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ABSTRACT

This study aimed to compare the performance of six regional climate models (RCMs) in simulating observed and projecting future climate in

the Savannah zone of Ghana, in order to find suitable methods to improve the accuracy of climate models in the region. The study found that

the accuracy of both individual RCMs and their ensemble mean improved with bias correction, but the performance of individual RCMs was

dependent on location. The projected change in annual precipitation indicated a general decline in rainfall with variations based on the RCM

and location. Projections under representative concentration pathway (RCP) 8.5 were larger than those under RCP 4.5. The mean temperature

changes recorded were 1 °C for the 2020s for both RCPs, 1–4 °C for the 2050s under both RCPs, and 1– 4 °C under RCP 4.5, and from 2 to 8 °C

for the 2080s. These findings will aid farmers and governments in the West African subregion in making informed decisions and planning

cost-effective climate adaptation strategies to reduce the impact of climate change on the ecosystem. The study highlights the importance

of accurate climate projections to reduce vulnerability to climate change and the need to improve climate models in projecting climate in the

West African subregion.
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HIGHLIGHTS

• The performance of six RCMs participating in the CORDEX-Africa initiative was assessed.

• Accuracy of both RCMs and their ensemble mean improved with bias correction.

• The overall changes in projected annual precipitation reveal a general decline in rainfall.

• The mean temperature changes recorded show a general increase.

• This study serves as a guide for Ghana and West Africa in planning cost-effective climate adaptation strategies.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Over the past century, climate studies have intensified as scientists work tirelessly to understand climate changes and their

impacts on future climate (IPCC 2007; Giménez & García-Galiano 2018). The African continent, in particular, is identified as

the most vulnerable to climate change and its impacts due to the high dependence of livelihoods and various sectors of the

economies on climate (IPCC 2007; Kalognomou et al. 2013; Yira et al. 2017). Consequently, irregularities in the climate

negatively affect livelihoods (Boko et al. 2008; Kalognomou et al. 2013; Thornton et al. 2014), and there is a need for

proper planning and implementation of sound policies to enhance sustainable adaptation and coping mechanisms. Under-

standing the impacts of future climate becomes an asset in managing these vulnerabilities.

In Africa, the vulnerability to climate change has been well documented, with many livelihoods and economic sectors heav-

ily dependent on the climate. Recent studies have highlighted the impact of climate change on African agriculture and food

security (Schlenker & Lobell 2010; Lobell et al. 2013), as well as the increased risk of conflict and displacement due to cli-

mate-related disasters (Käkönen 2020). This vulnerability of the African continent to climate change poses a threat to

achieving sustainable development goals. Many of the goals, such as eradicating poverty (Goal 1), achieving food security

(Goal 2), ensuring good health and well-being (Goal 3), and promoting sustainable economic growth (Goal 8), are dependent

on climate stability. The impacts of climate change, such as extreme weather events, sea-level rise, and changes in precipi-

tation patterns, can lead to food shortages, displacement of populations, and increased poverty.

The projection of future climate often involves the use of climate models, which are mathematical equations that run on a

three-dimensional grid (Intergovernmental Panel on Climate Change (IPCC) 2001; Rajib & Rahman 2012). General circula-

tion models (GCMs) are one group of climate models that are often used in climate change studies, but they have a resolution

of 200 km or more, which limits their ability to estimate changes in future climate at the regional scale. Either they are unable

to capture mesoscale atmospheric circulations or the intensities they present are unrealistic (Christensen et al. 2007; Kendon

et al. 2010; Rajib & Rahman 2012). Atmosphere-ocean GCMs (AOGCMs) are reported to produce relatively good predic-

tions, especially on flat, noncoastal terrains (Kendon et al. 2010). However, these AOGCMs inadequately simulate the

underlying West African monsoon (WAM) rainfall, which is the basis of the general rainfall pattern in West Africa (Hourdin

et al. 2010; Xue et al. 2010; Gbobaniyi et al. 2014).
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Regional climate models (RCMs), with a finer resolution (50 km), have been applied for West Africa and have relatively

simulated the WAM climatology quite well (Afiesimama et al. 2006; Foamouhoue & Buscarlet 2006; Pal et al. 2007; Sylla

et al. 2009). However, the use of single RCMs often results in some biases (Christensen et al. 2008; Teutschbein & Seibert

2012) due to the model used, the region of analysis, or the season under consideration (Nikulin et al. 2012). The use of multi-

model average (ensemble mean) together with bias-correction methods has been found to enhance the performance of

simulations (Teutschbein & Seibert 2010; Diallo et al. 2011; Paeth et al. 2011; Nikulin et al. 2012; Johnson & Sharma 2015).

In terms of climate modeling, recent studies have continued to focus on improving the accuracy of RCMs. For example, a

study by Akinsanola et al. (2021) evaluated the performance of several RCMs in simulating the WAM and found that a multi-

model ensemble approach provided the most accurate simulations. Another study by Safari et al. (2021) evaluated the

performance of RCMs in simulating rainfall over Rwanda and found that a bias-correction approach improved the accuracy

of the simulations.

In this study, the performance of six individual RCMs participating in the Coordinated Regional Climate Downscaling

Experiment (CORDEX)-Africa project and their multimodel average (ensemble mean) were evaluated, as well as their per-

formance before and after bias correction was applied to their outputs. The analysis included the comparison of monthly

means with observations for both temperature and rainfall. Furthermore, these RCMs were used to project the future climate

(temperature and rainfall) for the SADA zone of Ghana.

2. MATERIALS AND METHODS

2.1. Study area

The area demarked as the Savannah zone covers the Upper West, Upper East, North East, Northern, Savannah, parts of

Bono East, and Oti regions of Ghana (Figure 1). The area lies within latitudes 8°000N– 11°000N and longitudes 0°010E–3°

Figure 1 | Location of climate stations in the Savannah zone of Ghana.

Journal of Water and Climate Change Vol 00 No 0, 3

Uncorrected Proof

Downloaded from http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.070/1240446/jwc2023070.pdf
by guest



000W. The climate in the study area is primarily semiarid in the northern parts, semihumid in the central regions, and then

humid in the southern parts (Liebe et al. 2009). Rainfall is characterized by significant variations, including disparities

between successive seasons, and is often unpredictable in terms of onset, quantity, and coverage (Obuobie 2008; Ghansah

et al. 2018). In the northern part, the mean monthly temperature falls between 27 and 36 °C, and in the southern part, it

ranges from 24 to 34 °C, while relatively high evapotranspiration rates are observed with potential evapotranspiration

rates exceeding mean annual rainfall amounts (Darko et al. 2018).

