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Abstract

To better address the difficulties in designing green fruit recognition techniques in 

machine vision systems, we propose an optimized FCOS (full convolutional one-stage 

object detection) algorithm based on LSC attention blocks (FCOS-LSC) that are 

performed on level scales, spaces and channels of feature map. The method achieves 

efficient recognition and localization of green fruit images affected by overlapping 

occlusions, lighting conditions and capture angles. Specifically, the improved feature 

extraction network ResNet50 with added deformable convolution is used to fully extract 

green fruit feature information. The feature pyramid network (FPN) is employed to fully 

fuse low-level detail information and high-level semantic information in a cross-connected 

and top-down connected way. Next, the attention mechanisms are added to each of the 

three dimensions of scale, space (including the height and width of the feature map) and 

channel of the generated multi-scale feature map to improve the feature perception 

capability of the network. Finally, the classification and regression sub-networks of the 

model are applied to predict the fruit category and bounding box. In the classification 

branch, a new positive and negative sample selection strategy is applied to better 

distinguish supervised signals by designing weights in the loss function to achieve more 

accurate fruit detection. The proposed FCOS-LSC model has 38.65M parameters 

(Params), 38.72G floating point operations (FLOPs), and mean average precision (mAP) 

of 63.0% and 75.2% for detecting green apples and green persimmons, respectively. In 

summary, FCOS-LSC outperforms the state-of-the-art models in terms of precision and 

complexity to meet the accurate and efficient requirements of green fruit recognition by 

intelligent agricultural equipment. Correspondingly, FCOS-LSC can be used to improve 

the robustness and generalization of the green fruit detection models.

1. Introduction
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With the successful application of artificial intelligence technology in many fields, the 

development of this modern technology has also stimulated the development of 

agriculture, making the application of intelligent agriculture in agricultural production 

more and more extensive. As an important part of automated agricultural intelligent 

equipment, vision systems, have realized practical operations such as fruit picking, yield 

estimation, fruit counting, and crop type classification in agriculture[1,2]. Intelligent 

agricultural picking robots can replace or assist manual picking and reduce production 

costs, so efficient fruit recognition and picking research has received a lot of attention in 

recent years as an important branch of agricultural robotics[3–6]. Rapid recognition and 

accurate positioning of fruits in natural scenes can provide key technical support for the 

machine vision system of fruit-picking robots[7,8].

However, fruit growth in natural environments is characterized by random distribution and 

mutual occlusion, and fruit images also change dynamically depending on light changes, 

shooting angles and distances. In the unstructured agricultural environment, target fruit 

recognition has become a major challenge for agricultural intelligent devices in production 

applications[9]. In recent years, fruit detection has been the primary focus of research to 

identify target fruits from natural environmental backgrounds[10]. Fruit recognition 

methods mainly include traditional recognition methods based on manual features and 

deep learning methods for automatic feature extraction. 

Traditional fruit recognition algorithms mainly extract information such as color, 

geometric shape, and texture features of targets, and then classify and detect fruiting 

targets based on machine learning methods. Arefi et al. selected ripe tomatoes in a 

greenhouse environment for their experimental study and successively processed 

background informational and color information to finally achieve 96.36% detection 

accuracy, and the method showed excellent detection only for cases where the fruit color 

was more clearly distinguished from the background[11]. When the fruit target is close to 

the background color features, the shape and texture features between the fruit and the 

background are needed to determine the target region. 

Kurtulmus et al. combined color, shape, and texture features using three different scales of 

moving windows to scan unripe green citrus images, and the results of multiple voting 

window classifiers resulted in a final correct detection rate of 75.3%[12]. Jia et al. 

segmented the collected apple images under Lab color space using the K-means clustering 

algorithm, and input the extracted image RGB and HIS color features and geometric shape 

features into a neural network for fruit recognition, achieving 96.17% fruit recognition 

accuracy, but the algorithm was relatively tedious to recognize over[13]. Tian et al. 

proposed a combination of depth images and RGB images to recognize apple fruits by 

locating the center of the target fruit using depth images and segmenting it using RGB 

images with a final recognition efficiency of 96.61%, but the performance of this method 

was rather poor when dealing with overlapping fruits[14]. Ji et al. proposed an apple 

recognition and classification algorithm based on a support vector machine (SVM) with a 

recognition success rate of 89%[15], but the algorithm was less effective in detecting fruit 

with branch and leaf occlusions. Moallem et al. applied K-means clustering and multi-

layer perceptron (MLP) to extract apple texture and geometric features and achieved 

92.5% and 89.2% classification accuracy[16]. 

The above traditional fruit recognition algorithm often involves a series of complicated 

operations, such as image pre-processing, feature selection and extraction, which affects 
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the recognition accuracy and speed of the algorithm and makes it difficult to meet the 

requirements of real-time operation of intelligent devices. Especially when the fruit is 

close to the background color, a large number of overlapping blocks lead to the 

inconspicuous shape of the fruit contour, while the change of lighting conditions also 

leads to the loss of texture features, which seriously interferes with the recognition effect 

of the algorithm. 

With the rapid development of convolutional neural network (CNN), the end-to-end 

detection process and the advantage of automatic extraction of depth features have 

reduced many complex operational steps in traditional algorithms. Based on this, 

numerous deep learning-based recognition algorithms such as Faster R-CNN[17], 

YOLO[18], SDD[19], YOLOv5, FoveaBox[20], and many other mainstream algorithms 

have been developed, which are far more robust and accurate than traditional recognition 

algorithms and have been widely used in the field of fruit image detection and 

segmentation[21–23]. Zhang et al. replaced the original feature extraction network of 

Faster R-CNN with VGG19 through pre-training network migration and improved the 

region proposal network (RPN) structure of the network to improve the detection accuracy 

of the model for apple fruit and reduce the false detection rate[24]. 

