclude that a fil-
ter of±5◦ on the unit cell angles is necessary to create a high-
quality CE model with low test error. To visualise the data that
is removed from the training set with this criterion, two hori-
zontal dashed lines are given in figure 4 (bottom) that indicate
the threshold boundaries; all data outside those boundaries are
discarded from the dataset for model training.

4.1.2. Dataset size. Different dataset sizes, with 50, 100
and 182 structures, were considered when constructing the CE
model. The same settings were applied as in section 4.1.1, with
LASSO as the selector and the ridge regression estimator with
λ= 1.0 × 10−6. The absolute errors (AE) for CV with the
different datasets are reported in figure 10.

Table 2. Breakdown of clusters available when considering specific
n-body interactions. For a given number of n-body interactions and
a maximum radius on these interactions (first and second row,
respectively), the corresponding number of clusters is given (third
row). The maximum radius given of 5.5, 7.3, 8.3, and 9.6 Å,
correspond to the 3rd, 5th, 6th and 8th Pd bulk neighbour,
respectively.

n-body interactions 1 2 3 4 5 6

Maximum radius (Å) 0 9.6 8.3 7.3 5.5 5.5
Available clusters, Ncl,n 1 8 29 101 17 16

For the three CE models, the minimum CV AE is the same
(0 eV/atom); however, the average AE average (green tri-
angle in figure 10) is greatest for the model created from the
smallest dataset, and smallest for the model with the largest
number of structures. The same trend exists for the median
of the AE distribution. For the CE model trained on a data-
set with 50 structures, three outliers are identified in CV with
large AEs of 0.038, 0.028 and 0.019 eV/atom. The outliers
have smaller errors for the other CE models: 0.021, 0.019, and
0.016 eV/atom for the CE model trained on a dataset with 100
structures; and 0.019, 0.017, and 0.013 eV/atom for the CE
model trained on a dataset with 182 structures.

In conclusion, adding more structures to the training data-
set leads to an improvement of the CE model, and valid-
ates CE model optimisation with the largest accurate data-
set available. The improvement obtained when increasing
the dataset size from 100 to 182 structures is small, indic-
ating that our estimation of the test error may be close to
the intrinsic error of the dataset [32]. Nevertheless, a numer-
ical benefit is observed from using the largest dataset for CE
model training, and herein the FCC CE model is built using
all available 182 structures (which all comply with previous
filtering criteria).

4.1.3. Clusters pool size. The quality of the CE model can
be affected by the number of clusters, Ncl, referred to herein as
the clusters pool size. A larger number of clusters are expected
to yield better CE models, as more clusters may lead to better
fitting in the cluster selection task, though this comes with a
computational overhead that scales unfavourably. In this sub-
section, the performance of the CE model is reviewed as a
function of Ncl, which allows identification of optimal criteria
for determining the cluster pool size. The results of testing are
presented in table 2.

The maximum radius for a given system is the interaction
distance, represented by a sphere with given radius, within
which substitutions are allowed. For example, when adding
a single Zn substitution, there cannot be other Zn interac-
tions and so the maximum radius is 0 Å, as presented in
table 2. When including more substitutions, the maximum
radius within which a Zn–Zn substitution can occur depends
on the size of the supercell; in our case, all possibilities in
a 6× 6× 6 supercell were considered. Taking symmetry and
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Figure 11. AE errors in eV/atom as a function of Ncl values, considering 1- to 6-body interactions cumulatively. The colour and shape
coding are the same as figure 10.

Table 3. Comparison of the RMSE, MAE, and maximum error (MaxAE), all in eV/atom, obtained with different selectors: subset; LASSO;
LASSO-on-residual; and combinatorial search.