The primary vegetation of the SADA zone is mainly Savannah consisting of grasslands dotted with trees/shrubs such as the

baobab, shea, mango, and neem. The southern parts are, however, characterized by dry forests that have a few tall trees with

shrubs and grasses growing underneath (Darko 2018).

A large percentage of the inhabitants in the SADA zone are peasant farmers living in scattered rural communities (Darko

2018). The farmers are highly defenseless against upsets due to the limited augmentation of their income sources (World

Bank 2011). Thus, any slight variation in the climate often results in poverty, hunger, and high competition for the limited

available resources (Mul et al. 2015). Table 1 shows the description of the selected stations for the study.

2.2. Baseline data

Daily precipitation values for the baseline period of 1960–2005 for precipitation and 1975–2005 for temperature runs were

obtained from the Ghana Meteorological Agency. These periods were selected because of the availability of observed data

and also because the baseline period for the CORDEX-Africa projects ends in 2005.

2.3. Climate change data

RCM simulations utilized were daily precipitation and temperature values obtained from RCMs participating in the

CORDEX-Africa projects (Jones et al. 2011). An ensemble of six RCM–GCM (Table 2) as well as their multimodel average

(ensemble mean) were used in the analysis.

The ability of the models to accurately model future climate was tested by assessing their performance in simulating

observed data. This test was necessary because models cannot be relied on to project future climate if they are unable to accu-

rately simulate observed climate (Laprise et al. 2013). The representative concentration pathway (RCP) scenarios 4.5 and 8.5

of the Intergovernmental Panel on Climate Change were utilized in the projection of future climate.

Bias correction was employed using the climate model data for hydrologic modeling tool. Further details about the tool can

be found in Rathjens et al. (2016). Bias correction was carried out because climate models tend to produce a biased represen-

tation of the observation (Christensen et al. 2008; Teutschbein & Seibert 2012). This is because simulations by RCMs are

limited in their ability to accurately capture all the physical and chemical processes that occur in the atmosphere (Lupo &

Kininmonth 2013).

The distribution mapping, which is a type of gamma method of bias correction, was chosen for both precipitation and temp-

erature. This method works by correcting the distribution function of the simulations from the RCM to align with that of the

observations (Sennikovs & Bethers 2009; Teutschbein & Seibert 2012). This method of bias correction has also proven to

Table 1 | Description of climate stations used in the study

Climate station Longitude Latitude Elevation

Bole �2.49 9.03 297.00

Kete-Krachi �0.05 7.80 85.00

Kintampo �1.73 8.06 339.00

Tamale �0.84 9.24 196.00

Wa �2.51 10.06 305.00

Wenchi �2.10 7.74 304.00

Zuarungu �0.81 10.80 213.00

Navrongo �1.09 10.89 196.00

Yendi �0.01 9.45 252.00

Note: Latitude and longitudes in decimal degrees, elevation in meters.
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have high-performance ability in correcting most of the statistical characteristics of the RCM (Teutschbein & Seibert 2012,

2013; Ibebuchie 2021, 2022).

2.4. Statistical analysis

Statistical parameters, namely, root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination

(R²), were used to assess the performance of RCMS. The RMSE and MAE measure the error between the observed data and

the simulated data. It is thus postulated that the smaller value (i.e., the closer it is to zero), the better or closer the stimulation

value to the observed data. These parameters have been widely accepted and employed in measuring model performance in

climate studies (Bennett et al. 2013; Amirabadizadeh et al. 2016).

RCM outputs without bias correction and those that underwent bias correction are hereafter referred to as raw and bias

corrected, respectively.

Each RCM was evaluated to determine how well they were able to simulate the past climate. The ensemble means of these

RCMs were also tested to see their ability in reproducing past climatic features.

3. RESULTS

3.1. Model performance (rainfall)

RCMs simulated observed rainfall with varying levels of accuracy, as was also observed by Nikulin et al. (2012). Uncertainties

in the reproduction of the observed rainfall by the raw RCMs varied across stations (Table 3). RC4A-HadGEM2 had the high-

est RMSE and MAE values of 86–124 and 11–70 mm, respectively, for the highest number of stations (six stations), indicative

of the highest error margins and thus be said to be the least performing model. RCA4-NOAA also recorded relatively high

RMSE and MAE values for the second highest number (four stations) of stations, and REMO-MPI also recorded relatively

high RMSE and MAE values for three stations.

The R² of the raw RCMs ranged from 0.69 to 0.99 (Table 3). Most of the raw RCMs’ R² values were higher than 0.50 for all

the stations except Tamale, where all the raw RCMs recorded relatively low values ranging from 0.07 to 0.89 with REMO-MPI

recording the lowest value of 0.07. The R² ranges typically from 0 to 1 and is a measure of how well the models can simulate

the observed data. Values of R² closer to 1 are considered the best simulations, but values .50 are generally regarded as

acceptable (Santhi et al. 2001; Van Liew et al. 2003). However, per the observed simulation and comparison with the

other performance estimators, using the R² alone as a performance indicator may be misleading.

The ensemble means of the raw RCMs captured the rainfall patterns (peaks) better than most of the individual RCMs,

although with varying levels of uncertainties across the stations. The RMSE and MAE for the ensemble means showed

that even for the raw outputs, it performed relatively better than most individual RCMs. The values recorded ranged from

19 to 76 mm and 13 to 63 mm, respectively, for RMSE and MAE, for all RCMs at all locations (Table 3). Tamale recorded

the highest value of 76 and 63 mm for both RMSE and MAE, respectively. The R² analysis showed values that ranged

from 0.69 to 0.99.

The accuracy of individual RCMs improved with bias correction. RMSE and MAE values ranged from 2 to 23 mm and 2 to

22 mm, respectively. Most of the stations recorded values less than 10 mm for all bias-corrected RCMs, apart from Kete-

Krachi, where all the RCMs recorded relatively high values for both RMSE and MAE, with RACMO-EARTH recording

the highest value of 22 mm for RMSE. In contrast, RCA4-CanESM1 and RCA4-NOAA recorded 23 mm for MAE (Table 3).