Tu et al. designed the model to fuse image color and depth image information with the 

help of an RGB-D camera and finally achieved 90.9% F1 score to effectively improve the 

detection accuracy of small target passion fruit.[25]. Liang et al. first performed a series of 

data augmentation techniques to optimize the operation of the data and then redesigned the 

SSD detection frame shape according to the processed dataset, and finally implemented a 

mango detection model with better performance than Faster R-CNN[26]. Bresilla et al. 

detected fruits on trees based on an optimized YOLO model, which achieved 90% fruit 

detection precision by reducing convolutional and pooling layers to make the model 

shallower and increase the speed without decreasing the detection precision[27]. Wang et 

al. proposed a lightweight deep learning model YOLO v5s based on channel pruning, 

which achieved accurate apple fruit detection with 95.8% detection precision[28]. 

The above methods require feature area selection based on anchors, requiring the design 

of anchors of various scales and shapes, and the setting of parameters such as scale, aspect 

ratio and number of anchor frames also affects the detection performance of the model. To 

overcome the drawbacks of anchor-based algorithms, anchor-free algorithms are 

emerging. Jia et al. used EfficientNetV2-S backbone and a bi-directional weighted feature 

pyramid network (BiFPN) as the backbone network for feature extraction, and they used 

an adaptive training sample selection method to directly select positive and negative 

samples to obtain higher recall for green fruits at different scales, with detection precision 

of 62.3%[29]. To eliminate the limitation of the anchor boxes on the model in terms of 

speed and generalization ability situation, Jia et al. embedded the position attention 

module (PAM) in FoveaBox and MaskIoUhead mask calibration module, achieving 

efficient green fruit recognition[30]. 

Considering the problems of the anchor-based methods such as long training time and 

complicated calculation, the effective and accurate fruit detection model FCOS-LSC is 

proposed to recognize green fruit by improving anchor-free FCOS[31] as the base model. 

Instead of normal convolution operation, a deformation convolution[32] is adopted in the 

backbone network to better extract the fruit features with different shapes. In addition, 

attention operations[33] are introduced into the multi-scale features on scale, space, and 
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channel dimensions to enhance the feature representation of the network. In the 

classification branch of the detection head, a new positive and negative sample selection 

strategy is employed to set loss weights for both positive and negative samples to better 

distinguish between positive and negative samples[34]. The method provides more 

discriminable supervisory signals and enhances the detection of foreground targets and 

background environments.

In general, this study has at least the following contributions:

(1) In the backbone network, deformable convolution is introduced to better adapt to 

different fruit-shape features during detection.

(2) In the neck network, the LSC attention module is embedded in the three dimensions of 

scale, space and channel of the feature map, which suppress the noise interference in the 

feature map and make the model focus more on the effective pixel information.

(3) In the detection head, a new positive and negative sample determination method is 

designed to improve the discriminative ability for supervised signals.

(4) The proposed method outperforms other advanced methods in terms of accuracy and 

robustness, which is more suitable for detecting green fruits in complex orchards.

The rest of this paper is organized as follows: section 2 presents the green fruit dataset 

including image acquisition and dataset production. Next, this section illustrates the 

proposed FCOS-LSC model including the backbone network, the feature fusion network, 

and the various parts of the detection head as well as the details of optimization. In section 

3, experiments are conducted to compare other advanced detection models from different 

aspects to validate the effectiveness of FCOS-LSC in green fruit detection. Finally, section 

4 summarizes the proposed model and presents future research directions.

2. Materials and methods

2.1 Dataset 

There are many disturbances in the complex orchard environment that affect the detection 

of the vision system, making it difficult for fruit harvesting robots to recognize green fruits 

from similarly colored green backgrounds. To better cope with the complexity of the 

detection task, this study collects and produces two green fruit datasets from actual 

orchards for the experiments, including green apples and green persimmons.

2.1.1 Data acquisition

Collection locations: Apple images are collected from the apple production base in Fushan 

District, Yantai City, Shandong Province; and persimmon images are collected from the 

back mountain of Shandong Normal University.

Image acquisition equipment: All images are taken with the same camera, Sony Alpha 7II. 

A total of 1361 images of green apples and 553 images of green persimmons are taken at a 

resolution of 6000×4000 and stored in JPG format.
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Acquisition environment: To get closer to the working conditions of the picking robot, 

fruits in different lighting conditions and different periods are selected as far as possible 

when capturing images.

Shown in Fig. 1, a, b, c, d, the images of fruits are captured under soft light in the early 

morning, strong light at noon (which includes images of fruits under low backlight and 

high backlight conditions), and LED lighting at night. Shown in Fig. 1, e, f, images from 

different angles of distant and close views and different directions are captured to imitate 

the operation of the robot in actual orchards. There are many occlusions and overlaps in 

the image, including fruit overlapping each other and branch and leaf occlusions, etc. The 

specific fruit images are listed in Fig. 1, g, h, i.

a. Soft morning light b. Low backlight c. High backlight

d. LED lighting e. Far-field image f. Close-up image

g. Fruit overlap h.Tree branch blocking i. Leaf blocking
Fig.1 Green apple images in different scenes

2.1.2 Dataset production

The collected images take full account of the complexities of the orchard, with a certain 

degree of randomness and representation, and are as close as possible to the requirements 

of real-time operation of the machine and equipment. In this paper, the captured images 

are compressed and scaled to a size of 600x400 pixels to enable the fruit detection 

network to better adapt to the detection requirements of machine equipment for low-

resolution images.

LabelMe[35] software was used to annotate the information on green fruits, and 

corresponding category labels and annotation points are generated and uniformly saved in 

JSON files. Finally, data sets are generated according to Microsoft COCO[36] format.