RMSE MAE MaxAE

Subset Fit 0.004 55 0.003 47 0.014 72
CV 0.008 70 0.006 52 0.045 05

LASSO Fit 0.003 49 0.002 68 0.013 15
CV 0.005 64 0.004 28 0.019 51

LASSO-on-residual Fit 0.005 86 0.004 68 0.014 63
CV 0.006 92 0.005 44 0.024 45

Combinatorial search Fit 0.012 90 0.009 80 0.047 45
CV 0.013 30 0.010 05 0.005 37

periodicity into account, the maximum radius possible for Zn–
Zn pairs is 9.6 Å; however, as the inclusion of more clusters
can result in over fitting of the model, the maximum radius for
clusters of 3, 4, 5, and 6-body Zn was limited to the 8th, 6th,
and 3rd Zn–Zn neighbour distances, respectively.

The number of clusters available increases non-linearly
with consideration of larger n-body interactions. When con-
sidering both 1- and 2-body clusters, Ncl = 9; consideration
of all clusters up to 3-, 4-, 5-, and 6-body clusters results in
Ncl = 38, 139, 156, and 172, respectively.

CE models were obtained using these varying considera-
tions for the n-body interactions, via application of the limited
Ncl. Model fittings was performed using the LASSO selector
and ridge as estimator, and the AE in CV is presented in
figure 11.

In figure 11, the AE decreases with increasing Ncl. The
MAE, indicated with a green triangle, is largest when only
up to 3-body clusters are considered in the model definition
(0.094 eV/atom). The error reduces by 67%, to 0.030 eV/atom,
when including up to 5-body clusters, and improves margin-
ally only after adding the 6-body clusters. The inclusion of 4-
body clusters and greater drastically reduces the test error for
outliers, when compared to restriction to only 2- and 3-body

interactions, as seen from the circles in figure 11. The addition
of clusters with a greater number of many-body interactions
reduces the error further, but by a lower quantity; from 5- to
6-body, the improvement is only marginal, in both outliers and
MAE, indicating convergence (i.e. that the addition of larger
clusters, in terms of bodies or radii, will not yield signific-
ant improvements). However, the error for the CE model CV
does have the narrowest distribution when considering up to
6-body interactions (Ncl = 172), as shown by the small box-
plot, and therefore the initial set of clusters for building the CE
models is chosen to contain interactions up to 6-body clusters
(Ncl = 172).

4.1.4. Selector type. Table 3 compares the fit and CV errors
for CE models obtained with different selectors, using the set-
tings for the dataset size (182 structures) and initial clusters
set size (Ncl = 172) as defined in prior sections. The following
estimators have been considered in this work:

• Linear regression aims at minimising the residual sum
of squares between the energy calculated by DFT and the
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predicted energy using the CE model. It is obtained from
equation (3) in the manuscript with R(J) = 0.

• Ridge regression corresponds to equation (3) with R(J) =
∑

α
J2
α
. The regularisation parameter λ > 0 is obtained by

CV.

In addition, the following selectors have been considered:

• Subset selection involves firstly forming subsets of clusters
from the original set of clusters; a subset is defined by two
parameters, namely, the largest radius and the largest num-
ber of bodies, and contains all clusters with radius and num-
ber of bodies smaller than the parameters [30]. Secondly, a
CV subset selection is performed, whereby the subset yield-
ing the smallest test error on CV is selected [35].

• Combinatorial searchworks as follows: from the initial set
of clusters, all possible subsets of clusters up to a given set
size are formed and the subset yielding optimal test error on
CV is selected. To prevent solutions lacking 1-body or com-
pact 2-body clusters, which are physically meaningful (e.g.
the 1-body correlations are related to the Zn concentration,
and the first neighbour 2-body clusters correlations capture
the degree of short-range order in the structure), these are
always included in the subsets. For the FCC model, the size
of the initial set of clusters is 172; all subsets include the 1-
body cluster and the nearest neighbour 2-body cluster with a
radius up to 2.80 Å. The combinatorial search used subsets
of up to 2-body clusters from the remaining 170 clusters,
resulting in around 14 000 subsets. Optimal models from
this search contain nearest-neighbour 2-body clusters. For 3-
body clusters, the combinatorial search involves more than
8× 105 subsets and turns out to be numerically impractical.