Table 2 | Details of RCMs used in this study

Model Driving GCM RCM institute Adopted Id

REMO MPI-M-MPI-ESM-LR Climate Service Centre in Hamburg, Germany (CSC) REMO-MPI

RCA4 MOHC-HadGEM2-ES Swedish Meteorological and Hydrological Institute (SMHI) RCA4-HadGEM2

RCA4 CCCma-CanESM2 Swedish Meteorological and Hydrological Institute (SMHI) RCA4-CanESM2

HIRAM NCC-NorESM1-M Danish Meteorological Institute (DMI) HIRAM-NorESM1

RACMO ICHEC-EC-EARTH Royal Netherlands Meteorological Institute (KNMI) RACMO-EARTH

RCA4 NOAA North American Space Agency RCA4-NOAA
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Table 3 | R2, RMSE (mm), MAE (mm), and standard deviation of the raw and bias-corrected (in parenthesis) simulations of rainfall, maximum
and minimum temperature of the individual RCMs, and their ensemble mean for each location

R
2 RMSE (mm) MAE (mm) Standard deviation

Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin

Bole

RCA4-CanESM2 0.62 0.78 0.74 48 4 2 35 4 2 44.4 1.3 1.8

[1.00] [1.0] [1.0] [9] [0] [0] [7] [0] [0] [6.7] [0.0] [0.0]

RCA4-HadGEM2 0.86 0.77 0.54 95 4 3 86 4 3 99.0 4.4 3.2

[1.00] [1.0] [1.0] [4] [0] [0.0] [3] [0] [0.0] [2.3] [0.0] [0.0]

RACMO-EARTH 0.91 0.90 0.71 27 4 3 21 3 3 25.4 0.9 1.3

[0.97] [1.0] [1.0] [13] [0] [0] [9] [0] [0] [13.4] [0.0] [0.0]

REMO-MPI 0.84 0.41 0.61 85 2 2 62 2 2 79.3 2.4 2.1

[1.00] [1.0] [1.0] [12] [0] [0] [9] [0] [0] [8.6] [0.0] [0.0]

RCA4-NOAA 0.87 0.90 0.68 34 2 3 28 2 2 34.2 0.9 1.7

[0.99] [1.0] [1.0] [14] [0] [0] [10] [0] [0] [12.0] [0.0] [0.0]

HIRAM-NorESM1 0.96 0.88 0.75 47 2 4 37 1 4 38.1 3.5 1.0

[1.00] [1.0] [1.0] [8] [0] [0] [7] [0] [0] [6.3] [0.0] [0.0]

Ensemble Mean 0.94 0.74 0.86 19 2 1 14 1 1 16.7 1.6 1.0

[1.00] [1] [1.0] [8] [0] [0] [6] [0] [0] [6.1] [0.0] [0.0]

Kete-Krachi

RCA4-CanESM2 0.50 0.92 0.92 84 3 3 59.2 3 3 68 0.8 2.5

[0.94] [1.0] [1.0] [23] [0] [0] [18] [0] [0] [24] [0.0] [0.0]

RCA4-HadGEM2 0.85 0.73 0.73 117 4 4 104.8 4 4 117 4.0 2.7

[0.96] [1.0] [1.0] [19] [0] [0] [14] [0] [0] [19.6] [0.0] [0.0]

RACMO-EARTH 0.68 0.66 0.66 54 3 3 43.3 2 2 54 1.7 0.8

[0.94] [1.0] [1.0] [17] [0] [0] [22] [0] [0] [23.2] [0.0] [0.0]

REMO-MPI 0.90 0.93 0.93 80 1 1 50.4 1 1 75 0.6 1.0

[0.96] [1.0] [1.0] [20] [0] [0] [16] [0] [0] [20.0] [0.0] [0.0]

RCA4-NOAA 0.80 0.97 0.97 52 2 2 39.4 1 1 44 0.9 2.4

[0.96] [1.0] [1.0] [23] [0] [0] [20] [0] [0] [22.6] [0.0] [0.0]

HIRAM-NorESM1 0.95 0.96 0.96 38 2 2 26.4 2 2 31 0.7 1.3

[0.96] [1.0] [1.0] [18] [0] [0] [13] [0] [0] [19.0] [0.0] [0.0]

Ensemble mean 0.96 0.96 0.96 32 1 1 25.8 1 1 31 0.5 0.7

[0.96] [1.0] [1.0] [19] [0] [0] [14] [0.0] [0] [20.0] [0.0] [0.0]

Kintampo

RCA4-CanESM2 0.49 66 66 86.4

[1.0] [5] [4] [4.7]

RCA4-HadGEM2 0.67 98 98 117.1

[1.0] [2] [2] [2.5]

RACMO-EARTH 0.75 28 28 39.4

[0.99] [8] [6] [7.8]

REMO-MPI 0.51 73 73 65.5

[1.0] [3] [2] [2.6]

(Continued.)
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Table 3 | Continued

R
2 RMSE (mm) MAE (mm) Standard deviation

Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin

RCA4-NOAA 0.74 70 70 82.6

[1.0] [9] [7] [8.5]

HIRAM-NorESM1 0.86 47 38 40.2

[1.0] [4] [3] 3.0]

Ensemble mean 0.78 31 31 36.7

[1.0] [2] [2] [2.1]

Navrongo

RCA4-CanESM2 0.67 0.79 0.70 51 2 2 36 1 2 52.9 1.4 2.0

[1.0] [1.0] [1.0] [6] [0.0] [0] [4] [0.0] [0] [4.8] [0.0] [0.0]

RCA4-HadGEM2 0.78 0.52 0.61 124 5 4 111 4 3 126.4 4.6 3.8

[1.0] [1.0] [1.0] [3] [0.0] [0] [2] [0.0] [0] [3.4] [0.0] [0.0]

RACMO-EARTH 0.75 0.57 0.71 49 5 3 33 5 3 81.3 2 1.3

[0.99] [1.0] [1.0] [10] [0.0] [0] [7] [0.0] [0] [10.5] [0.0] [0.0]

REMO-MPI 0.81 0.77 0.62 59 2 2 32 1 2 117.2 1.4 1.9

[1.0] [1.0] [1.0] [5] [0.0] [0] [4] [0.0] [0] [4.2] [0.0] [0.0]