Datasets are divided into the training set and validation set according to the ratio of 7:3, in 

which the training set contains 953 images and the validation set contains 408 images in 
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the apple dataset. The persimmon dataset contains 388 images in the training set and 165 

images in the validation set.

2.2 FCOS-LSC detection network 

FCOS-LSC is an optimization method based on the one-stage object detection model 

FCOS. The overall framework of the FCOS-LSC model includes the backbone network 

for feature extraction, the feature fusion structure, the attention module of each dimension 

on the feature map, and the detection head. The detection head also includes sub-networks 

for processing classification, bounding box regression, and center point detection. As 

shown in Fig. 2, the optimized ResNet50 with the addition of deformable convolutional 

structures is used as the backbone network to improve the feature extraction capability of 

the network. FPN is utilized to fully fuse the extracted multi-scale fruit features. Before 

input to the detection head, the attention mechanisms are added to the scale, space and 

channel dimensions of the feature map by the convolution-based method, respectively, 

which helps the feature map to distinguish foreground fruit objects and background 

information more effectively. In the detection head, a new label assignment strategy is 

designed to distinguish between positive and negative samples, providing the detector 

with a more discriminative supervised signal.

Fig.2 The overview of FCOS-LSC

2.2.1 Feature extraction and fusion network

As a feature extraction network, ResNet50 performs a series of convolution down-

sampling operations on the input fruit image to extract fruit feature information. The 

residual structure solves the problem of gradient disappearance, explosion and degradation 

caused by deeper network layers by completely mapping shallow features into deeper 

networks.

However, in the feature extraction network, the convolution kernel is set to a fixed shape. 

Fruit feature maps are also limited to extracting valid information only in rectangular 

filters. The efficiency of fruit detection in complex orchard backgrounds is greatly reduced 

by uncontrollable conditions such as shooting angles and fruit growth forms, and the 

design of convolutional kernels with dynamically transformable shapes can adapt to 

targets with variable morphology and improve recognition accuracy. Therefore, the 
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deformable convolution[32] is added to the C3, C4, and C5 layers of ResNet50 backbone 

network to improve feature extraction performance.

Fig. 3 Partially deformable convolutional structures in C3 are shown.

The deformable convolution structure is shown in Fig 3. The size of the convolution 

kernel is set to 3×3, and the same padding as the normal convolution is used to ensure that 

the size of the output feature map is the same as the size of the input feature map. The 

2×3×3 shift offset values in the convolution kernel correspond to the (x, y) offset values of 

each pixel in the 3×3 convolution kernel, respectively. 

To achieve greater degrees of freedom, different from deformable convolutional networks 

(DCNv1) [35], a learning coefficient of sampling points is added to it, and the coefficient 

of some useless background sampling points in fruit detection can be set to 0. This 

coefficient indicates that it has different weights for different pixel values, which improves 

the feature expression capability. The feature output dimension of the i-th stage is mapped 

to 1/2i of the input image. There are usually many layers that produce output maps of the 

same size. In this paper, the network layers with the same mapping size are grouped into 

the same stage layer. After each stage of the ResNet50 layer {C2, C3, C4, C5}, the output 

feature map is mapped to the input image as {1/22, 1/23, 1/24, 1/25}, respectively. As 

shown in the backbone part of Fig. 2.

The output of the ResNet50 network is a relatively high-level feature map with high 

semantic information. However, the feature maps after a series of convolution and pooling 

operations have low resolution. The mappable features are easy to lose details such as 

boundaries when detecting small objects. FPN realizes the fusion of low-level detail 

information and high-level semantic information to solve the problem of multi-scale 

prediction. The feature maps C3, C4, and C5 output by the last three layers after the 

ResNet50 network are horizontally connected to the FPN through 1×1 convolution. Then 

perform a 2-fold up-sampling and top-down method to fuse the information of each layer 

by element addition to obtain F3, F4, and F5. The F6 and F7 are obtained from F5 by two 

convolution operations with a convolution kernel of 3×3 and a step of 2. As shown in 

Fig.2 Neck section. 

2.2.2 LSC attention module

To enhance the representational capability of the model, an attention learning module 

implemented by a convolution-based approach is added to the output of the feature fusion 
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network. The LSC-Attention module is embedded behind the FPN to extract more feature 

information. The structure is shown in Fig. 2, and the specific implementation is shown in 

Fig.4.

Fig. 4 Convolution-based implementation with attention mechanism on each dimension of the feature map. The 

implementation details of the three sub-modules are shown in Fig. 5.

In this paper, the feature maps output from the FPN are up-sampling and down-sampling 

to process the high feature layer and low feature layer map scales and adjust to the scale 

size of the middle feature layer. The feature map can be converted to a four-dimensional 

tensor X ∈ RL×H×W×C, redefining S=H×W. Where L denotes the feature level; H denotes 

the feature map height; W denotes the feature map width; and C denotes the feature 

channel. The three-dimensional representation of the feature map is X ∈ RL×S×C. Focusing 

on the role of the three dimensions of the feature map separately can help improve the 

model feature extraction.

Fig. 4 shows the attention operations implemented in the convolution-based feature maps. 

First, feature maps improve the relationship between fruit scale size differences and 

features at different levels by operating on the scale dimension. Scale attention can 

improve the representation ability of feature maps at different levels, thereby improving 

the perception ability of fruit scale features. Then, through the operation in the spatial 

dimension, the spatial location information of fruit detection with different geometric 

shapes is extracted to improve the spatial perception ability of fruit detection. The last part 

of the cascade operation is the feature channel. The multitasking of fruit detection and 

segmentation and target representation correspond to features on different channels. 

Improving the representation learning ability on the feature channel can effectively 

improve the perceptual ability of the fruit detection task. Finally, the processing in the 

three dimensions is concatenated and multiplied as the input of the detection head. The 

operation of the attention module in three dimensions is as follows.  