• LASSO [35] is a compressed sensing technique based on
optimising equation (2) withR(J) =

∑

α
|Jα|. By increasing

λ, sparse solutions are favoured [36]. Due to analogous con-
siderations as in the combinatorial search approach, we con-
sidered a modification of LASSO to enforce the inclusion of
compact clusters. To achieve that, an initial CE model was
fitted containing only the desired compact clusters, and then
we ran a LASSO optimisation on the residual, i.e. the dif-
ference between the calculated property and the predictions
with the initial CE model. In this way, the clusters found
by LASSO account for the remaining effects not accounted
for by the compact clusters. The final model consists of the
union of the compact clusters set and the LASSO solution
and is fit by linear regression or ridge regression to the whole
dataset. We call the final solution ‘LASSO-on-residual’.

For LASSO-on-residual and combinatorial search, it is
noted that only nearest neighbour 2-body clusters (i.e. cluster
radius ⩽2.80 Å) were included to prevent over fitting and
limit computational expense. The AE of the 4 models is com-
pared in figure 12. The box size for the LASSO selector is
smallest, showing that the error in the data is more homogen-
eous and compact; the errors are mainly below 0.014 eV/atom,

Figure 12. AE errors, in eV/atom, when applying different selectors
in the CE model determination to CV. The horizontal line indicates
50% of the data (i.e. median) while the red diamond is the mean AE.
All other colour and shape coding are the same as figure 10

and the MaxAE (represented by the largest outlier, indic-
ated by circles), is small compared to other selectors. Overall,
LASSO gives the lowest AE and therefore is our selector
of choice herein, combined with a ridge estimator with
λ = 1.0 × 10−6.

The learning curves for the CE model training, as repres-
ented by the errors during the fit of the CE model and sub-
sequent CV, are presented in figure 13 as a function of the
sparsity (regularisation) parameter of the LASSO model (top)
and as a function of the number of clusters used to fit the
model (bottom). The optimal choices for the cluster size are
when a minimum is attained in the test error curve (labelled
cv-RMSE), as indicated with a red circle. As expected, low
sparsity (i.e. a very large number of clusters) leads to small
fit errors but an increase in CV errors, which is indicative of
over fitting. Conversely, increased sparsity, which corresponds
with very few clusters, lead to large errors in both the fit and
the CV, indicating under fitting.

To conclude, the energy of mixing (Emix) is plotted in
figure 14 as a function of Zn concentration for the ab initio
DFT data on the FCC model, as well as the predictions from
the training of the CE model, and the results when performing
CV of the optimal model. The CE predictions are very good,
showing accuracy of our model in most concentrations. The
largest error is for 100% Zn, which is not a favourable FCC
structure, and where the CV error is 0.019 eV/atom.

4.2. HCP

For the HCP model, an equivalent parameterisation of the
CE model was made with respect to dataset size, the size of
the cluster pool, and the selector choice (see section 4.1.4).
Filtering of the data was not necessary as structural distortion
was not as prevalent as for the FCC system. The optimal model
is obtained with the LASSO-on-residual selector, where the
residual is computed considering a CE model that contains up
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Figure 13. Plots of the error in training and CV for the FCC CE
model as a function of sparsity (top) and number of clusters
(bottom). The settings for the optimal model are highlighted with a
red circle, and correspond to RMSE, MAE and MaxAE of 0.00349,
0.002 68, and 0.013 15 eV/atom, respectively, for the fit; and
0.005 64, 0.004 28, and 0.019 51 eV/atom, respectively, for the CV.

Figure 14. Plot of the mixing energy, Emix, as a function of Zn
concentration, comparing the DFT results with those predicted from
the CE model. A key is provided, with ‘Predicted’ referring to data
included in the CE model training, and ‘Predicted-CV’ referring to
predictions made on structures that were unseen during the CE
model training.

to 3-body clusters, with a radius of 5 Å. The CE model error
as a function of dataset sparsity and cluster pool size (Ncl) are
presented in figure 15.