RCA4-NOAA 0.79 0.83 0.69 51 2 3 37 1 2 96.3 1.3 1.9

[1.0] [1.0] [1.0] [9] [0.0] [0] [6] [0.0] [0] [7.5] [0.0] [0.0]

HIRAM-NorESM1 0.83 0.91 0.65 74 1 5 54 1 4 123.0 1 1.3

[1.0] [1.0] [1.0] [5] [0.0] [0] [3] [0.0] [0] [4.8] [0.0] [0.0]

Ensemble mean 0.87 0.88 0.76 43 2 1 38 1 1 45.5 36.3 1.1

[1.0] [1.0] [1.0] [4] [0.0] [0] [2] [0.0] [0] [3.7] [0.0] [0.0]

Tamale

RCA4-CanESM2 0.89 0.73 0.09 108 18 15 90 15 15 101.1 7.9 5.4

[1.0] [1.0] [1.0] [5] [0] [0] [3] [0] [0] [5.3] [2.9] [0.0]

RCA4-HadGEM2 0.54 0.31 0.41 86 16 15 70 15 14 76.8 6.0 5.9

[1.0] [1.0] [1.0] [2] [0.0] [0] [2] [0.0] [0] [2.2] [2.9] [0.0]

RACMO-EARTH 0.13 0.78 0.07 91 20 17 73 18 17 87.4 6.4 4.7

[1.0] [1.0] [1.0] [5] [0] [0] [4] [0] [0] [5.4] [2.9] [0.0]

REMO-MPI 0.07 0.78 0.07 87 19 15 71 17 14 85.9 6.4 4.5

[0.99] [1.0] [1.0] [10] [0] [0] [5] [0] [0] [10.1] [2.9] [0.0]

RCA4-NOAA 0.28 0.73 0.09 87 20 16 73 18 16 88.0 6.2 4.3

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.5] [2.9] [0.0]

HIRAM-NorESM1 0.66 0.12 18 12 15 11 6.9 4.8

[1.0] [1.0] [0] [0.0] [0] [0] [2.9] [0.0]

Ensemble mean 0.69 0.81 0.04 76 18 15 63 16 15 73.0 4.8 3.7

[1.0] [1.0] 1.00 [5] [0] 0.0 [3] [0] 0.0 [4.9] [2.9] 0.0

Wa

RCA4-CanESM2 0.69 0.83 0.4 46 2 2.9 32 2 2.5 43.7 1.1 2.8

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.7] [0.0] [0.0]

RCA4-HadGEM2 0.85 0.69 0.4 105 4 3.5 95 4 2.9 109.8 4.2 3.3

[1.0] [1.0] [1.0] [3] [0] [0] [2] [0] [0] [3.1] [0.0] [0.0]

(Continued.)
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Table 3 | Continued

R
2 RMSE (mm) MAE (mm) Standard deviation

Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin

RACMO-EARTH 0.94 0.86 0.6 29 4 3.5 22 4 3.1 23.6 1.0 1.7

[0.99] [1.0] [1.0] [9] [0] [0] [7] [0] [0] [8.8] [0] [0.0]

REMO-MPI 0.91 0.34 0.5 59 3 2.7 42 2 2.4 55.9 2.6 2.7

[1.0] [1.0] [1.0] [5] [0] [0] [5] [0] [0] [5.1] [0.0] [0.0]

RCA4-NOAA 0.93 0.94 0.5 29 1 3.6 22 1 2.7 27.0 0.7 2.5

[1.0] [1.0] [1.0] [7] [0.0] [0] [5] [0] [0] [6.9] [0.0] [0.0]

HIRAM-NorESM1 0.97 0.83 1.0 43 2 4.3 31 2 4.3 34.7 1.1 0.4

[1.0] [1.0] [1.0] [5] [0] [0] [3] [0] [0] [4.7] [0.0] [0.0]

Ensemble mean 0.99 0.80 0.6 14 1 1.5 13 1 1.3 9.8 1.3 1.4

[1.0] [1.0] [1.0] [3] [0] [0] [3] [0] [0] [3.3] [0.0] [0.0]

Wenchi

RCA4-CanESM2 0.53 0.84 0.4 58 4 3.1 41 3 2.9 48.0 1.1 3.2

[0.99] [1.0] [1.0] [7] [0] [0] [6] [0] [0] [6.2] [3.4] [0.0]

RCA4-HadGEM2 0.61 0.58 0.2 88 4 2.2 80 3 1.9 89.1 3.8 2.3

[0.99] [1.0] [1.0] [5] [0] [0] [4] [0] [0] [5.3] [12.8] [0.0]

RACMO-EARTH 0.78 0.74 0.5 35 2 2.0 26 2 1.4 31.8 1.3 1.5

[0.98] [1.0] [1.0] [10] [0] [0] [8] [0] [0] [107] [4.1] [0.0]

REMO-MPI 0.56 0.76 0.4 94 2 2.3 73 2 2.1 92.2 1.5 2.2

[0.99] [1.0] [1.0] [6] [0] [0] [6] [0] [0] [6.3] [4.6] [0.0]

RCA4-NOAA 0.64 0.94 0.4 48 2 3.3 35 2 2.4 49.5 1.1 3.1

[0.99] [1.0] [1.0] [10] [0] [0] [9] [0] [0] [9.6] [3.3] [0.0]

HIRAM-NorESM1 0.64 0.98 0.8 46 2 5.1 39 2 5.0 48.2 0.6 0.7

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [4.0] [1.7] [0.0]

Ensemble mean 0.71 0.98 0.5 36 2 1.4 29 2 1.4 36.5 0.4 1.4

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.6] [1.5] [0.0]

Yendi

RCA4-CanESM2 0.60 0.86 0.57 62 2 2 42 2 2 60.2 1.1 2.4

[1.0] [1.0] [1.0] [7] [0] [0] [5] [0] [0] [6.6] [0] [0.0]

RCA4-HadGEM2 0.81 0.71 0.49 124 4 3 111 4 3 129.7 4.6 3.3

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.8] [0] [0.0]

RACMO-EARTH 0.80 0.81 0.65 41 4 3 27 4 2 42.6 1.2 1.5

[0.98] [1.0] [1.0] [11] [0] [0] [8] [0] [0] [11.7] [0] [0.0]