 

As shown in Fig. 5, the ML module is operated on the scale. The input feature map 

undergoes a global averaging pooling operation to compress the spatial and channel 

features into a real number with a global sensory field on space and channel. Approximate 

the linear function with a 1×1 convolution to generate weights for the feature layer scale 

by computation. Then a ReLU is used to obtain the nonlinear relationship, which can fit 

the complex correlation between spatial channels. Finally, the approximate sigmoid is 

simulated by a hard-sigmoid activation function, which can also shorten the calculation 

time. The formula is expressed as follows.
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where linear function represents the 1×1 convolution and is the hard-sigmoid 

activation function.

Fig. 5 Implementation details of each dimension of the feature map 

With the understanding of the importance of different semantic information between 

feature layers in the perception module, the feature map focuses more on the information 

of each spatial location of the fruit. This includes distinguishing areas where the spatial 

location of each target in the feature map coexists consistently with the feature layer. 

Considering the high dimensionality of the spatial dimension, we use deformed 

convolution to make the spatial feature-awareness learning more sparse, and then 

aggregate the features at the same spatial location across feature levels. Fig. 5 illustrates 

the operation process of the MS module in space. The feature map input to this module is 

subjected to the convolution kernel size of 3×3 deformation convolution to learn the offset 

and mask information of the spatial position. The feature map focuses on the spatial 

position of the intermediate layer that is not adjusted at this time and propagates the 

obtained information to other adjacent feature layers that need to be adjusted in 

subsequent executions. The input feature map adapts to the same size by performing up-

sampling and down-sampling operations on its neighboring feature maps according to the 

feature level. Aggregate features across layers by simple summation and spatial attention 

can be learned to obtain more accurate information about offsets at spatial locations. 

Feature map F7, as the top layer, only carries out the up-sampling operation, while F3, as 

the lowest layer, only carries out the down-sampling operation. The other remaining 

feature layers are scaled accordingly according to the layer determination. The spatial 

attention formula is expressed as follows.

Deformation convolution operation focuses on the position 

information of the c-the channel of the l-the layer feature, and the self-learning spatial 

offset is  used to move the position to focus on more obvious areas. The network learns 

to gain spatial weights . We set learnable confidence weights for more important 

locations .
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The DyReLU[36] is applied in the MC module shown in Fig. 5 to execute the feature 

channel dimensionality awareness module. The input feature map is subjected to global 

average pooling to compress features in space and scale, and two fully connected layers 

perform channel dimension compression and restoration. The full connection operation is 

used to predict the importance of each channel and to understand the importance of 

different channels. The last normalization layer restricts the output to be between [-1, 1]. 

The calculated weight values of each channel are multiplied by the two-dimensional 

matrix of the corresponding channel in the input feature map respectively to realize the 

weighting of its channel. The weighted feature is added to the input to obtain the output. 

Feature maps can be shared across spatial channels channel-shared across spaces. Finally, 

the input parameters are used to filter the features through the function as the output 

features.

 is a hyperfunction that learns to control the activation threshold.

2.2.3 Detection head for green fruit prediction

As shown in the head section of Fig. 2, the FCOS-LSC detector consists of task-specific 

subnetworks. The three sub-network modules of classification, regression, and center 

point detection constitute the detector part. The classification sub-network performs the 

prediction of the confidence that each pixel on the feature map belongs to an apple or a 

persimmon. And the regression sub-network predicts the distance to the four edges of the 

real bounding box of the fruit. The center point detection sub-network predicts the offset 

from the target center and shares a portion of the network parameters with the regression 

network, while the classification network module as a separate network does not share 

network parameters. Therefore, we use two different full convolutional channels to 

perform specific prediction tasks by decoupling the classification sub-network and 

regression molecular network tasks. 

The classification sub-network processes each feature level output from the model Neck 

structure, and all feature maps share the parameters of the classification sub-network. The 

module has four convolutional layers with kernel size 3×3 and one convolutional layer 

that performs prediction of fruit confidence. The bounding box regression sub-network 

and the center point detection sub-network share a part of the fully convolutional network. 

The full convolution of this part implements four convolution layers in parallel with the 

classification sub-network, the size of the convolution kernel 3×3. Finally, two 3×3 

convolution branches are used to output the prediction results of the feature map bounding 

box and the predicted offset from the center point, respectively. The predicted offset is 

multiplied by the category predicted by the classification sub-network to output the final 

confidence score.

Positive and negative sample determination: The original FCOS model assigns positive 

and negative samples in such a way that the center of the real object bounding box is the 

center of the circle, and the positive sample area is delimited by a fixed radius. According 

to the step of feature level, the pixels on the feature map are converted to the coordinates 

of the corresponding perceptual field region on the input image to directly determine 

whether the coordinates fall within the divided region. If it falls within the divided region, 

it is considered as a positive sample, otherwise, it is a negative sample. When training the 

' ' ' ' 1 ' ' ' ' 1 2 ' ' ' ' 2( ) max( ( ) , ( ) ) (6)C c c c cM X X a X X b a X X b   
1 1 2 2[ , , , ] ( )c c c ca b a b  
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sample loss weights, the weights of negative samples are simply obtained from the 

weights of positive samples, resulting in no new supervisory information provided to the 

negative sample weights, which limits the detection performance. The proposed method 

provides more signal discriminative supervision to the detector from different perspectives 

by specifying the loss weights of positive and negative samples. 

The built positive sample weighting function takes the predicted fruit category confidence 

and the intersection over union (IoU) between the predicted box and the ground truth as 

input. This paper sets positive sample weight by estimating the degree of agreement 

between the class network and the regression network. The negative sample weight 

function takes the same input as the positive sample weight function, but the negative 

sample weight is represented by the product of the probability that the anchor frame is a 

negative sample and its importance if it is a negative sample. The fuzzy prediction frame 

with the same positive sample weight can get a finer supervision signal because of the 

different negative sample weights. 