Figure 15. Plots of the error in training and CV for the HCP CE
model as a function of sparsity (top) and number of clusters
(bottom). The settings for the optimal model are highlighted with a
red circle, and correspond to RMSE, MAE and MaxAE of 0.004 92,
0.004 00, and 0.014 41 eV/atom, respectively, for the fit; and
0.006 53, 0.005 14, and 0.021 10 eV/atom, respectively, for the CV.

The CE model predictions for mixing energy (Emix) are
compared to ab initio DFT in figure 16. The predictions made
for all Zn concentrations during the CV (red crosses) are
generally close to the predictions when training the CE model
(blue dots). The distribution of AE in the CV is presented as
an insert box plot in figure 16. The predicted AE for the CV
is below 0.012 eV/atom for most structures, as shown by the
maximum value of the whiskers; only five outliers exist, with
errors from 0.014 to 0.021 eV/atom. The MAE (red diamond)
is 0.005 eV/atom.

5. Results and discussion

5.1. FCC

5.1.1. Coordination, Mulliken charges and density of states.
To understand the factors that control the energy of mixing
(Emix) for PdZn alloys, the impact of Pd–Zn coordination was
first considered for a range of predicted structures from the
1:1 stoichiometric alloy. As shown in figure 17, Emix increases
with the number of unlike atoms in the first coordination shell,
resulting in heterogeneous interactions, which agrees with
the experimental observation for only ordered patterns to be
synthesised [9, 10]. The heterogeneous coordination results in
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Figure 16. (a) Plot of the mixing energy, Emix, as a function of Zn
concentration, comparing the DFT results with those predicted from
the HCP CE model. A key is provided, with ‘Predicted’ referring to
data included in the CE model training, and ‘Predicted-CV’
referring to predictions made on structures that were unseen during
the CE model training. (b) A presentation of the distribution of the
AE for the CV of the same HCP CE model. The middle horizontal
line represents 50% of the data, with lower and higher whiskers
representing the lower and upper bounds on the data.

partial charge transfer, which are computed from DFT results
and shown in the Mulliken charges in figure 18.

For the lowest energy structure with heterogeneous mix-
ing of Pd and Zn in figure 18 (left), the Pd atoms are equally
negatively charged with (–0.45 e) while Zn atoms are equally
positively charged (+0.45 e). The more segregated ordering
of Pd and Zn atoms in figure 18 (right) results in different
charges of the two elemental species; Pd atoms are on aver-
age less negatively charged, ranging from −0.18 to −0.42 e,
while Zn atoms are on average less positively charged, ran-
ging from 0.16 to 0.48 e. For the less mixed system, charge
transfer from Zn to Pd is greatest (−0.42 e) when the num-
ber of Zn atoms in the Pd coordination shell is large (8), and
conversely charge transfer is smallest when the number of Pd–
Pd interactions is largest. The increase in the charge transfer
with the number of heterogeneous Pd–Zn interactions in the
first coordination shell is a major factor behind the increase
in Emix. The charge transfer will influence bulk and surface
properties and could also affect the catalytic properties of the

Figure 17. Heat map of Pd–Zn and Pd–Pd coordination effect. The
colour bar shows the distribution of the mixing energy in eV/atom,
with navy blue being the lowest (most favourable) mixing energy,
and yellow the highest (least favourable) mixing energy.

Figure 18. Mulliken charge (electrons, e) on Pd (blue) and Zn
(purple) atoms for differing elemental distributions in PdZn
stoichiometric alloys. The left structure has Emix of
−0.625 eV/atom, and the right structure −0.349 eV/atom.

material [37]. The magnitude of the charge transfer between
metal species is appreciable, with Mulliken charge transfer
calculatedwith identical settings for Pd and Zn in their respect-
ivemetal oxides, PdO and ZnO, i.e. Pd(II) and Zn(II), as+0.81
e and+1.17 e, respectively. For the 1:1 stoichiometric system,
charge transfer is maximised for the ordered structure, which
highlights the importance and stability of such elemental
distribution, as well as potential importance for catalytic
reactivity.