REMO-MPI 0.93 0.64 0.51 35 2 2 26 2 2 35.5 1.8 2.2

[1.0] [1.0] [1.0] [11] [0] [0] [9] [0] [0] [9.2] [0] [0.0]

RCA4-NOAA 0.86 0.95 0.56 35 1 3 23 1 2 36.0 0.7 2.3

[1.0] [1.0] [1.0] [6] [0] [0] [4] [0] [0] [6.0] [0] [0.0]

HIRAM-NorESM1 0.95 0.96 0.77 47 1 5 35 1 5 38.0 0.6 0.8

[1.0] [1.0] [1.0] [6] [0] [0] [5] [0] [0] [6.1] [0] [0.0]

Ensemble mean 0.94 0.92 0.96 29 1 1 24 1 1 29.7 1.0 1.1

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.9] [0] [0.0]

(Continued.)
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R² values of the bias-corrected RCMs ranged from 0.94 to 1.00 for all RCMs at all stations (Table 3). Kete-Krachi recorded

the lowest R² values (0.94) recorded by RCA4-CanESM2 and RACMO-EARTH (Table 3). As mentioned earlier, the closer the

R² value is to 1 indicates a lower level of error by the model in simulating the observed data. Thus, the performance of the

models in simulating the observed data is seen to improve with bias correction as was critically pointed out by Teutschbein &

Seibert (2012).

Similar to the observation made for the individual RCMs, the performance of the ensemble means improved with bias cor-

rection. RMSE values ranged from 2 to 19 mm for all stations (Table 3). The highest value of 19 mm was recorded at Kete-

Krachi with the rest of the stations having values less than 10 mm. MAE values obtained after bias correction also ranged

from 2 to 14 mm with Kete-Krachi again recording the highest value of 14 mm. The remainder of the stations had values

less or equal to 6 mm. These indicate that the removal of biases from the simulated data improved the similarity between

these and the observed data.

3.2. Simulation of monthly rainfall

The monthly simulations of rainfall patterns for each climate station per each RCM are presented in Figure 2. RCMs were

mostly unable to simulate the rainfall patterns correctly. For stations with two peaks in their cycle (Bole, Kete-Karachi,

and Wenchi), most of the individual RCMs either failed to detect the two peaks or simulated a third peak. For such stations,

RCA-4 CanESM2 did a better job at mimicking the peaks better than the other RCMs, although with high underestimations of

the rainfall amounts. For the other stations (Navrongo, Tamale, Wa, Yendi, and Zuarungu) with just one peak, REMO-MPI

did better at simulating this pattern as compared to the other RCMs, albeit with some level of overestimation. RCA4-

HadGEM2 was the only RCM that was unable to capture the monthly rainfall pattern present in the observed data for all

the stations.

However, for stations such as Tamale and Kintampo, neither the raw RCMs nor their ensemble mean was able to capture

the rainfall pattern in the observed data (Figure 2). For Tamale, all the RCMs overpredicted the rainfall from October to

March and then underpredicted it from April to September. At Kintampo on the other hand, all the raw RCMs excluding

RCA4-NOAA, HIRAM-NORESM1, and RCA4-CanESM2 underpredicted the observed data for all the months (Figure 2).

The lowest underestimations in simulated data were recorded from November to March. These months fall within the dry

season of the study area. On the other hand, overestimations generally occurred from April to October, when most of the

Table 3 | Continued

R
2 RMSE (mm) MAE (mm) Standard deviation

Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin Prcp Tmax Tmin

Zuarungu

RCA4-CanESM2 0.60 0.56 0.59 60 2 2 42 2 2 56.6 2.1 1.9

[1.0] [1.0] [1.0] [4] [0] [0] [3] [0] [0] [3.6] [0.0] [0.0]

RCA4-HadGEM2 0.83 0.62 0.55 115 4 3 103 4 2 119.9 4.4 2.9

[1.0] [1.0] [1.0] [5] [0] [0] [3] [0] [0] [5.0] [0] [0.1]

RACMO-EARTH 0.92 0.78 0.64 37 5 4 27 5 3 29.7 1.5 1.8

[1.0] [1.0] [1.0] [5] [0] [0] [3] [0] [0] [3.8] [0.0] [0.0]

REMO-MPI 0.95 0.26 0.47 34 3 3 22 3 3 33.2 3.2 3.2

[1.0] [1.0] [1.0] [4] [0.0] [0] [4] [0] [0] [4.0] [0.0] [0.0]

RCA4-NOAA 0.83 0.79 0.66 36 1 2 24 1 2 37.4 1.4 1.6

[1.0] [1.0] [1.0] [6.] [0] [0] [5] [0] [0] [5] [0.0] [0.0]

HIRAM-NorESM1 0.98 0.68 0.90 31 2 5 23 2 4 23.5 1.8 1.0

[1.0] [1.0] [1.0] [6] [0] [0] [4] [0] [0] [5.8] [0.0] [0.0]

Ensemble mean 0.96 0.64 0.67 21 2 1 25 2 1 25.4 2.0 1.3

[1.0] [1.0] [1.0] [3] [0] [0] [2] [0] [0] [2.6] [0.0] [0.0]
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stations receive rainfall. This observation can be attributed to the reported challenges faced by RCMs in simulating the WAM,

especially during the rainy season.

3.3. Model performance for annual temperature

The accuracy of RCMs in reproducing mean annual minimum temperature (Tmin) and maximum temperature (Tmax) was

higher as compared to the simulation of rainfall (Figure 3). All other RCMs apart from RCA4-HadGEM2 were able to

model the observed temperature (both Tmin and Tmax) with varying levels of accuracy. RAMO-EARTH was observed to under-

estimate both Tmin and Tmax at all locations consistently. At Tamale, none of the RCMs was able to model the observed

pattern for both Tmin and Tmax.

Barring Tamale, the MAE and RMSE values for the raw RCMs for both Tmin and Tmax ranged from 1 to 4 °C (Table 3).

Values recorded for both MAE and RMSE at Tamale were relatively high for all the RCMs and ranged from 15 to 18 °C

and 16 to 20 °C, respectively. R² values recorded ranged from 0.2 to 0.98, except again for Tamale where values in the

range of 0.04–0.4 were recorded for Tmin. Wenchi (Tmax) and Kete-Krachi (Tmin and Tmax) recorded some of the highest R²

values (Table 3).