First, this paper constructs a set of candidate positive samples by selecting the detection 

box near the center point of the ground-truth bounding box. During testing, all predictions 

for the fruit category are appropriately ranked by a combination of a confidence score and 

the predicted IoU as a ranking metric to rank detection boxes in the candidate set. The 

correctness of each prediction box is checked from the beginning of the ranked list. Highly 

ranked fruit category prediction scores and high IoU are sufficient requisites for positive 

prediction. Positive sample weights are positively correlated with prediction scores and 

IoU. Therefore, the positive sample weighting function is defined as follows.

Where s is the category score of the predicted fruit, and b, b' are the positions of the 

predicted box and the ground box. The s×IoUβ can indicate the degree of agreement 

between the predictions of the classification network and the regression network in 

forward prediction. The β is used as a balancing factor. The exponential function is used to 

enhance the variance of positive sample weights. The μ is used as a hyperparameter to 

control the relative gap between different positive sample weights. Positive sample weight 

can emphasize that consistent boxes have higher classification scores and higher IoU, but 

inconsistent boxes cannot be distinguished by positive sample weight. According to the 

IoU to determine whether the detection box is incorrectly predicted, the IoU smaller than 

the threshold is the only factor to determine the negative sample probability denoted by 

Pneg.

The interval is divided into [0.5,0.95] according to the evaluation index of the COCO data 

format. When the IoU is less than 0.5, the lower limit of the evaluation interval, the 

probability of a negative sample is 1. When the IoU is greater than the upper limit of the 

evaluation interval, the probability of a negative sample is 0. In the evaluation interval, the 

negative sample probability takes the value [0,1], which satisfies the linear functional 

relationship. During inference, negative sample predictions with higher rankings in the 

index list can help the network to optimally distinguish difficult samples, so they are more 

important than negative sample predictions with lower rankings. The negative sample 

'

'

( , )
                        (7)

( , )

s IoU

posw e s IoU

Intersection b b
where IoU

Union b b
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probability multiplied by the importance can be expressed as a negative sample weighting 

function.

Where γ is the modulation factor. The k and b are the coefficients of the linear equation.

The design of the weighting function of positive and negative samples can distinguish 

between important and non-important samples. Dynamically assigns a separate loss 

weight for positive samples and loss weight for negative samples to detection boxes, 

which is highly compatible with evaluation metrics.

2.2.4 Loss function

The loss function reflects the error size between the predicted value and the real value of 

the model in this paper, which is helpful to the iterative optimization in the process of 

model training and to evaluate the effectiveness of the model to the detection fruit. The 

model loss in the object detector consists of a combination of fruit classification loss and 

positive sample prediction bounding box bias loss.

The loss Ldetection of the FCOS-LSC is composed of Lcls and Lreg. Here Lcls denotes the 

predicted fruit category loss, Lreg represents the predicted regression loss, and λ  is the 

modulation factor. N and M represent the number of detected frames in the candidate set 

and the number of detected boxes outside the candidate set, respectively. FL stands for 

Focal Loss[39]. GIoU is the regression GIoU Loss[40]. b, b' are the positions of the 

predicted box and the real box.

Regarding FL in formula (10), and GIoU in formula (11) are shown below.

Here α is responsible for balancing the importance between positive and negative samples, 

and η is responsible for regulating the rate of weight reduction for simple samples. Bboxmin 

is the smallest enclosing convex object of b and b'.

1 0.5

( ) 0.5 0.95 (8)

0 0.95

neg

s IoU

w k IoU b s IoU

IoU
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3. Results 

In this paper, abundant experiments are conducted to verify the effectiveness of the 

optimized model for fruit detection. This section first introduces the experimental 

environment and the implementation details of the model during the training and testing 

periods. Then, the network is trained respectively with the apple training dataset and the 

persimmon training dataset. The optimal training model is selected for testing on two 

validation datasets and analyze the results. Finally, state-of-the-art object detection 

algorithms are selected for experimental comparison in the same environment, and the 

results are analyzed and compared to verify the performance differences of the models in 

this paper in terms of fruit detection.

3.1 Experimental settings

Experiments run on Ubuntu 18.04 64-bit operating system, 24GB GTX 3090 graphics 

card, and 11.3 CUDA environment. All models use Python 3.7 version and Pytorch 1.11 

version and build model components with the help of MMDetection 2.22.0 version 

learning library. 

3.1.1 Image preprocessing

ResNet50 is used as the backbone network to extract fruit image features, and then input 

to the FPN for feature fusion. The fused features are features learned respectively in three 

dimensions: scale, space, and channel, to obtain better information representation. The 

output 5 feature layers are all in 256 channel dimensions. The operation of the detection 

head is performed at each level, and its parameters are shared among each level. The final 

detection head outputs the prediction results for fruit category confidence and bounding 

box regression. Image preprocessing operations are performed before network training. 

First, resize the image to a uniform scale. Next, the image is flipped with a random 

inversion probability of 0.5, then regularized, and finally padded to be divisible by 32 in 

down-sampling. Image enhancement of the dataset prevents overfitting of the model due 

to insufficient data and enhances the generalization ability of the model.

3.1.2 Training

The learning rate for model training is set to 0.00125, the weight decay rate is set to 

0.0001, and the momentum factor is set to 0.9. In this paper, the mini-batch method is 

used for training iterations for 12 epochs. The batch size per iteration is set to 2 fruit 

images, so the maximum number of iterations is 5736. To prevent the gradient explosion 

during model training, the learning rate is adjusted using the warmup strategy. The initial 

learning rate is adjusted linearly, i.e. the learning rate of the model increases linearly from 

0.001 to 0.00125 in the first 1000 iterations. The gradient is updated using the stochastic 

gradient descent optimizer (SGD)[41], and then the learning rate transformation is 

adjusted according to the number of iterations, that is, at the 8th epoch and 11th epoch of 

the iteration, it is reduced respectively to 1/10 of the original. The transformation of the 

learning rate is shown in Fig. 6.
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Fig. 6 Learning rate change during training

Using the above training parameters, the model profiles are set up in this paper to obtain 

the training loss variation curves on the apple dataset and the persimmon dataset, as shown 

in Fig. 7.