The calculated projected density of states (PDOS) for 3d
electrons in the disordered and ordered stoichiometric PdZn,
as well as Pd and Zn separately, are presented in figure 19.
The 3d PDOS of pure Pd shows one large peak in the range
of −5.5–0.5 eV, corresponding to near full occupancy of the
Pd 3d shell. For Zn, the 3d orbitals contain a full 10 electrons,
and thus the energy levels are from −7.0 to 0.0 eV, without a
crossing of the Fermi level. For the mixed PdZn alloy with a
disordered elemental distribution, the main 3d peak is shifted
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Figure 19. PDOS of (a) Pd, (b) Zn, (c) disordered PdZn, and (d) ordered PdZn. A legend is given on each image. The dashed vertical line is
the Fermi level.

down to −7.5 eV, due to stabilisation of the Zn 3d electrons.
Other peaks from −5.0 to −0.1 eV have Pd and Zn contri-
butions (i.e. hybridised), though these states are also further
from the Fermi level (figure 19(c)) than in pure Pd. For the
ordered PdZn alloy (figure 19(d)), the position and intensity
of the peaks are generally the same as for the disordered struc-
ture; however, the Pd 3d peak is positioned further from the
Fermi level, stabilising this structure relative to the disordered
alloy.

5.1.2. Phase diagram of FCC PdZn. MMC simulations
were performed with the CE model at 500 K for PdZn alloys,
considering varying composition, with supercell sizes of 4×
2× 2, as well as 6× 3× 3 and 8× 4× 4. DFT optimisations
were performed on the lowest energy structures observed in
the MMC trajectory for the 4× 2× 2 supercell, and for select
6× 3× 3 supercells, with the DFT Emix results compared to
that obtained from the CE model in figure 20.

For the 4× 2× 2 supercell, the Emix predicted from the CE
model agree well with the DFT results, confirming the accur-
acy of the model. For the 6× 3× 3supercell, which contained
54 atoms, a local minimum search was undertaken with the CE
model for 8 different concentrations, and 4 of these have been
confirmed by DFT calculations (45%, 50%, 56% and 68.5%

Figure 20. Comparison of the energy of mixing (Emix) as a function
of Zn concentration when considering the most stable structures
encountered in MMC simulations at 500 K (CE model) and
subsequent DFT calculated energies (eV/atom). A key is provided.
Note that the lowest Zn concentration plotted is 6.25%, and the
highest is 93.75%.

Zn, highlighted by pink rectangles on figure 20); concentra-
tions of 13%, 26%, 82% and 87% Zn were also considered in
the local minimum search with the CE model.
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Figure 21. Left: GS configuration for a 6× 3× 3 supercell. Right:
Disordered configuration at 1500 K, as considered during annealing.
Pd and Zn atoms are represented by blue and grey spheres,
respectively. Black lines indicate the cell boundaries.

For the cross-comparison between CE model and DFT
calculations for 6× 3× 3 supercells, the Emix predicted for
45% and 56% Zn agree well with DFT; however, an error of
0.04 eV/atom exists for 50% Zn (i.e. stoichiometric PdZn).
The DFT optimised structure for the 1:1 PdZn model has
angles and a lattice ratio deviating from the ideal FCC
(x = 56.82◦ y = 56.512◦, z = 68.52◦, 2 c/a = 1.10 and 2
b/a = 1.01), which may explain the difference in Emix. A
smaller error of 0.02 eV/atom is obtained for 68.5%Zn. Again,
the error is attributed to distortion of the supercell from DFT
optimisation; the orthorhombic phase is present in the experi-
mental phase diagram at this Zn concentration, which corrob-
orates with our observations. The angles distortions for 50%
and 68.5% Zn concentration were outside the thresholds used
when preparing the CE training dataset, and therefore were not
suitable for re-training the CE model.