The ensemble means of the raw RCMs recorded MAE and RMSE values ranging from 1 to 2 °C for all stations for both Tmin

and Tmax apart from Tamale that recorded MAE values of 15 and 16 °C for Tmin and Tmax, respectively, and RMSE values of

15 and 18 °C for Tmin and Tmax, respectively (Table 3).

R² values recorded for the ensemble mean were in the range of 0.04–0.98 (Table 3). The lowest value was recorded for Tmin

at Tamale, while the highest was recorded at Wenchi for Tmax.

Figure 2 | Raw and bias-corrected simulations of observed monthly rainfall (1960–2005).
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Similar to the observations made with precipitation, bias correction improved the ability of the RCMs in simulating the

observed temperature. All the stations recorded MAE and RMSE values of 0 for all stations for both Tmin and Tmax. Since

both the RMSE and MAE measure the degree of error between the observed and simulated data, it is accepted that the

closer a value is to 0, the more similar the simulated value is to the observed. It indicates little or no residuals between

the observed and simulated data. Thus, the MAE and RMSE values of 0 that were recorded indicate that after bias correction,

the RCMs were able to simulate the observed data with a high level of performance. Also, each RCM recorded an R² value

of 1 after bias correction for all stations. A further indication of the high performance of the RCMs in the stimulation of 1

implies that the simulated data are a perfect fit for the observed. The ensemble mean of the bias-corrected RCMs produced

similar results to that of the individual RCMs. Zero was its value for both MAE and RMSE for all stations, as well as an R²

value of 1.

3.4. Simulation of mean monthly Tmin and Tmax

Generally, Tmin was observed to be lowest in January and then gradually increased till it peaked in March/April. It then again

declined from May till a second (smaller) peak was observed in October, after which it fell till December. For Tmax on the

other hand, it was found to be high in January and continued to increase till it peaked in March/April and then declined shar-

ply to its lowest in July/August, after which it increased again till December. These monthly Tmin and Tmax patterns were

generally captured by the raw RCMs, albeit with varying levels of accuracy for each climate station (Figure 3). For Tmin,

there were mixed simulations by the RCMs for the various locations. RACMO-EARTH, however, consistently underpre-

dicted, while HIRAM-NorESM1 overpredicted for all stations. These observations are likely to be the result of the

underlying boundary conditions used in the creation of these models.

Figure 3 | Raw and bias-corrected simulations of observed temperature (Tmax and Tmin) from 1975 to 2005.
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On the other hand, for Tmax, almost all the months were slightly overpredicted for most stations by almost all raw RCMs,

apart from Navrongo and Zuarungu where some underpredictions were observed. RACMO-EARTH again consistently

underpredicted for Tmax for practically all stations and months. Tamale was the only station that recorded extreme values

for both Tmin and Tmax by all RCMs.

For all the other stations (except Tamale), simulations overpredicted the observed temperature by as much as 7 °C, which

was recorded at Wenchi for Tmax by RCA4-HadGEM2 for July and August. The highest underprediction was 9 °C, registered

at Navrongo for Tmax for April by RACMO-EARTH. For Tamale, biases of both Tmin and Tmax were extremely high. All the

RCMs underpredicted both Tmin and Tmax for all the months (Figure 3). The highest underprediction was recorded in March

by a value of 24 °C for Tmin by RACMO-EARTH, while that of Tmax was 28 °C recorded in February by the same RCM

(Figure 3).

After correction, the biases were almost completely removed, as mentioned in the previous section. All the bias-corrected

RCMs were able to reproduce the same monthly means as observed at all the stations.

3.5. Projected changes in future climate

Based on the previous results, only the bias-corrected ensemble means were considered for analysis in this section. Future

projections were analyzed for each station for the three epochs according to the World Meteorological Organisation

(Ondras 2011; Gulacha & Mulungu 2016), with 30-year intervals, namely the 2020s (2006–2035), 2050s (2036–2065), and

2080s (2066–2095). These epochs were then used to undertake the change analysis in future climates. The future analysis

was undertaken for both RCP 4.5 and RCP 8.5 using the baseline 1960–2005 and 1975–2005 for rainfall and temperature,

respectively, and each RCM and then the ensemble mean. Change in rainfall was calculated as a percentage difference,

while that of temperature was derived as the absolute difference. A positive signal was an indication of an increase in the

variable (either rainfall or temperature), while a negative sign indicated a reduction with respect to the baseline period.

3.6. Projected monthly rainfall

Percentage differences in rainfall between the projected rainfall amounts and the baseline amount showed variations based

on location and the period under consideration (Figure 4). The 2020s, for most sites, showed either declines or the least

increase in rainfall amounts as compared to the other epochs.

3.7. Projected annual rainfall

The general projections under RCP 4.5 showed a decline in rainfall amounts for all three future epochs (Figure 5). The

majority of the stations recorded the highest reductions in the 2020s except for Kete-Krachi where the least decline was

recorded in the 2020s and for Bole where an increase was instead observed in the 2080s.

Projections under RCP 8.5, on the hand, showed variations with respect to locations. Stations such as Kete-Krachi and

Zuarungu, as well as the entire study area, had simulations similar to those projected under RCP 4.5. All the other sites

had projected declines in the 2020s and increases in either the 2050s or 2080s or both.

An exception to the aforementioned observation was noted at Tamale, where projections by both RCPs for three epochs

showed declines that exceeded 60%.

3.8. Projected changes monthly temperature

Projected changes in monthly Tmin (Figure 6) showed that Tmin increased for all three epochs with the 2020s recording the

least increase, while the 2080s marked the highest for both RCP 4.5 and RCP 8.5. Generally, the highest projected increases in

Tmin were recorded in March and peaked in May, after which it declined for both RCP 4.5 and RCP 8.5. However, there were

a few spikes observed in December and January for the 2050s and 2080s for both RCPs at some locations. As expected, the

simulations by RCP 8.5 were generally higher than those under RCP 4.5 because of the conditions under which those scen-

arios were created.

Under RCP 4.5, the 2050s and 2080s recorded appreciations in all months at all locations. However, for the 2020s, some

stations recorded reductions in Tmin for October, November, and January. Stations such as Bole, Navrongo, and Tamale

recorded declines in all these months. At Kete-Krachi, declines were in November and January. At Wa, there was an increase

in all the months, while Wenchi, on the other hand, recorded no change in Tmin for October and November but declines in

December and January. Reductions were observed in September and October at Yendi, with no change occurring in August
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and November. Finally, at Zuarungu, all months recorded appreciations apart from November and December where no

difference was observed.