Fig. 7 Changes in loss on two datasets in the model training phase, the left image is the apple dataset, and the right 

image is the persimmon dataset.
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Fig. 8 AP values under each epoch on the two datasets. (left) : apple validation set; (right): persimmon validation set. 

The top row shows the change curves of AP values of FCOS-LSC on the two datasets, and the bottom row shows the 

change curves of AP values of FCOS-LSC compared with the baseline model on the two datasets.

3.1.3 Testing

The same data pre-processing operations are performed before the images are input to the 

network, such as image cropping, random inversion, regularization, and padding. After the 

network prediction is over, the lower predicted values are filtered by setting a fruit 

confidence threshold of 0.4. The network then outputs the top 1000 detection boxes with 

high confidence for each prediction layer. The network filters overlapping detection boxes 

by non-maximum suppression (NMS). The filtered detection boxes are still sorted by 

confidence. Each fruit image retains at most the first 100 confidence prediction boxes.

The models with the above test parameters are used to validate the fruit images of the 

apple dataset and the persimmon dataset. The change curve of AP obtained is shown in 

Fig. 8.

3.2 Evaluation metrics

To better evaluate the FCOS-LSC model, this paper uses the average precision (AP) and 

average recall (AR) under the IoU threshold of [0.5:0.05:0.95] to evaluate the performance 

of the model on fruit detection. Where precision and recall can be expressed as the 

following formulas:

where TP is the number of fruits predicted as positive samples. FP is the number of 

backgrounds predicted as fruits, i.e., the number of false positive samples. And FN is the 

number of fruits not predicted as positive samples, i.e., the number of false negative 

samples. Further, the average precision formula under a specific threshold can be 

obtained.

TP
Pr ecision= 100% (12)

TP+FP


TP
Recall= 100% (13)

TP+FN


IoU=i

Recall

1
AP Precision( ) (14)

101 r

r
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The average precision at a certain threshold is obtained by taking the precision of 101 

recalls at [0, 0.01, …, 1] and averaging them. This paper selects the IoU thresholds in the 

range of [0.5:0.95] every 0.05, a total of 10 thresholds, and averages them to obtain the 

evaluation indicators AP and AR. We also counted the AP and AR values at specific 

thresholds and different scales of large, medium, and small as the evaluation metrics for 

this experiment. The PR curves at 10 different thresholds on the apple dataset are shown 

in Fig. 9. Params are used to examine the number of parameters contained in the model to 

measure the simplicity of the model; FLOPs measure the computational complexity of the 

model.

Fig.9 P-R curves at different thresholds on the apple dataset

3.3 Model detection effect

The proposed model is trained and tested on the apple dataset and the persimmon dataset, 

respectively. Fi. 7 shows the visualization of all losses when our method is trained on the 

training set. The horizontal coordinates in the figure represent the number of iterations of 

the model during training, and the vertical coordinates represent the loss values. The red 

curve represents the total prediction loss of the model throughout the training period, 

including the negative sample weight loss change and positive sample weight loss change 

in classification loss. Negative and positive sample loss changes are presented by the blue 

and orange curves, respectively, as well as the green curve of regression loss change. The 

model optimizer SGD continuously optimizes until the model weight parameters converge 

during the training process. During each training epoch iteration, the test set is evaluated 

by the AR and AP. 

As shown in Fig. 8, the horizontal coordinate is the number of training iterations and the 

vertical coordinate is the prediction precision. First row, the AP with thresholds of 0.75 

and 0.5 for each epoch and AP with 10 thresholds within the interval are indicated by the 

green, orange and blue curves. As shown in Tables 2 and 3, the method in this paper 

achieves 63% and 75% AP on the apple dataset and persimmon dataset, respectively. The 

second row of Fig. 8 compares the performance of the baseline model and FCOS-LSC on 
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the green apple and green persimmon datasets, and the images show that FCOS-LSC is 

more stable during training and its performance is much better than that of the baseline.

In this paper, fruit images under mixed environments such as different lighting conditions, 

fruit occlusion, and distant view are selected for detection. The proposed method can 

accurately detect randomly taken fruit images with almost no misses and false detections, 

realizing a high detection accuracy. Acceptable results are achieved even when fruit 

images are mixed with background images that are not easily distinguishable, especially in 

the two cases of backlighting and blurred distant fruit. The model can also output 

detection results in a friendly manner when there are severe fruit overlaps and branch 

occlusions in the captured images, whose fruit contours are not clear. It can be seen that 

the model in this paper can perform the detection task accurately even with the occurrence 

of mixed interference conditions of various overlapping occlusions, lighting conditions, 

and shooting angle distances for fruit detection. Thus, the model based on improved FCOS 

is competent for the task of green fruit detection in orchards.

Fig. 10 Apple dataset

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://sp
j.scien

ce.o
rg

 o
n
 Ju

ly
 1

1
, 2

0
2
3



  Plant Phenomics                                                        Manuscript Template                                                                Page 18 of 27

Fig. 11 Persimmon dataset

3.4 Ablation experiment

To verify the effect of the LSC attention module and the positive and negative sample 

judgment methods, this paper further verifies the effectiveness of the two methods through 

ablation experiments. In order to understand the contribution of the two methods to the 

model, the new positive and negative sample selection method constructed is applied to 

the base model for a before-and-after comparison of apple detection effects, and the LSC 

module is added to further compare the effects. The experimental results are shown in 

Table 1.