For both the 4× 2× 2 and 6× 3× 3 supercells, the low-
est Emix is at 50% Zn. The GS configuration obtained for a
4× 2× 2 supercell is reproduced with MMC simulations on
the 8× 4× 4 supercell; however, a new ordering is found for
the 6× 3× 3 supercell, as shown in figure 21. The 6× 3× 3
GS structure has an average Pd-Zn coordination of 7.33, which
is slightly smaller than the 4× 2× 2 supercell (8); similarly,
the average Pd-Pd coordination is slightly larger, at 4.67, when
compared to the 4× 2× 2 supercell (4). These changes in
coordination result in an increase of Emix.

To extend our simulations, we performed fully exhaustive
enumeration of all possible structures, with all possible con-
centrations, with the CE model for supercells up to 12 atoms;
extension to larger systems becomes rapidly intractable, and
therefore the GS for large supercells can only be approached
by performing MMC searches as explained prior. The method
to fully enumerate over cell compositions is implemented in
the CELL software package, based on the algorithm fromHart
and Forcade [38]. The method generates all possible shapes of
supercells with the specific numbers of atoms (1–12) result-
ing in 11 824 elemental configurations generated from the full

Figure 22. Energy of mixing compared with Zn concentration,
considering full enumeration of all possible configurations with the
FCC CE model. The grey dots represent the predicted energies for
all possible structures up to 12 atoms. The red circles and red dots
represent respectively the DFT data that forms the initial training
dataset and the CE predictions on these same structures. The black
circles represent the CE model predicted GSs at each concentration.

enumeration. Emix for all these configurations are calculated
with the CE model. The results of the full enumeration are
shown in figure 22.

Compared to the MMC search for larger supercells
(figure 20), the GS had previously already been identified for
Zn concentrations of 6.25%, 12.5%, 50%, 68.75%, 87.5% and
93.75%. For the other concentrations, longerMMC simulation
runs would be necessary to reach the same GS.

5.1.3. Specific heat capacity. The transition from the
ordered GS of stoichiometric PdZn (the β-phase) to a dis-
ordered state has been considered for the 6× 3× 3 supercell,
as illustrated in figure 21. The mixing energy of the system has
been collected from a MMC simulated annealing search using
the CE model, with the temperature initial set to 3000 K and
then decreased in steps of 500 K to 1 K, with 100 000 steps
at each temperature. The specific heat capacity, Cp, has been
computed using equation (8), and is plotted against temperat-
ure in figure 23.

A peak in the specific heat capacity is observed at 1000 K,
which indicates an order-disorder transition for the 6× 3×
3 supercell. A relatively high temperature is typical for
stable or high entropy alloys [39]. Penner et al [40] repor-
ted changes to the ordered BCT PdZn structure (which is
represented in our FCC CE model) at temperatures above
873 K. The high transition temperature aligns with exper-
imental observations that the ordered structure is the only
observed structure from synthesis when considering a 50% Zn
concentration.

5.2. HCP

5.2.1. Phase diagram of HCP PdZn. MMC simulations are
performed using the HCP CE model for different 2× 2× 2,
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Figure 23. The specific heat capacity plotted as a function of
temperature for a PdZn stoichiometric alloy, starting with GS
ordering in a 6× 3× 3supercell with 54 atoms.

3× 3× 3 and 4× 4× 4 supercells with a full range of Zn
concentrations. Simulations were performed at 500 K with
500 000 steps, 600 000 steps and 800 000 steps, respectively,
for the increasing supercell sizes. The results are displayed in
figure 24.