Similar to the observations made under RCP 4.5, projections under RCP 8.5 showed that for locations such as Bole and

Kete-Krachi, declines were noticed in November. Navrongo and Tamale recorded declines in November and December,

while all months showed appreciations at Wa. At Wenchi, a decrease was seen in January, while no change occurred in Octo-

ber, November, and December. No change in Tmin was noticed in September and November, while a decline was recorded in

October at Yendi. At Zuarungu, all months showed increases in Tmin apart from November when no change was recorded.

The simulated Tmin changes were about 1 or 2 °C for most months with a few of them recording no change (0 °C) for the

2020s. Tmin then increased from 2 to 6 °C in the 2050s and from 2 to 9 °C in the 2080s, with a few variations with the location.

Analogous to the projected changes in Tmin, the simulated Tmax changes were about 1 or 2 °C for most months with a few of

them recording no change (0 °C) for the 2020s (Figure 6). It increased from 2 to 6 °C in the 2050s and from 2 to 9 °C in the

2080s, with a few variations with location.

Figure 4 | Projected changes in monthly rainfall for the selected stations under RCP 4.5 and 8.5.
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The projected changes in Tmax varied with location and epoch, under RCP 4.5 and RCP 8.5 (Figure 7). Stations such as

Bole, Kete-Krachi, and Wenchi recorded increases in all the months for all periods except in the 2020s where no change

was observed in June, July, August, and September. The situation at Navrongo and Zuarungu was similar to the above

except that in their case, and September recorded an increase in Tmax. At Tamale, no change in Tmax was observed in January,

February, and March for the 2020s, July and August for the 2050s, and December for the 2020s and 2080s. No change was

also noticed for October and November for all three epochs. At Wa, all the months showed increases apart from February and

November for the 2020s and March and April for all three periods. Finally, at Yendi, for the 2020s, no changes were noticed

in February, May, and June, while declines were recorded in March and April. No changes in Tmax were projected for March

and April for the 2050s and 2080s.

Similar to the observations made under RCP 4.5, locations such as Bole and Kete-Krachi, Navrongo, and Wenchi recorded

increases in all the months for all epochs except in the 2020s where no change was observed in June, July, August, and Sep-

tember (Figure 7). Again, at Tamale, no change in Tmax was seen in January, February, March, and December for the 2020s

Figure 5 | Projected changes in annual rainfall under RCP 4.5 and 8.5.

Journal of Water and Climate Change Vol 00 No 0, 14

Uncorrected Proof

Downloaded from http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2023.070/1240446/jwc2023070.pdf
by guest



and in October and November for both the 2020s and 2050s. At Wa, all the months showed appreciations apart from January,

February, April, and November where no change was noticed for the 2020s and March, which recorded a decline. There was

also no change projected for the 2050s for April. At Yendi, all months for all three epochs showed increasing Tmax except

March and April where Tmax was projected to decline, and July for the 2020s where no change was recorded.

Generally, Tmax is expected to increase in December, January, February, and March under the RCP 4.5 and RCP 8.5 across

most of the stations (Figure 7). Comparably, Tmax is expected to intensify under the worst-case scenario (RCP 8.5). For

instance, Tmax is expected to change by 6 °C at Yendi and Zuarungu under the RCP 8.5 (Figure 7).

3.9. Projected annual temperature

Projected changes in annual Tmin as simulated for both RCP 4.5 and RCP 8.5 are presented in Figure 8. Apart from Bole

where no change was recorded for the 2020s under RCP 8.5, all other locations recorded increased Tmin for all future

Figure 6 | Projected changes in monthly Tmin for the selected stations under RCP 4.5 and 8.5.
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epochs under both RCP 4.5 and RCP 8.5. A change of 1 °C was observed for both RCPs at all sites. For the 2050s, the

changes ranged from 1 to 4 °C for both RCPs, 1 to 4 °C under RCP 4.5, and from 2 to 8 °C for the 2080s depending on

the location

The most significant changes in the 2050s of 4 °C occurred at Bole and Zuarungu under RCP 4.5 and RCP 8.5, respectively.

For Tmax under both RCP 4.5 and RCP 8.5, changes were relatively lower compared to the observations made for Tmin

(Figure 9). Similar to the pattern observed for Tmin, the smallest changes were recorded in the 2020s and increased with

progression from the 2050s to the 2080s barring Navrongo where a 2 °C change was observed in the 2020s. An increase

of 1 °C was recorded at almost all locations except Navrongo for the 2020s, 1–2 °C for both the 2050s and 2080s under

RCP 4.5.

For Tmax, a 1 °C change was observed in the 2020s at all locations. For the 2050s, a 1 °C change was recorded at

Tamale, while the rest of the stations recorded a 2 °C increase. For the 2080s, a Tmax increase ranging from 1 to 4 °C was

recorded.

Figure 7 | Projected changes in monthly Tmax for the selected stations under RCP 4.5 and 8.5.
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3.10. Projected change in mean annual temperature for the entire study area

The mean temperature changes projected for each climate station are presented in Figure 10. Under RCP 4.5, a 1 °C change

was projected for all locations except Navrongo and Tamale where a mean temperature change of 1.5 and 0.5 °C was, respect-

ively, recorded. For the 2050s, the projected changes ranged from 1.5 to 3 °C. However, no change was recorded at Tamale.

For the 2080s, the change ranged from 2 to 4 °C.

Comparable to RCP 4.5, the projections under RCP 8.5 also showed a 1 °C change at all locations except Tamale where a

mean temperature change of 0.5 °C was recorded. Projected changes ranged from 2 to 3 °C for the 2050s. For the 2080s, the

change ranged from 2 to 5.5 °C (Figure 10).