Table 1 Validation of the two methods on the apple dataset. Input size:(600,400).

Model AP Params/M FLOPs/GFLOPs

Baseline 58.4 31.84 48.62

+new sample selection 

method

61.8+(+3.4) 31.91(+0.07) 49.90(+1.28)

+LSC attention module 62.8+(1.0) 38.65(+6.84) 38.72(-9.9)

Firstly, based on the original FCOS network, the positive and negative sample 

determination method is applied to the detection head. Under the condition that the model 

parameters and computational complexity are the same as the original model. The LSC 

module is then added to this, and after adding only a small number of parameters, the 

precision is improved by 1.0 percentage point and the complexity of the model is reduced. 

Therefore, the positive and negative sample determination method can better improve the 

ability to distinguish between green fruits and complex green backgrounds during training. 

Meanwhile, the LSC module enhances the ability of the model to represent features. The 

results are shown in Table 1. Although a small number of model parameters are added, the 

combination of the two methods results in an AP 4.4 percentage point higher than the 

original mode.

3.5 Comparisons

To further analyze the effectiveness of this model in the implementation of fruit detection 

tasks, this paper selects the most advanced object detection algorithms for comparison. 

The comparison models include two-stage anchor-based algorithms Faster RCNN, Mask 

R-CNN, and its variant MS R-CNN, and also one-stage anchor-based algorithms 

RetinaNet, YOLO v3, and ATSS, where ATSS is also compared as a label assignment 

policy method. Compared with the one-stage FCOS algorithm without anchor boxes, there 

is also the FoveaBox algorithm. All models are trained and tested on the apple dataset and 

persimmon dataset. The detection effect of each model is shown in Table 2 and Table 3. 

Table 2 Comparison of algorithms on the apple dataset.
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Method Backbone+Nec

k

Two-stage anchor-based

Faster R-

CNN

ResNet50+FPN 59.6 85.9 65.8 43.6 67.0 84.3 65.5 51.5 72.4 88.3

Mask R-CNN ResNet50+FPN 60.1 86.3 66.5 44.9 67.4 84.9 66.4 53.2 73.0 88.2

MS-RCNN ResNet50+FPN 60.2 86.3 67.3 45.3 67.1 84.9 66.4 53.6 72.6 87.9

One-stage anchor-based

RetinaNet ResNet50+FPN 57.6 84.9 62.6 42.2 65.1 82.8 65.1 50.8 72.6 87.5

YOLOv3 DarkNet53 59.4 84.6 65.2 40.8 65.9 87.5 65.9 51.6 71.9 91.7

ATSS ResNet50+FPN 62.1 87.9 64.7 46.1 67.2 88.8 69.3 56.4 75.0 92.0

One-stage anchor-free

FoveaBox ResNet50+FPN 58.6 86.2 63.8 43.8 63.6 83.5 66.6 54.7 72.0 87.2

FCOS ResNet50+FPN 58.4 86.8 63.4 42.6 64.3 83.7 65.6 51.7 72.9 87.9

ours

FCOS-LSC ResNet50+FPN

+LSC

63.0 87.2 68.1 47.1 69.5 89.9 71.3 58.5 77.3 92.7

Table 3 Comparison of algorithms on the persimmon dataset.

Method Backbone+Neck

Two-stage anchor-based

Faster R-

CNN

ResNet50+FPN 70.7 91.2 81.4 33.3 72.3 83.6 76.1 41.3 78.2 87.1

Mask R-CNN ResNet50+FPN 72.0 91.9 82.4 35.4 73.7 85.4 77.2 45.8 78.7 88.9

MS-RCNN ResNet50+FPN 73.1 92.1 83.7 34.9 75.1 85.9 77.9 48.5 79.3 88.8

One-stage anchor-based

RetinaNet ResNet50+FPN 65.4 88.8 76.6 22.4 68.6 77.9 72.3 34.5 74.8 83.8

YOLOv3 DarkNet53 70.3 87.2 79.2 29.7 71.3 86.4 75.7 40.3 77.0 90.5

ATSS ResNet50+FPN 73.5 92.5 84.1 38.5 73.9 87.2 80.3 55.2 81.2 91.2

One-stage anchor-free

FoveaBox ResNet50+FPN 69.6 91.3 80.0 30.2 71.4 81.8 76.4 46.0 78.1 86.6

FCOS ResNet50+FPN 69.9 91.9 79.3 34.7 71.4 82.3 76.7 48.4 77.9 87.6

ours

FCOS-LSC ResNet50+FPN

+LSC

75.2 93.5 83.8 32.1 76.7 89.1 80.9 51.3 82.2 92.4

It is observed that, compared with other algorithms, FCOS-LSC has strong 

competitiveness in the performance of each evaluation metric on both the apple and the 

persimmon datasets. In spite of considering the accuracy of model detection, it is also 

necessary to examine the capacity and computational complexity of the algorithm to 

balance the quality of the model design. Under the premise that the input image size is 

AP 5AP .75AP sAP mAP lAP AR sAR mAR lAR

AP 5AP 75AP sAP mAP lAP AR sAR mAR lAR
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uniformly 600×400, each detection model capacity and complexity are calculated as 

shown in Table 4. Although FCOS-LSC is slightly inferior to ATSS in AP.5 in the apple 

dataset and AP.75 in the persimmon dataset and APs, its algorithm complexity is reduced 

by 11.07G compared to ATSS. Compared with the model capacity and computational 

complexity of other algorithms, FCOS-LSC has the lowest computational complexity after 

introducing a small number of model parameters.