Figure 24 includes comparison between themost stable res-
ults from the MMC for the 2× 2× 2 supercell and DFT calcu-
lations subsequently performed on the same system. The res-
ults demonstrate that the HCP CEmodel correctly predicts the
energies for most of the HCP structures. The largest differ-
ence between methods is 0.022 eV/atom for 43.75% Zn, as
indicated by the red arrow in figure 24. The difference in Emix

is attributed to distortion of the unit cell from DFT optim-
isation, with the structure tending towards the orthorhombic
phase that is the most stable phase for these concentrations
(figure 1).

For the 3× 3× 3 supercell, Emix is weaker than for the
2× 2× 2 supercell when considering Zn concentrations of
45%, 50% and 56.5%; these results are confirmed by DFT
calculations. For the 4× 4× 4supercell, the 50% Zn result
matches the pattern observed for the 2× 2× 2 supercell, indic-
ating high stability. Overall, a pattern is observed whereby
the GS configuration for even-numbered supercell expansions
has Zn atoms adjacent to Pd atoms, maximising mixing; and
for odd-numbered supercell expansions atom numbers, Emix

is strongest when two atoms of the same species are adjacent
to an alternative species atom, as shown in figure 25. Emix

is strongest for PdZn (1:1), being −0.619 eV/atom, which is
0.005 eV/atom weaker than for the GS FCC structure with
a 1:1 composition (−0.624 eV/atom). The difference in Emix

increases if the chemical potential,µ, of the composite species
is considered for the formation energy. The HCP phase has
not been experimentally confirmed for the 1:1 concentration
of PdZn, though it may be accessible using specific synthetic

conditions such as low temperature. A study of how entropy
contributes to the stability of the elemental orderings, and
how relative phase stability changes with temperature, could
provide further insight.

In addition to the MMC simulations, a full enumeration for
all HCP structures with up to 14 atoms was considered using
the CE model. The resulting 60 107 configurations from the
enumeration are presented in figure 26, which demonstrates
that the MMC search (figure 24) coincides strongly with the
full enumeration as the lowest energy structures are equivalent
at several concentrations.

5.2.2. Implications of the CE results. The formation ener-
gies (Efor) provide insight into phase diagram of PdZn and
can be calculated by combining the chemical potential and the
mixing energies, as shown in equations (5) and (6). The chem-
ical potential µZn used for the FCC model is 0.036 eV/atom,
while µPd for the HCP model is 0.026 eV/atom. One can use
the formation energy for each respective phase to construct a
convex hull, which shows the predicted formation energies for
FCC and HCP PdZn together (figure 27).

Considering first the pure Pd system, the FCC phase is
favourable by 0.04 eV/atom compared to HCP. In the low
Zn concentration range, the Pd2Zn phase was captured by
the FCC CE model, highlighting the strong stability of the
FCC phase below 50% Zn concentration. Depending on the
experimental reduction conditions, Pd2Zn was observed as
an intermediate during reduction of Pd/ZnO [41]; it exists
in two different phases, namely, orthorhombic [13] and
cubic [42].

At 50% Zn concentration, the FCC CE model, which
includes the β-phase, predicts PdZn in the FCC phase to be
more stable than HCP (by 0.017 eV/atom). The stable struc-
ture is the β-PdZn BCT model in its FCC representation,
i.e. having c/a = 1.17/√2. Although the difference in Emix

between the FCC and HCP representations is small, experi-
mental synthetic conditions could explain the absence of HCP
PdZn: α-PdZn (random FCC) and β-PdZn (ordered BCT)
phases co-exist at all reduction temperatures considered in
literature, suggesting that theα-PdZn phase is formed at lower
Zn concentrations [9].