4. DISCUSSION

In recent times, the West African subregion has experienced widespread reductions in rainfall amounts and increasing temp-

eratures (Sylla & Nikiema 2016; Aziz & Obuobie 2017). However, the projection of precipitation in Africa and particularly

West Africa comes with a high level of uncertainty and thus often presents no specific trend but with fluctuating amounts

(IPCC 2013; Sylla & Nikiema 2016). The ability of RCMs to accurately project future climate depends largely on their ability

to accurately reproduce past and present climate conditions. Therefore, evaluating the performance of RCMs in simulating

such conditions is critical for climate change studies (Diallo et al. 2011; IPCC 2013; Sylla & Nikiema 2016). The ability

of individual RCMs and their ensemble means to reproduce observed climate conditions have been varied depending on

the climate variable and location. The differences in the RCM’s ability to simulate the observed climate depend mostly on

the driving model’s representation of the WAM (Diallo et al. 2011; IPCC 2013; Sylla & Nikiema 2016).

Figure 8 | Projected changes in annual Tmin under RCP 4.5 and 8.5.
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In this study, RCMs generally performed better at simulating temperature than precipitation, even without bias correction.

However, bias correction is mandatory for achieving higher accuracy as RCM data tends to deviate from observed data due to

their inability to integrate all the chemical and physical processes in the atmosphere (Lupo & Kininmonth 2013; Lazoglou

et al. 2019). This was evidenced by the fact that after bias correction, almost all RCMs satisfactorily simulated observed data

and captured rainfall peaks unique to each climate station. A similar observation had also been reported by previous studies

(Sylla & Nikiema 2016; Aziz & Obuobie 2017).

The ensemble mean was observed to outperform most of the individual RCMs in most cases both before and after bias cor-

rection. Although some studies have argued that in some cases, the ensemble mean is unable to outperform the individual

RCMs or GCMs, a suitable RCM or GCM that is identified could be used instead. This observation holds for some locations

(Tamale and Wa) where one or two individual RCMs were observed to outperform the ensemble mean. However, the margin

of error in those instances for the ensemble mean was still within the acceptable range, and therefore, the ensemble mean

could be employed for further analysis.

Overall, almost all climate stations showed projected increases in rainfall amounts, especially from January to March for

the 2050s and 2080s, with declines observed from August to September, which is typically the peak of the rainy season. These

changes may have significant implications for agriculture, as the declines coincide with the growing season and thus may

potentially lead to crop failure.

Comparing projections under RCP 4.5 and RCP 8.5 showed a similar pattern, with variations in amounts. However, RCP

8.5 projections were generally higher due to the scenario’s high emissions. The response of precipitation to increasing temp-

eratures resulting from global warming has been reported to be far from homogenous, with oscillating values ranging from

�30 to 30% (IPCC 2013; Sylla & Nikiema 2016). For this study, projected changes ranged from �20 to 20% for almost all

locations, with the highest decline occurring in the 2020s under both RCP 4.5 and RCP 8.5, except for Tamale. This implies

Figure 9 | Projected changes in annual Tmax under RCP 4.5 and 8.5.
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that projected changes are spatially variable, and therefore, there is the need for localized adaptation strategies to suit the

need of the particular location.

A trend in extreme temperatures, particularly diurnal minimum, has been observed in West Africa during the second half of

the 20th century (Mouhamed et al. 2013; Darko et al. 2018). Changes in Tmin were generally higher than Tmax, with Tmin being

the temperature component most affected by slight changes in climate (Kim et al. 2013). The resultant effect could be a per-

sistent warmer surface temperature since the cooling of the environment depends on the lower daily temperature. Similar

projections for future temperature for the West African subregion had been made by Diallo et al. (2011) and Sylla & Nikiema

(2016) and in the black Volta basin by Aziz & Obuobie (2017) in earlier studies suggesting that the entire region was under-

going warming.

A comparison of projected changes for the entire study area and individual locations produced varied results. Although they

all projected temperature increases, the degree of change varied spatially. These variations ranged from about 1 to 3 °C, but for

climate change studies, a 1 °C change in temperature is considered significant and could have dire consequences on the climate

(IPCC 2013). It is thus critical to consider these variations in planning and executing adaptation strategies and policies to

enhance sustainable agriculture and livelihoods.

However, more RCMs are needed to explore more possibilities regarding the uncertainty of RCM parameterization. Also,

additional variables need to be examined (such as potential evapotranspiration and surface runoff) for gaining insight into the

influence of climate change on the hydroclimate aspects of the Savannah regions.

5. CONCLUSION

The accuracy of both individual RCMs and their ensemble mean in simulating observed climate improved with bias correc-

tion. However, the performance of the raw ensemble mean was better than most of the raw individual RCMs in most cases.

Figure 10 | Projected changes in mean temperature.
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The performance of individual RCMs varied with location. Noticeably, it was difficult for RCMs to simulate the climate pat-

tern for Tamale for both rainfall and temperature. Although after bias correction, this situation was resolved, this challenge

was again observed in the projection of future climate. These findings buttress previous studies that advocate for bias correc-

tion of RCMs before being used for further climate analysis. This is consistent with findings by Diallo et al. (2011), Gbobaniyi

et al.(2014), and Nikulin et al. (2012). Again, the results also support those studies that have suggested the use of the multi-

model ensemble mean of several RCMs instead of using just one, since the ensemble mean was found to outperform most of

the individual RCMs for most locations (Teutschbein & Seibert 2010; Nikulin et al. 2012; Gbobaniyi et al. 2014). Although

there were a few instances where a single RCM performed better than the ensemble mean, generally the ensemble mean was

the best-performing model.

The overall changes in annual precipitation, as projected by the individual RCMs and their ensemble mean was a general

decline in rainfall amounts, albeit with variations based on the RCM and location. As has been established by earlier studies,

the changes in rainfall were found to be variable, oscillating between positive signals and negative signals with no particular

trend. The change signal projected by the ensemble mean ranged from �20 to 20% for almost all locations, with the highest

decline occurring in the 2020s. Some of the individual RCMs, however, projected change signals larger than these values. The

2050s recorded a relatively lower decline, while the 2080s generally recorded the smallest declines or in some cases

increased. This observation was true for the analysis of the entire study area as well. In congruence with previous studies,

simulations under RCP 8.5 were observed to be larger than the simulations under RCP 4.5.

The accuracy of simulating observed temperature by the individual RCMs improved with bias correction just as it did with

rainfall, with the ensemble mean generally outperforming the individual RCMs in both cases.

The projected change in temperature showed an apparent increase in temperature over the study area for the various cli-

mate locations as well as for the entire study area. The mean temperature changes recorded were 1 °C for the 2020s and 2 °C

for both the 2050s and the 2080s, in consonance with previous studies in the region as well as global predictions.
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