In this paper, Faster R-CNN, Mask R-CNN, YOLO v3, and ATSS algorithms are selected 

for the detection of fruit images in the apple dataset, as shown in Fig. 11. MS R-CNN, 

RetinaNet, FoveaBox, and FCOS algorithms are selected for the detection of fruit images 

in persimmon dataset, as shown in Fig. 12. From the figure, it is easy to find that the fruits 

with clear fruit contours can be detected and have the highest detection accuracy 

performance. At the same time, fruits with blurred edges and even unlabeled fruits can be 

detected accurately, as shown in the first image of the apple dataset. This is very helpful to 

deal with the situation of fruit detection in complex orchards with multiple interference 

factors.

Original manual labeling diagram

FCOS-LSC

ATSS

Mask R-CNN
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Faster RCNN

YOLO v3

Fig. 11 Detection results of different algorithms on the apple dataset

Original manual labeling diagram

FCOS-LSC

MS R-CNN

RetinaNet
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FoveaBox

FCOS

Fig. 12 Detection effect of different algorithms on the persimmon dataset

In summary, the FCOS-LSC model is more concise in design, has fewer requirements on 

memory and calculation, and realizes the prediction of higher probability values, which 

can meet the real-time orchard operation tasks and present more comprehensive and 

efficient results.

Table 4 Comparison of the number of params parameters, flops computational complexity of models. Input 

size:(600,400).

Method Params/M FLOPs/GFLOPs

Two-stage anchor-based

Faster R-CNN 41.12 61.52

Mask R-CNN 43.75 113.0

MS-RCNN 60.01 113.0

One-stage anchor-based

RetinaNet 36.10 50.55

YOLOv3 61.52 47.88

ATSS 31.89 49.79

One-stage anchor-free

FCOS 31.84 48.62

FoveaBox 36.01 50.06

ours

FCOS-LSC 38.65 38.72

3.6 Failure detections

This section further analyzes the difficult problems of the existing detection tasks in 

orchards. To better illustrate the detection effectiveness of FCOS-LSC, we chose fruits 

with a heavy overlap in the orchard and fruits with a distant and backlight condition. The 

visualization of all the models mentioned in this paper on the apple dataset is presented as 

shown in Fig. 13. FCOS-LSC can still accurately detect the target fruit in the presence of 

missed detection by other comparison models. However, not all target fruits can be 
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detected, as detailed in the marked section. The model misses the obscured target fruits in 

the close-up images due to the severe shape deficit and this is also a common problem 

with other models. In addition, when dealing with backlight images, the model does not 

work well due to factors such as the small size of the fruit and the presence of occlusion.

ground truth

Faster R-CNN

Mask R-CNN

MS R-CNN

RetinaNet

YOLOv3
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ATSS

FoveaBox

FCOS

Ours

Fig. 13. The visualization of all the models mentioned in this paper on the apple dataset.

3.7 Discussion

In previous studies, a combination of deep learning techniques and image processing has 

made significant progress in target fruit recognition tasks[42]. The two-stage detection 

model has high detection accuracy relative to the one-stage model but involves the design 

of the anchor frame, and the complexity and computational volume of its model increase 

along with it. Considering the needs of orchard robot operations, designing algorithms 

with high detection accuracy and low computational cost is the key to coping with the 

target fruit identification and localization problem. Object detection task embedding visual 

attention during model training is an effective way[43–46] to focus on some of the input 

features instead of the whole input for solving the target task. In addition, to improve the 

generalization ability and robustness of the model, it is crucial to design a more reasonable 

positive and negative sample selection strategy[47,48].

Experimental results show that the proposed model achieves better accuracy with 

relatively fewer parameters and fewer FLOPs. The proposed FCOS-LSC model 

outperforms other state-of-the-art algorithms in terms of detection accuracy and 

efficiency. As shown in Tables 1 and 4, FCOS-LSC exhibits high AP, and the analysis 

reveals that the model does not have its model computational complexity enhanced by the 

addition of the LAC module, but instead has the least FLOPs, which is due to the 

dimensional adjustment of the feature map that promotes the model to focus more on 
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effective features, as described in detail in section 2.2.2. Although FCOS-LSC performs 

well in the visualization effect map, it is relatively poor in small target fruits, as shown in 

Tables 2 and 3, where the enhancement effect of model optimization shows APl > APm > 

APs. This phenomenon is caused by the positive and negative sample selection strategy. 

The method first selects the detection frame with the true bounding box near the center 

point to better discriminate the supervised signal, which may lead the method to be more 

focused on important samples compared to samples near the target fruit boundary, while 

this method is friendly to large targets. In conclusion, the high accuracy and robustness of 

the model provide further possibilities for its deployment with intelligent agricultural 

equipment, which can meet the needs of real-time operations

4. Conclusion

The purpose of this study is to deploy and apply the technology of green fruit detection to 

agricultural intelligent equipment to meet the task of fruit identification in complex 

orchards. The one-stage anchor-free FCOS model is optimized to avoid the reliance on 

anchors in the fruit detection process, thus shortening the detection time, which can be 

widely applied to other agricultural fields. The deformable convolution is added in the 

backbone network to better adapt to the green fruit target with different shapes. The 

convolution-based attention operation is applied to the fused features, which combines 

low-level detail information and high-level semantic information to improve the scale, 

space and channel feature representation of the features, respectively. As well as this 

operation helps the network deal with overlapping occluded fruits to achieve better 

detection results. To distinguish the green target fruit from the background, a new sample 

selection strategy is constructed to provide more discriminable supervised signals by 

specifying loss weights for positive and negative samples and applying them directly to 

the detection head.

Although the FCOS-LSC model achieves better detection results on green apple and 

persimmon datasets, there is still space for improvement. More types of green fruit images 

are collected to verify the effectiveness of the model, and the model is designed to 

improve the detection of small target fruits. In the practical application of unstructured 

orchards, the accuracy and time efficiency of the model need to be considered, so the 

model will be further optimized to improve the overall efficiency of the model by 

shortening the computation time while improving the detection accuracy.
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