For higher Zn concentrations, the HCP phase is more stable
generally. The experimentally observed orthorhombic PdZn2
structure is captured with the HCP CE model, which predicts
PdZn2 to be more stable than the FCC phase (0.015 eV/atom).
FCC PdZn3 is predicted to be more stable than HCP by a mar-
ginal 0.001 eV/atom, which is consistent with the XRD show-
ing that this intermetallic alloy is in a cubic phase [43]. At
larger Zn concentrations, HCP is predicted to be more stable
in complete agreement with experiments [10], with the HCP
phase favourable by 0.037 eV/atom for pure Zn. Future work
may look at introducing CE models with an orthorhombic
parent lattice, but this is beyond the scope of the current
work.
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Figure 24. Comparison of the energy of mixing (Emix) as a function of Zn concentration when considering the most stable HCP structures
encountered in MMC simulations at 500 K (CE model) and subsequent DFT calculated energies (eV/atom). A key is provided. The red
arrow indicates a composition of 43.75% Zn, where DFT and CE models differ greatest.

Figure 25. Schematic displaying the mixed pattern of atom positions obtained for low energy structures, considering the 2× 2× 2 (left),
3× 3× 3 (centre) and 4× 4× 4 (right) system, respectively.

6. Summary and conclusions

We have presented a detailed study that combines DFT and
CE to understand the challenging experimental phase diagram
of PdZn. We focused on three main crystallographic phases:
FCC, HCP and BCT.

The models were trained with the energy of mixing, which
was calculated using accurate DFT. CE models were built
appropriately for the FCC and HCP phases; however, the
BCT phase was unstable beyond stoichiometric PdZn, pre-
venting creation of a model. For the FCC model, the train-
ing dataset was limited to structures that did not have devi-
ation in the unit cell angles by >5◦ from the initial ideal
FCC cell. For both the FCC and HCP CE models, the optimal
CE model was obtained with the LASSO selectors. The GS
structures were obtained by applying MMC searches in large
supercells, and from full enumeration searches at smaller
supercells.

By application of the CE model, a relationship was iden-
tified between Pd-Zn coordination and energy of mixing: the
greater the heterogeneous coordination, the greater the mix-
ing energy. Charge transfer, calculated with DFT, is greatest
for these well mixed alloys, with electron transfer from Zn to
Pd; this charge transfer may contribute to the catalytic react-
ivity of PdZn. Using the MMC approach, the GS configura-
tions for the 6× 3× 3 FCC and a 3× 3× 3 HCP supercells
were identified as less stable than for 4× 2× 2 and 8× 4× 4
FCC supercells, or 2× 2× 2 and 4× 4× 4 HCP supercells,
respectively.

For both FCC and HCP CE models, the 1:1 PdZn alloy has
the lowest energy of mixing and represents the most stable
structure on the convex hull. Insights into phase stabilities
were obtained from the formation energies; for a 50% Zn con-
centration, the FCC phase (corresponding to the FCC repres-
entation of the β-phase) is 0.017 eV/atom more stable than
the HCP structure. For all Zn concentrations <50%, the FCC
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Figure 26. Energy of mixing compared with Zn concentration,
considering full enumeration of all possible configurations with the
HCP CE model. The grey dots represent the predicted energies for
all possible structures up to 14 atoms. The red circles and red dots
represent respectively the DFT data that forms the initial training
dataset and the CE predictions on these same structures. The black
circles represent the predicted GSs at every concentration.

Figure 27. Overlay of convex hulls for formation energy (Efor) as a
function of Zn concentration, representing the phase diagram of
PdZn as produced by the CE models. The FCC and HCP regions are
presented in blue and red, respectively. The most important FCC
and HCP intermetallic alloys are denoted with blue and red dots,
respectively.

structure is calculated to be more stable, while HCP is more
stable for most Zn concentrations >50%. This observation is
exemplified by Pd2Zn beingmore stable in the FCC phase, and
PdZn2 being more stable in the HCP phase. A more accur-
ate reproduction of the orthorhombic phases would require
training a new CE model with structures generated with the
orthorhombic parent lattice, which will be considered in future
work.

Overall, our study shows that the CE approach can indeed
describe the structure and key phases of the PdZn alloy. The
ordered pattern for a concentration of 50% has been proven
to be most stable compared to other ordering schemes. The

outcomes will provide the basis for a new CE surface study of
ordered PdZn.
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